Monday, August 22

Chapter 1
Policy Sheet and Introduction
Course 6125 (Topics in Algebra; Homological Algebra), index 7834
Instructor Peter A. Linnell
Office McBryde 404
Telephone 231-8001 and 951-0183
E-mail linnell@math.vt.edu

Assessment This will be based on homework which I will collect in once a week on Mondays.
There will be a choice of problems: students who have not passed the Ph.D. qualifying oral
exam will be required to hand in solutions to two problems; students who have passed the
Ph.D. qualifying oral exam will only be required to hand in solutions to one problem! (A
generous instructor!)

Late Homework Half credit (zero credit if received after I have given out the solutions
in class).

Homework Policy Students are allowed to discuss homework among themselves.

Prerequisites 5125-5126 Graduate Abstract Algebra (or consent of the instructor). Also
useful will be 5334 Algebraic Topology.

Books I have decided that there is no book entirely suitable for the course. If I had to
choose a book, it would be “Cohomology of Groups” by K. S. Brown, Graduate Texts in
Math. no. 87, Springer-Verlag, Berlin—-New York, 1982, ISBN 0-387-90688-6. If you want to
buy it, order from Springer direct (call toll-free 1-800-SPRINGER); assuming it is in stock
you should receive it within 10 days and it would cost about $40. It is a very well written book
and all the material covered is important. However it assumes rather more algebraic topology
than is suitable for this course (to define CW-complex and prove the Hurewicz isomorphism
theorem would take too much time, and I think most of this class are not familiar with these
topics). Other books relevant to the course are as follows.

(1) “Representations and Cohomology I & II” (two books) by D. J. Benson, Cambridge
Studies in Advanced Math. nos. 30 & 31, Cambridge Univ. Press, Cambridge-New York,
1991, ISBN 0-521-36134-6 and 0-521-36135-4 (call toll free 1-800-872-7423). This has a wealth
of recent important material. On the other hand it is quite densely written and there is a
shortage of exercises and examples. Perhaps more relevant from my point of view is that it
deals only with finite groups, while I want to give finite and infinite groups equal emphasis.

(2) “Modular Representation Theory: New Trends and Methods” by D. J. Benson, Lecture
Notes in Math. 1081, Springer-Verlag, Berlin—New York, 1984, ISBN 0-387-13389-5. This is
the forerunner of (1), but it is not subsumed by (1) and has an appendix with many numerical
examples. Also being in the Springer Lecture Note series, it should be inexpensive; I would
guess about $30.

(3) “The Cohomology of Finite Groups” by L. Evens, Oxford Univ. Press, Oxford—New
York, 1991, ISBN 0-19-853580-5 (call toll free 1-800-451-7556). Similar to (1) but covers less
material at a slower pace.
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(4) “An Introduction to Homological Algebra” by C. Weibel, Cambridge Studies in advanced
Math. no. 38, Cambridge Univ. Press, Cambridge-New York, 1994, ISBN 0-521-43500-5. The
material here is quite close to that which will be covered in this course. However it is rather
disorganized, and there is a shortage of exercises and examples. Also only experts will find
chapters 1 and 2 comprehensible, though it does become easier later on.

(5) “Homology” by S. MacLane, Springer-Verlag, Berlin-New York, 1975, ISBN 0-387-
03823-X. A good reference for cohomology over general rings; however I would like to make
explicit calculations for group cohomology: also it is somewhat out of date.

(6) “A Course in Homological Algebra” by P. J. Hilton and U. Stammbach, Graduate Texts
in Math. no. 4, Springer-Verlag, Berlin—New York, 1971, ISBN 0-387-90032-2. Similar to (5),
but with a little more on group cohomology.

(7)  “An Introduction to Homological Algebra” by J. J. Rotman, Pure and Applied Mathe-
matics Series no. 85, London-New York, 1979, ISBN 0-12-599250-5. Similar to (5) and (6).

(8) “Cohomology of Finite Groups” by A. Adem and R. J. Milgram, Grundlehren der Math-
ematischen Wissenschaften, vol. 309, Springer-Verlag, Berlin—-New York, 1994, ISBN 0-387-
57025-X. Concentrates on cohomology of finite groups. Assumes a fair amount of algebraic
topology: for example chapter 2 assumes a knowledge of G-bundles and classifying spaces.
Also chapter 7 assumes a knowledge of the Chevalley groups and Dynkin diagrams. There
are no exercises.

Syllabus Unfortunately not all the students are familiar with tensor products, so that will
be the starting point of the course. The textbook you used for 5125-5126 should cover
tensor products, at least over commutative rings. However I will require tensor products over
noncommutative rings. Since much of this is very familiar to many of the class, I will cover
it quickly. For the ones who have not seen it before, it is important that you do not get lost
at this point, because tensor products are fundamental to the whole of Homological Algebra.
After that I will cover chain complexes and then I will define Ext and Tor.

Then I will turn to cohomology of groups. After defining the group ring RG of the group
G over the commutative ring R, I will cover the Kiinneth formula and Universal Coefficient
theorem. I will use these to determine the additive structure of H*(G,Z) for any finitely
generated abelian group G.

The next topic will be cup products. This induces a ring structure on H*(G, R) for any
commutative ring R, and is the reason why cohomology seems to be superior to homology,
even though the two theories are dual to each other. I will calculate the cohomology ring
H*(G, k) for any finitely generated abelian group G and any field k. I will also consider the
case k = 7.

Notation

7 = integers Q = rational numbers

R = real numbers C = complex numbers

N = natural numbers (0,1,2,...) P = positive integers (1,2,3,...)
VY = forall d = there exists

€ = is an element of ¢ = is not an element of

U = union N = intersection



C = is a subset of g = emptyset

|A| = order of A (possibly infinite) alb = a divides b
ACB=ACBand A# B A\B={a€ A|a¢ B}

< = is a subgroup (or subring) of A<B=A<Band A#B
H <1 G = H is a normal subgroup of G =~ = is isomorphic to
ker & = kernel of the map 6 im# = image of the map 6
M, (R) = n X n matrices over a ring R

M,, »(R) = m x n matrices over a ring R

GL,(R) = {A € M,(R) | Ais invertible}

H, (G, R) = nth homology group of the group G with coefficients in the ring R
G,R

H" (G, R) = nth cohomology group of the group G with coefficients in the ring R
(a,b) = greatest common divisor of a and b

[a, b] = lowest common multiple of a and b

>n = symmetric group of degree n

Ny (K) = normalizer in H of K (usually H and K will be subgroups)
Cy(K) = centralizer in H of K (usually H and K will be subgroups)

I<R = [ is an ideal of the ring R
B<p B = Pis a prime ideal of the ring R
I<y R = Iis aleft ideal of the ring R
I<: R = Iis aright ideal of the ring R

MR = 9 is a maximal ideal of the ring R

Terminology and Assumed Elementary Results All rings will have a one, and modules
may be left or right modules. However unless otherwise stated, modules will be right modules
and mappings will be written on the left. Furthermore all modules will be unital modules:
this means that if M is a module, then m1 = m for all m € M. If R is a ring and M, N
are right R-modules, then Homp(M, N) will denote the R-module homomorphisms from
M to N,ie. {f : M — N | f(mr) = (fm)r for m € M, r € R}. If a: N — A is a
homomorphism of right R-modules, then we often denote the group homomorphism from
Hompg (M, N) to Hompg(M, A) defined by f — af for f € Homg(M, N) by «a,. Similarly if
B: M — B is a homomorphism of right R-modules, then we denote the group homomorphism
from Homp(B, N) — Hompg (M, N) defined by f +— f3 for f € Homg(B, N) by 5*. Then for
any R-module maps « and 3, we have (af), = a.f. and (af)* = [*a*, assuming of course
that the relevant compositions are defined.

Exercise 1 Let R be a ring and let M be a right R-module. Show that we can make
Hompg(R, M) into a right R-module by defining (fr)s = f(rs) for f € Homg(R, M), r,s € R,
and then we have M = Homp(R, M) as R-modules.

Exercise 2 Let R be a ring and let M be a right R-module. Show that we can make
Hompg (M, R) into a left R-module by defining (rf)m = r(fm) for r € R, f € Homg(M, R)
and m € M. (Often Hompg (M, R) is called the dual of M and is denoted M*.)

Exercise 3 Let R be a ring and let M be an R-module. Prove that for each m € M, the
formula f — f(m) for f € M* defines an element §(m) of M**. Prove further that € is an
R-module homomorphism from M to M**. In the special case R = Z, M = Q, show that
this is the zero map.
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Exercise 4 Let R be a ring, let M be an R-module, and let 0 — A > B LA C be an exact
sequence of R-modules. Prove that the induced sequence of groups 0 — Homp (M, A) %5

Hompg (M, B) By Homp (M, C) is also exact.

Exercise 5 Let R be a ring, let M be an R-module, and let A 5 B LA C — 0 be an exact
sequence of R-modules. Prove that the induced sequence of groups 0 — Hompg(C, M) i
Hompg (B, M) % Homp (A, M) is also exact.

Let R be a ring, let Z be a set, and let {M; | i € Z} be a family of R-modules. Then the
direct sum P, .7 M; is the R-module whose elements are the sequences {m;} with i € Z and
m; = 0 for all but finitely many ¢, and the R-module structure is defined by {m;}r = {m,;r}
for r € R. Similarly the cartesian sum [],.; M; is the R-module whose elements are all
sequences {m;} with ¢ € Z, and the R-module structure is again defined by {m;}r = {m;r}
for 7 € R. Of course if |Z| < oo, then @, .7 M; = [[,c7 M;, but in general @, ., M; is not
isomorphic to [],.; M;.

Exercise 6 Let 7 be a set, let R be a ring, let A be an R-module, and let {M; |i € Z} be
a family of R-modules. Prove

(i) Hompg(EP M;, A) = [[ Homg(M;, A),

1€ZL €T
(i) Homp(A, [[ M:) = [ [ Homg(A, M;),
1€L i€l
(i) Hompg(A, D M;) = @) Hompg(A, M;) if A is finitely generated.
1€L €L

(iv) Show (iii) is false without the hypothesis that
A is finitely generated.

Bimodules If R, S are rings, then M is an (R, S)-bimodule means
(i) M is a left R-module,
(ii) M is a right S-module,
(iii) If r € R, s € §, and m € M, then (rm)s = r(ms).
In other words, M is both a left R-module and a right S-module, and (this is the content of

(iii)) the left and right actions commute (it is not enough to have only (i) and (ii), namely
that M is both a left R-module and right S-module).

Examples

(1) If Ris any ring and n € N, then R™ (the direct sum of n copies of R) is an (R, R)-bimodule,
where the left and right R-module structures come from left and right multiplication by
the elements of R respectively.
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(2) If R is a commutative ring and M is a right R-module, then we can view M also as a left
R-module by defining rm = mr for r € R and m € M. Then (i) and (ii) of the above are
satisfied, and then (iii) is also satisfied and M becomes an (R, R)-bimodule.

(3) If R is any ring and M is a right R-module, then M is an (Endr(M, M), R)-bimodule.

Exercise 7 Let R,S be rings, let M be an (R,S)-bimodule, and let N be a right S-
module. Prove that Homg(M, N) becomes a right R-module by defining (fr)m = f(rm) for
f € Homg(M,N),r € Rand m € M.

Exercise 8 Let R, S be rings, let M be a right S-module, and let N be an (R, S)-bimodule,
Prove that Homg(M, N) becomes a left R-module by defining (rf)m = r(fm) for r € R,
f € Homg(M,N) and m € M.

Projective Modules Let R be a ring and let P be an R-module. Then P is projective
if and only if every short exact sequence of R-modules of the foom 0 - M — N —- P — 0
splits. Then a basic result is that the following are equivalent:
(i) P is a projective R-module,
(ii) there exists an R-module @ such that P @& Q is a free R-module,
(iii) given a short exact sequence of R-modules M 5 N — 0, then the induced sequence
Homp(P, M) % Hompg(P, N) — 0 is also exact, where a, is defined to be the map
f—af.

Exercise 9 Let R be a ring, let P be a projective right R-module, and let e € Endg(P) be
an idempotent (i.e. e = e). Prove that eP is a projective R-module.

Exercise 10 Let I be a set, let R be a ring, and let {M; | i € Z} be a family of projective
R-modules. Prove that @,.; M; is a projective R-module.

Exercise 11 For each ¢ € P, let P; be a Z-module isomorphic to Z. Prove that HieP P; is
not a projective Z-module.

