9th VTRMC, 1987, Solutions

1. The length of PyP; is \/E/ 2. For n > 1, the horizontal distance from P, to
P,y 1s 27"=1 while the vertical distance is 3-27""!. Therefore the length
of P,,P,y1 is 277=1/10 for n > 1, and it follows that the distance of the

path is (v2+1/10)/2.

2. We want to solve in positive integers a*> = x> +d?, b*> = d> +y*, a®> + b*> =
(x+y)2. These equations yield xy = d?, so we want to find positive integers
x,y such that x(x+y) and y(x+ y) are perfect squares. One way to do this
is to choose positive integers x,y such that x,y,x +y are perfect squares, so
one possibility is x =9 and y = 16. Thus we could have a = 15, b =20 and
c=725.
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3. If n is odd, then there are precisely (n+ 1)/2 odd integers in {1,2,...}.
Since (n+1)/2 > n/2, there exists an odd integer r such that a, is odd, and
then a, — r is even. It follows that (a; — 1)(ap —2)--- (a, —n) is even.

4. (a) Since |ap| = |p(0)| < |0], we see that agp = 0.

(b) We have |p(x)/x| <1 for all x # 0 and lim,_,g p(x) /x = a;. Therefore
|a1| S 1.

5. (a) Set n; = 23!, which has binary representation 1 followed by 31 0’s.
Since 31 has binary representation 11111, we see that n; = 31 for all
i>2.

(b) It is clear that {n;} is monotonic increasing for i > 2, so we need to
prove that {n;} is bounded. Suppose 2¥ < n; < 25+ where i > 2. If £ is
the number of zeros in the binary representation of n;, then n; < 28+1 —¢
and we see that n; | < 2Kt We deduce that n; < 28! for all i > 2 and
the result follows.



6. Of course, {a,} is the Fibonacci sequence (so in particular a, > 0 for all
n), and it is obvious that x = —1 is a root of p,(x) for all n (because
ap+2 — ant1 — a, = 0). Since the roots of p,(x) are real and their product
is —an /a4, we see that limy,_..r,, = —1. Finally s, = lim, e ay,/ay 2. If
f=1im, a1 /ay, then f2= f+1,s0 f = (1++/5)/2 because f > 0.
Thus f2 = (3++/5)/2 and we deduce that lim,, ... s, = (3 —/5)/2.

7. Let D = {d;;} be the diagonal matrix with d,, =1, d;; = 1 for i # n, and
d;j=0if i # j. Then A(t) = DA and B(t) = DB. Therefore

A()"'B(r)= (DA 'DB=A"'D"'DB=A"'B
as required.
8. (@) ¥ (1) =u(t)—x(t),y'(t) = v(t) =y (1), u' (t) = —x(t) —u(r),v'(1) =y (1) -
v(t).
(b) SetY = zg; and A = _11 :i . Then we want to solve Y/ =
AY. The eigenvalues of A are —1 £, and the corresponding eigen-

vectors are (:lil) Therefore u(t) = e '(—Asint + Bcost) and x(t) =

e "(Acost + Bsint), where A, B are constants to be determined. How-
ever when t = 0, we have u(t) = x(t) = 10, so A = B = 10. Therefore
u(t) = 10e~"(cost —sint) and x(t) = 10e~"(cost + sint). Finally the cat
will hit the mirror when u(r) = 0, that is when t = 7 /4.



10th VTRMC, 1988, Solutions

1. Let ABDE be the parallelogram S and let the inscribed circle C have center
0. Thus ZAED = 6. Let S touch C at P.Q,R,T. It is well known that
S is a rhombus; to see this, note that EP = ET, AP = AQ, BQ = BR and
DR = DT. In particular O is the intersection of AD and EB, ZEOD = 12
and ZOED = 0/2. Let x = area of S. Then x = 4 times area of EOD. Since
ED=ET+TD =rcot8/2+ rtan8 /2, we conclude that x = 2r?(cot 8 /2 +
tan 6 /2).
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2. Let the check be for x dollars and y cents, so the original check is for 100x +
y cents. Then 100y +x —5 = 2(100x +y). Therefore 98y — 196x = 5 + 3x.
Of course, x and y are integers, and presumably 0 < x,y < 99. Since 98
divides 5+ 3x, we see that x = 31 and hence y = 2x + (5 + 3x)/98 = 63.
Thus the original check was for $31.63.

3. If we differentiate y(x) + [ y(t) dt = x* with respect to x, we obtain y’' +y =
2x. This is a first order linear differential equations, and the general solution
isy=Ce *+2x—2, where C is an arbitrary constant. However when x = 1,
y(1)=1,501=C/e+2—2 and hence C = e. Therefore y = 2x —24e!' .

4. 1f a =1, then a®* + b> =2 = ab+ 1 for all n, and we see that a* + b* is
always divisible by ab + 1. From now on, we assume that n > 2.

Suppose a"t! + 1 divides a® + a®", where n is a positive integer. Then
a"™! + 1 divides "' — a* and hence @"™!' 4 1 divides a* + 1. Thus in
particular n < 3. If n = 3, then a"T! + 1 = a* + 1 divides a* + a** = a*> + a°.
If n = 1, then a® + 1 divides 24> implies a® + 1 divides 2, which is not pos-
sible. Finally if n = 2, we obtain a> + 1 divides a” +a*, so a® + 1 divides

a® — a which again is not possible.



We conclude that if @ > 1, then a® + b? is divisible by ab + 1 if and only if
n=3.

. Using Rolle’s theorem, we see that f is either strictly monotonic increasing
or strictly monotonic decreasing; without loss of generality assume that f is
monotonic increasing. Then f/(X) > 2 for all x, so |@ — xg| < .00005. Thus
the smallest upper bound is .00005.

. f(x) = ax — bx® has an extrema when f’(x) = 0, that is a — 3bx> = 0, so

x = =a/(v/3b). Then f(x) = j:i"[b Since f has 4 extrema on [—1, 1], two

of the extrema must occur at +1. Thus we have |a —b| = 1. Thus a possible
choiceisa=.land b =1.1.

@ f(0,1]) =[0,1/3]U[2/3,1]

S(7([0,1])) = 0,1/9]U[2/9,3/9]U[6/9,7/9]U[8/9,1]
FF(F0,1]))) = [0,1/27)U[2/27,3/27)U[6/27,7,27)U[8/27,9/27)U
[18/27,19/27)U[20/27,21/27)U[24/27,25/27) U [26 /27, 1]

(b) Let T C R be a bounded set such that f(7) = T. First note that T
contains no negative numbers. Indeed if 7 contains negative numbers,
let tp = inf;c7 ¢ and choose 1} € T with #; < f9/3. Then thereisnoz € T
with £(1) =1.

Therefore we may assume that 7' contains no negative numbers. Now
suppose 1/2 € T. Since (x+2)/3 = 1/2 implies x = —1/6, we see
that 3/2 € T. Now let , = sup,.rt and choose 3 € T such that 13 >
(tp +2)/3. Since f(T) =T, we see that there exists s € T such that
f(s) > (12 +2)/3, which is not possible.

We conclude that there is no bounded subset 7 such that f(7) =T and
1/2€T.

. If we have a triangle with integer sides a,b,c, then we obtain a triangle
with integer sides a+ 1,b+ 1,c+ 1. Conversely if we have a triangle with
integer sides a,b,c and the perimeter a + b + ¢ is even, then none of a,b,c
can be 1 (because in a triangle, the sum of the lengths of any two sides is
strictly greater than the length of the third side). This means we can obtain
a triangle with sides @ — 1,6 — 1,c¢ — 1. We conclude that T (n) = T'(n — 3)
if n is even.
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11th VTRMC, 1989, Solutions

Let B be the area of the triangle, let A be the area of the top triangle, and
set x =b —a. Then B/A = (b/a)?, so (B—A)/B = 1— (a/b)?. Since B —
A = a® +ax/2, we see that B = ab’/(2x). Therefore B — 2a*> = (ab® —
4a°x)(2x) = a(a —x)?/(2a) > 0. This proves the result.

. It is easily checked that a 2 x 2 matrix with all elements O or 1 has determi-

nant 0, or 1, or —1.

(a) Suppose A has determinant £3. Then by expanding by the first row, we
see that all entries of the first row must be 1. Similarly by expanding by
the second row, we see that all entries of the second row must be 1. But
this tells us that the determinant of A is 0 and the result follows.

(b) From (a) and expanding by the first row, we now see that detA =0, £1,
+2. It is very easy to see that detA can take the values 0 and £1. To

1 01
get the value 2,setA= (1 1 O |, while to get the value —2, take the
01 1

above matrix and interchange the first two columns. Thus the values the
determinant of A can take are precisely 0, £1, 2.

. Note that 2(1,0,1)+(2,—2,1) = (2,—1,3). Therefore a solution of the sys-

tem when by =2, b, = —1,b3 =3 is (xl,x27x3) 2(-1,3,2)+(2,-2,1).
This yields the solution x; =0, x, =4, x3 =5.

. Wehave (r—a)(r—>b)(r—c)(r—d) =9, where r—a,r—b, r—c, r—d are

distinct integers. This means that in some order, these four numbers must
take the values +1, 43, in particular (r —a)+ (r—b)+ (r—c)+ (r—d) =
1 — 143 —3=0. The result follows.

(i) 1+x+x24+x34+x*= (x> —1)(x—1). The only real root of x> — 1 is
x = 1. The result follows.

(ii) As indicated in the hint, we have d/dx(xf,(x)) = fu—1(x). By part
(i), we can assume that f,_;(x) has no real zero by induction on n.
However it is then clear that f,,_;(x) is always positive and therefore
xfn(x) is a strictly increasing function. We deduce that x f;,(x) has only
one zero, namely x = 0, and the result follows.



6. Since 1)
f<x/(x_1)):x/(x—1)—l Tx—(x—1) -

we see that f"(x) = x for x even and f"(x) = x/(x— 1) for x odd. Therefore

Yio2 4 x) =4f0() /3 + 211 (x)/3 = (4x* = 2x) /(3(x - 1)).

7. Let $x be the selling price before noon, and let $y be the selling price after
noon. Let the first farmer sell a chickens before noon, the second farmer b
chickens before noon, and the third farmer ¢ chickens before noon. Then
we have

ax+(10—a)y = 35
bx+ (16 —b)y = 35
cx+(26—c)y = 35

Thus in particular

a 10—a 1
b 16—b 1| =0.
c 26—c 1

Remember that a,b, c are positive integers, a < 10, b < 16, ¢ < 26. Also
x>y > 0. By inspection, we must have a =9, b = 8 and ¢ = 9. This yields
x=15/4 and y = 5/4. Thus the cost of a chicken before noon is $15/4, and
the cost after noon is $5/4.

8. The number of numbers in the sequence is the number of zero’s, plus the
number of 1’s, plus the number of two’s, plus .... In other words n = ag +
ay+...ap—1. Also ag # 0, because if ay = 0, then since n = ag+ - - - + ay,
we would obtain a¢; = 1 for all i. Thus there are n — ap — 1 nonzero terms
in {aj,...,a,—1} which sum to n — ap. Thus one of these nonzero terms is
2 and the rest are 1. If a; = 0, then a, = 2, hence ap = 2 and we have a
contradiction because n > 6. If a; = 1, then a; = 2, hence ag = 2 and again
we have a contradiction because n > 6. We deduce that a; = 2 and hence
apy = 1. We conclude that the sequence mustbe n —4,2,1,0,...,0,1,0,0,0.
In particular for n = 7, the sequence is 3,2,1,1,0,0,0.



12th VTRMC, 1990, Solutions

1. Let a be the initial thickness of the grass, let b the rate of growth of the
grass, and let ¢ be the rate at which the cows eat the grass (in the appropriate
units). Let n denote the number of cows that will eat the third field bare in
18 weeks. Then we have

10(a+4b)/3 = 12x4c
10(a+9b) =21 %9c
24(a+18b) = nl8¢

If we multiply the first equation by —27/5 and the second equation by 14/5,
we obtain 10(a + 18b) = 270c, so (a+ 18b)/c = 27. We conclude that
n = 36, so the answer is 36 happy cows.

2. The exact number N of minutes to complete the puzzle is Y2 3(1000 —
x)/ (1000 + x). Since 3(1000 — x) /(1000 + x) is a non-negative monotonic
decreasing function for 0 < x < 1000, we see that

1000
N—3§/ —3.46000/(1000+x)dx < N.
0

Therefore N/60 ~ 50(2In2 —1). Using In2 ~ .69, we conclude that it takes
approximately 19 hours to complete the puzzle.

3. One can quickly check that f(2) =2 and f(3) = 3, so it seems reasonable
that f(n) = n, so let us try to prove this. Certainly if f(n) =n, then f(1) =1,
so we will prove the result by induction on n; we assume that the result is
true for all integers < n. Then

fn+ 1) = f(f(n)+fn+1=f(n) =n+f(1) =n+1
as required and it follows that f(n) =nforn=1,2,....

4. Write P(x) = ax® 4+ bx*> +cx+d, where a,b,c,d € 7. Let us suppose by way
of contradiction that a,b,c,d > —1. From P(2) = 0, we get 8a+4b+2c +
d =0, in particular d is even and hence d > 0. Since 4b+2c+d > —7, we
see that @ < 0. Also a # 0 because P(x) has degree 3, so a = —1. We now
have 4b+2c+d =8 and b+c+d =1 from P(1) =0. Thus —2c —3d =4,
so —2¢ = 4+ 3d > 4 and we conclude that ¢ < —2. The result follows.



5. (a) For small positive x, we have x/2 < sinx < x, so for positive integers
n, we have 1/(2n) < sin(1/n) < 1/n. Since Y., 1/n? is convergent
if and only if p > 1, it follows from the basic comparison test that
Y~ _,(sinl/n)? is convergent if and only if p > 1.

(b) It is not difficult to show that any real number x, there exists an integer
n > x such that |sinn| > 1/2. Thus whatever p is, lim,_.. | sinn|” # 0.
Therefore ), | sinn|? is divergent for all p.

6. (a) If y* is a steady-state solution, then y* = y*(2 —y*),soy* =0or 1 =
2 —y*. Therefore the steady-state solutions are y* =0 or 1.

(b) Suppose 0 <y, < 1. Then y,11/yn =2—yu > 1, SO yui1 > yn. Also
Vi1 =1—(1—=y,)%, 50 y,41 < 1. We deduce that y, is a monotonic
positive increasing function that is bounded above by 1, in particular y,
converges to some positive number < 1. It follows that y, converges to
1.

7. Lety € [0,1] be such that (g(y) +uf(y)) = u. Let us suppose we do have
constants A and B such that F'(x) = Ag(x)/(f(x)+ B) is a continuous func-

= u. We will guess that the maximum
f(y)+B). Then A = B = —1 satisfies
f(x)).

So let us prove that F(x) = g(x)/(1 — f(x)) has the required properties.

Certainly F (x) is continuous because f(x) < 1 forallx € [0, 1], and F(y) =

from above. Finally maxo<y<i(g(x) +uf(x)) =u, so g(x) <u(l— f(x)) for

all x and we conclude that F(x) < u. The result is proven.

tion on [0.1] with maxp<,<; F(x)
occurs when x =y, so u = Ag(y)/
these equations, so F(x) = g(x)/(1 —
)/

8. Suppose we can disconnect F' by removing only 8 points. Then the resulting
framework will consist of two nonempty frameworks A, B such that there
1S no segment joining a point of A to a point of B. Let a be the number
of points in A. Then there are 9 — a points in B, at most a(a — 1) /2 line
segments joining the points of A, and at most (10 —a)(10 —a —1)/2 line
segments joining the points of B. It follows that the resulting framework has
at most 45 — 10a + a2. Since 10a — a? > 8 for 1 < a < 9, the result follows.



13th VTRMC, 1991, Solutions

. Let P denote the center of the circle. Then ZACP = ZABP = r/2 and
/BAP = /2. Therefore BP = atan(a/2) and we see that ABPC has area
a’tan(a/2). Since ZBPC = 1 — «, we find that the area of the sector BPC
is (m/2 — o /2)a’tan?( 0 /2). Therefore the area of the curvilinear triangle
is

. If we differentiate both sides with respect to x, we obtain 3 f(x)%f’(x) =
f(x)?%. Therefore f(x) =0 or f'(x) = 1/3. In the latter case, f(x) =x/3+C
where C is a constant. However f(0)* = 0 and we see that C = 0. We
conclude that f(x) =0 and f(x) = x/3 are the functions required.

. We are given that o satisfies (1 +x)x"*! = 1, and we want to show that &
satisfies (14 x)x"*2 = x. This is clear, by multiplying the first equation by
X.

. Set f(x) = x"/(x+ 1)""!, the left hand side of the inequality. Then
n—1

fix) = (x+ 1)m+2

(n—x).
This shows, for x > 0, that f(x) has its maximum value when x = n and we
deduce that f(x) <n"/(n+1)"*! for all x > 0.

. Clearly there exists ¢ such that f(x) — ¢ has a root of multiplicity 1, e.g.
x=c=0. Suppose f(x)— c has a multiple root r. Then r will also be a root
of (f(x) —c) = 5x* —15x> + 4. Also if r is a triple root of f(x) — c, then
it will be a double root of this polynomial. But the roots of 5x* — 15x + 4
are &((15++/145)/10)'/2, and we conclude that f(x) — ¢ can have double
roots, but neither triple nor quadruple roots.

. Expand (1 —1)" by the binomial theorem and divide by n!. We obtain for

n>0
1 1 1 (—1)"

ol Tn—1)! " 2i—2)1 T Tmor

Clearly the result is true for n = 0. We can now proceed by induction; we
assume that the result is true for positive integers < n and plug into the




above formula. We find that

ap ajg ap an—1 (_1>n
n!+(n—1)!+(n—2)!+ - 1! n!0!

and the result follows.

. Suppose 2/3 < an,b, < 7/6. Then 2/3 < api2,by42 < 7/6. Now if ¢ =
1.26, then 2/3 < az,by <1, s0if x, = axy41 or boyy 1, then x| = xn/4+
1/2 for all n > 1. This has the general solution of the form x, = C(1/4)" +
2/3. We deduce that as n — oo, ay,11,b2,+1 decrease monotonically with
limit 2/3, and ay,, by, decrease monotonically with limit 4/3.

On the other hand suppose a, > 3/2 and b, < 1/2. Then a,4+; > 3/2 and
by+1 < 1/2. Now if ¢ = 1.24, then a3 > 3/2 and b3 < 1/2. We deduce that
ap+1 = ay/2+1and b, = b, /2. This has general solution a, = C(1/2)" +
2, by = D(1/2)". We conclude that as n — oo, a,, increases monotonically
to 2 and b, decreases monotonically to 0.

. Let A be a base campsite and let / be a hike starting and finishing at A which
covers each segment exactly once. Let B be the first campsite which £ visits
twice (i.e. B is the earliest campsite that 4 reaches a second time). This
could be A after all segments have been covered, and then we are finished
(just choose € = {h}). Otherwise let i; be the hike which is the part of &
which starts with the first visit to B and ends with the second visit to B (so B
is the base campsite for /7). Let &’ be the hike obtained from 4 by omitting
hy (so i’ doesn’t visit all segments). Now do the same with /’; let C be the
first campsite on 4’ (starting from A) that is visited twice and let /1, be the
hike which is the part of /4’ that starts with the first visit to C and ends with
the second visit to C. Then 4 can be chosen to be the collection of hikes
{h1,hy,...} to do what is required.



14th VITRMC, 1992, Solutions

. First make the substitution y = x>. Then dF /dx = (dF /dy)(dy/dx) =
322 = 3x2e" by the chain rule. Therefore d’F /dx*> = 6xe* + 18x7¢" .
To find the point of inflection, we set d*F / dx? = 0; thus we need to solve
6x+ 18x” = 0. The only solution is x = 0, so this is the point of inflection
(perhaps we should note that d>F /dx> is 6 # 0 at x = 0, so x = 0 is indeed
a point inflection).

. The shortest path will first be reflected off the x-axis, then be reflected off
the y-axis. So we reflect (xp,y;) in the y-axis, and then in the x-axis, which
yields the point (—x;, —y2). Thus the length of the shortest path is the dis-
tance from (xy,y;) to (—x2, —y2), which is ((x; +x2)% + (y1 +y2)?) /2.

(i) We have f(f(x)) = 1+sin(f(x)—1) =1 +sin(sin(x— 1)), so fo(x) =
x if and only if x — 1 = sinsin(x — 1). If y is a real number, then
|siny| < |y| with equality if and only if y = 0. It follows that y =
sinsin(y) if and only if y = 0 and we deduce that there is a unique
point xo such that f>(xg) = xo, namely xo = 1.

