x2 + y2 = 2013(u2 + v2) | (1) |
3(x12 + y12) = 11·61(u2 + v2), | (2) |
Now continue exactly as in part (b) using the prime 19, and contradict the minimality of x2 + y2.
M = XY = | ( |
|
) |
- ∑n=1∞(- 1)n/qn - 1 | = -∑n=1∞(- 1)nq-n/(1 -q-n) | |
= -∑n=1∞∑k=1∞(q-n)k(- 1)n+1 | ||
= ∑n=1∞(- 1)n+1q-n/(1 -q-n), | ||
∑n=1∞1/(qn + 1) | = ∑n=1∞q-n/(1 + q-n) | |
= ∑n=1∞∑k=1∞(- 1)k+1(q-n)k | ||
= ∑k=1∞(- 1)k+1q-k/(1 -q-k). |
d /dx 1/(xn - 1) | = -n/(x(xn/2 -x-n/2)2) | |
d /dx 1/(xn + 1) | = -n/(x(xn/2 + x-n/2)). |