Injective Modules The dual notion to a projective module is an injective module. Specifi-
cally to define injective module, one reverses the arrows in the definition of projective module
above, so if R is a ring and [ is an R-module, then [ is an injective R-module if and only if
every short exact sequence of R-modules of the form 0 — I — M — N — 0 splits. Then a
basic fact is that the following are equivalent:

(i) I is an injective R-module,

(i) given a short exact sequence of R-modules 0 — M % N, then the induced sequence
Hompg(N,I) X Hompg(M,I) — 0 is also exact, where o* is defined to be the map
fr— fa.

Unfortunately, there is no nice characterization of injective modules like (ii) for projective

modules; on the other hand every module M can be embedded in a unique “smallest injective
module”, called the injective hull of M.

Exercise 12 Prove that Q is an injective Z-module.
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Exercise 13 Let Z be a set, let R be a ring, and let {I; | i € Z} be a family of injective
R-modules. Prove that [],.; /; is an injective R-module.

Remark In general the direct sum @ieIi I; is not an injective module, though examples
are less easy to find.

Tensor Products There are many reasons why one wants to construct tensor products,
and we will describe two of them here before making the formal definition.

Let F be a field, and let U,V be vector spaces over F' of dimensions m, n respectively. It
is easy to construct a vector space of dimension m -+ n over F' from these two vector spaces,
namely U@V, however it would be nice to also construct a vector space of dimension mn from
these two spaces in some natural way. The tensor product U ® p V' will fulfill this purpose.

A second reason is to extend scalars. Let F' be a field and let V' be a vector space over F.
Often we want to consider V as a vector space over some larger field E: for example one may
want to compute the Jordan Canonical Form of an F-endomorphism of V', and then one wants
to work in the algebraic closure of F. One way to do this is to take a basis {e1,...,e,} of V
(at least in the case when dimp V' = n < c0), and then consider the vector space over E with
basis {e1,...,e,}. However this is non-canonical, and is also awkward when dimp V = oo.
Here the tensor product V ®p E is what is required.

The above two examples are tensor products over a field; however it turns out that one
needs them over any ring.

Definition Let R be a ring, let M be a right R-module, and let N be a left R-module.
Let F' be the free abelian group with basis {(m,n) | m € M and n € N}, and let E be the
subgroup of F' generated by

{(m1 4+ ma,n) — (m1,n) — (ma,n) | m1,me € M and n € N,
(m,n1 +n2) — (m,n1) — (m,n2) | m € M and ny,ny € N
and (mr,n) — (m,rn) |m e M, n€ N and r € R}.

Then M ®pg N is the abelian group F'/E. It is conventional to denote the element E+ (m, n) of
M ®pr N by m®n, and then we can define amap 7: M x N — M ®g N by 7(m,n) = m®n.
This map is in general neither a group homomorphism nor onto: however the image of 7
does generate M ®r N as an abelian group. Then we have for m, m;,mes € M and n € N,
(m1 +mg) ®n =m3 ®n+my®n and 0 ® n = 0. We note that 7 satisfies the following:

(i) 7(m1 +ma,n) =7(my,n) + 7(mg,n) for all m;,my € M and n € N,
(ii) 7(m,n1 4+ n2) =7(m,nq) +7(m,ng) for all m € M and ny,ny € N,
(iii) T(mr,n) = 7(m,rn) for all m € M,n € N and r € R.

A map 7 satisfying (i), (ii) and (iii) above is called a balanced (or R-balanced) map.

This is not a very enlightening definition: it can be difficult to comprehend because the
free abelian group F is very large, and then we factor out by the very large subgroup F, so
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what do we finish with? Also without further conditions on M and N, M ®g N is only an
abelian group; however if N is an (R, R)-bimodule (in particular if R is commutative — see
the section on bimodules), then we shall see that M ®g N is a right R-module.

It is much better to use the universal property of tensor products than to use the defini-
tion above.

Universal Property of Tensor Products Let R be aring, let M be a right R-module, let
N be a left R-module, and let 7: M x N — M ®p N denote the balanced map (m,n) — m®mn.
Suppose we are given an abelian group G and a balanced map 0: M x N — . Then there
exists a unique group homomorphism ¢: M ®r N — G such that 8 = ¢r.

Proof That ¢ is unique is clear because the image of 7 generates M ®g N as an abelian
group. To prove the existence of ¢, first define a group homomorphism ¢: F — G by
Y(m,n) = O(m,n); this is a good definition because the elements {(m,n) | m € M and
n € N} are a Z-basis for the free abelian group F. Since 6 is a balanced map, we have for
m,my,mg € M, n,ni,ne € N andr € R

Y(ma + ma,n) = p(m1,n) +P(ma,n)
Y(m,ny + ng) = (m,ny) + (m, n2)
and Y (mr,n) = Y(m,rn).

Thus ¢ kills a generating set for £ and it follows that E C kert. Therefore there exists a
group homomorphism ¢: F//E — G such that ¢(m®@n) =1(m,n) for alm € M andn € N,
which is what is required.

It is routine to show that M ®pr N is determined up to isomorphism by this universal
property. Precisely if (M @ g N)' and 7/: M x N — (M ®g N)' satisfy the above for M @ g N
and 7: M x N — M ®pgr N respectively, then there exists a unique group isomorphism
a: M@r N — (M ®pg N)" such that ar = 7/. Tt is also easy to verify that (M; & My) @z N =
M, ®r N & My @r N. We now establish the following.

Module Structure on M ®r N. Let R,S be rings, let M be an R-module and let N be
an (R, S)-bimodule. Then there exists a unique S-module structure on M ®pr N such that
(m®n)s=m® (ns) forallme M,ne N and s € S.

Proof Fixs e Sanddefinec: MxN — M®gN by o(m,n) = m®ns. Since (m,n) — men
is a balanced map, we have for m,my,me € M, n,ni1,no € N and r,s € R

o(my +ma,n) = (M1 + mg) @ ns = my @ns +mg @ns = o(my,n) + o(mg,n),
o(m,n1 +n2) =m® (n1s+n2s) =m@nis +mnas = o(m,ny) + o(m,nz),
o(mr,n) =mr @ ns =m® rns = o(m,rn),
which shows that o is an R-balanced map. Therefore by the universal property of tensor

products, there exists a unique group homomorphism §: M @r N — M ®gr N such that
(m®n)s = m®ns for allm € M,n € N. This establishes the uniqueness part of the S-module
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structure on M ®pr N, and we now define us = us for u € M ®r N and s € S. It remains to
check that this makes M ®pgr N into an S-module. Since § is a group homomorphism, all we
need is that u(s+t) = us+ut foru € M®gN and s,t € S. Since the elements m®n generate
M ®pr N as an abelian group, it is sufficient to do this when u is of the form m ® n. But

(men)(s+t)=men(s+1t) =m® (ns+ nt)
=mens+ment=(men)s+ (mn)t

as required.

Of course if instead of N being an (R, S)-bimodule, M is an (S, R)-bimodule, then we can
make M ®g N into a left S-module by the rule s(m ® n) = sm ® n.

As a special case, consider the case when R = S and is commutative. Then we can view
N as an (R, R)-bimodule (see the section on bimodules). Thus M ®g N is an R-module via
(m ®n)r = m ®nr, and in fact it is determined by the following universal property, which
we state without proof because it is very similar to the previous case. Before proceeding, we
recall the definition of a bilinear map.

Definition of Bilinear Map Let R be a commutative ring, and let M, N, P be R-modules.
Then a map 6: M x N — P is R-bilinear means for m, mi,ms € M, n,n1,no € Nandr € R

(i) B(m1 +ma,n) = B(m1,n) + B(mz,n),
(11) ﬁ(m? ny + nQ) = 6(m7n1) + ﬁ(m,ﬂa),

(iii) B(mr,n) = (B(m,n))r,
) B(

(iv) B(m,nr) = (B(m,n))r.

Note that when R is a commutative ring, then the map 7: M x N — M ®gr N defined by
T(m,n) = m ® n is R-bilinear.

Universal Property of Tensor Products Over Commutative Rings Let R be a
commutative ring, let M and N be R-modules, and let 7: M x N — M ®pr N denote the
R-bilinear map (m,n) — m ® n. Suppose we are given an R-module P and an R-bilinear
map 3: M x N — P. Then there exists a unique R-map 6: M ® g N — P such that § = 0.

Examples In these examples, you will find that M ®gr N behaves in a similar way to

Hompg (M, N).

(1) Let K be a field, and let U,V be vector spaces over K with bases {ui,...,u,} and
{v1,...,v,} respectively. Then U@ V is the vector space with basis {u; ®v; |1 <i<m
and 1 < j <n}.

Proof To see this, let us consider U as mx 1 column vectors and V as 1 xn row vectors. Then

we can define a K-bilinear map 7: U xV — M,, ,(K) by 7(u,v) = uv (matrix multiplication),

which is well defined because the matrices u,v have compatible size. We want to show that

M, »(K) has the universal property for tensor products over the commutative ring K, so

suppose W is a K-module and we have a K-bilinear map : U x V — W. We may assume

that {u1,...,un} and {v1,...,v,} are the standard K-bases for U and V respectively. Then
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; < m} and {1 < j < n}is a K-basis for M,, ,,(K), so we can define a K-map
— W by 0(uv;) = B(ui,vj). f u=> au; €U and v =3 bjv; € V, then

GT(U,U) = QT(Z(aiui, ijj)) = GZaibjuivj = Zaibjﬁ(ui, ’Uj)
] 2]

i
= Z B(a;u;,bjvj) (because 3 is bilinear)
(2]

= ﬂ(u’ U),

hence f = 7. Also if ¢': M,,,, — W is another K-map satisfying 8 = 0'r, then 0’ = 0
because 6 and 6 agree on the K-basis {u;v;} of M,, ,(K). This establishes the universal
property and it follows that M ®x N = M,, ,,(K).

(2) Let R be aring, and let M be a right R-module. Then M ®g R = M as right R-modules.
Proof Define 7: M x R — M by 7(m,r) = mr for m € M and r € R. Then it is easily
checked that 7 is a balanced map. Suppose P is a right R-module and §: M x R — P is
a balanced map. Then we define #: M — P by fm = [(m,1). Then it is easily checked
that 6 is a group homomorphism satisfying 8 = 7. Also if #/: M — P is another group
homomorphism satisfying 3 = 6’7, then it is clear that ’ = 6. Thus the universal property
for tensor products is verified and it follows that M ®r R = M as right R-modules.

(3) Z/27 ®4 737 = 0.
Proof The elements of the form m®n for m € Z/27Z and n € Z/37Z generate Z /27 ®y 7/ 3Z
as a Z-module, so we need to prove that all these elements are zero. Now

(men)2=men2=me2n=m2n=0Qn =0,
and similarly (m®n)3 = 0. Therefore m®@n = (m®n)3—(m®n)2 =0—0 = 0 as required.

(4) Let R, S be a rings, let M be a right R-module, let N be an (R, S)-bimodule, and let P

be a left S-module. Then (M ®r N) ®s P = M ®@r (N ®g P) as abelian groups.
Proof (sketch) For p € P, define f,: M x N — M ®g (N ®g P) by fp(m,n) = m®
(n ® p). Then it is easily checked that f, is an R-balanced map, hence it induces a group
homomorphism fp: M®rN — M@r(N®gP). Since m®(ns®p) = m(n®sp) for s € S and
the elements m ®@n generate M @z N, it follows that f,(us) = fap(u) for allu € M@ N. We
can now define an S-balanced map f: (M ®rN)xP — M®@r(N®gP) by f(u,p) = fp(u) for
u € M ®p N, and this induces a group homomorphism f: (M @rN)®sP — M @r (N g P)
satisfying f((m ® n) ® p) = m ® (n ® p). Similarly there exists a group homomorphism
g: M ®r (N ®s P) — (M ®r N) ®s P such that g(m ® (n ® p)) = (m®n) ® p. Then fg
and gf are the identity maps (because they agree with the identity on a generating set), and
it follows that f (and g) is an isomorphism as required.

Exercise 14 Let F C FE be fields, let U be an F-vector space with basis B, and let V' be
an F-vector space also with basis B. Prove that U @ p £ =2V as E-vector spaces.
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Exercise 15 Let R be a commutative ring, and let M, N be R-modules. Prove that the
mapping m ® n — n @ m defines an R-isomorphism M ® g N — N Qg M.

Exercise 16 Let R be a commutative ring, let S be a multiplicatively closed subset of R,
and let M be an R-module. Prove that M @r SR = S™'M as S~!R-modules. (Recall
that S~1M is the S~!'R-module obtained from M by inverting all the elements in S. It
consists of elements s~'m with s™'m = sy 'm; if and only if there exists t € S such that
(ms1 —mys)t = 0. The S~ R-module structure is given by (s~'m)(t~1r) = (st)~!(mr).)

Exercise 17 Let a,b be nonzero integers, and let | = (a,b). Prove that Z/aZ ®y 7. /b7 =
Z]lZ.