(ii) From (i), we have x,, = 1 for all n. Thus we need to find },” ,1/3".
This is a geometric series with first term 1 and ratio between succes-
sive terms 1/3. Therefore this sumis 1/(1 —1/3) =3/2.

. Clearly t, > 1 for all n. Set T = (1++/5)/2 (the positive root of x> —x — 1).
Note thatif 1 < x < T, then x2 < 1 +x < T'2. This shows that t, <T foralln,
and also that t, is an increasing sequence, because ¢ e 12 =1++t, —12.
Therefore this sequence converges to a number between 1 and 7. Since

the number must satisfy x% = x+ 1, we deduce that lim,,_et, =T = (1+

V5)/2.

. First we find the eigenvalues and eigenvectors of A. The eigenvalues sat-
isfy x(x —3) +2 =0, so the eigenvalues are 1,2. To find the eigenvectors
corresponding to 1, we need to solve the matrix equation

-1 =2\ (u) (O
1 2 v/ \0)°
One solution is u = 2, v= —1 and we see that (_21) is an eigenvector

corresponding to 1.



To find the eigenvectors corresponding to 2, we need to solve
-2 =2\ (u) (O
11 v) \0)"

One solution is u = 1, v = —1 and we see that ( ) is an eigenvector

—1
corresponding to 2.

We now know that if 7 = <_21 _11) ,then T71AT = ((1) g) . We deduce
1 O

0 2100

100 2_2100 2_2101
AT = 142100 _j4plol)-

that 7141007 — ( ) . Therefore

. Since p(r) =0, we may write p(x) = g(x)(x—r), where g(x) is of the form
x?+dx+e. Then p(x)/(x—r) —2p(x+1)/(x+1—r)+p(x+2)/(x+2—
r) =q(x) —2q(x+1)+g(x+2) =2 as required.

. Assume that log means natural log. Note that logx is a positive increasing
function for x > 1. Therefore

n n n+1
/ xlogxdx < Ztlogt < / xlogxdx.
1 - 2

Since [xlogx = (x*logx)/2 —x* /4, we see that
n
(n*logn)/2—n*/4 <Y tlogt < ((n+1)*logn)/2— (n+1)*/4—2log2+1.
1=2
Now divide by n”logn and take lim,_.... We obtain

1o tlogt
1/2§1imzl:2—og

<1/2.
n—e p-logn

We conclude that the required limit is 1/2.



8. For G(3) we have 8 possible rows of goblins, and by writing these out we
see that G(3) = 17. Similarly for G(4) we have 16 possible rows of goblins,
and by writing these out we see that G(4) = 44.

In general, let X be a row of N goblins. Then the rows with N + 1 columns
are of the form X2 or X3 (where X2 indicates adding a goblin with height 2’
to the end of X). If X ends in 3 or 32 (2N~ 4-2N-2 possible rows), then X3
has 1 more LGG than X; on the other hand if X ends in 22, then X3 has the
same number of LGG’s as X. If X ends in 2 (2V~! possible rows), then X2
has 1 more LGG than X, while if X ends in 3, then X2 has the same number
of LGG’s as X. We conclude that for N > 2,

G(N+1) =2G(N)+ 2N 14 N1 4 oN=2 _oG(N) + 5.2V 2.

We now solve this recurrence relation in a similar way to solving a linear
differential equation. The general solution will be G(N) = C-2V 4+-aN2N~2,
where a is to be determined. Then G(N 4 1) = 2G(N) +5-2¥2 yields
a=5/2,50 G(N)=C-2N +5N2V=3, The initial condition G(2) = 6 shows
that C = 1/4 and we conclude that G(N) = 2V=2 4+ 5N2V=3 for all N > 2.
We also have G(1) = 2.



15th VTRMC, 1993, Solutions

1. We change the order of integration, so the integral becomes
1 y 1
/ /fevmdxdy:/ y2e™ = 267 /3)L = (26— 2)/3
o Jo 0

asrequired.

2. Since f is continuous, [§ f(t)dt is a differentiable function of x, hence f
is differentiable. Differentiating with respect to x, we obtain f'(x) = f(x).
Therefore f(x) = Ae* where A is a constant. Since f(0) = 0, we see that
A = 0 and we conclude that f(x) isidentically zero as required.

3. From the definition, we see immediately that f,(1) = 1 for al n> 1. Tek-
ing logs, we get In f,.1(X) = fn(X) Inx. Now differentiate both sides to ob-
tain f/, ;(X)/fnr1(x) = f4(X) Inx+ fn(x)/x. Plugging in x = 1, we find that
fo1(1)/fai1(1) = fa(1) foral n> 1. Itfollowsthat f)(1) = 1foraln> 1.
Differentiating

ni1(¥) = s (%) 300 InX 4 fapa(X) fa(X) /X,
we obtain

(%) = £, 00 F00 I+ Fo 200 700 Inx-+ Foe () F40) /%
200 Fa(0) /X + 2 (0 L0 — s 1(3) Fal3) /5.

Plugging in x = 1 again, we obtain f/(1) = 2 for al n > 2 asrequired.

4. Suppose we have an equilateral triangle ABC with integer coordinates. Let
u=ABandv=AC. Then by expressing the cross product as a determinant,
we see that |u x v| is an integer. Also |u|? is an integer, and |u x V| =
lu|?sin(r/3) because Z/BAC = rt/3. We conclude that sin(r/3) = /3/2is
arational number, which is not the case.

5. For |x| < 1, we have the geometric series 3» X" = 1/(1—Xx). If weinte-
grate term by term from 0 to x, we obtain >> ; X"/n = —In(1 —x), which
is aso valid for x| < 1. Now plug in x = 1/3: we obtain 3> ;37"/n =
—In(2/3) =In3—1In2.



6. Suppose f is not bijective. Since f is surjective, this means that there is
apoint Ag € R? such that at least two distinct points are mapped to Ag by
f. Choose points Bo,Cp € R? such that Ag, Bg,Co are not collinear. Now
select points A, B,C € R? such that f(A) = Ag, f(B) = Bg and f(C) = Co.
Since f maps collinear points to collinear points, we see that A B,C are
not collinear. Now given two sets each with three non-collinear points,
thereis a bijective affine transformation (i.e. alinear map composed with a
trandation) sending the first set of points to the second set. This means that
there are bijective affine transformations g,h: R? — R? such that g(0,0) =
A, 9(0,1) = B, g(1,0) = C, h(A) = (0,0), h(Bo) = (0,1), h(Co) = (1,0).
Thenk:=hfg: R? — R?fixes (0,0), (0,1), (1,0), and has the property that
if P,Q,R are collinear, the so are k(P),k(Q),k(R). Also there is a point
(a,b) # (0,0) such that k(a,b) = (0,0). We want to show that this situation
cannot happen.

Without loss of generality, we may assume that b # O Let ¢ denote the line
joining (1,0) to (0,b). Then k(¢) is contained in the x-axis. We claim that
k maps the horizontal line through (0, 1) into itself. For if this was not the
case, there would be a point with coordinates (c,d) with d # 1 such that
k(c,d) = (1,1). Then if m was the line joining (c,d) to (0,1), we would
have k(m) contained in the horizontal line through (0, 1). Since mintersects
the x-axis and the x-axis is mapped into itself by k, thisis not possible and
so our claim is established. Now let ¢ meet this horizontal line at the point
P. Then we have that k(P) isboth on this horizontal line and also the x-axis,
acontradiction and the result follows.

7. The problem is equivalent to the following. Consider a grid in the xy-plane
with horizontal linesat y = 2n+ 1 and vertical linesat x = 2n+ 1, wheren
isan arbitrary integer. A ball starts at the origin and travelsin astraight line
until it reaches a point of intersection of ahorizontal line and avertical line
on the grid. Then we want to show that the distance d ft travelled by the ball
is not an integer number of feet. However d? = (2m+ 1)+ (2n41)? for
some integers m,n and hence d? = 2 mod 4. Since d? = 0 or 1 mod 4, we
have a contradiction and the result is proven.

8. Theanswer is 6; here is one way to get 6.



1 1 3 4

1
1 2 3 4

2 3 4 4
2 2 6

2 5

6
5 3 6
5 5 6 6

In this diagram, pieces of wire with the same corresponding number be-
long to the same logo. Also one needs to check that a welded point is not
contained in more than one logo.

On the other hand each logo has three welded points, yet the whole frame
has only 20 welded points. Thus we cannot cut more than 20/3 logos and it
follows that the maximum number of logos that can be cut is 6.



16th VTRMC, 1994, Solutions

1. Let| = (1 %3 &2 dzdydx. We change the order of integration, so
wewrite| = [[[,, e1-2°dV, whereV is the region of integration.

It can be described as the cylinder with axis parallel to the z-axis and cross-
section A, bounded below by z= 0 and bounded above by z= 1— x?. This
region can aso be described as the cylinder with axis parallel to the y-axis
and cross-section B, bounded on the left by y = 0 and on the right by y = x.

Therefore
1 /v1-z X
I:/ / / e1-2 gydxdz
o Jo 0

1 vIz 1
=/ / xe(l‘z)zdxdz=/ (1—2)e%?9*/2dz
0 Jo 0

= [~ /a5 = (e~ 1)/4

2. We need to prove that pg < [P f(t)dt + [5'g(t)dt. Either g < f(p) or
g > f(p) and without loss of generality we may assume that q > f(p) (if
g < f(p), then we interchange x and y; alternatively just follow a similar
argument to what is given below). Then we have the following diagram.



C

P X

We now interpret the quantities in terms of areas. pq is the area of AUC,
J§ f(t)dt is the area of C, and [;'g(t)dt is the area of AUB. The resuilt
follows.

. Differentiating both sides with respect to x, we obtain 2f f’ = f2 — 4+
(f')2. Thus f4= (f — /)2, hence f — f’ = 4+ 2 and we deducethat dx/d f =
Flfz. We have two cases to consider; first we consider the + sign, that is
dx/df =1/f —1/(f+1) andweobtainx=In|f|—In|f +1|+C, whereC
is an arbitrary constant. Now we have the initial condition f(0) = +10. If
f(0) = 10, we find that C = In(11/10) and consequently x = In(11/10) —
In|(f +1)|/f|. Solving this for x, we see that f(x) = 10/(11e * — 10).
On the other hand if f(0) = —10, then C = In(9/10), consequently x =
In(9/10) — In|(f +1)/f|. Solving this for x, we conclude that f(x) =
10/(9e % — 10).
Now we consider the — sign, that isdx/df =1/f —1/(f — 1) and we ob-
tain X = In|f| —In|f — 1] + D, where D is an arbitrary constant. If the
initial condition f(0) = 10, we find that D = In(9/10) and consequently
x=In|f/(f —1)|+1In(9/10). Solving this for x, we deduce that f(x) =
10/(10 — 9e™*). On the other hand if the initial condition is f(0) = —10,
then D =In(11/10) and hencex = In|f /(f — 1)| 4+ In(11/10). Solving for
X, we conclude that f(x) =10/(10—11e™%).
Summing up, we have

() E10 +10

M =T-9ex o To-1tex

. Set f(x) = ax* +bx3 +x2 +bx+a= 0. We will show that the maximum
value of a+ b is —1/2; certainly —1/2 can be obtained, eg. witha=1



corresponding first order differential equationy’ = 4y + 4t. The solution to
an+1 = 4a, is ay = C4" for some constant n. Then we look for a solution
to an 1 = 4an +4nin the form a, = An+ B, where A, B are constants to be
determined. Plugging thisinto the recurrence relation, we obtain A(n+ 1) +
B = 4An+ 4B+ 4n, and then equating the coefficients of n and the constant
term, we find that A= —4/3,B= —4/9. Thereforea, = C4"—4n/3—-4/9,
and then plugging in a; = 1, we see that C = 25/36 and we conclude that
an = 25-4"/36— 4n/3—4/9. We now need to calculate YN, a,. Thisis

25(4N — 1) /27— 2N?/3— 10N /9.

. We have

1%n2 192
94n+_’]_ N 942Xn

Xn3 =

and we deduce that X, = X, for al nonnegative integers n. It follows that
YooXen/2" =X n10/2" = 20.



17th VTRMC, 1995, Solutions

1L Lee A={(xy)|0<x<2 0<y<3 xX<2y}andB={(xy) |0<x<
2,0<y<3 3<2y}. Letl=[3[21/(1+ max(3x,2y))2dxdy. Then
ax(3x,2y) = 2y for (x,y) € A and max(3x,2y) = 3x for x € B.

(2.3)

Therefore
|:// 1/( 1+2y2dA+// 1/(1+3%)2dA
3x/ 2
_/ / J(1+2y) dxdy+/ / /(1+3%)2dydx
:/O 2y/(3(1+2y) )dy+/0 3x/(2(1+ 3x)2) dx
3
- ["y/Gu+2) - 1/Ea+ 2y

+ /02 1/(2(1+3%)) — 1/(2(1+ 3x)2) dx

= [(In(1+2y))/6+1/(6(1+2y))]§ + [(In(1+3x)) /6+1/(6(1+3x))]3
—(In7)/6+1/42—1/6+(In7)/6+1/42—1/6— (7In7—6)/21.

2. Let A= ;’ _i We want to calculate powers of A, and to do thisit is
useful to find the Jordan canonical form of A. The characteristic polynomial

of Aisdet(xl —A) = (x—4)(x+ 1) + 6 = X2 — 3x+ 2 which has roots 1,2.

Setu= G) An eigenvector corresponding to 1 is u and an eigenvector



corresponding to 2 is (g) Set P= (11 3) and D = diag(1,2) (diago-

nal matrix with 1,2 on the main diagonal). Then P~1 = <_12 _31) and
P-1AP=D. Letv = (é) and let T denote transpose. Since A= PDP 1,
we find that

(010 T = Ay (AP L A® .. AL A0
= PD®p Ly + P(D® 4+ D%+ ...+ D+ DO)P1u

1 0\, 100 O ~
:P<O 2100>P 1V+P< 0 2100_1)P y
_ (98+3.2100
—\98+2.210)"
Thus 61%0(1,0) = (98 + 3. 2190 98 4 2.2100),

3. Let g(x) denote the power seriesin x

1—(X—l—XZ—I—---+Xn)+(X+X2+~--+Xn)2—---—|—(—1)n(X—|—X2—|—---+Xn)n—|—~--.

Thenfor 2 <r < n, the coefficient of X" in f(X) isthe same as the coefficient
of X ing(x). Sincex+x?+--- +x" = x(1—x") /(1 —x), we see that g(x) is
ageometric series with ratio between successive terms —x(1—x") /(1 —x),
henceitssumis

1 1-x

= = +1 2n+2
I+x(I—x")/(1—x) 1—x1 (1=x) (14X X ),

clearly the coefficient of X" in the aboveis 0 for 2 < r < n, which provesthe
result.

4. Write [tn] = p. Then p is the unique integer satisfying p<th < p+1
because p # tn (otherwise T = p/n, arational number), that is p/t < n <
p/t+1. Sincel/t=1—1, weseethat pt—p<n< pt—p+1andwe
deducethat n+ p—1 < pt < n+ p. Therefore [pt] = n+ p— 1 and hence
[t[tn] + 1] = n+ p. But 1n = tn+ n, consequently [t?n] = p+ n and the
result follows.



5. Supposex € R and 6(x) < —1. Fixy € R withy < x. Thenif nisa positive
integer and X > p1 > --- > pp >y, wehavefor 1 <i<n

0(x)> > 0(py),
6(pi) > 0(pi)° > 6(pir1),
6(pn) > 0(pn)® > 6(y),

and we deduce that 6(x)0(p1)2"~2 > 6(y), for al n. thisis not possible, so
0(x) > —1for al x € R. The same argument works if 0 < 8(y) < 6(x) < 1.

0(x) >

6. We will concentrate on the bottom left hand corner of the square and de-
termine the area A of that portion of the square that can be painted by the
brush, and then multiply that by 4. We make the bottom of the square the
x-axis and the left hand side of the square the y-axis. The equation of a
line of length 4 from (a,0) to the y-axisis x/a+y/v16—a2 = 1, that is
y = (1—x/a)v/16 — a2. For fixed x, we want to know the maximum value
y can take by varying a. To do this, we differentiate y with respect to a and
then set the resulting expression to 0. Thus we need to solve

(x/a%)\/16—a? —a(1—x/a)//16—a2 = 0.

On multiplying by v/16 — a2 and simplifying, we obtain 16x = a® and hence
dx/da = 3a?/16. Therefore

X= a=4

A= 1 x/a)\/16 —adx = /

X_

(1—x/a)v/ 16— aZdXda
a=4
= 3a%(1—a /16)\/16—a2/16da:/ 3a?(16 — a?)¥? /256 da.
0

a=0

Thisia a standard integral which can be evaluated by a trigonometric sub-
stitution. Specifically we set a = 4sint, so da/dt = 4cost and we find that

/2 n/2
A:/ 48cos4tsin2tdt:/ 6sin®2t(1+ cos2t)dt
0
_ / 3(1— cosdt) dt — 3/2.

We conclude that the total areathat can be painted by the brush is 6min?.



7. Notethat if pisaprime, then f(p) = p. Thus f(100) = f(22-5%) =44 10=
14, f(2-7) =2+7=09, f(3%) =3-2=6. Therefore g(100) = 6. Next
f(1019) = £(210.519) = 204-50= 70, f(2-5-7) =14, f(2-7) =2+7 =09,
f(3%) = 3-2 = 6. Therefore g(10%°) = 6.

Since f(p) = p if pis prime, we see that g(p) = p aso and thus primes
cannot have property H. Note that if r,s are coprime, then g(rs) < f(r)s.
Suppose n has property H and let p be a prime such that p? divides n, so
n= pr wherek > 2 and r isprimeto p. It is easy to check that if pk > 9,
then pX > 2pk, that is f(p¥) < p¥/2, thus f(n) < n/2 and we see that n
cannot have property H. Also if p,q are distinct odd primes and pqg > 15,
then f(pq) < pg/2 and so if n= pgr with r prime to pg, then we see again
that n cannot have property H.

Theonly casesto be considered now aren =9, 15,45. By direct calculation,
9 has property H, but 15 and 45 do not. So the only positive odd integer
larger than 1 that has property H is 9.



18th VTRMC, 1996, Solutions

1 Letl = fo J \/_V g0+2¢y2 4y ) dxdy. We change to polar coordinates to

/2 rl 4 n/2 1 4
I:/ / rcosoe rdrdez/ / r2e” cosOdrde.
0 sin® 0 sin@

Now we reverse the order of integration; also we shall writet = 6. This
yields

obtain

-1

1 psin™r 1 .
I:/ / rzer4costdtdr=/ r2¢ sint]8" T dr
0 Jo 0
1 4 4
:/ 3’ dr — [ /44 = (e— 1) /4.
0

. Writer; = my/ng and ro = mp/ny, where my, ng, mp, np are positive integers
and gcd(my,ng) = 1=ged(mp,n2). Set Q= ((My+mp) /(N1 +n2),1/(n1+
nz)). We note that Q ison the line joining (r1,0) with P(r2), that isthe line
joining (my/ng,0) with (mp/n2,1/ny). Thisis because

(M +mg) /(N1 +n2) = Mg/ + (Mz/Nz — My /) (Nz/ (N +n2)).

Similarly Q ison the line joining P(r1) with (r2,0). It follows that (my +
mp)/(n1+ng),1/(n1+ ny) is the intersection of the line joining (r1,0) to
P(r2) and thelinejoining P(r1) and (rz,0). Set

P=P((raf(ry) +raf(r2))/(f(r1) + f(r2))).
Since
P=((m+m)/(ni+n2),/f((m+mp)/(n1+12))),

we find that P is the point of intersection of the two given linesif and only
if f((m+m)/(n1+n2)) = ng+ny. We conclude that the necessary and
sufficient condition required isthat gcd(mg + mp,ny +ny) = 1.

. Taking logs, we get dy/dx = yIny, hence dx/dy = 1/(ylny). Integrating
both sides, we obtain x = In(Iny) + C where C is an arbitrary constant.
Plugging in the initial condition y = e when x = 1, we find that C = 1.
Thus In(Iny) = x— 1 and we conclude that y = e .



4. Set g(x) = x?f(x). Then the given limit says limy_...g"(x) = 1. Therefore
liMy_eo 0/ (X) = liMy_.00 §(X) = co. Thus by I"Hopital’srule,

lim g(x)/x% = limg(x)/(2x) = limg(x)/2=1/2.
We deduce that limy .. () = 1/2 and limy_..(xF'(x) /2 + f(x)) = 1/2,
and the result follows.
5. Set

f(X) = a7 + b1x+ 3apx® 4 bpx® + Sagx* + bax® + 7agx®,
9(X) = arx+ byx/2+ anc + box* /4 + agx® + bax® /6 + agx’.

