an+1 | = (n2 -1)2 - (n + 1)2((n - 1)2 - 1) - 1 | |
= n4 -2n2 +1 - (n4 -2n2 +1) + n2 + 2n + 1 - 1 | ||
= n2 +2n = (n + 1)2 - 1. |
Therefore mn/(a, mn) = m. Thus (a, mn) = n, hence n | a and we may write a = sn where s∈Z; clearly (s, m) = 1. Now if t∈Z, then (s + tm)n≡a mod mn, i.e. [n(s + tm)] = [a]. Since (s, m) = 1, we may choose t so that (s + tm, mn) = 1. The result follows by setting q = s + tm.
limx-> ∞f (x) | = limx-> ∞(f (x)/x)/(1/x) | |
= limx-> ∞((f (x)/x)')/(- 1/x2) | ||
= limx-> ∞ -x2(x1/x -1 - (ln x)/x)' | ||
= limx-> ∞ -x2(x1/x/x2 - (x1/xln x)/x2 -1/x2 + (ln x)/x2) | ||
= limx-> ∞(x1/x -1)(ln x - 1). |
limx-> ∞(x1/x -1)ln x | = limx-> ∞(x1/x -1)/(1/ln x) | |
= limx-> ∞(x1/x(1 - ln x)/x2)/(- 1/(x(ln x)2)) | ||
= limx-> ∞((ln x)3)/x = 0. |
f (2x) -f (x) | = (2x)1+1/(2x) -2x - ln 2x -x1+1/x + x + ln x | |
= (2x)1+1/(2x) -x1+1/x -x - ln 2 |