If R is a ring, A, M are right R-modules, B, N are left R-modules, a: A — M is a
right R-map and #: B — N is a left R-map, then it is easily checked that the formula
a®b — a(a)®p(b) (for a € A,b € B) well defines a group homomorphism A®r B — M®@rN:
this is usually denoted a ® 5. If : M — U is a right R-map and ¢: N — V is a left R-map,
then A ® B = (a @ PB) (0@ @p): Ar B—U®RrV.

Example Define pu: Z/27Z — Z/9Z by p[n] = [3n] where for n € Z, [n] denotes the residue
class modulo 27 or 9. Let ¢ denote the identity map on Z/9Z. Then p®v: Z/27TZ Q7 Z/9Z —
Z/9Z @7, Z/9Z can be identified with the map “multiplication by 3” from Z/9Z — Z/9Z.

Proof This is because there are isomorphisms 0: Z/27Z @z Z/97Z — Z/9Z, ¢ : Z/IZ Ry,
Z/97 — Z/9Z such that 0[1|®[1] = [1], ¢[1]®[1] = [1], and (p®¢)[1]@[1] = [3]®[1] = 3[1]®[1].

The following is the corresponding result to Exercises 4 and 5 for tensor products.

Theorem Let R be a ring, let M be a left R-module, and let A = B LA C' — 0 be an exact
sequence of right R-modules. Then the induced sequence of abelian groups

Ar M Bor M cop M —0

(where 1 denotes the identity map on M) is also exact.

Proof The image of § ® 1 contains all elements of the form gb @ m (b € B,m € M), and
hence all elements of the form ¢ ® m (c € C,m € M) because [ is surjective. Since these
elements generate C ®pr M, it follows that F®1 is also surjective and hence we have exactness
at C @ M. Since (R 1)(a®1)=0Fa®1=0®1 =0, it follows that ima ® 1 C ker f ® 1
and it remains to prove that ker f® 1 C ima ® 1.

Let I = im a®1, and choose a function f: C — B such that f = 1¢ where 1¢ denotes the
identity map on C. Define §: CxM — (B®&rM)/I by 6(c,m) = I+ f(c)®@m. Then it is easily
checked that 6 is a balanced map and does not depend on the choice of f, so it induces a group
homomorphism ¢: C®r M — (B®gr M)/I such that pc@m = I+ fe®@m. Now f®11 = 0, so
B®1 induces a group homomorphism ¢: (B@grM)/I — C@rM such that Y (I+z) = (f@1)x
for all x € (B®g M)/I. Therefore ptp(I +b®@m) = pfb@m =1+ ffb@m=1+b®m
(because 6 does not depend on the choice of f, so we could have chosen f to send b to b).
Since the elements of the form I 4+ b® m generate (B ®p M)/I as an abelian group, it follows
that ¢ is the identity map. Thus if y € ker 5 ® 1, then (I +y) =0 and (I +y) = I +y,
hence y € I and the result is proven.
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In the language of category theory (don’t worry if you don’t know any category theory —
the meaning of the following terminology should be clear) Exercise 4 says that the functor
Homp(M, _) is left exact, Exercise 5 says that the functor Hompg(_, M) is left exact, and the
above theorem says that the functor _— ® M is right exact. However, the following exercise
says that if the words “left” and “right” are interchanged in the above statements, then they
all become false.

Exercise 18
(i) Give an example of a ring R, an R-module M, and a short exact sequence of R-modules

A% B — 0 such that the induced sequence Homp (M, A) O, Hompg (M, B) — 0 is not
exact.

(ii) Give an example of a ring R, an R-module M, and a short exact sequence of R-modules
0 — A % B such that the induced sequence Homp (B, M) LN Hompg(A, M) — 0 is not
exact.

(iii) Give an example of aring R, an R-module M, and a short exact sequence of R-modules

0— A % B such that the induced sequence 0 — A Qr M — 91 g ®gr M is not exact.

The above can be considered the starting point of Homological Algebra: the failure of the
exactness of the functors Homp(—, M), Hompg(M,_), - ® g M. The failure of the exactness
of these functors gives rise to new infinite families of functors, namely Tor? and Ext? for all
n € N. To obtain these new functors, we need to study chain complexes.

Chain Complexes Let R be a ring. Then a sequence of R-modules

Oni2 41 o)
Ao n+1_+’A ---—2>A1 Ao 0

is a chain complex means that 0,0,+1 = 0 for all n € N. The 0,, are called the boundary
maps, and we say that A is projective (respectively free) if and only if all the A,, are projective
(respectively free). Since imd,,+1 C ker 0, we can define the nth homology group H,,(A) of
A to be ker 0,/ im Oy, 41.

Similarly a cochain complex B is a sequence of R-modules B : 0 %, By = B % ... such
that 6,410, = 0 for all n € N. In this case we define the nth cohomology group H"(B) to be
ker d,,41/im dy,.

Example Let P: --- by P by Py bq 0 be a sequence of Z-modules such that for each n € N
we have Py, = Z/AZ, Popy1 = Z, O2,+1(1) = [2] and 63, = 0, where [2] denotes the residue

class of 2 modulo 4. Then P is a chain complex, Hy, (P) = Z /27, and Hy,+1(P) = Z.

Suppose L is a left R-module and ¢ denotes the identity map on L. Then A ®g L will
denote the chain complex (of abelian groups)

On+201t n+1®L

— Appi®rL A, @ L2 22 4 0 LA Ay 0p L 22 0.

We note that this is a chain complex because (9, ® t) (Opt+1 ® t) = (0,0n41) @ ¢ = 0.
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Similarly if N is a right R-module, then Hompg (A, N) will denote the cochain complex (of
abelian groups)

o* ox a5
0> HOHlR(Ao,N) —1>H0mR(A17N) .
« * o,
- % Homp(Ay, N) 2 Homp(Ans1, N) =2 -

As above we note that this is a cochain complex because 0, ,0;; = (0,0,41)" = 0.
Let R be aring and let M be a right R-module. Then a resolution of M (as an R-module)
is an exact sequence of R-modules

(Po): - 2P 2 p 25 gy S M — 0, (1)
and then we shall write P for the chain complex

2 p, 2 p 2 py 2, (2)

Thus H,,(P) = 0 for all n € P and Ho(P) = M. Also we shall write P for (2) even if (1) is
only a chain complex. We can now define Ext and Tor.
Let R be a ring, let M be a right R-module, and let

(Pe): 2P 2P 2P M —0

be a projective resolution of M.

Definition Let L be a left R-module and let N be a right R-module.
(i) Extz(M,N)=H"(Hompg(P,N)).
(i) Torf(M,L) = H,(P ®g L).

Of course we must check that Ext’s(M, N) and TorZ(M, L) are well defined, which means
that they do not depend on the choice of the resolution P.

First Homework Due 9:00 a.m., Monday, August 29.

(1) Let R be aring, let M be aright R-module, and let I <1y R. Prove that M®@rR/I = M /M1
as abelian groups. Prove further that if 7 < R, then the above isomorphism can be taken
as one of right R-modules.

(2) Let R, S be rings, let M be a right R-module, let P be a right S-module, and let N be an
(R, S)-bimodule.

(i) If f € Homg(M ®p N, P), show that we can define f: M — Homg(N, P) by (fm)n =

fm ®mn) for m € M,n € N. Then prove that the rule f — f uniquely defines a
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group homomorphism from Homg(M ®g N, P) to Homg(M,Homg(N, P)). (Recall
the right R-moduule structure of Homg (N, P) from Exercise 7.)

(ii) If g € Homp(M,Homg(N, P)), show that we can define a map §: M @z N — P which
satisfies g(m @ n) = (gm)n for all m € M and n € N. Then the map g — § uniquely
defines a group homomorphism Hompg (M, Homg (N, P)) to Homg(M ®r N, P).

(iii) Prove that Homg(M ®g N, P) = Hompg (M, Homg(N, P)) as abelian groups by show-
ing that the maps "~ and ™~ are inverse to each other.

(3) Prove that Q ®z (Q® Z/2Z) = Q as Z-modules.

(4) Let A: --- 2 4, 8 A4, % A) 22 0 be a chain complex of Z-modules, and let [n] denote
the residue class of the integer n in Z/8Z or Z/47Z. Suppose for each r € N, we have
Ao, = Z)8Z, Aspy1 = Z/AZ, aari2]n] = [2n], and ag,q41[n] = [4n].

(i) Determine H,.(A) for r € N.
(i) Prove that Ho(A ®g Z/AZ) = Z,/4Z and that H, (A ®z Z/AZ) = 7,27 for r € P.

Monday, August 29
Chapter 2
Chain Complexes

We need the following lemma to show that Ext and Tor are well defined.
Lemma 1 Let M, N be R-modules, let 6_;: M — N be an R-map, let

(Pag): -+ 2P 2P 2% M —0

be a chain complex of R-modules with P projective, and let

(@, 0o): "'&Q1&Q0&N—>O

be a resolution of V.
(i) There exist R-maps 0;: P; — Q; such that 6;_jc; = 3;0; for all i € N.
(ii) If ¢;: P, — Q; are R-maps such that ¢;—1a; = Bi¢; (i € N) and ¢_1 = 0_1, then
there exist R-maps h;: P; — Q;+1, h—1 = 0, such that

0; — ¢; = hi—104 + ﬁi+1hi for all 7 € N.

Proof For convenience we define o; = 8; = 0,1 = ¢p;—1 = h;—1 = 0 for all ¢ < 0. Note that
then we have ker 6;_1 = im 3; for all 7 € Z.

(i) We use induction. Suppose n + 1 € N and we have constructed R-maps 6;: P; — Q; such
that 0;,_1a; = (;0; for all ¢ < n; we can obviously do this for n = —1. We now do this for
n + 1. Note that 6,1, = (3,0, tells us that

ﬂnenanJrl = enflanan%»l =0,

hence im 6, a1 C ker 8,. But (Q, 5p) is a resolution, so ker 3, = im 3,41 and we deduce
that im60,ap,+1 C imfG,11, thus we can consider 0,a,+1 € Hompg(P,11,im (3,41). Since
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P, 1 is projective, the map [By4+1«: Hompg(Put1,@Qpn+1) — Hompg(P,41,im (3,41) is onto,
hence there exists 0,41 € Hompg(P,41,Qn+1) such that G114 60n+1 = Opnani1. Therefore
Bn+10n+1 = O0pant+1, which completes the induction step as required.

(ii) Again we use induction. Suppose n+1 € N and we have constructed maps h;: P; — Q41

such that 6; — ¢; = h;_1a; + B;11h; for all i < n. We can obviously do this for n = —1 by
taking h_; = 0. Now

en - ¢n - hn—lan = ﬁn—i—lhn
yieldS (Hn - ¢n - hn—lan)an—i-l = 6n+1hnan+1
hence 0,0n4+1 — Opnt1 = Bpr1hncnt1  because ana,11 = 0.

Therefore ﬁn—i—l (071—1—1 - ¢n+1 - hnan—‘rl) = enan—i-l - ¢nan+1 - /Bn—i—lhnan—i—l =0.

Since (@, o) is a resolution, ker 8,411 = im 3,42 and we deduce that im(0,+1 — ¢pt1 —
hpony1) € im By, 42. Therefore we may view

(9n+1 - ¢n+1 - hnanJrl) € HomR(PTH»l? im ﬁn+2)-

Since P, 11 is projective, the map B,y24: Hompg(Py41,Qni2) — Homp(P,41,im B,42) is
onto, hence there exists hy,+1 € Hompg(P,11, Qni2) such that G104 hpy1 = Opi1 — dnp1 —
hpont1. Therefore By 4ohnt1 = Ont1 — dnt1 — hnay41, which completes the induction step
as required.

We now apply Lemma 1 in the special case when P and @) are both projective resolutions
to obtain uniquely defined maps between the complexes Hompg(P, L) and Hompg(Q, L) for
any R-module L. This will establish that Ext (M, L) is well defined, and also show that an
R-map from M to N induces a group homomorphism from Ext (N, L) to Ext’s (M, L) for any
n € N. We shall further show that an R-module map A — B induces a group homomorphism
Exth (M, A) — Exti (M, B) for all n € N.

Lemma 2 Let R be a ring, let L, M, N be R-modules, let §_1: M — N be an R-map, and
let

(Pag): - 2P 2L Py 2% M —0

and (@, o) : ~--&>Q1&QO&N—>O

be projective resolutions of M and N respectively.

(i) If 0;: P, — Q; are R-maps with 0, _1a; = (3;0; for all ¢ € N, then 6;: Hompg(Q;, L) —
Homp(P;, L) induces a well defined map, also denoted 6}, from H'(Hompz(Q, L)) to
H'(Homp(P, L)) satistying 07 (f + im ;) = f6; + ima} for f € ker 8}, ;.