Then g(1) = g(—1) because a; + a» + az + a4 = 0, hence there existst
(—1,1) suchthat g'(t) = 0. But g'(x) = f(x) and the result follows.

6. We choose the n line segments so that the sum of their lengths is as small
as possible. We claim that no two line segments intersect. Indeed suppose
A,Barered ballsand C,D are green balls, and AC intersects BD at the point
P. Since the length of one side of a triangle is less than the sum of the
lengths of the two other sides, we have AD < AP+ PD and BC < BP+ PC,
consequently

AD+BC < AP+PC+BP+PD =AC+BD,

and we have obtained a setup with the sum of the lengths of the line seg-
ments strictly smaller. This proves that the line segments can be chosen so
that no two intersect.

7. We have f, j11(X) — fn j(X) = v/X/n, hence
fnj (00 = foj(X)+ jvX/n=x+(j + 1)vx/n.

Thusinparticular fnn(X) =X+ (n+1)/x/nand weseethat limp_... fnn(X) =
X+ /X



19th VTRMC, 1997, Solutions

1. We change to polar coordinates. Thus x = rcos8, y =rsing, and dA =
rdrd@. Thecircle (x—1)2+4y? = 1 becomesr? — 2r cos® = 0, which simpli-
fiestor = 2cosB. Also as one moves from (2,0) to (0,0) on the semicircle
C (see diagram below), 8 moves from 0 to 1t/2. Therefore

3 /2 2cos6 3 /2 [2cos6
I oemea= [T COferdrde:/ | rcos’edrde
D X*+Y 0 0 r 0 0

/2 /2
:/ §COS69d9:/ 1-(1—|—C0829)3de
o 3 o 3

n/21
:/ 5 (1+ 30057 20)d6 — 511/ 12
0

2. Sincer1ry = 2, therootsrq,rp will satisfy a quadratic equation of the form
X? 4 px+2 =0, where p € C. Therefore we may factor

Xt =X+ ax? — 8x— 8= (x*+ px+2) (X* + aqx— 4)

where g € C. Equating the coefficients of x3 and x, we obtain p+q= —1
and 2q—4p = —8. Therefore p=1and g= —2. We concludethat a= —4
and ry,r, aretheroots of X2 +x+2,sory and rp are (—1+iv/7) /2,

3. The number of different combinations of possible flavorsis the same as the
coefficient of x1% in

(1+x+x2+...)*
Thisis the coefficient of x1% in (1—x)~4, that is 103! /(3!100!) = 176851.



4. We can represent the possible itineraries with amatrix. Thus we let

()

and let g indicate the (i, j)th entry of A. Then for aone day period, a1 is
the number of itineraries from New York to New York, aj;» isthe number of
itineraries from New York to Los Angeles, ap; is the number of itineraries
from Los Angeles to New York, and ag; is the number of itineraries from
Los Angelesto Los Angeles. The number of itineraries for an n day period
will be given by A™; in particular the (1,1) entry of A% will be the number
of itineraries starting and finishing at New York for a 100 day period.

To calculate A1, we diagondlize it. Then the eigenvalues of A are 1+ /3
and the corresponding eigenvectors (vectors u satisfying Au = Au where

A =14++/3) are (+v/3,1). Thereforeif P = (\f’ _\/§> , then

1
_ 1+v3 0
PlAP:( 0 1_\/§)
Thus
L ((14/3)1™ 0 _
e (A0 oty

We conclude that the (1,1) entry of Al® is ((14/3)1° 4 (1-+/3)1%0)/2,
which is the number of itineraries required.

5. For each city xin S, let Gx C S denote al the cities which you can travel
from x (thisincludes x). Clearly Gy iswell served and |G| > 3 (where |G|
isthe number of citiesin Gy). Choose x so that |Gy| is minimal. We need to
show that if y, z € G, then one can travel from y to z stopping only at cities
in Gy; clearly we need only prove thisin the case z= x. So suppose by way
of contradiction y € Gy and we cannot travel from y to x stopping only at
citiesin Gy. Since Gy C Gy and x ¢ Gy, we have |Gy| < |Gy, contradicting
the minimality of |G| and the result follows.

6. Let O denote the center of the circle with radius 2cm., let C denote the
center of the disk with radius 1 cm., and let H denote the hole in the center



of the disk. Choose axes so that the origin is a O, and then let the initial
position have C and H on the positive x-axis with H furthest from O. The
diagram below is in genera position (i.e. after the disk has been moved
round the inside of the circle). Let P be the point of contact of the circle
and the disk, (so OCP will be astraight line), let Q be where CH meets the
circumference of the disk (on the x-axis, though we need to prove that), and
let R be where the circle meets the positive x-axis. Since the arc lengths
PQ and PR are equal and the circle has twice the radius of that of the disk,
we see that Z/PCQ = 2/POR and it follows that Q does indeed lie on the
X-axis.

Let (a,b) be the coordinates of C. Then &+ b? = 1 because the disk has
radius 1, and the coordinates of H are (3a/2,b/2). It follows that the curve
H traces out is the elipse 4x? 4+ 36y> = 9. We now use the formula that
the area of an ellipse with axes of length 2p and 2q is Ttpg. Here p = 3/2,
g = 1/2, and we deduce that the area enclosed is 311/4.

y




7. Letx={x0,X1,...,X} €J. Then

Tx = LA({X0, X0+ X1, X0+ X1 +X2,... })
=L({1+X0,1+Xo+X1,1+Xo+X1+X2,...})
={1,1+x0,1+X+X1,1+Xo+X1+X2,...}.

Therefore T2y =T({1,2,3,...}) = {1,1+1,1+1+21+1+2+3,...}.

We deducethat T?y = {1,2,4,7,11,16,22,29, ...} and in general (T?y), =

nin4+1)/24 1.

Supposez:_limTiyexists. ThenTz=2z01=27),1+20=271,1+20+21 =
|—00

2, 1+ 20+ 273+ 2 = z3, etc. We now see that z, = 2". To verify this, we
use induction on n, the case n = 0 aready having been established. Assume
true for n; then

Znw1=1420+z+ - +z=1+1+2+-- 42" =2"1

so the induction step is complete and the result is proven.



20th VTRMC, 1998, Solutions

1. Setr =x2+y2 Then f(x,y) =In(1—r)—1/(2r — (x+y)?), so for givenr,
we seethat f is maximized when x+y = 0. Therefore we need to maximize
In(1—r)—1/(2r) where0 < r < 1. The derivative of thisfunctionis

1 .1 C2rt4r-1
r—1 2r2  2(r—1)r2

which is positivewhenr < 1/2, 0 when r=1/2, and negative whenr > 1/2.
It follows that the maximum value of thisfunction occurswhenr = 1/2 and
we deducethat M = —1—1In2.

2. We cut the cone along PV and then open it out flat, so in the picture below
P and P, are the same point. We want to find Q on VP; so that the length of
MQP isminimal. To do thiswereflect in VP, so P, isthe image of P under
this reflection, and then MQP, will be a straight line and the problem is to
find the length of MP».

Sincethe radius of the base of the coneis 1, we seethat the length from P to
P, along thecircular arcis 211, hence the angle Z/PV Py is1t/3 becauseV P =
6. We deduce that Z/PVP, = 21t/3, and sinceVM = 3 and VP, = VP = 6,
we conclude that MP, = /32462 —2-3-6-cos(2m/3) =3/7.

V

P1

3. We calculate the volume of the region which isin the first octant and above
{(x,y,0) | x > y}; thisis 1/16 of the required volume. The volume is above
R, where R is the region in the xy-plane and bounded by y =0, y = x and



y=+v1—x2, and below z= v/1—x2. Thisvolumeis

1/vV2 px pV1-x2 1 V12 p/1-x2
/ / / dzdydx + / / / dzdydx
0 0 Jo 1/v/2J0 0
1/v2 rx 1 V1-X2
:/ / \/1—x2dydx+/ / V' 1—x2dydx
0 0 1/v/2J0
1/+/2 1
:/ Xy/1—x2dx+ (1—x?) dx
0

1/v2
= [-@—®¥2/3g V4 k-3,
1 1 2 1 1
=t ot ==
3 6V/2 3 6V2 V2
—1-1/V2.
Therefore the required volume is 16 — 81/2.

y 0.
0.

’
177717
7]

4. We shall prove that AB = BC. Using the cosine rule applied to the triangle
ABC, we see that BC? = AB? 4 AC? — 2(AB)(AC) cos70. Therefore we need
to prove AC = 2ABcos70. By the sine rule applied to the triangle APC, we



find that AP = 2sin50, so we need to prove v/3 = 2(1 + 2sin50) cos70.
However sin(50+ 70) +sin(50 — 70) = 2sin50cos70, sin120 = 1/3/2 and
sin(50 — 70) = — cos70. Theresult follows.

5. Since § 1/a, is a convergent series of positive terms, we see that given
M > O, there are only finitely many positive integers n such that a, < M.
Also rearranging a series with positive terms does not affect its convergence,
hence we may assume that {a,} is a monotonic increasing sequence. Then
bon+1 > bon > an/2, so the terms of the sequence {1/by} are at most the
corresponding terms of the sequence

a'a’ap’a ag’ag’
Since ¥ 1/a, is convergent, so is the sum of the above sequence and the
result now follows from the comparison test for positive term series.

6. We shall assume the theory of writing permutations as a product of digjoint
cycles, though thisis not necessary. Rule 1 corresponds to the permutation
(123456789 10) and Rule 2 corresponds to the permutation (2 6)(3 4)(5
9)(7 8). Since

(26)(34)(59)(78)(12345678910) = (1685249 10)

(where we have written mappings on the |eft) has order 8, we see the posi-
tion of the cats repeats once every 16 jumps. Now 10 p.m. occurs after 900
jumps, hence the cats are in the same position then as after 4 jumps and we
conclude that the white cat is on post 8 at 10 p.m.



21st VTRMC, 1999, Solutions

1. Since the value of (x,y) is unchanged when we swapith y,

' Xf dydx = ~ ' 1f dyd
X+ X= // X+ X.
/O/O ( y) y 2Jo Jo ( y) Y

/Olf(x+y)dy:/xl+xf(z)dz:/Olf(z)dz

Also

becausd (z) = f(1+z) forall z. Sincefo1 f(z) dz= 1999, we conclude that
1,1
/ / f(x-+y) dydx = 1999 2.
0 Jo

2. Fora =1,B=0andx =1, we havef(1)f(0) = f(1). Thereforef (0) = 1.
By differentiation

af’(ax) f(Bx) + B (ax) '(Bx) = ()
holds for allx, and for alla, B satisfyinga? 4+ 32 = 1. Henceg(a + ) f/(0) =
f’(0) holds. By takingx =B =1/v/2, we wee that’(0) =0. Setc= f”(0).
By Taylor's theoremf (y) = 1+ cy?/2+¢€(y?), where limy_o&(y?)/y? = 0.

By takinga = B = 1/v/2 again, we see thdi(x/+/2)? = f(x) for all x. By
repetition, for every positive integen,

2m
f(x) = (f(Z‘m/zx)) .
Now fix any x, andd > 0. There is a positive integét such that for all
m> N, 2-™(|c| +&)x* < 1, and

2m

Tt < (12 ™ e+ 8pR)

(1+2™c-8)x%)
Now letm — 0. We obtain

e(c—é'))x2/2 < f(x) < e(c+6)/x2_

Since d was arbitrary,f(x) = /2, Using the conditionf(1) = 2, we
conclude thaf (x) = 2,



3.

6.

Note that any eigenvalue &f, has absolute value at mdet, because the
sum of the absolute values of the entries in any rowpis at mostM. We
may assume thd#l > 1. By considering the characteristic polynomial, we
see that the product of nonzero eigenvalue&aé a nonzero integer. Write
d = en(8). Then we havé"d > 1. This can be written as

en(d) _ In(M)
n <In(1/6)'

The result follows.

. The points inside the box which are distance at least 1 from all of the sides

form a rectangular box with sides 1,2,3, which has volume 6. The volume
of the original box is 60. The points outside the box which are distance at
most 1 from one of the sides have volume

3x44+3x4+3x54+3%x54+4%x5+-4x5=94

plus the points at the corners, which form eiéhh spheres of radius 1, plus
the points which form 1% th cylinders whose heights are 3,4,5. It follows
that the volume required is

60— 6+ 94+ 4T7/3+ 121= 148+ 40173,

By differentiatingf(f(x)) = x, we obtainf’(f(x))f’(x) = 1. Sincef is
continuous,f’(x) can never cross zero. This means that eithex) > 0

for all x of f/(x) < 0 for all x. If f’(x) > 0 for all x, thenx >y implies
f(x) > f(y), and we get a contradiction by considerifgf(a)) = a. We
deduce thaf is monotonically decreasing, and sintces bounded below by

0, we see that lig,. f(X) exists and is some nonnegative number, which
we shall callL. If L > 0, then we obtain a contradiction by considering
f(f(L/2)) =L/2. The result followsRemark The conditionf(a) # ais
required, otherwisd (x) = x would be a solution.

(i) Obviouslyn > 4. Next,n # 5 because 4 divides85. Alson# 6
because 3 divides 6 amd# 7 because 7 divides84. Finallyn # 8
since 4 divides 8, and # 9 since 3 divides 9. On the other hand
n = 10 because 3 does not divide 4, 10 and 14. Furthermore 4 does
not divide 3, 10 and 13, and 10 does not divide 3, 4 and 7.



(i) Suppose{3,4,10,m} is contained in a set which has propeMN.
Then 3 should not dividen, som s not of the form 3k Also 3 should
not divide 10+ m, som is not of the form 3k+ 2. Furthermore 33
should not dividem+ 4+ 10, somis not of the form 3k 1. Herek
denotes some integer. sfhas propertyND and contains 3,4 10 and

m, thenm cannot be of the form 3Bk + 1, 3k+ 2. This is impossible
and the statement is proven.



22nd VTRMC, 2000, Solutions

a« de :
1. Letl _/o 40050’ Using the half angle formula cos8 = 2cos?(8/2) —

1, we obtain

l_:/a do _:/a sec2(6/2)d® (9 sec?(6/2)d6

~ Jo 9-8cos?(8/2) Jo 9sec?(6/2) -8 Jo 9tan?(8/2) + 1’
Now make the substitution x = 3tan(8/2). Then 2dx = 3sec?(8/2) de, con-
sequently

3tan(a/2)
3 — / 2dx
0

= 2tan™*(3tan(a/2)).

Thereforel = %tan—l(Btan(a/Z)). By using thefactsthat tan(11/6) = 1/+/3
and tan(11/3) = /3, we see that when o = 11/3,

2 211
| = Ztan~1v/3="—.
e V3=

2. Let J denote the Jordan canonical form of A. Then A and J will have the
sametrace, and the entries on the main diagonal of J will satisfy 4x*+1=0.
Thisequation has roots £1/2+i/2, so the trace of A will be a sum of such
numbers. But the trace of A isreal, hence the imaginary parts must cancel
and we see that there must be an even number of termsin the sum. It follows
that the trace of A isan integer.

3. Makethe substitution y = x—t. Then the equation becomes x’ = x% — 2xt +
1. Wewill show that lim;_.. X/ (t) existsand is 0, and then it will follow that
lim_e Y (t) existsand is —1.

When t = 0, the initial condition tells us that x = 0, so x’(0) = 1 and we
seethat x(t) > 0 for small t. Suppose for some positivet we have x(t) < 0.
Then thereisaleast positivenumber T such that x(T) = 0. ThenX/'(T) =1,
which leads to a contradiction because x(t) > 0 for t < T. We deduce that
X(t) > Ofor al t.

Now X' — 1 = x(x— 2t) and since X' (0) = 1, we see that x— 2t < 0 for small

t. We deduce that for t sufficiently small, x(t) < t, consequently y(t) < 0
for small t. We now claim that y(t) < O for all positivet. If thisis not the



case, then thereisaleast positivenumber T such that y(T) = 0, and then we
must havey'(S) = 0 for some Swith0 < S< T. Butfromy = (y—t)(y+t)
and (y+t) > 0, we would have to have y(S) = S, a contradiction because
y(S) < 0. We deduce that x(t) < t for al positivet.

Now consider X' = x(x— 2t) 4+ 1. Note that we cannot have X (t) > 0 for all
t, because then x — 0 ast — oo whichisclearly impossible, consequently x’
takes on negative values. Next we have X’ = 2(xx —txX' — x), soif X' (t) =0,
we see that X’(t) < 0. We deduce that if X'(T) < 0, then X/(t) < 0 for all
t > T. Thusthereis a positive number T such that X'(t) < Oforalt>T.
Now differentiate again to obtain X"’ = 2(xx” + xX'xX' —tx” — 2X'). Then we
see that if X’(t) =0andt > T, then X”(t) > 0, consequently there is a
positive number S> T such that either xX’(t) < Oforalt > Sorx’(t) >0
for all t > S. We deduce that X (t) is monotonic increasing or decreasing for
t > Sand hence lim;_, X (t) exists (possibly infinite).

We now have X/ (t) is monotonic and negative for t > S, yet x(t) > O for all
t > S We deduce that lim;_, X (t) = 0 and the result follows.

. Sety=AP. Then

12 = (I-x)2+y?+2(1 —x)ycos
12 = x?4+y?— 2xycosH

Subtracting the second equation from the first we obtain
1212 =12 — 2Ix+ 2lycos6
which yields

13124 21x— 12
| .

From the second equation and the above, we obtain

2ycosf =

12— 12+ 2Ix—12
12 — X% 4 x-2 1+| =y

By differentiating the above with respect to x, we now get

12-12-12 _ dy

2X —
T Yax



and we deduce that dy/dx = cos6. Therefore

|
lo— 1y = y(1) —y(0) = / cosBdx
0
as required.

. Open out the cylinder so that it isan infinitely long rectangle with width 4.
Then the brush paints out two ellipses (one on either side of the cylinder)
which have radius v/3 in the direction of the axis of the cylinder, which we
shall call the y-axis, and radius 2 in the perpendicular direction, which we
shall call the x-axis. Then the equation of the ellipseisx?/4+y?/3= 1. By
considering just one of the ellipses, we see that the arearequired is

1 1 X2
4/ ydx:8\/§/ 1——dx
1 0 4
4my/3

By making the substitution x = 2sin8, this evaluatesto 6 + —3

.Leta=Y ant". Then
nzl

a? = S ant" S ant".
nZl nZl

Consider the coefficient of t" on the right hand side of the above; itis

an-181 +ap_2a+---+aap-2+aian-1

for n> 2 and O for n= 1. Using the given hypothesis, we see that this
is ap for al n > 2. We deduce that t + a? = a. For the problem under
consideration, we need to calculate o when t = 2/9, so we want to find o
when a2 —a +2/9 = 0. Since the roots of this equation are 1/3 and 2/3, we
are nearly finished. However we ought to check that o £ 2/3, .

Suppose this is not the case. Let Bn = S11_;am(2/9)™. If a =2/3 or o,
then there exists a positive integer N such that by < 1/3 and by;1 > 1/3.
Then the same argument as above gives

2
gt BZ > Bn+1,

which is not possible, so the result follows.



7. There are three possible positions for the tiles, namely [*, |« ], [« |*,]
and [*, | *.], whichweshall call A,B and C respectively. Consider An. .
Then whatever the n+ 1 st tileisin the chain, we can complete it to achain
of length n+4 2. Therefore A2 = An+1 + X for some nonnegative integer x.
However if the n+ 1<t tile is position A, then there is exactly one way to
add atileto get a chain of length n+ 2 (namely add tile B), whereas if the
tileisB or C, then there are exactly two ways to add atile to get a chain of
length n+ 2 (namely add tiles A or C). Therefore x is the number of ways
achain ends of length n+ 1 ends in B plus the number of ways a chain of
length end in C, which is precisely A,. Therefore An 2 = Ani1+ An. This
recurrence relation is valid for n > 1. Since A; = 3 and A; = 5, we get
A3=8,As=13 and Aqp = 233.




23rd VTRMC, 2001, Solutions

1. We calculate the volume of the region which isin the first octant and above
{(x,y,0) | x >y}, thisis 1/16 of the required volume. The volumeis above
R, where R is the region in the xy-plane and bounded by y =0, y = x and
y=+1—x2, and below z= v/1—x2. Thisvolumeis

1/vV2 px pV1-x2 1 V12 /1-x2
/ / / dzdydx + / / / dzdydx
0 0 Jo 1/v/2.J0 0

1/v/2 px 1 V1-x2
:/ / \/1—x2dydx+/ / Vv 1—x2dydx
0 0 1/v/2.J0
1/2 1
:/ X\/l—deX—l—/ (1—x2)dx
0 1/v/2

— [~(1—)¥/3y V2 x=x/3];, 5
1 1 2 1 1

— —+__|____
3 62 3 6V2 V2

=1-1/V2.
Therefore the required volume is 16 — 8v/2.
y 0.
0.
0.
10 "y
~
0.8
0.6
Z
0.4
0.2
% R
0.25
0.5



2. Let the circle with radius 1 have center P, the circle with radius 2 have
center Q, and let R be the center of the third circle, as shown below. Let
AR = a, RB = b, and let the radius of the third circle be r. By Pythagoras
on the triangles PAR and QRB, we obtain

(1-r?+a=(1+1)?, (2-r)?+b?=(2+1)2

Thereforea® = 4r and b? = 8r. Also (a+b)2+1=9,502,/ +2v/2r = /8
and we deducethat r = 6 —4/2.

Q

P
) B
D C

3. Let m,n be a positive integers where m < n. For each m x m square in an
nx ngrid, replace it with the (m— 1) x (m— 1) square obtained by deleting
thefirst row and column; this means that the 1 x 1 squares become nothing.
Then these new squares (don’t include the squares which are nothing) arein
a one-to-one correspondence with the squares of the (n—1) x (n—1) grid
obtained by deleting thefirst row and column of the n x n square. Therefore
S,_1 is the number of squares in an n x n grid which have size at least
2 x 2. Since there are n? 1 x 1 squares in an n x n grid, we deduce that
Si=S-1+n2
Thus

S =1242%+...48% =204

4. 1f p<q< (p+1)2, then pdividesqif and only if g= p?, p>+ p or p>+2p.

Thereforeif ay = p?, then a3 = (p+ 1) Since a; = 12, we see that
ag0000 = (14 9999/3)? = 33342 = 11115556.

5. Let ap = n"X"/n!. First we use the ratio test:

ani1 (n+ 1)n+1xn+1n!
an  mMx(n+1)! = (L+1/m™




Since limp«(1+1/n)" = e, we see that the interval of convergence is of
theform {—1/e,1/e}, where we need to decide whether the interval is open
or closed at its two endpoints. By considering fn””dx/x, we see that

1 1/,1 1 3

m < |n(1+1/n) < §<ﬁ+ n+l> < 1
because 1/n is a concave function, consequently (1+1/n)™1/3 < e <
(1+1/n)"L Therefore when |x| = 1/e, we see that |ay| is a decreas-
ing sequence. Furthermore by induction on n and the left hand side of
the last inequality, we see that |a,| < 1//n. Thus when x = —1/e, we
see that limp_..a, = 0 and it follows that the given series is convergent,
by the alternating series test. On the other hand when x = 1/e, the series
is S n"/(e"n!). By induction on n and the above inequality, we see that
n"/(e"/n!) > 1/(en) for al n> 1. Since S 1/n is divergent, we deduce
that the given seriesis divergent when x = 1/e, conseguently the interval of
convergenceis|[—1/e 1/e).

3 1). If we can find amatrix B = (i 3) such that B2 = A or

13
1 .
even 4A and set f(x) = %) then f(f(x)) = 3;(x+3 . So we want to find

asquareroot of A. The eigenvalues of A are 2 and 4, and the corresponding
eigenvectors are (_11> and G) respectively. Thusif X = (1 _11) , then

XAx—lz(é 2). SetC:(\éz g) Then C2 = XAX 1 soif we let

B = (X~ICX)?, then B?> = A. Since

= (3227

we may define (multiply top and bottom by 14 v/2/2)

: LetA:(

(3+2vV2)x+1
X+3+2v2

Finally we should remark that f still maps Rt to R*. Of course there are
many other solutions and answers.

F0) =



7. Choose x € A and y € B so that f(xy) is as large as possible. Suppose
we can write xy in another way as ab witha € A and b € B (so a # X).
Set g = ax ! and note that | # g € G. Therefore either f(gxy) > f(xy) or
f(g~1xy) > f(xy). We deduce that either f(ay) > f(xy) or f(xb) > f(xy),
a contradiction and the result follows.



24th VTRMC, 2002, Solutions
/2 1/ b2cos?x+a2sin®x
1. Thevolumeis ydydx. We put thisin more famil-
o. Jo
iar form by replacing x with 8 and y with r to obtain

/2 1//b?cos?0+a2sin’0
/ / r drde.
0 0

Thisis simply the areain the first quadrant of rv/b2cos?8 + a2sin?0 = 1,
equivalently b2r2cos?8 + a?r2sin@ = 1. Putting this in Cartesian coordi-
nates, we obtain b?x? + a?y? = 1, so we have to find the area of a quarter
ellipse which intersectsthe positive x and y-axesat 1 /b and 1/a respectively.

T
Therefore the vol iredis —-.
erefore the volume required is -

2. Theonly solutionisa=d=e=0andb=c= 1. To check thisisasolution,
we need to show /74 /40 = v/2+ /5. Since both sides are positive, it
will be sufficient to show that the square of both sides are equal, that is

74 /40 = (v/2++/5)?, which isindeed true because the right hand side is
7+2/10.

3. Let s be the given integer in S, and for an arbitrary integer y in S, define
f(y)=s—yify<sand f(y) =99+ s—yif y > s(roughly speaking, f(y)
iss—ymod 99). Notethat f: S— Sisawell defined one-to-one map. Let
C denote the integers f(y) for y in B, asubset of Swith b elements because
f isone-to-one. Since a+ b > 99, we see that A and C must intersect non-
trivially, equivalently f(y) must be aninteger x in A for some integer y in B.
Then f(y) = xwhichyieldsx=s—y or s—y+ 99, asrequired.

4. Since 23 = 32, we can rearrange aword consisting of 2'sand 3's so that all
the 2's appear before the 3's. An even number of 2's gives 1, and an odd
number of 2's gives 2, and similarly an even number of 3's gives 1 and an
odd number of 3's gives 3. From this, we see that aword consisting of just
2'sand 3's can only equal 1 if there are both an even number of 2’s and an
even number of 3's. Thuswe already havethat f(n) = O for all positive odd
integers n.

Now consider f(n) for n even. By switching the first letter between 2 and 3,
we see that the number of words consisting of just 2'sand 3'swhich have an



even number of 2'sisthe same as the number of words with an odd number
of 2's. Since the total number of words of length n is 2", we deduce that
A(n) = 2"~ when nis even. Therefore A(12) = 211 = 2048,

. First we find a recurrence relation for f(n). If the first O isin position 1,
there are O strings; if the first 0 isin position 2, there are f(n— 2) strings;
if the first 0 isin position 3, there are f(n— 3) strings; if the first 0 isin
position (n— 2) there are f(2) strings; if the first 0 is in position (n— 1)
there are f(1) strings; and if there are no O's there is 1 string. We deduce
that

fn)=fn-2)+---+f(1)+1
fn—-1)=f(n-3)+---+f(1)+1

Therefore f(n) = f(n—1) + f(n—2). We now prove by induction that
f(n) < 1.7" for al n. Theresult is certainly true for n=1,2. Supposeitis
trueforn—2,n—1,thatis f(n—2) < 1.7"2and f(n— 1) < 1.7"L. Then

1741
1.72

f(n)=f(n-2)+f(n—1) <1724 17"t =17" < 1.7,

which establishes the induction step and the result follows.

. Let the three matricesin T be X,Y,Z, and let | denote the identity matrix.
L et us suppose by way of contradiction that there are no A,B in Ssuch that
ABisnotin S If A isan eigenvalue of X, then A" is an eigenvalue of X".
From this we immediately see that the eigenvalues of X2 are {1,1}. This
1 X) wherex=0o0r 1
01 '
If x = 1, then the matrices X2" for n > 1 are al different and membersof T,
which is not possible because |T| = 3. Therefore X? = | and in particular
I isin T. Thus we may label are membersof T as X,Y, I, where | is the
identity matrix and X2 =Y? = . Consider XYX. We have (XYX)(XYX) =
XYX2YX = XY?X = X? =1, sotheeigenvalues of XYX are £1. Thismeans
that XY X is another member of T, so must be one of X,Y,l. We now show
that this is not possible. If XYX = X, then XYXXY = XXY =Y which
yieds X =Y. If XYX =1, then XXYXX = XX =1 which yieldsY = I.
Neither of theseis possible because X, Y, | aredistinct. Finaly if XYX =Y,
then (XY)(XY) = | which showsthat XY isaso amember of T, so we must
have XY = X,Y or |, and thisis easily seen to be not the case.

means that the Jordan Canonical Form of X2 is (



7. We use the fact that the arithmetic mean is at least the geometric mean,
0 (ag+--+an)/n> (a1~-~an)1/”. Since Y ¥ a, is convergent, it has a
sum M say, and then we have a; + - -- + a, < M for al n. We deduce that
bn < M/n and hence b2 < M?/n2. But 5 1/n? is convergent (p-series with
p=2>1), hence M?/r? is also convergent and the result follows from
the comparison test.



25th VTRMC, 2003, Solutions

1. The probability of p gainsis the coefficient of (1/2)P(1/2)" P in (1/2+
1/2)". Therefore, without the insider trading scenario, on average the in-
vestor will have 10000(3/5+ 9/20)" dollars at the end of n days. With the
insider trading, the first term (3/5)" becomes 0. Therefore on average the
investor will have

10000(2—3)” _ 10000(%)n

dollars at the end of n days.
2. We have

© N
—In(L=X) =X+X2/24x3/3+ - = leﬁ
i=

Therefore

(1—X)IN(1—Xx) = —x+x2/2+x3/6+...

© 1 1 © xntl
+i; N n+l T2 nint 1)

Dividing by x, we deduce that

> X 1—x
Z =14+ ——In(1—x)
& n(n+1) X

for x # 0, and the sumisO for x= 0.

3. Let | denote the 2 by 2 identity matrix. Since A= A1, we see that A = |
and hence the eigenvalues A of A must satisfy A°> = 1, so A = +1. First
consider the case detA = 1. Then A has arepeated eigenvalue +£1, and A is
similar to (g f wherer = +1ands=0or 1. Since A2 = |, we see that
s= 0and we concludethat A = +1.

Now suppose detA = —1. Then the eigenvalues of A must be 1, —1, so the

trace of A must be 0, which means that A has the form (S _ba) where



a, b are complex numbers satisfying a® + b? = 1. Thereforeb = (1—a?)%/?2
(where the exponent 1/2 means one of the two complex numbers whose
square is 1 — a?). We conclude that the matrices satisfying A=A’ = A1

are +1 and a (1-a?)h? where ais any complex number
(1_a2)1/2 _a Yy p .

. = /7= cos2m/7+isin2m/7. SinceR+# 1 and R’ = 1, we see that

1+ R+ -+ R®=0. Now for n an integer, R" = cos2nrt/7+ isin2nr/7.
Thus by taking the real parts and using cos(2m— x) = cosXx, Cos(Tt— X) =
— COSX, We obtain

211 T 31
1+ 20057 — 2cos7 — 2cos7 =0.

Since cosTt/ 7+ cos3rt/7= 2cos(2rt/7)(cosrt/7), the above becomes

2 T 21
40057 cos? — 20057 =-1
Finally cos(2mt/7) =2cos?(11/7)— 1, hence (2cos?(1t/7)— 1) (4cos(1t/7)—
2) = —1 and we conclude that 8cos®(11/7)— 4cos?(Tt/7) — 4cos(T1/7) =
—1. Therefore the rational number required is —1/4.

. Since ZABC + /PQC = 90 and ZACB+ Z/PRB = 90, we seethat Z/QPR =
ZABC + ZACB. Now X,Y,Z being the midpoints of BC, CA, AB respec-
tively tellsusthat AY isparallel to ZX, AZ isparallel to XY, and BX isparal-
lel toYZ. Wededucethat Z/ZXY = /BAC and hence ZQPR-+ /ZXY = 180.
Therefore the points P, Z, X, Y lie on a circle and we deduce that Z/QPX =
/ZYX. Using BZ parallel to XY and BX parallel to ZY from above, we con-
cludethat Z/ZYX = ZABC. Therefore ZQPX + ZPQX = ZABC+ ZPQX =
90 and the result follows.

. Set g = f2. Note that g is continuous, g3(x) = x for all x, and f(x) = x
for al x if and only if g(x) = x for al x. Supposey € [0,1] and f(y) #

y. Then the numbersyy, f(y), f2(y) are distinct. Replacing y with f(y) or
f2(y) and f with g if necessary, we may assume that y < f(y) < f2(y).
Choose a € (f(y), f2(y)). Since f is continuous, there exists p € (y, f(y )
and g € (f(y), f%(y)) such that f(p) =a= f(q). Thus f(p) = f(q), hen
3(p) = f3(q) and we deduce that p = g. This s a contradiction because

p < f(y) < q, and theresult follows.



7. Let the tetrahedron have vertices A, B,C, D and let X denote the midpoint of
BC. Then AX = \/1—1/4 = /3/2 and we see that ABC has area \/3/4.
Let RS T,U denote the regions vertically above and distance at most 1
from ABC,BCD, ABD, ACD respectively. Then the volumes of R,.S T and
U areal v/3/4. Since these regions are digjoint, they will contribute v/3 to
the volume required.

Let Y denote the point on AX which is vertically below D. ThenY isthe
center of ABC (i.e. where the medians meet), in particular Z/YBX = 11/6
and we see that BY = 1/+/3. Therefore DY = /1—-1/3=,/2/3 and we
deduce that ABCD has volume

Next consider the region which is distance 1 from BC and is between R
and S. We need the angle between R and S, and for this we find the angle
between DX and DY. Now DX = AX = v/3/2 and DY = ,/2/3. Therefore

=./3/4—2/3=1/(2/3). 1f 8= LYDX, thensin® = XY /DX = 1/3.
We deduce that the angle between R and Sis 11/2+6 = 11/2+sin"11/3.
Thereforetheregion at distance 1 from BC and between R and Shas volume
/4+ (sin"11/3)/2. There are 6 such regions, which contribute 3rt/2+
3sin~11/3 to the volume required.

For the remaining volume, we shrink the sides of the tetrahedron to zero.
This keeps the remaining volume constant, but the volumes above go to
zero. We are left with the volume which is distance 1 from the center of
the pyramid, which is 41t/3. Since 3m/2+ 4mt/3= 171/6, we conclude
that the volume of the region consisting of points which are distance at
most 1 from ABCD is v/3+v/2/12+ 171 /6+3sin"1(1/3) ~ 11.77. Other
expressions for this are v/3+ v/2/12 + 13m/3— 3cos *(1/3) and v/3+
V2/12+13m/3—6sin~1(1/V/3).



26th VTRMC, 2004, Solutions

1. The answer is no. One example is

01 00 10
A= (o o) B:(l o) C:(o o>'
Then deM =# 0 (expand by the fourth row), whereas Net O (fourth row

consists entirely of 0’s). TherefoM is invertible andN is not invertible,
as required.

2. Forn a non-negative integer, asncreases fronmto n+ 6, we add 3 twice,
1 twice and 2 twice td (n); in other wordsf (n+6) = f(n)+12. We deduce
that f (n) = 2nwhenn = 0 (mod 6).

3. Lets, denote the number of strings of lengttwith no three consecutive
A’s. Thuss; = 3, s = 9 andsg = 26. We claim that we have the following
recurrence relation:

$H=2%-1+2%-2+2%-3 (n>3).

The first term on the right hand side indicates the number of such strings
which begin withB or C; the second term indicates the number of such
strings which begin witlAB of AC, and the third term indicates the number
of such strings which begin witAAB or AAC. Using this recurrence rela-
tion, we find thatsy, = 76,55 = 222 andsg = 648. Since the total number of
strings is 8, we conclude that the probability of a string on 6 symbols not
containing 3 successivas is 648 /% = 8/9.

4. The answer is no. Let us color the chess board in the usual way with al-
ternating black and white squares, say the corners are colored with black
squares. Then by determining the number of black squares in each row,
working from top to bottom, we see that the number of black squares is

4+4+5+4+4+4+5+4+4=38.

Since there are 78 squares in all, we see that the number of white squares
is 40. Now each domino cover 1 white and 1 black square, so if the board
could be covered by dominoes, then there would be an equal number of
black and white squares, which is not the case.



5. Expanding the sine, we have
X X
f(x) = cosx/ sin(tz—t)dt+sinx/ cost? —t)dt.
0 0

Therefore

X
f/(x) = cosxsin(x* — ) —sinx/ sin(t? —t)dt
0

+ sinxcogx® — x) + cosx/oxcos(t2 —t)dt,
f(x) = — sinxsin(x* — x) + (2x— 1) cosxcogx* — X)

— sinxsin(x® —x) — cosx/oxsin(t2 —t)dt

+ cosxcog(x? — X) 4 (1 — 2x) sinxsin(x® — X)

X
—sinx/ sin(t2 —t) dt + cosxsin (@ — x).
0
We deduce that

f(x) 4 f7(x) = (2x+ 1)(cosxcogx? — X) — sinxsin(x? — x))
= (2x+1)cosé.

Setg(x) = f”(x) + f(x). To find f(12)(0) 4 £(19)(0), we need to compute
g19)(0), which we can find by considering the coefficient>df in the
Maclaurin series expansion fé2x+ 1)cosx®. Since cog? = 1—x*/2! +
x8/41—x12/61+ ..., we see that this coefficient is 0. Therefgfé&?)(0) =0
and the result follows.

6. Suppose first that there is an infinite subSetuch that each person only
knows a finite number of people 8 Then pick a persod; in S. Then
there is an infinite subs&; of ScontainingA; such thatA; knows nobody
in S;. Now choose a perso other thamd; in S;. Then there is an infinite
subsetS; of §; containing{As,A2} such that nobody 1%, knowsAy. Of
course nobody ir% will know A; either. Now choose a perség in S
other thanA; andA;. Then nobody from{A;, A2, Az} knows each other.
Clearly we can continue this process indefinitely to obtain an arbitrarily
large number of people who don’t know each other.



Therefore we may assume in any infinite subset of people there is a person
who knows an infinite number of people. So we can pick a peBsomho
knows infinitely many peopld@;. Then we can pick a persdp in T, who
knows an infinite number of people of T1, because we are assuming in any
infinite subset of people, there is somebody who knows infinitely many of
them. Of courseB; andB; know all the people iff2. Now choose a person

Bz in T who knows an infinite number of people Ta. Then{By,B;, Bz}

know each other. Clearly we can continue this process indefinitely to obtain
an arbitrarily large number of people who know each other.

Remark A simple application of the axiom of choice shows that we can
find an infinite number of people in the party such that either they all know
each other or they all don’t know each other.

. Setby = 1—an1/an. Let us suppose to the contrary thalb,| is conver-
gent. Then lim_. by = 0, so may assume thgd,| < 1/2 for alln. Now

ant1=ai(l—b1)(1—by)...(1—by),
hence

In(an+1) =Inag+In(1—by) +In(1—by)+---+In(1—by).

Since lim_«an = 0, we see that ligL.In(a,) = —c. Now In(1—b) >

—2|b| for |b] < 1/2; one way to see this is to observe that1/(x) <

2 for 0< x < 1/2 and then to integrate between O gbfd Therefore
liMp—e(—2|by| — -+ —2|by|) = —co. This proves thaf |by| is divergent
and the result follows.
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. We note that if p=2,3,5,11,19, then 6(p>+1) = 4,3,1,2,0 mod5 re-
spectively. Thereforeif n > 20, we may choose p such that n+6(p+1) is
divisible by 5. Obviously if n+6(p3+ 1) isprime, then nisnot divisible by
2 0r 3. If 12 < n < 19, then p may be chosen so that 6(p®+ 1) = 1,2,3,4
mod 5, so 15 is the only possibility for n+6(p° + 1) to be prime; however
the above remark tells us this cannot be prime. So we need only check the
numbers 1,5,7,11. For n= 7,11, we see that n+ 6(p>+ 1) is divisible by
5 by choosing p = 3 and 2 respectively. Finally 5+ 6(p3+ 1) is 59 when
p=2and 173 when p = 3. Since 59 and 173 are both prime, we conclude
that 5 isthe largest integer required.

. First, we must have p(20) = 12, p(19) = 13, p(18) = 14, p(17) = 15,
p(16) = 16, p(8) =8, p(9) = 7, p(10) = 6, p(11) = 5. Then p(4) can-
not be 12, hence p(4) =4, p(3) =1, p(2) =2, p(1) = 3. Now if p(n) = 20,
then n must be 12, and we have p(13) = 19, p(14) = 18 and p(15) = 17.
Finally we must have p(5) = 11, p(6) = 10 and p(7) = 9. Thus the permu-
tation required is

3,2,1,4,11,10,9,8,7,6,5,20,19,18,17,16,15,14,13,12.