(ii) If ¢;: P; — @Q; are also R-maps such that ¢;_jca; = 5;¢; for alli € Nand 0_1 = ¢_1,
then ¢F = 07 : H'(Homg(Q, L)) — H (Hompg (P, L)).
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Proof (i) First we show that the definition of ] does not depend on f; i.e. if f +im 3] =
g +im G}, then f0; +ima} = g6; +imaf. Set k = f —g. Then k € im 3}, so k = k'(3; for
some k' € Homp(Qi—1,L), hence k0, = K'3,0;, = K'0;,_10;, so k#; € ima. It follows that
f0i — gb; € ima; as required.

Now we show that 8 maps into H'(Homg (P, L)), i.e. f6; € ker aj,; This is clear because

a1 (f0;) = fOiai1 = fBiv1bit1 = (B 11f)0ix1 =0,
where we have used f € ker 37, ;.

(ii) By Lemma 1, we know there exist R-maps h;: P; — @Q;+1 such that 6; — ¢; = h;_1c; +
Bi+1h; for all i € N. Suppose f € Homg(Q;, L) and 3/, f = 0 (so f represents an element of

Hi(HomR(Q, L))) Then fﬁi—s—l = 0, SO f@Z - fqzﬁl = fhi_loéi = Oé:(fhi_l), hence ij - (z);kf S
imaj. This shows that 6] f and ¢! f represent the same element of H'(Hompg(P, L)) as
required.

Now we can show that Extz(M, L) does not depend on the choice of the projective reso-
lution P. Indeed suppose

(Pyag): - 2P 25 Py 2% M —0
and  (Q,fo) -+ 5 Q1 5 Qo 5 M — 0
are projective resolutions for M. Then Lemma 1 shows that there are R-maps 6;: P; — @Q;,
¢;: Q; — P; such that
Oi—1c; = Bi0; and  ¢;—10; = a;¢;
for all i € N. Applying Lemma 2, we see that 6; and ¢; induce group homomorphisms

6;: H' (Homg(Q, L)) — H (Homg(P, L)) and ¢;: H(Homg(P,L)) — H (Homg(Q, L))

respectively. Now let ¢;: P; — P; denote the identity map and use Lemma 2(ii). Since
gzﬁi,lﬂi,lai = 041(25201 and Li—10; = QL;, We See that

(¢s0;)* = ¢*: H'(Hompg(P, L)) — H'(Hompg(P, L))

and hence 67¢; is the identity map on H'(Hompg(P,L)). Similarly @707 is the identity on
H'(Hompg(Q, L)). Therefore H (Homp (P, L)) = H'(Homg(Q, L)), thus Ext’(M, L) does not
depend on the choice of P.

Suppose now that ¢): M — N is a homomorphism of R-modules. We shall use the notation
of Lemma 2 and set #_; = 1. This shows that there exist well defined group homomorphisms
V¥ Bxth (N, L) — BExt’y (M, L) which satisfy

VE(f +1im ) = f0; + imal.

Perhaps we should be careful what we mean by well defined. Certainly the 1] do not
depend on the choice of the 6;, however they do depend on the choice of the resolutions P and
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Q. Suppose we have different resolutions P and Q from which we obtain corresponding Ext
groups ]T];(/tjq(M, L), E(/t;.(N, L) with corresponding maps v} : E;t;(N, L) — ]T];(/tjq(M, L).
From the above there are isomorphisms fu;: Ext’ (M, L) — ]/?Tx/t;%(M, L), v;: ExtL(N,L) —
Extr(M, L). Then we have the following commutative diagram.

Extih(N,L) 2% Extiy(M,L)

vi | 3 b

Extn(N,L) 5 Extm(M,L)

Thus if, for example 1] is an isomorphism, then so is @Zl* Also if M = N, then we can take
P = @ and then v} only depends on P.

Second Homework Due 9:00a.m., Monday, September 5.

(1) Let k be a field, let R = k[X]/(X*), and let A: --- 22 A, 3 4] 2 Ay 2% 0 be a chain
complex of R-modules. Suppose for each n € N we have A, = R, a,11(1 + (X%)) =
X2 4+ (X*), and ag = 0.

(i) Determine H,,(A) for all n € N.
(i) Prove that Ho(A ®@r k[X]/(X?)) 2k ® k and H,,(A ®r k[X]/(X3)) 2k for all n € P
as k-modules.

(2) Let R be a ring, let M, N be R-modules, and let _;: M — N be an R-map. Suppose

(Q.ag): 00— M =5 Qo —5 Q1 —5 Q2 =5 -+

and (I,ﬁo):O—)N&IO&)IIEIQ&...

are cochain complexes with (Q,ag) exact (i.e. kera;11 = ima; for all i« € N and o a
monomorphism) and (7, By) injective (i.e. I; is an injective R-module for all i € N).

(i) Prove that there exist R-maps 6;: Q; — I; such that ;0,1 = 0;«; for all i € N.
(ii) Suppose ¢;: Q; — I; are R-maps such that 8;¢,_1 = ¢;a; (i € N) and ¢_; = 0_1.
Prove that there exist R-maps h;: QQ; — I;_1 such that

0; — @i = Bihi + hiy10641.

(3) Let R be a ring, let M be a right R-module, let L be a left R-module, and let

(Pag): - 2P L Py 25 M —0

and (@, o) : "'&Qlﬁ)Qoﬁ)M—)()

be projective resolutions for M. Prove that H,,(P®r L) 2 H,,(Q ®g L) as abelian groups
for all n € N.
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(4) Let r € N and ¢,n € P. If ¢ln and | = (n/q, q), prove that Ext%/nZ(Z/qZ, Z]q7) = 7./qZ
and Exty ), (Z/qZ,7/qZ) = Z/1Z as abelian groups.

(5) Let Z be a set, let R be a ring, let A be an R-module, let n € N, and let {M; | i € T} be

a family of R-modules. Prove that Ext%(@ M;, A) = H Exts(M;, A).
i€l i€

Friday, September 2

Chapter 3
Ext and Tor

Remarks and Exercises

(i) Let R be a ring and let M, N be R-modules. Then Ext% (M, N) = Homg(M, N). Proof:
let

(Pag): -+ 2P 2P 2% M —0
be a projective resolution of M. Then Ext% (M, N) = H'(Hompg(P, N)), so Ext(M, N) =
ker aj. Furthermore (see Exercise 5 from chapter 1)
0 — Hompg (M, N) —> Hompg(Py, N) — Homp(Py, N)

is exact, hence ker o} = imaf = Hompg(M, N) as required.

(ii) Let R be a ring, let M be a right R-module, and let N be a left R-module. Then
Torf(M,N) = M ®g N. Proof: exercise.

(iii) In general Ext’:(M,N) and Tor’(M, N) only have the structure of an abelian group.
However if M is a right R-module and N is an (R, S)-bimodule, then Tor®(M, N) is a right
S-module for all n € N. To see this, take a projective resolution

(Pag): - 2P 5Py 2% M —0
of M. Then
ker(o, @ 1
Torf(M, N) = SH@n © 1)

im(ap11 ®1)

Since P; ®g N is a right S-module and «; ® 1 is an S-map for all ¢ € N, it follows that
ker(c; ® 1) and im(a; ® 1) are right S-modules and hence Tor®(M, N) is a right S-module.
This means that in (i), Tory (M, N) = M ®g N as right S-modules.

Similarly if M is a right R-module and N is an (S, R)-bimodule, then ExtZ(M, N) is a
left S-module. Thus in (i) above, we have Ext% (M, N) = Homp(M, N) as left S-mmodules.
Furthermore if M is an (S, R)-bimodule and N is a left R-module, then Tor (M, N) is a left
S-module, and if M is an (S, R)-bimodule and N is a right R-module, then Exty (M, N) is
a right S-module. However we cannot apply the above arguments to obtain this because we
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cannot in general choose a resolution of M consisting of bimodules and bimodule maps; we
will demonstrate the S-module structures of this paragraph later.

(iv) Let R = Z[X]/(X?), let k denote the R-module Z/2Z with X acting trivially (so aX =0
for a € k), let Z be the R-module also with X acting trivially (so zX = 0 for all z € Z),
and let us calculate Tor?(Z, k) for n € N. First we obtain a projective resolution for Z; one
possibility is

(Pag): - %R RS R2Z—0

where P; = R for all i € N, apl = 1, X = X + (X?) (the image of X in R), and a;1 = X for
all € P. Then P ®p k is the complex

LB Rk Y Ropk 2 Rogk — 0

where 1 is the identity map. Since RQrk = kand X ®a=1®Xa=1®0=0foralla € k,
it follows that the above complex is

B:o- B P B g
where B; = k and ﬁl =0 for all i € N. Then H;(B) =ker3;/im 3;1+1 = k/0 = k for all i € N.
It follows that Tor’(Z, k) = k for all n € N.

(v) Let R be a ring, let 7 be a set, let A be a left R-module, and let {M; | i € I'} be a family
of right R-modules. Then Torf(@iez M, A) = @P,cr Tor(M;, A) for all n € N. Proof: For
each ¢ € 7, let

i

(PP af): - 22 pi 22, pi 2, pl 20 60
be a projective resolution for the R-module M; Then
i i 69043 69042 @al @ao
@ @ OR DA PR @y o
€T €T €T €L i€ €T

is a projective resolution of €, ; M; (the resolution is projective because the direct sum of
an arbitrary number of projectives is projective), so

. ker(®ez o) ® 1
Tor® M; A)=H p? A) = el n .
Ot (1662 o 4) n((g% ) &r ) im(Diez aj ) ®1

Now define a homomorphism 6, : (P,.7 P}) ®r A — @,c7(P. ®r A) as follows. If
u € @ P! has components u; € P! (where u; = 0 for all but finitely many ¢ € Z) and
a € A, then set 0,(u ® a) to be the element of @, (P, ®r A) whose ith component is
u; ®a. It is then routine to check that 6, is a well defined group homomorphism. We want to
construct a map which is inverse to ,, so for j € Z, let ¢7 : PI — @, P! denote the natural
monomorphism, and set ¢, = @, .7 ¢;: ® 1. Then it is easily checked that ¢, is a well defined
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group homomorphism @, ; P} ®r A — (P,c7 P.) ®r A, and that 0,,¢,, and ¢,,0,, are the
identity maps. It follows that 6, is an isomorphism from (,.7 P) ®r A — @,c7 P} ®r A.

Continuing with the notatlon that v € @lezP has components u;, let v € @, P,
have components v; = o, u;. Then we have for a € A

Op_1(®iczalu) ®a =0, 1v®a= Dier (o), ®1)0,u® a,

hence enfl(@iEI al) ®1 = ®ier (ol ®1)0,, because the elements of the form u ® a generate
(D,cz Pr)®rA as an abelian group. It follows that 6,, maps ker(©;ez a,)®1 to ker @iz (a;,®
1). Similarly 6,41 maps im(®ez o, 1) ® 1 to im @;ez (o, ® 1). Therefore

ker(@iera)) ®1 _ ker @ier (of, ®1) _ @ ker !, @ 1 _ @H i 9 A).

im(®jezr ol ) ®1  imBier (o, ®1) = im b ®1 =

This establishes Torﬁ(@iez M, A) =D, Tor¥(M;, A) as required.

(vi) Exercise: let R be aring, let Z be a set, let A be a left R-module, and let {M; | i € I} be a
family of right R-modules. Then in (v) it was proved that (P,.; M;)@r A= @, 7(M;®r A)
and the proof depended on a number of routine verifications. By the same proof we have
(ILiez Mi) ®r A = [[,e7(M; ®r A) (where we need to do similar routine verifications), or do
we? Give an example with M; ®g A =0 for all i € Z, yet (][,c; M;) ®r A # 0. Where does
the proof in (v) go wrong here?

(vii) Let R be a ring, let Z be a set, let A be an R-module, and let {M; | i € I} be a family
of R-modules. Then Ext’g(A,[[;c7 Mi) = [[;c7 Extr(A, M;) for all n € N. Proof: Let

(Pyag) s+ =5 Py =% Py =5 Py =5 A — 0
be a projective resolution for the R-module A. Then
Ext(A, [ [ Mi) = H*(Hompg (P, [ [ M:))
€T €T
Now (see Exercise 6(ii) from the chapter 1) Homp(Py, [[;c7 Mi) = [],cz Hompg(P,, M;) : if

this isomorphism is called 6,,, then it is given as follows. For j € T let m;: [[;c; My — M,
denote the projection onto M; (i.e. pick out the jth component). Then for

f € Homp(P,, [ [ My),
ieT
Onf is the element whose components are m;f. For n € N, let o}, : Homg(Py, [[,c7 M;) —
HOmR(Pn+1, HiEI Mz) and
od*: Homg(P,, M;) — Homp(P, 11, M;)

denote the maps induced by «,. Then it is not difficult to check that #,, maps kera; to
[Liczkeray* and imaj, | to [[,czima;j’ ;. Since
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k 7%
and  H"(Homp(P,, M;)) = —%n_

mca, e, 1

k *
H" (Homp (P, [[ M) = —an-

1€T

we see that H" (Hompg(Pn, [[;c7 Mi)) = [[,c H"(Hompg(P, M;)) and the result follows.