. If the end of the strip consists of one or two sgquares, then the number of
ways of tiling the strip is t(n— 1), which makes a total of 2t(n—1). If
the end of the strip consists of one or two dominos, then the number of
ways of tiling the strip ist(n— 2), making for a total of 2t(n—2) ways.
Finaly if the strip ends in one domino and one square, then there may or
may not be a square in the penultimate position, and here we get a total of
2t(n—2) ways. We conclude that t(n) = 2t(n— 1) + 4t(n—2). We now
havet(3) = 24,t(4) = 80, t(5) = 256 and t(6) = 832.

. The x-coordinate of the beam of light will return to O after traveling dis-
tance 14. During this period, the y and z coordinates will each have trav-
eled distance 28, and thus will have also returned to their original posi-
tions. It follows that the total distance traveled by the beam of light will be
V142 4 282 1 282 = 141/12 4 22422 = 42,

. Setz=yIn(x?). Then f(x,y) = (x2+z)§ln(x2)

that |f(x,y)| < 1/In(x?). Since 1/In(x?) — 0 as (x,y) — (0,0), it follows
that 1imy y) . (0,0) existsand is equal to 0.

. Since |xz] < x?+ 7%, we see




6. Divide the rectangle in the xy-plane 0 < x < 1, 0 <y < einto two regions
A, the area abovey = e, and B, the area below y= e’. We have area(A)
+ area(B) = e and area(B) = fol e dx. Also, by interchanging the roles of x
andy,soy= e becomes x = vIny, we seethat area(A) = /7 /Inydy. Now
make the substitution x= (y—1)/(e— 1), soy = 1+ ex— X, we see that
this last integral is [ (e— 1)In(1+ ex—x)dx. We conclude that f;((e—

1)\/In(1+ex—x)+exz)dx: e.

7. Suppose AA'x = 0, where x is a column vector with 5 components. Then
X'AA'x = 0, hence (A'x)'(A'’x) = 0. Since al the entries of A'’x are real
numbers, we deduce that A’x = 0. Thus A’ and AA’ have the same null
space. By hypothesis rank(A) = 5, hence rank(A") = 5 and we deduce that
the null space of A’ is0. Therefore AA’ has zero null space and we deduce
that rank(AA’) = 5. Thismeansthat every 5 x 1 matrix can be written in the
form AA'v.
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1. If we write such an integer n in base 3, then it must end in 200. . .0, because
n contains no 1’s. But then n? will end in 100...0 and we conclude that
there are no positive integers n for which neither n nor n? contain a 1 when
written out in base 3.

2. The format of such a sequence must either consist entirely of A’s and B’s, or
must be a block of A’s, followed by a single B, followed by a block of C’s,
followed by a string of A’s and B’s. In the former case, there are 2" such
sequences. In the latter case, the number of such sequences which have k
A’s and m C’s (where m> 1) is 2™ k=1 Therefore the number of such
sequences with kK A’s is

n—k—1
Z 2n—m—k—1 _ 2n—k—1 1.

m=1
We deduce that the total number of such sequences is
n—2

Y ko 42"=2"-2—(n—-1)+2"=2""1— (n+1).
k=0

We conclude that §(10) = 2% — 11 = 2037.
3. From the recurrence relation F(n) = F(n—1) + F(n—2), we obtain

F(n+5)=F(n+4)+F(n+3)=2F(n+3)+F(n+2)
=3F(n+2)+2F(n+1) =5F(n+1)+3F(n).

Thus F(n+20) = 3*F(n) = F(n) mod 5 and we deduce that F(2006) =
F(6) mod 20. Since F(6) =5F(2) +3F(1) = 8. it follows that F (2006)
has remainder 3 after being divided by 5. Also F(n+5) = 2F(n+3) +
F(n+2) tells us that F(n+5) = F(n+2) mod 2 and hence F(2006) =
F(2) =1 mod 2. We conclude that F(2006) is an odd number which has
remainder 3 after being divided by 5, consequently the last digit of F (2006)
is 3.

4. Setcn= (—bgn_2)"— (—ban_1)"+ (—bsn)". Then the series ¥>_, ¢, can be
written as the sum of the three series

() [ [

Y (—1)"ban2, >, —(=1)"ban-1, D, (—1)"bzn.

n=1 n=1 n=1



Since each of these three series is alternating in sign with the absolute value
of the terms monotonically decreasing with limit 0, the alternating series
test tells us that each of the series is convergent. Therefore the sequence
S = Zﬁ"zl(—l)“bn is convergent, with limit Ssay. Since limp_..by =0, it
follows that X7_; (—1)"bn is also convergent with sum S,

. We will model the solution on the method reduction of order; let us try a
solution of the form y = usint where u is a function of t. Theny = u'sint +
ucost and y’ = u”sint 42U/ cost — usint. Plugging into y’ + py’ +qy = 0,
we obtain u”sint + u'(2cost + psint) + u(pcost +gsint —sint) = 0. We
set

u’sint +U'(2cost + psint) =0 and pcost +qsint —sint = 0.

There are many possibilities. We want u = t2 to satisfy u” + u’(2cost +
psint)/sint = 0. Since u = t? satisfies u” — U/t = 0, we set 2cott + p =
—1/t, and then

p=—1/t—2cott,

cott
q=1- pcott = 1+T+2cot2t,
f =t?sint.

Then p and g are continuous on (0, ) (because 1/t and cott are continuous
on (0,7)), and y = sint and y = f(t) satisfy u” + pu'+qu = 0. Also f is
infinitely differentiable on the whole real line (—oo,o0) and f(0) = f/(0) =
f7(0) = 0.

. Let = ZQBP and y= ZQCP. Then the sine rule for the triangle ABC
followed by the double angle formula for sines, and then the addition rules
for sines and cosines yields

AB+AC  sin2B+sin2y  2sin(B+7y)cos(B—7)
BC  sin(2B+2y)  2sin(B+7y)cos(B+7)
_cosPcosy+sinfsiny 14 tanBtany
~ cosPcosy—sinBsiny  1—tanBtany’
PRPQ _ } we see that AB+AC

BQQC 2

Since tanfBtany = = 3 and the result is

proven.



7. We will call the three spheres A, B, D and let their centers be P, Q, R respec-
tively. Then PQRis an equilateral triangle with sides of length 1. So we will
let O = (0,0,0), P = (0,4/3/2,0), Q = (—1/2,0,0), R= (1/2,0,0), and
X =(0,1/(2v/3),0). Then M can be described as the cylinder C with cross-
section PQR which is bounded above and below by the spheres A, B, D. Let
V denote the space above ORX. We now have the following diagram.

X 1(0,v/3/6)

V
Q R
O
By symmetry, the mass of M is 12 [/, zdV. Also above QRX, the mass M
is bounded above by the A, which has equation z= \/1 —x2 — (y—+/3/2)2,

and the equation of the line XR in the xy-plane is x4 /3y = 1/2. Therefore
the mass of M is

1/(2V3) [1/2—V3y /18— (y—/3/2)?
e[
0 0 0

zdzdxdy
1/(2v3) 1/2-V3y
_ 6/ / (12— (y—+/3/2)?) dxdy
0 0
1/(2v3)
) / 3x— ¢ — 3x(y— v3/2)25/ 2 VVdy
0
1/(2v3)
_ /0 (1—2V/3y)(1/2 + 43y — 6y%) dy

- /0 . (2@(12\/§y3 —30y? +3v/3y+1/2)dy
— 3v3y - 10y + 3V3y2/2 +y/2y 3"



—/3(1/48—5/36+1/8+1/12) = &.
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L Letl = [ 9% We make the substitution y = tan®. Then dy = sec?6d6 =
(1+y?)de and we find that

|:/L

(1+y2)(2+y)

stince 5/(1+Y?)(2+Y)) =1/(2+y) —y/(1+Y?) +2/(1+y?), we find

that

5 / dy [ ydy 2dy
y+2 ) 1+y? 1+y?

Therefore 51 = In=L2° ZHa”e + 20 = In(2c0s6 + sin®) + 26 and we deduce that

=In(2+y) — (IN(1+y?))/2+ 2tan"1y.

20 +In(2cos6b 4 sinB)

| —
5 )

X de 2x+|n(2005x+smx)—|n2
0 2+tand 5
Pluggingin x = n/4, we conclude that
/n/4 d0  m+2In(3/v2)—2In2  n+In(9/8)
0 2+tan® 10 10

2. LetA=1+Y, ;(n+1)/(2n+1)!and B= 3, ;n/(2n+1)!, so Aand B
are the values of the sumsin (a) and (b) respectively. Now

hence

A+B= i 1/(2n)! = (e+e1)/2,
n=0

A—B= i 1/(2n4+1)! = (e—e 1) /2.
n=0

Therefore A=e/2and B=1/(2e).

3. We make the substitution y = € where u isafunction of x to be determined.
Theny = u'e” and plugging into the given differential equation, we find that
ue! = e'u+e'eX, hence U —u = €*. Thisisafirst order linear differential
equation which can be solved in several ways, for example one method
would be to multiply by the integrating factor e *. We obtain the general
solution u = xe* + Ce*, where C isan arbitrary constant. Wearegiveny =1
when x = 0, and then u = 0. Therefore u = xe* and we concludethat y = €.



. . ARBPC
4. Ceva's theorem applied to the triangle ABC shows that ARBPCQ _ 1

RB PC QA _Q
. . BP BR AR A
Since RP bisects ZBRC, we see that 0= RC Therefore R o
consequently ZARQ = ZQRC and the result follows.
5. Let
A— (2_|_ \/5)100((1_'_ \/5)100+ (1+ \/é)—100>
B=(v5-2)10((1+v2)1% 1 (14 v2)10)
C=(V5+2)'%+(vV5-2)'®
D=(v2+1)104(v/2-1)1®

First notethat C and D areintegers; oneway to seethisisto usethe binomial
theorem. Also v2—1=(v/2+1)"1. Thus A+B = CD is an integer.
Now v5-2< 1/4, vV2+1<25and v2—-1< 1. Therefore0 < B <
(5/8)1%0 4+ (1/4)1%0 < 10~4. We conclude that there is a positive number
e < 104 such that A+ ¢ isan integer, hence the third digit after the decimal
point of the given expression Ais9.

6. Suppose det(A? + B?) = 0. Then A2+ B? is not invertible and hence there
exists a nonzero n x 1 matrix (column vector) u with real entries such that
(A? +B?)u= 0. Then UA?u+ u'B?u = 0, where U’ denotes the transpose of
u, a1l x nmatrix. Therefore (Au)’(Au) + (Bu)’(Bu) = 0 and we deduce that
UA = uB =0, consequently u'(AX 4 BY) = 0. This shows that det(AX +
BY) = 0, acontradiction and the result follows.

7. We claim that x1/(n(nx)? > (1nx)2 for large x. Indeed by taking logs, we
need (Inx)/(In(Inx))? > 2In(In(x)), that is Inx > 2(In(Inx))3. So by mak-
ing the substitution y = Inx, we want y > 2(Iny)3, which is true for y large.
It now follows that for large n,

1 1

—(1+ 1 -
nnt/(ninn)z = n(lnn)2’

—1 )
n (In(inn)2’ _—

However ¥ 1/(n(Inn)?) iswell known to be convergent, by using the inte-
gral test, and it now follows from the basic comparison test that the given
seriesis aso convergent.



30th VTRMC, 2008, Solutions

1. Write f(x) = xy® +yZ + 2 — x®y — y3z— 2x. First we look for local max-
ima, so we need to solve df /dx=df/dy=df/dz=0. Now Jf/Ix =
Y +3x2z— 22 — 3x%y. If y=z then f(x,y,2) = 0 and this is not a maximum.
Thus we may divide by y—zand then 9 f /dx = 0 yields y? + yz+ 72 = 3x2.
Similarly x? +xz+ 2% = 3y? and x? +xy+y? = 372. Adding these three equa-
tions, we obtain (X —y)? + (y—2)? + (z—x)? = 0, which yields x =y = z
This does not give a maximum, because f = 0 in this case, and we conclude
that the maximum of f must occur on the boundary of the region, so at least
one of x,y,zis O or 1.

Let’s look at f on the side x=10. Here f =y —y3zand 0 <y<1,0<
z< 1. To find local maxima, we solve df/dy = df/dz= 0. This yields
y=z=0and f =0, which is not a maximum, so the maximum occurs on
the edges of the region considered. If y or z= 0, we get f = 0 which is not
amaximum. If y=1, then f = 22—z < 0, which won’t give a maximum.
Finally if z= 1, then f =y —y3. Since df /dy = 1 — 3y?, we see that f has
a maximum aty = 1/+/3. This gives that the maximum value of f onx=0
is1/v3—1/v3° =2v/3/9.

Similarly if y or z= 0, the maximum value of f is 2,/3/9. Now let’s look at
f on the side x=1. Here f =y3 +yZ> +z—y—y3z— 7. Again we first look
for local maxima: df/dy =3y>+ 2 —1—3y’z Then df/dy = 0 yields
either z=1or 3y’ = 22 +z+1. If z=1, then f = 0 which is not a maximum,
s0 3y’ = 22 +z+ 1. Similarly 322 = y? +y+ 1. Adding these two equations,
we find that y? —y/2 + 22 —z/2 = 1. Thus (y—1/2)?>+(z—1/2)?> =3/2.
This has no solution in the region considered 0 <y <1,0<z<1. Thus f
must have a maximum on one of the edges. If y or zis 0, then we are back
in the previous case. On the other hand if y or zis 1, then f = 0, which is
not a maximum.

We conclude that the maximum value of fon0<x<1,0<y<1,0<z<1

is 24/3/9.

2. For each positive integer n, let f(n) denote the number of sequences of
1’s and 3’s that sum to n. Then f(n+3) = f(n+2)+ f(n), and we have
f(1)=1, f(2)=1,and f(3) =2. Thus f(4)=f(3)+ f(1) =3, f(5) =
f(4)4+1(2)=4, f(6)=6,..., f(15) =189, f(16) =277. Thus the number
of sequences required is 277.



3. Let R denote the specified region, i.e. {(x,y) | ¥ +y* <2 —x&y? +y?}.
Then R can be described as the region inside the curve x* + x2y? +y‘1 =
X2 +y? ((x,y) # (0,0)). This can be rewritten as

Xy =) (0 +¥7 +xy) =X +yP.

Now change to polar coordinates: write x =rcos0, y = rsin@; then the
equation becomes (r2 —r?cos@sin)(r> +r2cos@sin®) =r?. Since r #0
and 2cos 0sin® = sin26, we now have r?(1 — %sinz 20) = 1. Therefore the
area A of Ris

2w p(1-%sin?20)71/2 2m do
//rdrdez/ / rdrdO:/ T3
R 0 2(1-—Zsin"20)

B /n/4 16d6 /”/416se0226d9
3+c0s220  Jo 4+3tan226°

Now make the substitution 2z = 1/3tan26, so dz = /3sec226 d6 and we
obtain

4 r~ dz
= =21 /V/3.
V3Jo 1+7 /
AP BM CN

4. Ceva’s theorem applied to th:glanil\; ABC shows that PEMCNA — 1
Since BM = MC, we see that BB~ NC and we deduce that PN is parallel
to BC. Therefore Z/NPX = ZPCB = ZNAX and we conclude that APXN

is a cyclic quadrilateral. Since that opposite angles of a cyclic quadrilateral
sum to 180°, we see that ZAPX + ZXNA = 180°, and the result follows.

5. Let 7 = {an | ne€ N} and for t a positive number, let A = {ne N | ay > t}.
Since Y an, = 1 and a, > 0 for all n, we that if 6 > 0, then there are only
finitely many numbers in .7 greater than 9, and also A is finite. Thus we
may label the nonzero elements of .7 as t1,t),t3,..., where t; >ty > t3 >

-- > 0. We shall use the notation X AY to indicate the symmetric difference
{X\YUY\ X} of two subsets X, Y.

Consider the sum

> (ti—tic1) A, A A

i>1
Note that n € A\ 1A if and only if a, >t > azn, and ne n 1A\ A if
and only if a, <t < azn,. Write a, =t and azn = tq. We have three cases
to examine:



(a) an = azn. Then ndoes not appear in the above sum.

(b) an > azn. Then p < gand nisin Ay, \71*1Atr whenever tp > t; > tg,
that is g > r > pand we get a contribution (tp —tp1) + (tpr1 —tp2) +
o+ (tg-1—tg) =tp —tg = @ — azn = [a@n — Axnl.

(¢) an<azn. Then p>qgand nisin 7r*1Atr \ A, whenever tq > t; > tp,
that is p > r > g and we get a contribution (tq—tg11) + (tg+-1 —tgs2) +
ot (tpo1—tp) =tg—tp =8 —an = [an — azn.

We conclude that

z ‘aﬂ_aﬂn‘ = z(ti _ti+1)‘Ati Aﬂ:Ati’?
n=1

i>1

because |A, A 1A | = |A; A A |. Similarly

D lan—apn| = X (ti —tiv1)|Ay A pAy ],
n=1

i>1

and we deduce that

oo

zqan—ann’ + 2|aﬂ_apn|) = Z(ti —tiv1)(|Ag A A+ Ay A pAgy).

n=1 = i>1

Therefore Yi-q(ti —tiv1)(|Ay & mhy| + |Ag A pAy]) < €. We also have
Yis1(ti —tiy1)|Ay| = 1. Therefore for some i, we must have |A; A A, | +
|A;, A pA;| < €] A | and the result follows.

. Multiply a* —3a? + 1 by b and subtract (a® — 3a)(ab— 1) to obtain a° —
3a-+b. Now multiply by b and subtract a?(ab — 1) to obtain a> — 3ab + b?.
Thus we want to know when ab — 1 divides (a— b)? — 1, where a,b are
positive integers. We cannot have a = b, because a2 — 1 does not divide —1.
We now assume that a > b.

Suppose ab — 1 does divide (a— b)? — 1 where a,b are positive integers.
Write (a—b)2 — 1 =k(ab— 1), where k is an integer. Since (a—b)?>—1>0,
we see that k is nonnegative. If k = 0, then we have (a—b)?> =1,s0a—b=
+1. In this case, ab— 1 does divide a* — 3a? + 1, because a* — 3a° + 1 =
(a®>+a—1)(a® —a—1). We now assume that k > 1.

Now fix k and choose a, b with b as small as possible. Then we have a2 +
a(—2b—kb) +b? 4+ k—1=0. Consider the quadratic equation x> +x(—2b —



kb) +b? +k— 1 = 0. This has an integer root x = a. Let v be its other root.
Since the sum of the roots is 2b+ kb, we see that v is also an integer. Also
av=Db?+k—1. Since b,k > 1, we see that v is also positive. We want to
show that v < b if this was not the case, then we would have b? + k—1 > ab,
that is k > ab— b% 4+ 1. We now obtain

(a—b)2—1> (ab—b%*+1)(ab—1).

This simplifies to a — ab > (ab— b? + 1)ab, thatisa—b > (ab—b? +1)b
and we obtain (a— b)(b> — 1) 4+ b < 0, which is not the case. Thus v < b
and we have V2 +v(—2b— k) +b? + k—1 = 0. Set u=b. Then we have
(U—Vv)? —1 = k(uv— 1), where u,V are positive and v < b. By minimality
of b, we conclude that there are no a, b such that (a— b)? —1 = k(ab—1).

Putting this altogether, the positive integers required are all a,b such that
b=a+1.

. Note that for fixed x > 1, the sequence 1/ fy(x) is decreasing with respect to
n and positive, so the given limit exists which means that g is well-defined.
Next we show that g(e/®) > 1/e, equivalently lim,_.. f,(e!/€¢) < e To
do this, we show by induction that f,(e/®) < e for all positive integers n.
Certainly f;(e'/€) = €'/ < e. Now if f,(€'/€) < e, then

o1 (€/%) = (61/8) (7)) < (eM/e)e — g

so the induction step passes and we have proven that g(e'/¢) > 1/e.

We now prove that g(x) = 0 for all x > €!/¢; this will show that g is discon-
tinuous at x = e'/®. We need to prove that limp_... fr(X) = co. If this is not
the case, then we may write limp_... fo(X) =y where y is a positive number
> 1. We now have

y=lim fa(x) = lim foyq () = XM= 00 =

Therefore Iny = yInxand x = y/Y. Since (dx/dy) /x= (1—Iny)/y?, we see

by considering the graph of y/¥ that it reaches its maximum when y = g,

and we deduce that x < e'/€. This is a contradiction and we conclude that

limp_. fn(X) = 0. Thus we have shown that g(x) is discontinuous at x =
/e



31st VTRMC, 2009, Solutions

1. Let x and y meters denote the distance between the walker and the jogger
when the dog returns to the walker for the n th and n+-1 st times respectively.
Then starting at the walker for the # th time, it will take the dog x seconds to
reach the jogger, whence the jogger will be distance 2x from the walker, and
then it will take the dog a further 2x/4 seconds to return to the walker. Thus
y =x+x+2x/4 = 5x/2, and also the time taken for the dog to return to the
walker will be x + 2x/4 = 3x/2 seconds. It follows that the total distance
travelled by the dog to return to the walker for the n th time is

; 1 9((5/2) 1)
35 (145/2+(5/2)7 4+ (5/2) 1)—m

meters. Therefore f(n) =3((5/2)" —1).