(viii) Exercise: Let R be a ring, let 7 be a set, let A be a right R-module, and let {M; | i € I'}
be a family of left R-modules. Then Tor¥(A, PBicr Mi) =P, Tor'(A, M;) for all n e N.

(ix) Let R be a ring, let P be a projective R-module, and let M be an R-module. Then
Exti(P, M) = 0 for all n € P. Proof: exercise.

(x) Let R be a ring, let P be a projective left R-module, and let 0 — A 2 B be an exact
sequence of right R-modules. Prove that

0—A®r P2 Bog P
is an exact sequence of abelian groups.

(xi) Let R be a ring, let n € P, let P, M be right R-modules, and let @, N be left R-modules.
If P and Q are projective, prove that Tor? (P, N) = TorZ(M, Q) = 0.

Tor for abelian groups One may ask the reason for the name Tor; the following is an
explanation. It turns out that Tor’(A, B) is a torsion group (i.e. all the elements have finite
order) for all abelian groups (i.e. Z-modules) A, B, and for all n € P. First we prove the
following result.

Proposition Let ¢ € P and let B be an abelian group. Then
(i) Tor%(Z/qZ,B) = B/qB.
(ii) Tor’(Z/qZ,B) = {b € B | bq = 0}.
(iit) Tor%(Z/qZ, B) = 0 for all n > 2.

Proof Let pu: Z — Z denote multiplication by ¢, and let 7m: Z — Z/qZ denote the natural
epimorphism. Then

0—2Z-5 72 7)q¢Z — 0

is a projective resolution for Z/qZ. Since Z ®7 B = B, it follows that Tor% is H,, of the chain
complex

0—B-5B-—0

where v denotes multiplication by q. This proves the result.

Corollary Let A be a finitely generated abelian group and let B be any abelian group.
Then

(i) Tor’(A, B) is a torsion group.
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(ii) TorZ(A, B) =0 for all n > 2.

Proof Since A is finitely generated, it is a direct sum of cyclic groups. Also Tor% (Z,B) =0
for all n € P by (xi) above. Now apply (v) and the above proposition.

This shows that Tor’”(A, B) is a torsion group for all n € P, provided that A is finitely
generated. To establish that Tor%(A, B) is a torsion group for all abelian groups A is just
beyond the techniques so far developed. It will follow from the fact that Tor commutes with
direct limits, to be covered later.

Monday, September 5

Chapter 4
Long Exact Sequences

Let R be aring, let L, M, N be R-modules, and let n € N. We have already shown that an R-
map 6: M — N induces a well defined group homomorphism 6}, : Ext's(N, L) — Exty (M, L).
We now show that 6 also induces a well defined group homomorphism 6,,,: Exts(L, M) —
Extz (L, N) as follows: as usual, let

(Pag): -+ 2P 2L Py 2% L —0

be a projective resolution of the R-module L. For n € N, let

o) : Homg(P,—1,M) — Homg(P,,M) and f: Homg(P,_1, N) — Homg(P,,N)

denote the maps induced by v, (where af = 5 = 0). Then

ker o

Ext’} (L, M) = H" (Hompg(P, M)) = Toj:l

Now for each n € N, 6 induces a map 6, : Homg(P,, M) — Hompg(P,, N) (defined by
Onsf = 0f). Since aj, | 10ps = Opp14 0, , it follows that 0,,, maps kera;, | to ker 3 | and
ima; to im 3. Therefore 60, induces a well defined map (which we will also call 6,,,) from
Extz(L, M) to Extr(L, N). It is easy to see that if ¢: N — K is an R-module homomorphism,
then (¢0)n« = @p+bn«. In the same sense as with the maps 607, the 6,,. do not depend (“up to
isomorphism”) on the choice of the resolution (P, q) of L, in a way which we make precise
as follows. Suppose

(Q, Bo): "’&QI&QO&L%()

is another projective resolution for L. Then as in chapter 2 (Chain Complexes), we obtain
Ext groups ]%;(L,M) = Hi(HomR(Q,M)) and E:&;(L,N) = H'(Hompg(Q, N)) with cor-
responding group homomorphisms 5,* : Ef);t;(L, M) — Ef);t;(L, N). There will also exist iso-

morphisms p1;: Exth (L, M) — Ext (L, M) and v;: Extl(L, N) — Extp(L, N). Then we will
have the following commutative diagram:
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Exth(L, M) 2%  Extiy(L, N)

i | Lv

Extp(L, M) =5 Extp(L,N),

and we will have properties such as 6% is onto if and only if 8 is onto.

We now show how bimodule structures on the modules M, N, induce module structures
on the Ext and Tor groups. We will just consider one case. Suppose R,S are rings, M
is an (S, R)-bimodule and N is a right R-module. If s € S, let §: M — M denote the
map “left multiplication by s”. Then § is a right R-map, so for n € N, it induces a group
homomorphism s} : Exts(M,N) — Extk(M,N). It is easily checked that if ¢ € S, then
sity = (tpsp)*. Therefore Ext'ly(M,N) is a right S-module. (Perhaps this last step needs
a little explanation: we are writing our mappings on the left: the fact that s}t = (t,sn)*
means that things are twisted round, so we do not get a left S-module structure. However
if we write our mappings on the right, then things are OK: we would have ¢} s> = (ts)) and
then we obtain a right S-module structure.)

The alert student would have noticed that in some of the cases we have obtained two ways
to obtain a module structure on Ext and Tor: the obvious question is whether these are the
same. The answer is yes (see exercises below).

Exercises/Examples

(1) Let R be a ring, let M be a right R-module, let N be an (S, R)-bimodule, and let n € N.
Then there are two ways we can make Ext’y (M, N) into a left S-module: either by using the
method of (iii) of the previous chapter (where we let (P, ag) be a projective resolution of M
and then use the fact that the chain complex Hompg(P, N) has a left S-module structure),
or for s € S considering the R-endomorphism § of N “left multiplication by s” which will
induce a group homomorphism s, of Exti(M, N). Prove that the two S-module structures
on Ext; (M, N) are the same.

(2) Let R be aring, let L be an (S, R)-bimodule, let M, N be a left R-modules, and let n € N.

(i) Prove that Tor?*(L, M) and TorZ(L, N') have well defined left S-module structures.

(ii) Iff: M — N is aleft R-module map, prove that it induces a map 6,, . : Torf(L, M) —
TorZ (L, N) of left S-modules.

(iii) Prove that Tor®*(L, M) has the structure of an (S, Endg(M))-bimodule. (Remark:
since M is a left R-module, it is conventional to write elements of Endg(M) on the
right.)

(3) Let R be a ring, let M, N be R-modules, and let ¢ € Z. Let pu: M — M denote “left
multiplication by ¢”. Prove that the induced maps p: Exty (M, N) — Extz(M, N) are also
“left multiplication by ¢”.

(4) Let R be a commutative ring, let » € R, and let M, N be R-modules. Suppose Mr = 0
and Nr = N. Give an example with Tor*(M, N) # 0.

Long Exact Homology Sequences We now come to a very important tool for computing
the Ext and Tor groups, namely if we are given an exact sequence of R-modules 0 — A —
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B — C — 0, we get long exact sequences connecting the Exty and Torff groups. This will
enable us to calculate many of the Ext and Tor groups. Theses sequences are very like the
exact homology sequence and Mayer-Vietoris sequence in Algebraic Topology. Recall the
exact homology sequence of Algebraic Topology. It says that if A C X are topological spaces,
then there is an infinite exact sequence

*

L H(A) 5 H, (X) — Hy (X, A) 2% H, 1 (A) — -

where aj denotes the map induced by the inclusion of A in X and 9, is called the connecting
homomorphism.
Let me state corresponding theorems for Ext and Tor.

Theorem Let R be a ring, let M be an R-module, and let 0 — A % B L. ¢ = 0bean
exact sequence of R-modules. Then there exist long exact sequences

0 — ExtQ (M, A) 22 Bxt (M, B) 225 Ext% (M, €) -2 ExtR(M A) 2 Exth (M, B) 2 .

2 Bxt(M, A) 225 Bxth(M, B) 225 Bxtiy(M, C) 25 Bxth (M, 4) 2 -

and

0 — Ext%(C, M) 22, ExtR(B M) =2 %, Ext? (A M) -2 ExtR(C M) 2 ExtR(B M) =L

2 Bt (C, M) 2 Bt (B, M) 2 Bxt(4, M) 28 Bt (O, 4) 25

Similarly we have long exact sequences for Tor:

Theorem Let M be a right R-module, and let 0 — A % B LA C' — 0 be an exact sequence
of left R-modules. Then there is a long exact sequence

- porB (M, A) 25 TorR (M, B) 2% Tor (M, ©) 2 Tor_ (M, A) “2=5
-2 Tor (M, B) 25 Tor (M, ©) 25 Torf (M, A) 225 Tor (M, B) 225 Torf (M, C) —

Theorem Let M be a left R-module, and let 0 — A % B P ¢ = 0 be an exact sequence
of right R-modules. Then there is an long exact sequence

--6n—>+1TOI‘ (AM)—>T01“ (BM)&TOI" (CM)—>T01" (A]w)an 1

51* BO*

-2 TorB(B, M) 25 Tor (€, M) 25 TorB(A, M) 225 Torf (B, M) 225 TorF(C, M) — 0.
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Thus, for example in the last sequence, given Torf(A, M) and Torff (C, M) for all n, one can
hope to calculate with the aid of this sequence Torff (B, M) for all n. For a quick application,
we will prove the following.

Proposition Let R be a ring and let P be an R-module. If Exty(P, M) = 0 for all R-
modules M, then P is a projective R-module.

Proof Let 0 - A— B — C — 0 be an exact sequence of R-modules. Then using the first
long exact sequence involving the Ext groups, we obtain an exact sequence of abelian groups

0 — Homp(P, A) — Homp (P, B) — Hompg(P,C) — 0

because Ext% (P, A) = Homp(P, A) and Extp(P, A) = 0. This shows that P is a projective
R-module (see (iii) in the paragraph on projective modules on the policy sheet).

We shall just establish the second sequence involving the Ext’s. For this we need the
Horseshoe Lemma (using injective resolutions, one can avoid the use of this lemma).

Horseshoe Lemma Let R be aring, let 0 — A o C B 0 be a short exact sequence
of R-modules, and let

(P7050): &PlgpoﬂA—)(L

(Q, Bo) : "’&)QliQO&B—’O

be projective resolutions for A, B respectively. For each n € Nset K,, = P,®Q., let 0,,: P, —
K,, denote the natural inclusion, and let ¢,,: K,, — @, denote the natural projection with
kernel P,,. Then there exist R-maps v,: K,, — K, _1 for n € P and vy: Ko — C such that
(K,v0) is a projective resolution for C, 0,,_1ay, = V0, and ¢, 17, = Bndn.

Proof (sketch) We use induction, so suppose the maps ; have been constructed for all
1 < n. We show that we can construct ;1.

First we show that ¢, maps ker~, onto im 3,4+1. Indeed suppose v € im 3, 11. Write
u = ¢pv where v € K. Then ¢, 17,0 = Bndnv = Bpu = 0, so Yp,v = O,_1w for some
w € P,_1. Since y,_17,v = 0, it follows that 6, _sa,—1w = 0 so a,_1w = 0 and hence
we may write w = a,z for some x € P,. Set y = 0,z. Then ¢,(v —y) = ¢,v = u and
(U —Yy) = Vv — 010,z = 0, as required.

Since (41 is projective and ¢,, maps ker~,, onto im 3,11, it follows that there exists an
R-map 3] 1 : Qn41 — ker~y, such that ¢, 0,1 = Bnt1. Now set y,41 = (n41,06,,41)- Then
clearly 0,41 = Yn+10n+1, OnYn+1 = Bn+1®Pn+1, S0 it remains to show that ker v,, = im v,,41.
Since YpVYnt10nt1 = On—1ananr1 = 0 it follows that v,,11 maps the first coordinate P,
of K41 to ker~,, and since /3], ,; maps into ker,, it follows that 7,41 maps the second
coordinate Q41 of K, 41 also into ker~,. Therefore imy,+1 C ker ~,.