2. By examining the numbers 5,10,15,20,25,30,35,40 (at most 40 and divisible
by 5), we see that the power of 5 dividing 40! is 9. Also it is easy to see that
the power of 2 dividing 40! is at least 9. Therefore 10° divides 40! and we
deducethat p=g=r=s=t=u=v=w=x=0.

Next note that 999999 divides 40!. This is because 999999 =9x 111111 =
9% 111%x1001 =9%3%37x11%x91 =27 7% 1113 x37. Since 999999 =
10° — 1, it follows that if we group the digits of 40! in sets of six starting
from the units digit and working right to left, then the sum of these dig-
its will be divisible by 999999. Therefore abcde f + 283247 + 897734 +
345611 +269596 + 115894 + 272000 is divisible by 999999, that is

abede f + 2184082 = 999999y

for some integer y. Clearly y = 3 and we conclude that abcde f = 815915.

3. By symmetry, f(x) is twice the integral over the triangle bounded by u = v,
v=0and u=x, so f(x) =2 [ [“e"" dvdu and it follows that f'(x) =
2y eV dv. Sett = xv, so dv =dt /x and f'(x) = (2/x) fgz ¢’ dt. Therefore

2

-2 [ 2
f(x) = —2/ o dt +2x" e
x% Jo x

We conclude that xf” (x) + f'(x) = 4xe*" and hence 2f"(2) + f/(2) = 8e!.



4. Let the common tangent at X meet AQ and PB at Y and Z respectively.
Then we have ZAPX = ZAXY (because YZ is tangent to o at X) = ZZXB
(because opposite angles are equal) = ZPQB (because YZ is tangent to 3 at
X). It follows that AP is parallel to OB, as required.

5. Let azX> +axX? 4+ a1 X + apl denote the minimum polynomial of A, where
a; € C and at least one of the @; is 1. It is the unique monic polynomial
f(X) of minimal degree such that f(A) = 0. Since AB = 0, we see that A
is not invertible, hence 0 is an eigenvalue of A, consequently ap = 0. Set
D = a3A%2 + ayA +a;l. Then D # 0, because azX? + arX? 4 a1 X is the
minimum polynomial of A. Also AD = DA = a3A> + axA? +a1A +agl =0
and the result is proven.

6. Suppose n* —7n? + 1 is a perfect square; we may assume that 7 is positive.
We have n* —7n> 41 = (n> —3n+1)(n> +-3n+1). Suppose p is a prime
that divides both n*> —3n+1 and n® +3n+ 1. Then p‘6n and we see that
p divides 2,3 or n. By inspection, none of these are possible. Thus no
prime can divide both n> — 3n+ 1 and n* +3n + 1, consequently both these
numbers are perfect squares, in particular n*> 4+ 3n+ 1 is a perfect square.
By considering this mod 3, we see that n = 0 mod 3, so we may write
n = 3m where m is a positive integer. Thus 9m? 4 9m + 1 is a perfect square.
However (3m+1)? < 9m? +9m+ 1 < (3m+2)?, a contradiction and the
result follows.

7. Tt is easy to check that f(x) = ax+ b satisfies the differential equation for
arbitrary constants a, b; however it cannot satisfy the numerical condition.
We need to find another solution to the differential equation. Since the
equation is linear, it’s worth trying a solution in the form f(x) = e'*, where
r is a complex constant. Plugging into the differential equation, we obtain
re’™ = " t1l) _ e", which simplifies to ¢" = 1+ r. We need a solution with
r# 0. Write r = a+ib, where a,b € R. We want to solve et — 1 4 a+ib.
By equating the real and imaginary parts, we obtain

e‘cosb=1+a

e*sinb = b.

Eliminating a, we find that g(b) := —bcosb+ (1+logb —log(sind))sinb =
0. Since lim,_,o; xlogx = 0, we see that lim,_,,, (log(sind))sinb =0 =



limy,_,3,_ (log(sinbd)) sinb. Therefore

bllglr+g(b) = -2 < 0and bL13mﬂig(b) =3r>0.
Since g is continuous on (27,37), we see that there exists g € (27,37) such
that g(g) = 0. Set p = logq —log(sing). Then eP*4 4 p+ig = 1. Since
the differential equation is linear, the real and imaginary parts of f will
also satisfy the differential equation, and in particular f(x) := e”*singx will
satisfy the differential equation. A routine calculation shows that f”/(0) =
2pq # 0, and so the answer to the question is “yes”.

Remark It can be shown that p ~ 2.09 and g ~ 7.46.



32nd VTRMC, 2010, Solutions

1. It is easily checked that 101 is a prime number (divide 101 by the primes
whose square is less than 101, i.e. the primes < 7). Therefore for 1 < r <
100, we may choose a positive integer g such that rg =1 mod 101. Since
(I+A+---+A"0)(T—A) =1—-A""1 we see that A'! =1, in particular A is
invertible with inverse A'%°. Suppose 1 < < 100 and set r = 101 —n. Then
1 <r <100 and A" +--- 4+ A'0 is invertible if and only if 7 +--- +A"" ! is
invertible. We can think of I +---+A""! as (I —A") /(I — A), which should
have inverse (I —A)/(I —A"). However A= (A")? andso (I—A)/(I—-A") =
I+A"+ -+ (A7) Tt is easily checked that

(I4-- +A"HI+A +- AN H =1

It follows that A” + - - - +A'% is invertible for all positive integers n < 100.
We conclude that A” + - - - + A 190 has determinant 41 for all positive integers
n < 100.

2. First we will calculate f,,(75) mod 16. Note that if a,b are odd positive
integers and ¢ = b mod 16, then a® = b” mod 16. Also 3> =11 mod 16
and 11'' =3 mod 16. We now prove by induction on n that f5,_{(75) = 11
mod 16 for all n € N. This is clear for n = 1 so suppose f2,—1(75) = 11
mod 16 and set k = f»,—1(75) and m = f»,(75). Then

fn(75) =k =11""=3 mod 16
fons1(75) =m™=3>=11 mod 16

and the induction step is complete. We now prove that f,(a) = f,12(a)
mod 17 for all a,n € N with a prime to 17 and n even. In fact we have

far1(@)=a® mod17, fu(a)=(®)'=a mod17.
Thus f100(75) = f2(75) mod 17. Therefore fi00(75) =7'! = 14 mod 17.

3. First note the 2™/7 satisfies 1 +x+---+x° =0, so by taking the real part,
we obtain Y"=§cos2nm/7 = 0. Since cos27w/7 = cos 127/7, cos4n/T =
cos 107 /7 = —cos3m/7 and cos 67 /7 = cos 87 /7 = —cos /7, we see that
1 —2cosm/7+2cos2m /7 —2cos3m/7 =0.

Observe thatif 1 —2c0s0 +2c0s20 —2cos36 =0, then by using cos20 =
2¢c0s?6 — 1 and cos30 = 4cos> 0 — 3cos O, we find that cos O satisfies



8x> —4x> —4x +1 = 0. Thus in particular cos /7 satisfies this equation.
Next note that 1 —2cos37w/7 +2cos6rw/7 —2cos9n/7 =1 —2cos3mw/7 —
2cos /7 42cos27/7, so cos37/7 is also a root of 8x* —4x? —4x+ 1. Fi-
nally since the sum of the roots of this equation is 1/2, we find that —cos260
is also a root. Thus the roots of 8x> —4x*> —4x+ 1 are cos /7, —cos27/7,
cos3m/7.

. The equation 4A 4 3C = 540° tells us that A = 3B. Let D on BC such that
/ZADC = 3B, and then let £ on BD such that ZAED = 2B.
A

B 2B % C
D

E
Since triangles ABD and AED are similar, we see that
BD AD AB
AD ED AE’
Also BE = AE because B = /BAE, and BE = BD — BE. We deduce that

BD? = AD?> + AB-AD. Since BD = BC — CD, we conclude that (BC —
CD)? = AD?> +AB-AD.

Next triangles ABC and ADC are similar, consequently
BC_AB_AC
AC AD CD
Thus AD = AB-AC/BC and CD = AC? /BC. We deduce that
(a—b*/a)? = Pb*/a® 4 c*b)a.
Therefore (a> — b*)? = bc?(a+ b) and the result follows.

. Let X denote the center of A, let Y denote the center of B, let Z be where
A and B touch (so X,Y,Z are collinear), and let 6 = ZPXY. Note that

Y O makes an angle 260 downwards with respect to the horizontal, because
ZQYZ =30.



Choose (x,y)-coordinates such that X is the origin and XP is on the line
y =0. Let (x,y) denote the coordinates of Q. Then we have

x=2cos0 +cos20
y=2sin6 —sin20.

By symmetry the area above the x-axis equals the area below the x-axis (we
don’t really need this observation, but it may make things easier to follow).
Also 0 goes from 27 to 0 as circle B goes round circle A. Therefore the area
enclosed by the locus of Q is

0
2/ dxd@ 2/ (2sin 6 —sin20)(—2sin O —2sin260)d6
:2/ (4sin” @ + 25sin O sin260 — 2sin>26) d6
0

T
:/ (4—4c0s260+2cosO —2cos30 —2+2cos460)dO = 2.
0

. Note thatif 0 <x,y < 1,then0<1—y/2 < land 0 <x(1—y/2) <1, and it
follows that (aj,) is a positive monotone decreasing sequence consisting of
numbers strictly less that 1. This sequence must have a limit z where 0 <z <
1. In particular a, 42 — @, 41 = anay+1/2 has limit 0, so limy, . aya,+1 = 0.
It follows that z = 0.

Set b, = 1/a,. Then b, 2 = b,1/(1 —a,/2) = byy1(1+a,/2 +0(a?)).
Therefore by 2 — bpi1 = byy1(an/2+0(a2)). Also

nfans1 = (1-ap1/2)™" =1+ 0(ay)



and we deduce that b, 5 — b, 1 = b,(1+ O0(ay))(a,/2+0(a2)). Therefore
by+2 —byt1 = 1/2+ O(ay). Thus given € > 0, there exists N € N such
that |b,+1 — b, — 1/2| < € for all n > N. We deduce that if & is a posi-
tive integer, then |b,x/k — by /k —1/2| < €. Thus for k sufficiently large,
|bpik/(n+k)—1/2| < 2€. We conclude that lim,,_... b, /n = 1/2 and hence
lim,, ... na, = 2.

. It will be sufficient to prove that )’ 5 1s convergent. Note we

e ]12

=11/ 1/a
may assume that (a,) is monotonic decreasing, because rearranging the
terms in series ) a, does not affect its convergence, whereas the terms of
the above series become largest when (a,,) is monotonic decreasing. Next
observe thatif )~ ,a, =S, thena, <S§ /n for all positive integers n. Now

(2}’!)2 .. (Zn)zs 4n2S .
Sy ey This is < Tar$2ay++2n]an, < W fay = 4Sa,. The

result follows.

consider



33rd VITRMC, 2011, Solutions

1. Writel = f 1 Tf dx and make the substitution y = /x. Then dx = 2ydy
and I = 22yy4+fdy. Now y* +4 = (y> — 2y +2)(y* + 2y +2) and using

partial fractions, we find

2y2—4: y—1  y+l
Y44 2 =2y+2 2 +2y+2

It follows that 27 = [In(y? —2y+2) —In(y*+2y+2)]7=In2—In1—(In 10—
In5) = 0, so the answer is 0.

. The first few terms (starting with a_1) are —1,0, 3,8, so it seems reasonable
that a,, = n*> — 1; let us prove this by induction on n. The result is certainly
true if n =0 or 1. So suppose a, = r> — 1 for r < n. Then

anp1 = (* =12 —(n+1)*((n—1)>—1) -1
=n*—2n +1—(n* =20+ 1)+’ +2n+1-1
=n*+2n=(n+1>-1.

and the induction is complete. Thus a, = n> — 1 for all n € N and we deduce
that ajgp = 9999.

LetS=Y;_ 1] k+2)' where n € N. We have

-2 1 1 an 1
(k+2)! k' (k+2)! ((k+1)!_(k+2)!)'

By telescoping series, we findthat S=1+1/2—-3/2—1/(n+1)!—1/(n+
21043/ (n+2)!=—1/(n+ 1)1 +2/(n+2)!. Since lim, . 1/n! =0, it
follows that the required sum is 0.

. We repeatedly use the Chinese remainder theorem without further comment.
Let b € Z. We claim that |{[br] | r € Z}| = mn/(mn,D). Set k = (mn,b).
Then {[kr] |r€ Z} = {[kr] | r=1,2,...,mn/k} so |{[kr] | r € Z}| = mn/k.
It follows that |{[br] | r € Z}| < mn/k. On the other hand there exists ¢ € Z
such that and bc = k mod mn. We conclude that |{[br] | r € Z}| > m and
the claim is established.



Therefore mn/(a,mn) = m. Thus (a,mn) = n, hence n | a and we may write
a = sn where s € Z; clearly (s,m) = 1. Now if t € Z, then (s+tm)n =a
mod mn, i.e. [n(s+tm)] = [a]. Since (s,m) = 1, we may choose ¢ so that
(s+tm,mn) = 1. The result follows by setting g = s+ tm.

. Set f(x) = x!*V/* —x —Inx. We first show that lim,_... f(x) = 0. Note
that lim,_...x'/* = 1 because lim,_,o ln(xl/") = limy_,(Inx)/x = 0. Thus
lim,_,o f(x)/x = 0. Now we apply 1’hopital’s rule. We obtain

lim £(x) = lim 25/

X—o0 X—o00 l/x

Thus we need to prove limy_, (xl/ *—1)Inx =0. Again we apply I’hdpital’s
rule.

X/

lim (x'/* — 1) Inx = li
xl_)l’Iolo(X ) nx xglc}o ]/lnx

. xMX(1 —1nx) /x?
P (ein)?)
(Inx)3

X—>00 X

=0.

Thus lim,_... f(x) = 0 and we deduce that lim,_... f(2x) — f(x) = 0. But
F(2x) = f(x) = ()@ _2x —In2x — X"V 4 x4 Inx
_ (2x)1+1/(2x) _x1+1/x —x—In2
and we deduce that lim,_.,(2x)' /(20 — x+1/x _ x —1n2,

. Let < indicate the usual order on QQ; thus < is an asymmetric relation on Q.
Define 7= § x QQ and let < denote the lexicographic asymmetric relation
on T, that is (a,p) < (b,q) ifand only ifa <bora=b and p < gq. Itis



easily checked that < is asymmetric. Also we may identify § with S x 0 via
— (s,0), and then the restriction of < to S is <. Now suppose (a, p) <

(b,q). If a < b, then (a,p) < (a,p+1) < (b,q). On the other hand if a = b,

then p < g and (a,p) < (a,(p+¢)/2) < (a,q) and the result is proven.

. Assume that the roots xp, ..., xjog are all real. By the Viete relations we have
Y% x; = —20and Z,<jx,x] = 198. Therefore ¥'1% x? = (—20)2 — 2198 =
4 and we deduce that (¥}%x')> = 100L/%x?. Now apply the Cauchy-
Schwartz triangle inequality, that is (}; x,y,)2 < Z,-xlz Y, yl2 with equality if
and only if one of (x;),(y;) is a scalar multiple of the other, in particular
taking y; = 1 for all i, we obtain (ZIO? xi)? < IOOZIOOx with equality if
and only if (x;) is a scalar multiple of (1,...,1), i.e. all the x; are equal. We
deduce that all the x; are equal. But the product of the roots is 1, conse-
quently all the x; are 1 or all the x; are —1, which contradicts the fact that
¥ 1% x; = —20.



34th VTRMC, 2012, Solutions

1. LetI denote the value of the integral. We make the substitution y = 7 /2 — x.
Then dx = —dy, and as x goes from 0 to 7/2, y goes from 7/2 to 0. Also
sin(7/2 — x) = cosx and cos(7/2 — x) = sinx. Thus

/ /”/2 sin® x + sinx cos® x + sin®x cos?x + sin> x cosx
0

dx.

sin*x 4 cos? x + 2sinx cos3x+ 2sin®x cos2x+2sin3x cosx

Adding the above to the given integral, we obtain 2/ = 0”/ ? dx. Therefore

[=rm/4.

2. We necessarily have x > —2. Also the left hand side becomes negative
for x > 2. Therefore we may assume that x = 2cost for 0 < < 7. After
making this substitution, the equation becomes cos 3t + cos(¢/2) = 0. Us-
ing a standard trig formula (2cosAcosB = cos(A + B) 4 cos(A — B)), this
becomes cos(7t/4)cos(5¢/4) = 0. This results in the solutions ¢ = 27/5,
21/7, 61 /7. Therefore x = 2cos(2x/5), 2cos(2x/7), 2cos(67/7).

3. We make a,b,c,d, e be the roots of the quintic equation x> + px* + gx> +
rx> 4+ sx+t = 0. Using the first and last equations, we get p =1 = 1. Let
Z={a,b,c,d,e}. Then

29= Y w=(a+-+e—(F+ - +e)=-14,
u,veZ, u#v

so g = —7. Next s = abcde(l/a+---+1/e) = —1/ — 1 = 1. Finally

r=abcde( Z uv) = abede((1/a+ -+ 1/e)> —(1/a®+---+ 1/62))
u,veZ, u#v

= —14,

sor=-—7.

Similarly s = 1 and r = —7. Therefore a,b,c,d,e are the roots of X 4xt—
7x® —7x* +x+ 1 = 0. By inspection, —1 is a root and the equation factors
as
x4+ DA =72 1) = (e 4+ 1D = 3x+ 1) (% +3x 4+ 1).
Using the quadratic formula, it follows that a, b, ¢, d, e are (in whatever order
you like)
+3+4/5

—1
2



4. We repeatedly use the fact that if n is a positive integer and a € Z is prime
to n, then a®™ = 1 mod n where ¢ is Euler’s totient function.

We first show that f(n) = 3 mod 4 for all n > 1. We certainly have (1)
mod 4. Since f(n) is always odd, we see that f(n+ 1) = 3/ = 3/(—
f(n) mod 4 and we deduce that f(n) =3 mod 4 for all n > 1.

Now we show that f(n) = f(3) mod 25 for all n > 3. First observe that
f(n+1)=3/" =3/=1) = () mod 5 for n > 2, provided f(n) = f(n—1)
mod 4, which is true by the previous paragraph. It follows that f(n+1) =
f(n) mod 20 for all n > 2. Therefore f(n+1) =3/ =3/0=1 = £(n) mod
25, provided n > 3, and our assertion is proven. Since the last two digits of
f(3) are 87, the last two digits of f(2012) are also 87.

=3
1

5. Let f(n) = 1/(Inn) — (1/Inn)"+D/" Then f(n)Inn=1— (Inn)~'/". As-
sume that n > 27. Since Inn > e, we see that f(n)Inn > 1 —e~ /", Therefore
nf(n)Inn > n(1 —e~'/"). By L’hopital’s rule, lim, sen(l —e /") = 1.
Therefore nf(n)Inn > 1/2 for sufficiently large n, so f(n) > 1/(2nlnn).
Since ).;” , 1/(nlnn) is divergent, it follows that )" , f(n) is also diver-
gent.

6. We shall prove by induction that a,, = p if p is a prime and n = p" for some
positive integer m, and 1 otherwise. This is clear in the case n = p™, because
then there are exactly m — 1 nontrivial divisors of p™, and each contributes
p to the denominator of the displayed fraction. The case n = pgq, where p,q
are distinct primes, is also clear, because then p and g are the only nontrivial
divisors of n, and they contribute p and g respectively to the denominator.

Now assume that n is neither a prime power, nor a product of two distinct
primes, and assume the result is true for all smaller values of n. Then we
may write n = pm, where p is a prime and m is not a prime power. Write
m = p“k, where a is a nonnegative integer and k is prime to p. If d | n, then

either d | m or d = p““r, where r | k. Note that in the latter case, d is a
prime power only when r = 1. Therefore
a, = ay, P :13:1_
apa+1 P

by induction, which proves the claim. It follows that agggpgp = 1.

7. Let 0 and I denote the zero and identity 2 X 2 matrices respectively. Let A
denote one of the three matrices. The result is clear if A = O or I, because



every matrix commutes with 0 and 7. Next note that A’ = A/, where 0 < i <
Jj < 5, and we see that the minimum polynomial of A divides x/ —x'.

Suppose 0 is not an eigenvalue of A. Then A is invertible and it follows that
A’7" =1, in particular [ is one of the matrices. Since I/ commutes with all
matrices, the result follows in this case.