Let u € K,,. Then
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Yt =0 = ¢p_17u =0= Brdpu=20
= ¢pu = Ppr1v  for some v € Q11
= Opu = Bp+10nr1w for some w € Kpqq
= P = PpYnr1w for some w € K11
= U = Ypp1w + O for some x € P,.

Since y,u = 0, it follows that ~,60,x = 0, so 6,10,z = 0 and hence x = a,, 11y for some
y € P,4+1. Therefore u = 7,11 (w + 6,,41y) as required.
This completes the induction step, and it is not difficult to show that the induction starts.

Third Homework Due 9:00a.m., Monday, September 12.

(1) Let R be a ring.

(i) Let n € P. If I is injective R-module, prove that Ext’z(M,I) = 0 for all R-modules
M.

1) Let e an R-module. Xt 1) = or a -modules , prove that [ 1s an

(i) Let I be an R-module. If Exth(M,I) = 0 for all R-modules M, prove that I i
injective R-module.

(2) Let ¢ € P and let A be an abelian group. Prove:
(i) Ext)(Z/qZ,A) = {a € A | aq = 0}.
(ii) Exty(Z/qZ,A) = A/qA.
(iii) Exty(Z/qZ,A) =0 for all n > 2.

(3) Let A be a finitely generated abelian group and let B be any abelian group.

(i) Prove that Exty(A, B) is a torsion group.

(ii) Prove that Exty; (A, B) =0 for all n > 2.

(ili) By considering the group @.,7/qZ, prove that Ext}(C, B) can have elements of
infinite order.

(4) Let A, B be abelian groups. Prove that Ext} (A, B) = Tor”(A, B) = 0 for all n > 2.

(5) Let R be a commutative ring, let I, J < R, let M, N be R-modules, and let n € N.
(i) If MI =0, prove that Exts(M,N)I = 0.
(ii) If NJ = 0, prove that Ext”.(M, N).J = 0.
(iii) If MI = NJ =0 and I + J = R, prove that Extz(M, N) = 0.

(6) Let R, S be rings, let M, N be S-modules, and let #: R — S be a ring homomorphism.

(i) Prove that M, N become R-modules by defining mr = mér for m € M or N, r € R
and s € S. Prove also that if f: M — N is an S-module map, then it is also an
R-module map.
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(ii) Let

(Pog): - 2P 2P 2% M —0

and (Q, o) : ---&QlﬂQoiM%0

be projective resolutions for M as R and S-modules respectively. Viewing (Q, 5o) as
a sequence of R-modules (not necessarily projective), prove that there exist R-maps
0n: P, — Q such that 3,0, = 0,_1a, for all n € N, where 6_; is the identity map
on M.

(iii) Prove that the 6, induce well defined group homomorphisms 6} : Exts(M,N) —
Extz(M,N). (You will need to set 0y (f +im 3;;) = f0,, +ima, for f € ker 3, ;.)

(iv) Prove that if ¢,: P, — @, are R-maps satisfying (,¢, = ¢n_1ay,, then ¢! =
0f: Exts(M,N) — Exti(M,N).

(This is a very important result which will be used later. Its proof is very similar to the
results we have been doing in class that module homomorphisms induce homomorphisms in
Ext and Tor. There is an analogous result for Tor: namely the following. Let R, S be rings, let
M be a right S-module, let N be a left S-module, and let 8: R — S be a ring homomorphism.
Then there exist well defined group homomorphisms 6,,, : TorZ(M, N) — Tor? (M, N) for all
n € N.)

(7) Let R be a ring, let [ <y R, and let J <} R.

(i) Prove that the map ¢ — i ® (1+ .J) defines a group epimorphism I — I ® g R/J with
kernel 1.J.

(ii) Prove that Torf(R/I,R/J) is isomorphic to the kernel of the map I ®p R/J —
R ®r R/J defined by i ® (1 + J) — i ® (1 4+ J). (Use the long exact homology

sequence. )
I
(iit) Prove that Torf'(R/I, R/.J) = ILJJ
Monday, September 12
Chapter 5

Commutative Diagrams

We now come to the two fundamental lemmas for obtaining the long exact sequences
involving Ext and Tor. There is one for chain complexes, and one for cochain complexes.

Lemma 1 Let R be aring, and let 0 — A LAy A C — 0 be an exact sequence of R-chain
complexes; i.e. a commutative diagram of R-modules and R-maps with exact rows (but not
necessarily exact columns)
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as |l B3l 3l
0— Ay By 2,05 —0

az ]l Bal 2l
0— A, 25 B 250 —0

arl Bl ml
0— A2 By-2%0y—0

| | |

0 0 0

Then there exists a long exact sequence (of R-modules)

C— Hop1(€) 25 Ho(4) 225 Hy (B) 25 Ho(C) 25 Hy g (4) 25 -

O Ho(A) 2os Ho(B) 225 Ho(C) — 0.

Proof (Sketch) The proof is very similar in spirit to the Horseshoe Lemma, so we will no
more than define the relevant maps: the only maps which are not easy to define are the J’s.
These are often termed the connecting homomorphisms.

The 6. and ¢, maps are induced by the 6 and ¢. Specifically, ,,.a = 0,6 + im 3,41 for
a € ker a,, while ¢,.b = ¢,b+ im~,41 for b € ker 3,,. To define 9,,, suppose ¢ € H,(C)
is the element ¢ 4 im~y, 411 where ¢ € ker~y,. Since ¢, is onto, we may choose b € B,, such

that ¢,b = ¢. Then ¢, 18,0 = Vb = vy,c = 0, hence there exists a € A,,_1 such that

O " . .
0,_1a = B,b, because 0 — A,_1 = Bn_1 Pt n—1 — 0 is exact. It is easy to check

that a € kera,,—1, so a + im «, defines an element a € H,,_1(A). Then it is not difficult to
show that the rule 9,,¢ = a yields a well defined R-map H,,(C') — H,,_1(A), and the resulting
sequence is exact.

We have a similar result for cochain complexes.

Lemma 2 Let Rbearing, andlet 0 — A LAy A C — 0 be an exact sequence of R-cochain
complexes; i.e. a commutative diagram of R-modules and R-maps with exact rows (but not
necessarily exact columns)
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a3 B31 31
0— A28, 2,05 —0

azl B2l 721
O—>A1L31£>01—>0

arl Bl mt
0— A% By-2%Cy—0

7 7 7

0 0 0

Then there exists a long exact sequence (of R-modules)

0 — H(4) 25 HO(B) 2% HO(C) 2% HY(4) 25 HY(B) 2 ...

DAy L By S o) 2
Proof The proof of this is a homework exercise.

We now apply the above Lemmas to obtain the long exact sequences for Ext.

Corollary 3 Let R be a ring, let M be an R-module, and let 0 — A 5 B 2. ¢~ 0bean
exact sequence of R-modules. Then there is a long exact sequence

0 — Ext (M, A) 22 Ext%(M, B) 2% Ext% (M, C) 25 Exth (M, A) 25 Exth(M, B) 25 ..
- O Extp(M, A) ©*5 Exti(M, B) 225 Bxtiy (M, 0) 25 Extpy™ (M, 4)
Proof Let

(Ppg): - 5P 25 Py 25 M — 0
be a projective resolution for M. Then we have an exact sequence of cochain complexes
0 — Homp(P, A) - Hompg(P, B) % Homp(P,C) — 0.
Here 6, = a,: Homg(P,,A) — Homg(P,,B), ¢, = B«: Homg(P,, B) — Homg(P,,C),

an = wt: Homp(P,—1,A) — Homg(P,,A), 8, = p: Homg(P,—1,B) — Hompg(P,, B),
and v, = p’: Hompg(P,-1,C) — Hompg(P,,C). Note that

0 — Homp(P,, A) 2 Homp(P,, B) 2% Homp(P,, C) — 0.
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is exact because P, is projective; thus the sequence of cochain complexes is exact. Now apply
Lemma 2.

Corollary 4 Let R be a ring, let M be an R-module, and let 0 — A 5 B 2. ¢ = 0bean
exact sequence of R-modules. Then there is a long exact sequence

0 — Ext%(C, M) 2% BExt® (B, M) 2% Ext (A4, M) 2% Extl (0, M) 25 ExtL(B, M) 2L ...
Bri1

- O Extn (O, M) 25 Bxt (B, M) 25 Bxt? (A, M) 2 Ext (0, A)

Proof Let

(P,OCO): &PH&PO&A—N)’
(T,’YO): LTlLTbLC%O

be projective resolutions for A, C respectively. By the Horseshoe Lemma, we obtain a com-
mutative diagram with exact rows and the outer columns exact

as ] B3l sl
O—>P2£>Q2£T2 —0

az] B2l 72l
0—>P1£’Q1 T —0

arl il ml
OQPOEQO&TO —0

aol Bol 7l
0— Ah B2 C—0

! ! !

0 0 0

where (@, 3y) is a projective resolution for B. Since T is projective, the sequence 0 —

Hompg(T,, M) ¥y Hompg(Qn, M) 2! Hompg(P,, M) — 0. is exact for all n € N. Now apply
Lemma 2.

Let us give another application of these long exact sequences. For this we will assume the
well known result (mentioned in the first chapter) that every module can be embedded in an
injective module; this result is proved in nearly any book on homological algebra, and may
be in the book you used for 5000 Algebra.
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Example Let R be a ring, let M be an R-module, and let n € N. If Ext (M, A) = 0 for
all R-modules A, then Ext’ (M, B) = 0 for all t > n and for all R-modules B.

Proof By induction on ¢, we need only consider the case t = n+1. We may embed B in an
injective R-module I, and then there exists a short exact sequence 0 = B — I — A — 0 for
some R-module A. Applying the long exact sequence for Extg, we obtain an exact sequence
of abelian groups

- — Exth (M, T) — BExth(M, A) — Ext;t (M, B) — Exth (M, I) — - -

By Exercise 1 of the third homework, Ext;"" (M, I) = 0 because I is injective and n+1 > 1.
The result follows.

Change of Rings There are many results concerning the affect of Extp and Tor”™ when
the ring R is changed. There has already been one along these lines, namely problem 6 from
the previous (third) homework. In that problem it showed that a homomorphism R — S of
rings gives a corresponding natural homomorphism 6y n: Extg(M, N) — Extz(M, N). The
adjective natural here means that the maps induced in Ext by module homomorphisms will
commute with 6y n. Also the 0y, ny will commute with the connecting homomorphism in
long exact sequences. Thus for example, if 0 - A — B — C — 0 is an exact sequence of
R-modules, then there exists a commutative diagram

Exth(M,C) 25 Extt(M, A)
HMch, leM,A
Ext?h(M,C) 2% Ext™ (M, A).

In this case there is no assertion that the 6’s are isomorphisms; in fact usually they will
not be isomorphisms, but the existence of these natural homomorphisms can be a powerful
tool. We shall now consider some of these change of rings theorems where we in fact do have
isomorphisms.

Let R be a ring and let M be an R-module. Recall that M is flat means that if 0 — A —
B — C' — 0 is an exact sequence of R-modules, then the induced sequence

00— AR M — BrM — CQr M —0

is also exact. Since taking tensor product is always right exact, an equivalent formulation of
this is that given an exact sequence 0 — A — B, then the induced sequence 0 - A ®p M —
B ®gr M is also exact. By definition, all projective modules are flat, though the converse
is not true: this will become apparent in what follows. An important example of a flat
module is that of a ring obtained by localization. Let R be a commutative ring and let S be a
multiplicatively closed subset of R. Then S~ R is a flat R-module. To see thislet 0 — A % B
be an exact sequence of R-modules. By Exercise 16 of the first chapter, A@r S™'!R = S~1A;
the isomorphism is given by m ® s~!'r = ms~!r. It is easy to see that this isomorphism is
natural, so we have a commutative diagram
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Aor S 'R 2 BerS 'R
! - !
s-14 ¢ g-ip

where the vertical arrows are isomorphisms, and S~!a denotes the map s~ !a — s~ laa.

Since A — B — C exact implies S™!4 — S™'B — S~1C is also exact, it now follows that
0—A®rS™! *®l p ®gr S~ is exact as required.

It should be noted that the above remains true even when R is noncommutative, provided
that S is contained in the center of R. To see this, simply let C' denote the center of R and
apply _ ®c S™1C instead of _ ®g STIR.

Exercise The purpose of this exercise is to show that Tor can be computed using flat
resolutions. In detail, let R be a ring, let A be a right R-module, let B be a left R-module,
and let (P,ag): -+ 3 P12 Py 28 A — 0 be a flat resolution of A (i.e. (P, ayp) is a resolution
and all the P; are flat).

(i) Using the fact that _ ®z B is right exact, prove that Tor{ (A, B) = Ho(P ®r B).