Thus we may assume that 0 is an eigenvalue of A. Next suppose both the
eigenvalues of A are O (i.e. A has a repeated eigenvalue 0). Then the Jordan

canonical form of A is either O or (8 (1)) In both case, A2 = 0, and since

0 commutes with all matrices, the result follows in this case.

Therefore we may assume that A has one eigenvalue 0 and another eigen-
value A # 0. Since the minimum polynomial of A divides x/ — x' where
0 < i< j<5, we see that the possibilities for A are 1, —1, or ® where ®
is a primitive cube root of 1. Since the eigenvalues of A are distinct, it is

0 0
If A = @, then {A,A% A3} are three distinct commuting matrices, and the
result is proven in this case. Thus we may assume that the Jordan canonical

form for A is (:H O).

diagonalizable and in particular, its Jordan canonical form will be (A 0) .

0 O

Now not all the A; can have Jordan canonical form 0), because then

1

00
tr(A; + Ay + Az) = 3, so at least one of the matrices, say Ay, has trace —1.
It should be pointed out that we may assume that the A; are distinct, if not,
then the three matrices come from {Al,A%}, and since A; commutes with

A2, the result follows in this case.

Suppose tr(A2) = —1 and tr(A3) = 1. Then A7 = A3 = A3 and A3 commutes
with A; and A,, and the result is proven in this case.

Finally suppose tr(A;) = tr(A3) = 1. Then without loss of generality, we
may assume that A% = A, and so A = —A,. Thus —A3 # A or A;. Since
AA3z = —A 1Az, we see that ApA3 = A or Ay. Similarly A3A, = A; or Aj.
Since tr(AA3) = tr(A3Ay), we deduce that AyAz = A3zA;. Also AjA; =
AsA1, and the result follows.



35th VTRMC, 2013, Solutions

1. Make the substitution t =2y, sodt =2dy. Thenl = fg/z 6\/5—*Mc’szy)/2dy =

17—8cos2y
fg / 23&;{2—2&%@. Now make the substitution z = siny. Then dz =
dycosy and [ = 12fosmx/232+d#Z2 = tan”! %sinx/2. If tan] = 2/+/3, then

24/3 = 3 sinx/2 and we deduce that x = 27/3.

2. Without loss of generality we may assume that BC = 1, and then we set
x:=BD, so AD = 2x. Write 8 = ZCAD, y = AC and z = DC. The area of
ADC is both x and (yzsin0)/2. Also y?> = 14 9x? and z?> = 1 +x?. There-
fore 4x*> = (14 9x%)(1 4+ x?)sin* @. We need to maximize 6, equivalently
sin? @, which in turn is equivalent to minimizing (1 + 9x%)(1 + x2)/(4x?).
Therefore we need to find x such that x~2 4 9x? is minimal. Differentiating,
we find —2x73 + 18x = 0, so x> = 1/3. It follows that sin” @ = 1/4 and we
deduce that the maximum value of ZCAD = 0 is 30°.

3. We need to show that a, is bounded, equivalently Ina, is bounded, i.e.
In2¥>_, In(14+n"3/2)is bounded. But In(1+n"3?2) <n=3/2 and ¥ n=3/
is convergent. It follows that (a,) is convergent.

52452
12+1%
(b) Assume that 2013 is special. Then we have

4. (a) 25=50/2 =

X2 +y? =2013(u® +v?) (1)

for some positive integers x,y,u,v. Also, we assume that x> + y? is
minimal with this property. The prime factorization of 2013 1s3-11-
61. From (1) it follows 3|x> +y?. It is easy to check by looking to the
residues mod 3 that 3|x and 3|y, hence we have x = 3x; and y = 3y;.
Replacing in (1) we get

3(xF+y7) = 11-61(u* +v?), 2)

1.e. 3|u2 +v2. Tt follows u = 3u; and v = 3vy, and replacing in (2) we
get
X2+ =2013(u} +13).

Clearly, x3 +y} < x? +?, contradicting the minimality of x> +y?.



(c) Observe that 2014 =2-19-53 and 19 is a prime of the form 4k + 3. If
2014 is special, then we have,

X2 +y? =2014(u* +1?),

for some positive integers x,y,u,v. As in part (b), we may assume that
x% +y? is minimal with this property. Now, we will use the fact that
if a prime p of the form 4k + 3 divides x> + y?, then it divides both x
and y. Indeed, if p does not divide x, then it does not divide y too. We

have x> = —y?> mod p implies (x*)"2 = (—y?)">" mod p. Because

p—1

Pl = 2k 4 1, the last relation is equivalent to ()2 = ()
mod p, hence x*~! = —y?~! mod p. According to the Fermat’s little
theorem, we obtain 1 = —1 mod p, that is p divides 2, which is not
possible.

Now continue exactly as in part (b) using the prime 19, and contradict

the minimality of x> + y?.

5. Write x = tanA, y = tanB, z = tanC, where 0 < A,B,C < ©/2. Using the

formula tan(A + B) = {284+08 yice we see that

X+y+z—xyz
l—yz—zx—xy

tan(A+B+C) = =0

and therefore A+ B+C = 1. Now sinA = %5,

sinA + sinB + sinC < 3v/3 /2. However sinf is a concave function, so we
may apply Jensen’s inequality (or consider the tangent att = (A+B+C)/3)
to deduce that

so we need to prove that

sinA +sinB +sinC < sin(A+B+C)
3 - 3

=sin(/3) =V/3/2,

and the result follows.

6. LetC=X"14+ (¥~ !'—X)~!. Observe that (Y ' —X) = (X —XYX)x~'y—!,
consequently (Y ! —X)~! =YX (X —XYX)~!. Therefore C(X —XYX)~ ! =
I—YX+YX =1 and we deduce that XY —BY = (X — X + XYXD)Y =

190 81 65
XYXY. Therefore we cantake M = XY = [ —49 64 —191
—56 74 86



7. For |q| < 1, we have Y7, ¢* = q/(q— 1). Therefore for |q| > 1,

n=1 q — n=1
—- Y Y@
n=1k=1
v (=D 'g "
n=1 1_q—n ,
Y =Yl
n=1 qn+1 n=1 1+q—n

[
gk
g
|
L
=
+
=
BN
3
S~—
bl

3
I
-
I
_

I
gk
T
—
~—
SN

>~
I
—
p—t
|
Q

= (-1 &
It follows that — Z = Z

d 1 B —n
dxx"—1 x(x"/2 —x*’l/Z)2
d 1 —n

dxx"+1 - x(x/2 4 xn/2)’

We deduce that

}’l 0 n

- Z n/2 g"/2)2 - Efl g(q"2 + g n/2)2

> n (—1)"n
Now set g = 4. We conclude that +
q r; (Zn + 2—n)2 <2n _ 2—n)2



36th VTRMC, 2014, Solutions

1. Let S denote the sum of the given series. By partial fractions,

n?—2n—4 B n—2 n
n*+4n2+16 n2—2n+4 n2+2n+4

If f(n) = %, then2S =Y"=% f(n) — f(n+2). Since lim, . f(n) =0,
it follows by telescoping series that the series is convergent and 25 = f(2) —
f@)+f3B)—f(5)+f(4)—f(6)+---, 5028 = f(2)+ f(3) and we deduce

that S = 1/14.
2. Let I denote the given integral. First we make the substitution y = x?, so

dy = 2xdx. Then

4 16—y 4 V16 —y
0 16—y++/(16—y)(12+y) 0 V16—y++12+y

dy.

Now make the substitution z =4 —y, so dz = —dy. Then

4 V1242

21 = Z
0 V12+z++/16—z2

Adding the last two equations, we obtain 4/ = fé dz=4 and hence I = 1.

3. Let m = ¢(22914) = 22013 (here ¢ (x) is Euler’s totient function, the number
of positive integers < x which are prime to x). Then 19" =1 mod 22014
by Euler’s theorem. Therefore n divides 22913, so n = 2¥ for some positive
integer k. Now

19 — 1= (19— 1)(19+1)(19% + 1)(19* + 1)... (19" +1);

we calculate the power of 2 in the above expression. Thisis 1 +2+141+
-+++ 1= k+2. Therefore k+2 = 2014 and it follows that n = 22012,

4. Put T2t in the square in the (a,b) position. Note that the sum of all the
entries in a4 x 1 or 1 x 4 rectangle is zero, because Zizo jatkt2b — (I+i+
24+ 3)i*? =0and Y3 _ iR = (142 +* 4 1)i%"2> = 0. Therefore
if we have a tiling with 4 X 1 and 1 x 4 rectangles, the sum of the entries in



all 361 squares is the value on the central square, namely i'°*2° = —1. On
the other hand this sum is also

i"—1
(i+i2+---+i19)(i2+i4+---+i38):il__l (11— 1)
—i—1
=i —1=1.
i

This is a contradiction and therefore we have no such tiling.

. Suppose by way of contradiction we can write n(n+ 1)(n+2) = m’, where
n € Nand r > 2. If a prime p divides n(n+2) and n+ 1, then it would have
to divide n+ 1, and n or n+ 2, which is not possible. Therefore we may
write n(n+2) =x"andn+1=y" for some x,y € N. Butthenn(n+2)+1=
(n+1)% = 2" where z =y Since (n+1)> > n(n+2), we see that z > x and
hence z > x+ 1, because x,z € N. We deduce thatz" > (x+1)" >x"+1, a
contradiction and the result follows.

. (a)

(b)

. (a)
(b)

Since A and B are finite subsets of 7', we may choose a € A and b € B
so that f(ab) is as large as possible. Suppose we can write g := ab = cd
withc€Aandd € B. Let h=d'b and d # b. Note that g, € T. Then
h # I and we see that either f(gh~!) > f(g) or f(gh) > f(g). This
contradicts the maximality of f(ab). Therefore d = b and because b is
an invertible matrix, we deduce that a = ¢ and the result is proven.

-1 -1
Set M = ( 1 0
Then (X = M and Y = M) we obtain either f(M?) > f(M) or f(I) >
f(M), hence f(M?) > f(M). Now do the same with X = M? and Y =
M: we obtain f(M?) > f(M?). Since M = I, we now have f(I) >
f(M?) > f(M) > f(I), a contradiction. The argument is similar if we
start out with f(M) < f(I). This shows that there is no such f.

). Then M € S and M3 = I. Suppose f(M) > f(I).

LetA = (x4,y4) and B= (xp,yp). Thend(A,B) = <XB o _yB> :

XB — XA

By definition detM = d(Al,Bl)d(Az,Bz) — d(Al,Bz)d(Az,Bl). Note
that the first term counts all pairs of paths (7, 7,) where 7; : A; — B,
and the second term is the negative of the number of pairs (7}, 7, ) where
m: Ay — By and m: Ay — Bj. The configuration of the points implies
that every pair of paths (7, 7) where ; : Ay — B and m, : Ay — B)



must intersect. Let .% := {(m,m) : m N, # O} (this is the set of all
intersecting paths, regardless of their endpoints). Define ®: . — .7 as
follows. If (71, m) € .# then ®((m;, m2)) = (7], 7)) and the new pair of
paths is obtained from the old one by switching the tails of 7y, m, after
their last intersection point. In particular, the pairs (71, 7,) and (7], 7})
must appear in different terms of det M. But it is clear that Po P = id »,
therefore @ is an involution. This implies that all intersecting pairs of
paths must cancel each other, and that the only pairs which contribute
to the determinant are those from the set {(7,m2): 7 Nmw = 0}. Since
all the latter pairs can appear only with positive sign (in the first term
of detM), this finishes the solution. (In fact, we proved that detM =
#{(7171,71'2) MMM = 0})



37th VTRMC, 2015, Solutions

1. We have f(n) :=n*+6n° + 11n*> +3n+31 = (n* +3n+1)> - 3(n — 10).
Therefore f(10) is a perfect square, and we now show there is no other
integer n such that f(n) is a perfect square. We have (n” +3n+2)% — (n®> +
3n+1)2=2n>+6n+3and (n*>+3n+1)>— (n*>+3n)> =2n> +6n+1. We
have four cases to consider.

(a) n> 10. Then we have 3(n— 10) > 2n? +6n+ 1, which is not possible.

(b) 2 < n < 10. Then we have 3(10 —n) > 2n% 4+ 6n + 3, which is not
possible.

(c) n < —6. Then we have 3(10 —n) > 2n? +6n+ 3, which is not possible.

(d) —6 < n < 2. Then we can check individually that the 9 values of n do
not make f(n) a perfect square.

We conclude that f(n) is a perfect square only when n = 10.

2. The folded 3-dimensional region can be described as a regular tetrahedron
with four regular tetrahedrons at each vertex cut off. The four smaller tetra-
hedrons have side length 2cm., while the big tetrahedron has sides of length
6cm. Recall that the volume of a regular tetrahedron of side of length 1 is
V2 /12 (or easy calculation). Therefore the volume required in cm? is

63v2/12—4-2°/2/12 = 46V2/3.

3. Let n =2015. If one regards ay, . ..,a, as variables, the determinant is skew
symmetric (i.e. if we interchange a; and a; where i # j, we obtain —detA).
We deduce that a; — a; divides detA for all i # j, hence

detA is divisible by [ (ai—aj).

1<i<j<n

For k € N, we prove by induction on k that if a number is divisible ay - - - a;
and [ <; j<x(a;i —a;), then itis divisible by k!; the case k = 1 is immediate.
So assume the result for i < k. If one of the g; is divisible by k + 1, then
the result is true for k4 1 by induction. On the other hand if none of the a;
is divisible by k + 1, then at least one of the numbers a; — a; is divisible by
k4 1 and the induction step is complete. The result follows.



4. We first show the result is true if 0 < p < 1 for p € QQ (positive number
excludes 0, however the result is even true here by taking the sum of a zero
number of terms). Write p = a/b where a,b € N. The result is obviously
true if a = 1. We now prove the result by induction on a; we may assume
that a < b. Let n > 2 be the unique positive integer such that 1/n < p <
1/(n—1). Then we have b < an and 0 # an —a < b. Set ¢ = (an—b) /bn.
Since an — b < a, we may write ¢ as a partial sum S of the 1/m, and then we
have p = S+ 1/n. Also the integers m which appear in S must have m > n,
because p < n— 1. This completes the induction step, and we have proven
the result for p < 1.

Let p € Q and let s, = Y, 1 /k. Since the harmonic series is divergent,
there exists a unique m € N such that s, < p < s,,1-1. Then p —s,, < 1, so
by the previous paragraph is a partial sum S of the 1/n, and then we have
p=S+1/m. Also S < 1/(m+ 1) so none of the 1/n appearing in S can be
equal to 1/m, and the proof is complete.

5. Let n be a positive integer. Then

n T 1 dd T n 1 dd
/0/1 1+ (xy)? xy_/l /o Tt ()2

/” arctan(7mx) — arctan(x) 4 /” arctan(ny) 4
x=[| ———=dy.
0 X 1 y

Therefore

Set u = arctan(ny) and dv = 1/y and use integration by parts to obtain

T t " 1
/ arctan(ny) ;. — arctan () In7 — / S dy.
1 : 1 1+n2y

nlny ninw

On the other hand, 0 < < for all y € [1, z]. Therefore
14+n%2 =~ 14+n2
lim 7 arctan(ny) dy — winm
n—eo J| y 2
and we deduce that
/°° arctan(mx) — arctan(x) dr— Lim " arctan(7Tx) — arctan(x) o wlnm
0 X n—eo J( X 2



6. If (x,y) € S:=Y" Z(a;,b;), then there exist k; € Z such that (x,y) =
YL ki(ai,b;). We choose the k; such that d := )", |k;| is minimal and then
define d(x,y) = d. On the other hand if (x,y) ¢ S, then define d(x,y) = oo
(thus d(x,y) = oo if and only if (x,y) ¢ S). Now choose a positive integer m
such that m > n/¢ and define

_J1=dx,y)/m ifd(x,y) <m;
Joy) = {O if d(x,y) > m.

If (x,y) ¢ S, then (x+a;,y+b;) ¢ S for all i and therefore d(x,y) = d(x +
a;,y+b;) = 0 and hence f(x,y) = 0 if d(x,y) = +oo. On the other hand if
(x,y) € S, then |d(x,y) —d(x+aj,y+b;)| < 1 for all i. It then follows that
f(x,y) =0if d(x,y) > m, hence f(x,y) # 0 for only finitely many (x,y),
and furthermore |f(x,y) — f(x+a;,y+b;)| =0or 1 /m for all i. Thus f(x,y)
satisfies the required condition, so the answer is “yes”.

7. Note that the hypotheses show that there exists a positive integer a such that
a(u,v) € Z for all u,v € S. Therefore there exists a positive integer b such
that b||u||? = b{u, u) is a positive integer for all 0 # u € S, so we may choose
0 # s € S such that ||s|| is minimal.

First suppose that the x; are all contained in Rs (i.e. the points of S are
collinear). Then the same is true of S and we claim that S = Zs. If u € S, then
u = cs for some ¢ € R. Also a|s|| < ||lu|| < (a+1)||s|| for some nonnegative
integer a, hence ||as|| < ||es|| < |[(a+1)s]|. We deduce that ||(a—c)s|| < ||s]|
and since (a —c)s € S, we conclude that ||(a — ¢)s|| = 0. Therefore u = as
and the claim is established. Now we place disks of radius R := 3||s||/4 and
center (2n+ 1/2)s for all n € Z and the result is proven in this case.

Now suppose that not all the x; are not contained Rs. Then we may choose
t € S\ Rs with ||¢|| minimal. We claim that S =T := {ms+nt |m,n € Z}. If
this is not the case, we may choose u € S\ T. Note that Rs+ Rt = R2, so we
may write u = ps+ gt for some p,q € R and then there exist a,b € Z such
thata < p <a-+1land b < g < b+1,souis inside the parallelogram with
vertices (as,bt), (as+s,bt), (as,bt +1t), (as+s,bt +1t). Since ||s|| < ||z|| we
see that u is distance at most ||7|| from one of these vertices. Furthermore
lu—v| > ||z|| for all u # v € S, so we must have u € S.

Now we can place disks with radius R := ||s||/2 and centers at ((2m +
1/2)s,nt) for m,n € Z. Clearly every disk contains at least two points of S,



namely (2ms,nt) and (2ms—+ 1, nt) for the disk centered at ((2m+1/2)s,nt),
and these disks accounts for all the points in S. We only need to show that
any two distinct disks intersect in at most one point, and thus we need to
show that two different centers are distance at least ||s|| apart. So consider
two different centers, say at ((2m+1/2)s,nt) and ((2m’ +1/2)s,nt"). Then
the distance between theses two centers is the same at the distance between
(2ms,nt) and (2m’s,n’t), which is at least ||s|| by minimality of ||s||. This
completes the proof. (This actually proves the stronger statement that every
point of S lies in exactly one disk, which is how the problem was meant to be
stated; the argument can be significantly shortened for the actual problem.)



38th VTRMC, 2016, Solutions

2 Inx
I. Write /= | ——
e /1 2 —2x+x2
—2y~2dy and we have

—2y"2In(2/y) , /2 In2 —1Iny
2 2—4fy—4/2 YT i oy

2 In2 I In2
/1 2 _2y+2% /ox2+1 o

by making the substitution x =y — 1. We conclude that I =

dx. We make the substitution y = 2 /x. Then dx =

I =

Therefore

wln2

. Seta, = 20 Then anfan—1 = (2n—1)/(2n) =1 —1/(2n). Therefore

4"nln! "
(n—1)/n < (an/an1)* <n/(n+1)
for all n € N. Now if b, = 1/n, then

bn/bnfl < (an/anfl)2 < bn+1/bn~
Therefore 1/4n < a2 < 1/(n+1) and hence

1 1
— <, < —F7F.
(4n)k/2 = In = (n+ 1)k/2

Since Y"1/ nk/? is convergent if and only if k > 2, we deduce that the series
is convergent for k > 2 and divergent for k < 2.

. Let I denote the identity matrix in M, (Z,). If A € M,(Z,) and A% = 0,
then (I +A)2 = [ +2A + A% = | because we are working mod 2, and we
see that / +A € GL,(Z,), the invertible matrices in M,,(Z,). Conversely if
X € GL,(Z,), and X? =1, then (I+X)? = 0. We deduce that the number
of matrices A satisfying A> = 0 is precisely the number of matrices satis-
fying X? = I. Since n > 2, the number of matrices in GL,(Z,) is even (if
Y € GL,(Z;), then we can pair it with the matrix ¥’ obtained from Y by
interchanging the first two rows of Y, and note that Y # Y’ otherwise Y
would have two rows equal and therefore would not be invertible). Now
if Z € GL,(Z,) and Z? # I, then we can pair it with Z~! and we see that
the number of matrices satisfying Z? # I in GL,,(Z,) is even. Therefore the
number of matrices satisfying X2 = I is even and the result follows.