(ii) Apply the long exact sequence for Tor to 0 — P;/imay — Py — Py/ima; — 0 to
deduce that Torf(A, B) = H,(P ®r B).

(iii) Use the long exact sequence for Tor to show that Tor(A, B) = Torf (im o, _1, B) for
n > 1. Deduce that Tor’ (A, B) = H, (P ®r B) as required.

To make further progress, we need the following easy but important lemma.

Lemma 5 Let R be a ring, let P be a chain complex of right R-modules, and let M be a
flat left R-module. Then H,,(P ®r M) = H,,(P) ®r M.

Proof Let the boundary maps of P be ay,, let Z, = kera,, let B, = ima, 41, and let
v Z, — P, denote the natural inclusion. Since 0 — Z,, — P, 23 B,_1 — 0 is exact and M
is a flat R-module, we see that + ® 1 maps Z,, ® g M isomorphically onto ker(a,, ® 1), and

B, ® g M isomorphically onto im(a,+1 ® 1). Using the fact that M is flat again, tensoring
0— B, — Z, — Z,/B,, — 0 with M yields the required result.

We can now state the following.

Lemma 6 Let R be a commutative ring, let n € N, let A, B be a R-modules, and let T be
a flat R-module. Then Tor?(A, B) ® g T = Tor®(A,B®r T).

Proof Let (Pye): --- — P, — P, — Py % A — 0 be a projective resolution of A. Then
Tor?(A, B) = H,,(P®g B) and Tor¥(A, BRT) = H,(P@r (BRRT)). Since (P, @ B) ®g
T =P, ®r(B®rT) (see Example 4 on Tensor Products on the first chapter), the result
follows from Lemma 5.

Lemma 7 Let R,T be a rings, let : R — T be a ring homomorphism which makes 7" into
a flat left R-module, let n € N, let A be a right R-module, and let B be a left T-module.
Then Tor(A, B) = Tor) (A®g T, B).



32

Proof Let (P¢): ---— P, — P, — Py = A — 0 be a projective resolution of A. Since T
is flat as a left R-module, it follows that (P ®p T, e ® 1) is a projective resolution of A ®@p T
as T-modules. Thus Tor?(A, B) = H, (P ®g B) and Torl (A®zT,B) = H,(P®rT) @1 B).
Since

(P, @rT)®@r B2 P, ®r (T®r B)~P,®r B

naturally (see (2) and (4) on the section on Tensor Products on the first chapter), the result
follows.

Note that the above result is true even when R is noncommutative. This will be useful when
we do group cohomology: in that situation, 7" will be the group ring of a group G, and R will
be the group ring of a subgroup of G.

Theorem 8 Let R be a commutative ring, let T be a flat R-algebra, let n € N, and let A, B
be R-modules. Then Tor(A, B) @z T = Tor: (A@r T, B ®r T) as R-modules.

Proof Tosay that T'is an R-algebra means that we are given a ring homomorphism 6: R —
T such that im @ lies in the center of T'. This means that T can be considered as an R-bimodule
over the commutative ring R, and the left and right actions are the same. The proof of this
result is immediate from Lemmas 6 and 7.

There are two immediate applications of the above result.

Corollary 9 Let R be a ring, let .S be a multiplicatively closed subset in the center of R,
-1

let n € N, and let A, B be R-modules. Then S~! Tor®(A, B) = TorS f(S~'A4,5'B).

Proof This follows from Theorem 8 and the fact that S™'R is a flat R-module.

Corollary 10 Let £ C K be fields, let R be a k-algebra, let n € N, and let A, B be
R-modules. Then Tor (A, B) @), K = Tori®** (A @, K, B @ K).

Proof This is because R ®j K is a flat (even free) K-module.

We can apply Corollary 10 to prove that Tor%(A, B) = 0 for all n € P and for all Z-modules
A, B. To see this, let S = Z\0. Then S~'Z = Q as rings. It is easy to prove that Tor® (4, B) =
0 for all n € P if k is a field (though this requires the fact that every vector space has a basis,

i.e. every k-vector space is a free k-module): thus Torf_IZ(S_lA,S_lB) =0forallneP
and for all Z-modules A, B. Now apply Corollary 10 to deduce that S—! Tor,Zl (A,B) =0, and
then it is easy to prove that Tor”(A, B) is a torsion group for all n € P and for all Z-modules
A, B.

Similar results hold for Ext, though some restriction on the rings are required. We will
just state the following result, whose proof is similar to the results on Tor which we have just
been doing. Recall that a ring R is right Noetherian if every right ideal is finitely generated.

Theorem Let R be a right Noetherian ring, let S be a multiplicatively closed subset con-
tained in the center of R, let n € N, and let A, B be R-modules with A finitely generated.
Then
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ST Exth (A, B) 2 Exti 1 5(S71A, S7IB).

Fourth Homework Due 9:00a.m., Monday, September 19.
Prove (in detail) Lemma 2.

Prove the two long exact sequences for Tor of the last chapter.

Let k be a field, let R = k[X,Y]/(X? Y? XY), and let n € N. Thus dimy R = 3 and
R has a nilpotent ideal of dimension 2. Let X, Y denote the images of X, ¥ in R
respectively, and let k£ denote the R-module with a X = aY = 0 for all « € R. Prove that

Exth(k, k) = k") as k-modules.

Let k be a field, let R denote the 2 x 2 upper triangular matrices over k, let {e;; | 1 <i <
j < 2} denote the matrix units of R (i.e. matrices with one entry 1 and 0’s elsewhere).
Thus R is the set of matrices {(a;j) | a1 = 0}. Let U denote the irreducible R-module
with egs acting trivially (i.e. ueas = 0 and uey; = u for all u € U), and let V' denote the
irreducible R-module with e;; acting trivially. If n € N, prove that Extk(U,V) = 0 if
n # 1, and Extz(U, V) = k as k-modules.

The purpose of this problem is to give a proof of the well known fact that Q is an in-
jective Z-module, assuming the result that every subspace of a vector space has a direct
complement. In the following, M denotes a Z-module which is isomorphic to Q.

(i) Let S = Z\0, and suppose that M is a Z-submodule of the torsion free Z-module A.
By considering the natural ring homomorphism from A to S™'A4 (a — a/1), prove
that there exists a Z-submodule B of A which is a direct complement of M in A.

(ii) Prove that M is an injective Z-module.

For this problem, assume the result of the previous problem, namely that Q is an injective
Z-module. Let Cp~ denote the Z-module which consists of the elements of p-power order
of Q/Z. One can say that Cp~ is the Sylow p-subgroup of Q/Z (though it will of course
be an infinite group), or one can consider it as | J -, Z/p"Z.

(i) Prove that Ext}(Cpe,Z) is an infinite torsion free group.

(ii) Show that if R is a commutative ring, S is a multiplicatively closed subset of R, and
A, B are R-modules, then S~'Exth(A, B) = Extg_1(S™'A4,S'B) is not true in
general.

(iii) Using the fact that Q is an injective Z-module, prove that Cpe is an injective Z-
module.

Let K be an integral domain (i.e. a commutative ring with no zero divisors) and let
R = K[X]. Prove that Tor(A, B) is a torsion K-module for all n > 2 and for all
R-modules A, B.
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Monday, September 19

Chapter 6
Limits

Remarks on last chapter

(1) Let R be a ring, let A be a right R-module and let B be a flat left R-module. Then
Tor (A, B) =0 for all n € P. This is easy to prove directly; it can also be seen from Lemma 5
of chapter 9.

(2) Let R be a ring, let A be a flat right R-module and let B be a left R-module. Then
Tor(A, B) = 0 for all n € P. To see this, take a short exact sequence 0 — K — F — B — 0
Where F'is a free R-module and apply the long exact sequence for Tor in the second variable.
By induction on n and the fact that TorZ(A, F) = 0 for all n € P (see (1)), we immediately
reduce to the case n = 1. Now use the fact that 0 - ARr K - AQr F - A®Rr B — 0 is
exact because A is flat.

(3) All these change of ring isomorphisms are natural. Thus for example if
GAB TOI‘ (A B) ®RT—>TOI" (A@RT B®RT)

is the isomorphism of Theorem 8 of the fifth (i.e. previous chapter) and f: B — C is an

R-module homomorphism, then there is a commutative diagram

ﬂn*@l

TOI“ (A B) QRrT — TOI‘ (A C) QRrT
0a,B | 1 bac

Tl (A9rT,BorT) 22" Tol(AopT,C @rT).

(4) Let R, T be rings, and let : R — T be a ring homomorphism which makes 7" into a flat
right R-module, let A be a right T-module and let B be a left R-module. Then there is a
natural isomorphism between Tor’ (A, B) and Tor? (A,T ®g B).

(5) Let R, T be rings, let #: R — T be a ring homomorphism which makes T" into a flat left
R-module, let A be a right R-module and let T" be a right T-module. Then there is a natural
isomorphism between Ext’s(A, B) and Extp (A ®r T, B).

(6) By a similar argument to the exercise of the previous chapter, we can prove that Tor can
be computed by using a flat resolution of the second argument. Specifically, let R be a ring, let
M be a right R-module, and let A be a left R-module. Let (P, ag): --- 2 P1 PR A-0
be a flat resolution of A with flat left R-modules. Then H, (M Q5 P) = Tor’ (M, A).

(7) We can use (6) to demonstrate the balancing of Tor (Tor(A, B) = Tor(B, A)). Specifically,
let R be a ring, and use the superscript op to denote the opposite ring and the corresponding
opposite modules. Thus if R is ring, then R°P will denote the opposite ring which has the
same underlying set as R and with new multiplication given by r-s = sr for r,s € R. If M is
a right R-module, then M°P will denote the left R°? module which has the same underlying
set as R, and in which rm = mr for m € M and r € R. Then we have
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Theorem Let R be a ring, let A be a right R-module, let B be a left R-module, and let
n € N. Then Tor? (4, B) = Tor®™ (B°P, A°P) as abelian groups.

Remark In the special case R is commutative, we do not have to bother with opposite
rings. In fact then we have the following result: let R be a commutative ring, let A, B be
R-modules, and let n € N. Then Tor?(A, B) = Tor®(B, A) as R-modules.

Proof of Theorem Let (P,ag): --- 3 P, & Py 2% A — 0 be a projective resolution
for A. Then (P°? ag): --- 23 P® & PP 2% A°P — 0 is a projective resolution for PP,
Tor(A, B) = H,(P ®r B) and Tor®" (B°P, A°P) = H,,(B° @pge» A°P). However the map
Q& b — b ® x induces a group isomorphism P,, ® g B — B°P @gor PSP, which in turn induces
an isomorphism H,,(P ®g B) — H,,(B°® ® ge» A°P), and the result follows.

Direct and Inverse Limits The notions of direct limit and inverse limit are in a certain
sense dual to each other. Let us start off with direct limits, because they are somewhat easier
to understand. They are very useful for dealing with modules which are not finitely generated.
We will prove the result mentioned earlier that Tor commutes with direct limits: this will
reduce the calculation of Tor down to modules which are finitely generated. First let us recall
what a directed set is.

Definition Let 7 be a partially ordered set. This means that 7 is a set with a partial order
<; by definition < is a binary relation with the following properties.

(i) i<iforallielZ.

(ii) If i < j and j <14, then ¢ = j.

(iii) If § < j < k, then i < k.
We say that 7 is a directed set if for any i,j € Z, there exists k € Z such that 4,7 < k. Thus
Z is a directed set where < is as usual. Another example of a directed set is the set of all
finite subsets of a set .S, where A < B means A is contained in B.

Let 7 be a directed set. Then a direct system of sets (indexed by Z, or over the set 7)
means a family of sets {M; | i € Z} such that for each i < j, there exists a map ff: M; — M,
satisfying

fi=idy, and fif] = f}

whenever ¢ < j < k. Similarly if R is a ring, then a direct system of R-modules is a directed
family of sets M; such that the M; are R-modules and the maps ff above are R-module maps.
Similarly we could define a direct system of groups to mean a directed family of sets M; such
that the M; are groups and the fj are group homomorphisms. We shall sometimes write (M)
or (M;, fJ ) to stand for the direct system of R-modules together with their R-maps fJ

Let R be aring and {M; | i € T} be a direct system of R-modules with R-maps f/: M; —
M;. Then the direct limit lim M; of the M; is an R-module M and R-maps f;: M; — M for
i € Z such that f; fij = f; whenever ¢ < j, and with the following universal property: if N is
an R-module and g;: M; — N are R-maps such that g; fij = ¢;, then there exists a unique
R-map 6: M — N such that 0f; = g; for all i € 7.