4. First observe that if p > 2 is a prime and a < p is such that a® + 1 is divisible
by p, thena # p—a and P(a) = P(p —a) = p. Indeed a* + 1 and (p —a)> +
1 = (a> +1) + p(p —2a) are divisible by p and are smaller than p?, so they
cannot be divisible by any prime greater than p.

We will prove the stronger statement that there are infinitely many primes p
for which P(x) = p has at least three positive integer solutions, so assume
by way of contradiction that there are finitely many such primes and let s be
the maximal prime among these; if there are no solutions, set s = 2. Let §
be the product of all primes not exceeding s. If p = P(S), then p is coprime
to S and thus p > s. Let a be the least positive integer such that a = S mod p.
Then a4 1 is divisible by p, hence P(a) = P(p —a) = p because p > a. Let
b = aif a is even, otherwise let b = p —a. Then (b+ p)? + 1 is divisible by
2p,so P(b+p) > p. If P(b+ p) = p, we arrive at a contradiction. Therefore
P(b+p) =:q > p and (b+ p)?+ 1 is divisible by 2pg and thus (b + p)? +
1 > 2pg. This means ¢ < b+ p, otherwise (b+p)>+1< (2p—1)g+1
(because b < p) < 2pq. Now let c be the least positive integer such that
¢=b+pmod q. We have P(c) =P(q—c) =P(b+ p) =g > p > s, another
contradiction and the proof is finished.

5. The equality yields 1 +m—nv/3 = (2—+/3)> ! and hence (1+m)? —3n* =
12~ = —1. Therefore m(m +2) = 3n?. If p # 2,3 is a prime and p“ is the
largest power of p dividing n, then p?“ is the largest power of p dividing
3n2. Since p cannot divide both m and m + 2, we see that either p { m or
p* | m, in either case the power of p that divides m is an even. It remains
to prove that the largest power of 2 and 3 that divides m is also even. Now
if 2 divides m, then the largest power of 2 that divides m(m+2), and hence
also 3n?, is odd which is not possible. All that remains to be proven is that
3 does not divide m. However we have 1 +m = 2%"~! mod 3, which shows
that 3 does not divide m as required.

6. WriteM:(I+A _X),N:(I+B X )

-Y I+P Y I+0
Then
MN — I+A+B+AB—XY AX — X0 g
o PY —-YB I+P+Q+PQO—-YX)

Therefore NM = I and in particular / +A + B+ BA — XY = 1. The result
follows.



7. Proceed by induction on k. Let ¢, denote the constant term of f;. For the
base case k = 1, we need only observe that f;(X) = (1 —X)(1 —gX~!) =
l+g—X—gX 'andc; = (1—¢?)/(1 —q) = 1+q. For any k, we have

(1 o q2k+l)(1 _q2k+2)

Chtl = (1— gk+1)2

B (1 _q2k+1>(1 +qk+l)
- 1 —ghtl Ck-

We will prove that the constant term of f;(X) satisfies the same recurrence

relation, which gives the induction step. Let a,((’) denote the coefficient of X'
in fx. From

fir1(X) = (1=¢"X) (1= ¢ X ) fi(X)
(1 —qu—qk+1X_l +q2k+l)fk(X)

we deduce that

0 0 —1 1
al((Jr)lz(l_l_CIZkH)al(()_qka( )_qk+1al(()_
We want a recurrence relation for a(o)

v - To relate a,((il) to a,(co), we consider

k—1

filaX) =TT (1= X1 - X))

i=0
(1—-¢g"X)(1—-X"1)

=100 —gx Ty &)
1 —g*X
L

Hence (¢* — X) fi(gX) = (1 — ¢"X) fi(X). Equating coefficients of X° and
X! on both sides, we obtain

Je(X).

k k
-y_ g -1 m_ a—-1
a _ql_qk—i—lak ’ 4 = 1_qk+1ak :

Therefore

k_] 1 — 2k+1 1 k+1
a}g‘jzl:(l+q2k+l_2qk+l q ) 0 _ (L=¢"")(1+4"") ()

a a
1— qk+1 k 1— qk+1 k
and this completes the proof.




39th VTRMC, 2017, Solutions

1. Set f(x) =2x% —6x* —6x3 + 1242 + 1 = 0 and g(x) = 2x° — 6x* — 4/2 +
12x%. By raising to the sixth power, we see that a solution to the given
equation also satisfies f. Furthermore to have a real solution, we need x <
\/i. Therefore if we can show that f(x) has no solutions with x < \/§
then it will follow that the original equation has no solutions. Now g(x) =
2x%(x — v/2)? (x> 4+2v/2x +3). Thus g has zeros at 0 and /2 (of multiplicity
2), and is positive otherwise, because x2+2v/2x+3 > 0forall x € R. Now
f(x) —g(x) = (42 — 6)x> + 1 which is positive for x < v/2, because the
function is decreasing and (4\/5 — 6)\/53 +1 > 0. To see this, we need to
show that 17 — 124/2 > 0. However multiplying by 17 + 121/2, we see that
we need to show 172 — 144 -2 > 0, which is true. It follows that the given
equation has no real solutions.

2. Write = tan(x/2). Then cos?(x/2) = 1/(1+1?), so

172
cosx = cos?(x/2) —sin®(x/2) = e
and since tanx = 2t /(1 —1?),
: 2t
SInx = cosx tanx = ——.
I+t
Write I = [§ ooy Since di /dx = w = (141%)/2, we see that
/ tan(a/2) 2dt tan(a/2) ¢
_/0 (1+t2)+(1—t2)+2t_/0 141

1. 1+si
Therefore I = In(1 +tan(a/2)). (An alternative answer is 3 In sina

1
§1n2.) When a = /2, we have tan(a/2) = 1 and we deduce that I = In2

as required.

1+4+cosa

3. We may assume that AB = 1. Since ZAPB = 150, the sine rule yields,
sin150/AB = sin20/AP = sin 10/BP and sin30/AP = sin40/CP. There-
fore PC = 4sin20sin40 = 2co0s20 — 1. Write ZPBC = 6. Since /BPC =



100, we see that Z/PCB = 80 — 60, and then the sine rule for triangle BPC

yields
2c0s20—1 B 2sin10 2sin 10

sin@  sin(80—0) cos(6+10)

Therefore
2c0s20cos(0 + 10) =2sin 10sin 6 + cos(6 + 10) = cos(6 — 10).

We deduce that cos(30+ 6)+cos(10— 60) = cos(6 — 10) and hence cos(30+
0) = 0. We conclude that 8 = 60.

. Denote the vertices of the triangle by A, B and C (counterclockwise). Let
P be an interior point of the triangle and draw lines parallel to the three
sides, partitioning the triangle into three triangles and three parallelograms.
Let EH be the segment parallel to AC, let FI be the segment parallel to
BC, and let JG be the segment parallel AB. Here the points E, F lie on
the edge AB; the points G, H lie on the edge BC, and the points I, J lie
on the edge AC. Suppose that the area of the triangle EFP is a, the area
of the triangle PGH is b, and the area of the triangle JPI is ¢. Note that
the triangles EF P, PGH, JPI and ABC are similar. Therefore EF /PG =
va/vb and JP/PG = \/c/\/b. Thus (EF +JP)/PG = (\/a+ \/c)/Vb
and hence 1+ (EF +JP) /PG = 1+ (\/Ja+\/c)/V/b, i.e.

PG+EF+JP \Ja+Vb+ /c
PG B Vb '

Since PG = FB and JP = AE, because FBGP and AEJP are parallelograms,
AB/PG = (y\/a++/b++/c)/Vb. Because ABC is similar to PGH, we have
AB/PG = /T /\/b. Therefore /T = \/a+/b+/c.

. Let (a,b) € Sand letd = gcd(a,b). Then a = dm and b = dn with gcd(m,n) =
1. Since g(a,b) € N, we see that ab = d’mn is a perfect square and hence
mn is a perfect square. Therefore m and n are both perfect squares, because
gcd(m,n) = 1. Thus we may write a = ds”> and b = dt? with ged(s, ) = 1.
By assumption, (a,b) = 2ds’t?>/(s*> +1*) € N. Since ged(s® +1%,5%) =
ged(s? +1%,1%) = ged(s?,1%) = 1, it follows that s> 4 ¢ divides 2d. Thus
a = k(s> +1%)s?/2 and b = k(s* +1?)t? /2 for some k € N.

Now a # b because s # £1. Also f(a,b) = k(s> +12)? /4 € N. We have two
cases to consider.




o If s*+ 1% is odd, then 4|k and hence f(a,b) > 4(1%+2%)% /4 =25.

e If s> +12 is even, then s and ¢ are odd because ged(s,#) = 1 and hence
fla,b) > (12 +32) /4 = 25.

We conclude that f(a,b) > 25. However f(5,45) = f(10,40) = 25, so the
minimum of f over § is 25.

. Set g(x) = f(x) —x®> +4x—2. Then g(1) = g(4) = g(8) = 0. Therefore
we may write g(x) = (x— 1)(x —4)(x — 8)g(x) where g(x) € Z[x]. Since
f(n) =n*> —4n — 18, we see that g(n) = —20 and hence (n—1)(n—4)(n—
8)g(n) = —20. By inspection, n = 3 or 6. We note that both of these values
of n can be obtained, by taking (for example) g(x) = —2 and 1 respectively,
and then f(x) = —2(x—1)(x—4)(x—8) +x> —4x+2and (x—1)(x—4)(x—
8) +x% — 4x + 2 respectively.

. First we look at small values of n: the given equation is a quadratic in m. If
n € {0,1,2,4}, there are no solutions. If n =3, thenm =6 or 9. If n = 5,
then m = 9 or 54. We now proceed by contradiction to show that there is
no solution if n > 6. So suppose (m,n) is a solution with n > 6. Then m
divides 2 - 3" and so either m = 3¢ for some 0 < a < n, or m = 2- 3% for some
0<b<n. Ifm=3% then

2 —1=m+2-3"/3"=3"42.3""7
On the other hand if m = 2 - 3%, then
2l =m42.3"/m=2-3" 30
Therefore there must be nonnegative integers a, b such that
2l _1=3142.3" 44b=n.

Note that 3¢ < 201 < 3201+1)/3 and 2.3 < 2nt+l 2. 32(1+1)/3 pecause
3%2/3 > 2. Thus a,b < 2(n+1)/3. Since a+ b = n, we deduce that

(n—2)/3<a<2(n+1)/3 and (n—2)/3<b<2(n+1)/3.

Now let t = min(a,b). Thent > (n—2)/3 and since n > 6, it follows that
¢t > 1. Because 3’ divides 3% and 2 - 3%, we see that 3’ divides 2""! — 1. Since



t > 2, we deduce that 2"*! =1 mod 9. Now 2"*! =1 mod 9 if and only
if 6 divides n+ 1, so n+ 1 = 6r for some r € N. Therefore

2n+1_1:43r_1:(42r+4r+1)(4r_1):(42r_|_4r+1)(2r_1)(2r+1).

Since 3’ divides 2"*! — 1, we see that 3’ divides (4%" +4" +1)(2" —1)(2" +
1). Note that 9 does not divide 42" +4" + 1, hence 3'~! divides (2" —1)(2"+
1). Since ged(2"— 1, 2"+ 1) = 1, either 3! | 2" — 1 or 2" + 1. In any case,
3= <274 1. Then 3! <2741 < 3" = 3("+1)/6 Therefore (n —2)/3 —
1 <t—1<(n+1)/6. This yields n < 11, which is a contradiction, because
n > 6 and we proved that 6 | n—+1.



40th VTRMC, 2018, Solutions

1. Letl = [? %ﬂﬂ) dx. First we integrate by parts to obtain

I = [In(x)arctan(1 4 x)]7 — /2 1n—xdx
- Dol 1+ (1+x)2
Inx

=In(2)arctan(3) — [ ————5d
n(2)arctan(3) g™

Now let J = || 12 5 ;;;ixz dx and make the substitution x = 2/y. We obtain

(! In2—Iny (—2/3%) /
“h 2vajyranr T (1+y)? 1-|—y ay

Therefore 2J = |} th‘iy) dy = [In(2)arctan(1 +y)]? = In(2) (arctan(3) —

arctan(2)) and we deduce that I = In(2)(arctan(3) + arctan(2))/2. Now
tan(arctan(3) +arctan(2)) = (3+2)(1 —6) = —1, which shows that arctan(3) —
arctan(2) = 31 /4. Therefore I = 371n(2)/8, and the answer is ¢ = 3/8.

2. First we’ll show thatif X, Y € Mg(Z),X =I=Y mod 3, and XYX =Y, then
X =1. Suppose X # I and write X = I + pC where p is a positive power
of 3 and C # 0 mod 3. Note that XY"X = Y” for all odd integers r. Write
Y =1+ 3D where D € Mg(Z). Then Y” =1 mod 3p, so X?> =1 mod 3p.
Therefore I 4+ 2pC + p?C = I mod 3p which is not the case. Thus X =1
and we conclude that A3 = I. Now write A = I 4+ gD where ¢ is a positive
power of 3 and D # 0 mod 3. Then (I +¢D)? = I mod 9¢, which shows that
3¢D = 0 mod 9¢ which is not the case.

3. LetM = {2,3,...} =N\ {1}. Then f?(N) = M and therefore f(N) = N or
M. The former yields f2 (N) = N, which is not the case, so we must have
the latter which yields f(IM) = M. It follows that (M) = M and we have
a contradiction, so there is no such f, as required.

4. Let d = gcd(m,n). Then d = an+ bm for some integers a and b. Now
(”) = ﬂ(”_]), therefore

m m \m—1

2(2) = @romm(2) =a(2) +o(270).

Since () and (,’;:11) are integers, the result follows.



5. We’ll show that (a,) is unbounded. We have a,_; = 01/an1 %dt.
Note that |1 — | <t for t > 0. To see this, by squaring both sides, this is
equivalent to 2 —2cost < 12, i.e. 12 +2cost —2 > 0, which is true because
we have equality when ¢t = 0, and the derivative of the left hand side is
non-negative for r > 0 by using the inequality sin? <¢ for ¢ > 0. Therefore
it will be sufficient to show that by, := Ji/V"~"|1 — | /¢dt is unbounded
(because 7 /4 < 1). However for n € Z,

n(r+1)/n ) n(r+1)/n
/ \1—e’m|dt:/ V2 —2cosnt =4/n.
b

r/n r/n

Let k = [v/n—1/7], so k is the greatest positive integer such that km <
Vn—1. Note that k — o0 as n — co. Then b, > 2(1+1/2+ -+ 1/k),
which is unbounded because the harmonic series is divergent.

. First we show that a,, — b,, > 0 for all n > 1. This is equivalent to proving

1 1 1
1+ )1/241/44+—)<14+1/34+-+—
(+n)(/ +1/4+ +2n)_ +1/3+ to
that is
2
2n—1_2n))'

1+1/241/34++1/n<n((2—1)+(2/3-2/4)+--+(

Since 1 +1/24---+41/n < n, the assertion follows. Since a; —b; =0, we
see that the minimum of a,, — b,, is zero.

Next we show that a,, — b, is decreasing for n sufficiently large. We have

(an _bn) - (an—H _bn—H) =dap —dpy1 — (bn _bn—i-l)
1
1)~ (n+2)(2n+1)
1
i+ 1)(2n+2)’

I
= maDmey L TBT

(1/2+1/4+~-+2—1n)+

1
n(n+1)

1 1
Now D E2) (i 2) enE ) > 0 for all n > 1, so we need to prove

1 1 1
nrDmr) T3 ) > e

(1/2+1/4+---+%)



for n sufficiently large. Multiplying by n(n+ 1)(n+2) and then subtracting
n(l/24+1/4+---+ %1) from both sides, means we want to prove

n(1/24+1/12+---+ )>1+1/24+---+1/n

1
(2n—1)2n

for sufficiently large n. However this is clear for n > 4. Therefore a, — b,
takes its maximum value for some n < 4. By inspection, the maximum
value occurs when n = 3, which is 7/90.

. Note that if g and & are continuous piecewise-monotone functions on [a, b],
then ¢(gh) < ¢(g)¢(h). Thus £(f") < (¢(f))" for all n € N. Now fix a
positive integer k. Given n € N, there are integers g and r such that n = gk+r
with 0 < r < k. Then £(f") < (¢(f%))4(£(f))", consequently

0y < () e ),

Since k is fixed, r/n — 0 and g /n — 1/k as n — oo. Therefore limsup {/£( ) <
/2(f¥) and we deduce that

limsup {/£(f") <inf {/£(f*) <liminfy/£( %)

and the result follows.



41st VTRMC, 2019, Solutions

1. Let M denote the minimal value of f(n). Clearly M <2+4+7+7+1=17.
We will show that M = 17, so assume by way of contradiction that M < 17.
Choose n € N with f(n) = M, and write n in reverse order as la; ...a; where
ag # 0 (so n is a (d 4 1)-digit number). We have f(n) =2771" = (—1)"
mod 9. First assume that n is odd, so f(n) = —1 mod 9, so we must have
aj+---+ag =7 Wealsohave 1 —a;+a, —---=2771"= —1 mod 11,
so —aj +ay —az+--- = —2. Adding these two equations, we obtain 2a; +
2a4 4+ --- =5, a contradiction because the left hand side is an even integer
and the right hand side is an odd integer. Now assume that n is an even
integer. Then we have f(n) =1 mod 9 and therefore a; +---+a; =9. Also
l—aj+a;—---=1 mod 11 and therefore —a; +a, —az+--- =0. Adding
the last two equations, we obtain 2a; 4+ 2a4 + - -- = 9, again a contradiction
and the result follows.

2. Since BX /XA =9, we see that AX = AB/10 and we deduce that the area of
AXC is 1/10 of the area of ABC, because they have the same height. Using
the fact that the area of XY C is 9/100 of the area of ABC, we find that the
area XY B is 81/100 of the area of ABC. Therefore the area of XBY is 9/10
of the area of XBC. Let H be the point on AB such that ZAHC = 90°. Since
XBY and XBC have the same base, we see that MY = (9/10)CH. Now
MBY and HBC are similar, consequently

HB=(10/9)MB=(10/9)-(1/2)-XB=(10/9)-(1/2)-(9/10)AB=(1/2)AB.
Therefore AC = BC and hence BC = 20.
3. Define g(x) = [y (1 —¢)f(¢)dt. Then g(0) = 0 and

s()= [ reoar [ xrtar

B ad y dd
_dzodﬂ dzod+2

aq

:dzo(d+z)(d+1) =0

By Rolle’s theorem, there exists ¢ € (0,1) such that g'(¢) = 0, that is (1 —
q)f(gq) =0. Since g # 1, we deduce that f(g) = 0 as required.



4. Let [ = fo dx. We make the substitution x = sinz. Then dx =

\/7
dtcost and we see that [ = 7/2 sin’tcost 1y Al by making the substitution

smt+cost

/2
x = cost, we see that I = | v/ o Jizgls’t dt and we deduce that

/2 sin%t cost + cos?tsint
20 = / , dt
0 sint + cost

Since sin?fcost + cos’tsint = sintcost(sinz + cost), we find that 21 =

fon/ *sintcostdt. Therefore 41 = fon/ *sin2¢dt and we conclude that [ =
1/4.

. We make the substitution 7 = 1/x. Let y’ and y” denote the first and sec-
ond derivatives of y with respect to ¢, respectively.Then dy/dx = —t?y and
d*y/dx* =23y’ +t*y and by substituting back into the original equation,
we obtain y” + (2t~ 1 —2)y' + (1 —2t~1)y = 0. It is easy to see that y = ¢’
is a solution to this equation. We now use reduction of order to obtain a
second solution, so let y = f(¢)e’ be another solution, where f is to be de-
termined. Then f” +2¢~! f =0, which has the solution f =¢~!. We deduce
that e'/* and xe!/* are solutions to the original equation. Since these solu-
tions are clearly linearly independent, it follows that the general solution to
the original equationis y =C 161/ Yt szel/ *, where C; and C; are arbitrary
constants.

. For each s € S, there exist m,n,p,q € N and a,b € {£1} such that s €
(am/n,bp/q) and SN (am/n,bp/q) = {s}. Then we may define
f(s) =20+13b+15myny P34,

. For d € N, the number of d-digit integers in S is 9¢, because we have 9
choices for each digit, and all these integers are > 109~!. Therefore the
series is bounded by

Z 9d(10d71)—99/100 _ Z 9d1(0—99(d—1)/100
deN deN

This is a geometric series with ratio between successive terms 9 - 109/ 100,

we show that this ratio is < 1. Rearranging, we find that we need to prove
10°2/9% > 9, equivalently (14 1/9)% > 9, which is true by the binomial
series. It follows that the geometric series is convergent, and we conclude
by the comparison test that the original series is convergent.
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