As usual it is easy to check that if lim M; exists, then it is unique up to isomorphism;
specifically if M and N are two direct limits with corresponding maps f;: M; — M and
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gi: M; — N, then there is an isomorphism #: M — N such that 0f;, = g; for all ¢ € 7.
To prove the existence of a direct limit, set D = @iez M;, and let w;: M; — D denote the
natural injection. Now define F' to be the R-submodule of D generated by all elements of
the form m;m; — m; f{m; where m; € M;, let M = D/F, and let o0: D — M denote the
natural surjection with kernel F'. Then it is easily checked that M together with the maps
om;: M; — M form a direct limit for the direct system of R-modules M;; thus direct limits
exist.

Remark In a similar fashion we can also construct the direct limit of a direct system of
abelian groups. Suppose (M;) is direct system of R-modules with direct limit M. We can
also view (M;) as a direct system of abelian groups: if N is the direct limit of this system
of abelian groups, then M = N as abelian groups. Another way of phrasing this is that the
abelian group N is naturally an R-module.

Examples

(i) Let R be a ring, let M be an R-module, and let {M; | i € Z} be a family of R-modules
indexed 7 such that M = UieI M,;. The partial order on Z is characterized by the property
that ¢ < j if and only if M; C M, and the corresponding maps fZJ M; — M; for ¢ < j are
just the inclusions. Then lim M; = M, and the corresponding maps f;: M; — M are just the
inclusion maps. In this example, one often takes the set {M; | i € Z} to be the set of finitely
generated submodules of M.

(ii) Let R be a ring, let M be an R-module, and let {M; | i € Z} be a family of R-submodules
of M over the set Z. The partial order on Z is characterized by the property that i < j if and
only if M; C M; (as in (i)) and here the corresponding maps f/: M/M; — M/M; for i < j
are the natural epimorphisms induced by the identity map from M to M. Let N = (J,.; M;.
Then lim M /M; = M /N, and the corresponding maps f;: M/M; — M/N are just the natural
epimorphisms induced by the identity map M — M.

Exercise
Let R be a ring, let Z be a directed set, let {M; | i € I} be a system of R-modules, and let
M =lim M;. Let f}: M; — M, and f;: M; — M be the corresponding R-module maps.

(i) Let m € M. Prove that there exists k € Z such that m € im f; for all i > k.

(ii) Let m; € M;. Prove that m; € ker f; if and only if m; € ker f/ for some j > i.

We now want to determine what Tor of a direct limit of modules is. To proceed, we will
need to study maps between direct systems of R-modules. We need the following definition.

Definition Let R be a ring, let Z be a directed set, and let {M; | i € Z} and {N; | i € Z} be
direct systems of R-modules with corresponding maps ff and gg . Then amap 6: (M;) — (N;)
is a system of R-maps 6;: M; — N; which commute with the maps ff and gf, ie. 9591‘ = ijij.
Then it is easy to check that 6 induces an R-module map (which we will still denote by 6)
0: lim M; — lim V;.

Specifically, the map 6 is defined as follows: let m € M. Then by the above exercise m = f;m;
for some ¢ € 7 and for some m; € M;, and then we define 6m = g;0;m;. The map 6 will have
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the property that ¢;0; = 6f;. The following lemma is fundamental to studying direct limits
of modules.

Lemma Let R be a ring and let Z be a directed set. Suppose
0 — (Li, f1) = (Mi, g]) = (Ni, b)) — 0

is an exact sequence of direct systems of R-modules. Then the induced sequence 0 — L 2,

M f} N — 0 is also exact.

Of course the sequence of direct systems of R-modules is exact means that for each ¢ € Z, the
sequence 0 — L; 8 M; & N, — 0 is also exact.

Proof This all follows from the above exercise. For example, let us prove that ker ¢ C im0,
so suppose m € ker ¢. By the exercise, we may write m = g;m; where ¢ € 7 and m; € M,.
Since ¢m = 0, we see that h;¢;m; = ¢g;m; = 0 so by the above exercise h{ ¢;m; = 0 for some
j > i. Therefore @-gﬁ m; = hfqbimi = 0, so by exactness of the direct systems, there exists
l; € L; such that 6,1; = gfm@ Then 6(f;1;) = g;0;l; = gjgfmi = g;m; = m, as required.

Next we show that tensor products commute with direct limits; this together with the
above Lemma will enable us to prove that Tor commutes with direct limits. Let R be a ring, let
A be an R-module, and let (B;, fij ) be a direct system of R-modules with direct limit B. Then
it is easily checked that (A®g B;,1® ff ) is a direct system of abelian groups, so lim(A®pr B;)
exists: let g;: A®rB; — lim(A®pg B;) be the corresponding maps, so gj(1®fij) = g;. We also
have maps 1® f;: A®r B; — A®pg B such that (1® f;)(1 ® f7) =1® f;, so by the universal
property of direct limits there is a unique group homomorphism 6: lim(A ®g B;) — A®gr B
such that 0g; = 1® f;.

Now we construct a map going the other way. For each i € Z and a € A, we define
a group homomorphism ¢;(a): B; — lim A ®r B; by ¢;(a)b = gi(a ® b) for b € B;. Then
di(a) = ¢;(a) ZJ , S0 by the universal property of direct limits, the ¢;(a) induce a unique group
homomorphism ¢(a): B — lim A ® g B; satisfying ¢(a)fib = gi(a ® b) for all b € B. We now
define a map ¢: A x B — lim A ®g B; by ¢(a,b) = ¢(a)b. It is routine to check that ¢ is an
R-balanced map, so it induces a group homomorphism ¢: A ®g B — lim B;, and then it is
easily verified that ¢ is the identity map on lim A ®r B;, and that 8¢ is the identity map
on A®gr B. Thus lim A ®r B; =2 A ®r B as required. It is also routine to see that this is a
natural isomorphism.

Thus we have shown that Tory commutes with direct limits, and we now need to show
that Tor, commutes with direct limits for all n € N (not just » = 0). This is really a
consequence of the following principle (if we knew some category theory, we could just quote
a theorem now; instead I will phrase things in categorical language without defining my terms
precisely). A functor is exact if it maps exact sequences into exact sequences: thus taking
direct limits is an exact functor. Another example of an exact functor is localization: if R is
a commutative ring and S is a multiplicatively closed subset of R, then the map M +— S=1M
sending R-modules to S~!R-modules is exact, because if A — B — C is an exact sequence
of R-modules, then S™'A4 — S~'B — S~!(C is an exact sequence of S~!R-modules. An
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example of a functor which is not exact is the map M — M ®pg B for a fixed left R-module
B sending right R-modules to abelian groups, though it will be exact if B is a flat left R-
module. Then any exact functor which commutes with the functor A ®z — will commute
with Tor?(A,_) for all n € N. Similar remarks apply to the functors Tor?(_, A), Ext’(_, A),
Exti(A,_), or any other functor which has derived functors (Ext;(A,_) is a derived functor
of the functor Ext%(A,_)). Let us now prove that TorZ(A,_) commutes with direct limits;
we state precisely the result we are trying to prove.

Theorem Let R be a ring, let A be a right R-module, let (M;, f]) be a direct system of
R-modules indexed by the set Z, and let n € N. Then (Torf(A, M;), (f7)n.) is a direct system
of abelian groups, and lim Tor’ (A, M;) = Torf (A, lim M;).

Proof First we shall define the map giving the 1somorphlsm For each ¢ € 7 we have an
R-map f;: M; — lim M;, and this induces a map (fl)n* TorZ(A, M;) — TorZ(A, lim M;),
which in turn induces a map g: lim Torf (A, M;) — Tor*(A,lim M;). Now choose an exact
sequence of right R-modules0 - K — F — A — 0 Where F'is a free R-module. Then for
n > 1, the long exact sequence for Tor in the first variable together with the naturality of the
maps involved yields a commutative diagram

lim Tor(F, M;) — lim Torf(A, M;) — limTor? (K, M;) — limTor? ,(F,M;)
gn(F) l gn(A) l lgnfl(K) lgnfl(F)
Tor’(F,lim M;) — Torf(A,lim M;) — Tork ,(K,lim M;) — Tor? ,(F,lim M;)

in which the rows are exact (we have used the exactness of lim for the top row), and g,,—1 (K)
is an isomorphism by induction. Since Torf(F,_) = 0 when F is a free R-module, we see
that ¢,(F) = 0 for n > 1, and it has already been proved that go(F') is an isomorphism. It
follows that g, (A) is an isomorphism.

Thus we have shown that Tor commutes with direct limits in the second variable, and an
exactly similar argument shows that Tor commutes with direct limits in the first variable (or
we could deduce this from the above by using the balancing of Tor). Specifically the result
we have is

Theorem Let R be a ring, let A be a left R-module, let n € N, and let (M;) be a direct
system of right R-modules. Then Tor(lim M;, A) = limy Tor/*(M;. A).

Application We have already seen in the third chapter that tensor products commute with
direct sums: we now have another way of proving this (assuming the result for finite direct
sums). If M = @,z M;, then M = lim P, , M; where J runs through all the finite subsets
of Z.

Inverse Limits As has already been mentioned, inverse limits are the dual notion of direct
limits: the definition for inverse limit is the same as for direct limit, except we reverse the
arrows everywhere. Also direct limits can be considered as generalizations of direct sums,
whereas inverse limits can be considered as generalizations of cartesian products. In detail,
we have the following definition.



39

Definition Let R be aring and let Z be a directed set. Then an inverse system of R-modules
over Z is a family of R-modules {M; |i € T} such that for each i < j, there exists an R-map
[l M; — M, satisfying

fi=idy, and flff=ff

whenever i < j < k. As with direct limits, we shall write (M;) or (M;, f/) to stand for the
inverse system together with the R-maps ff .

If (M;, ff ) is an inverse system of R-modules, then the inverse limit lim M, of the system
is an R-module M and R-maps f;: M — M; for ¢ € 7 such that fff] = f; whenever i < 7,
and with the following universal property: if V is an R-module and g;: N — M; are R-maps
such that f/g; = ¢;, then there exists a unique R-map 6: N — M such that f;0 = g; for all
1el.

As in the case with direct limits, if lim M; exists, then it is unique up to isomorphism:
specifically if M and N are two inverse limits with corresponding maps f;: M — M; and
gi: N — M;, then there is an isomorphism 6: N — M such that f;# = g; for all i € .
To prove the existence of an inverse limit, let C' = [[,.; M;, and identify each module M;
with its canonical image in C'. Now define M to be the R-submodule consisting of elements
{(mi) € C'| f/m; = m;} whenever i < j, and let f;: M — M; denote the restriction to M
of the natural projection of C' onto M;. Then it is easy to check that M together with the
maps f; form an inverse limit for the inverse system (M;).

Examples

(i) Let R be a ring, let M be an R-module, and define an inverse system (A;, fij ) over P by

A; = M for all i € P and fZ] M; — M; to be the identity whenever ¢ < j. Then the inverse
limit of this system is just the R-module M.

(ii) Let R be a ring and let {M; | i € Z} be a family of R-modules over the directed set Z.
For each finite subset J of 7, set M7y = @iej M;. Then if 7 C K, we have a projection

7r§: My — M, and it is easy to verify that (M7, 7T§) form an inverse system over the finite
subsets of Z. The inverse limit will be [],. M;.

(iii) Let k be a field, and for i < j € P, define f7: k[X]/(X7) — k[X]/(X?) to be the
natural epimorphism. Then (k[X]/(X?), /) form an inverse system, the inverse limit is
the power series ring k[[X]], and the corresponding maps f;: k[[X]] — k[X]/(X?) are just
the natural epimorphisms (note that the inclusion k[X] — k[[X]] induces an isomorphism
k[X]/(X?%) = k[[X]]/(X?) for all i € P).

(iv) Let p € P be a prime number and for i < j € P, let f/: Z/p'Z — 7/p'Z denote the
natural epimorphism. Then (Z/p‘Z, flj ) form an inverse system: the inverse limit is the p-adic
integers Z, which are an integral domain, are a local ring with unique maximal ideal pZ, and
have uncountable cardinality. They are very important in many branches of Mathematics,
especially number theory.

Maps between inverse systems are defined in exactly the same way as for inverse limits.
Here is the formal definition.
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Definition Let R be a ring, let 7 be a directed set, and let (M;, ff) and (N, gf) be inverse
systems over the directed set Z. Then a map 0: ( Z) — (NZ) is a family of R-maps 0;: M; —

N; which commute with the maps f] and ¢/, i.e. g] 9 = 0, f] whenever i < j. Then it is easy to
check that 6 induces an R-module map (which we Wlll still denote by 6) 6: lim M; — lim N;.

Specifically the map 6 is defined as follows: for ¢ € 7, define h;: M — N; by h; = 0, f;. Then

g hy=gl0if; =0 f; = 0:f; = hi,

so by the universal property of inverse limits, there exists a unique map 60: lim M; — lim N;
such that g;0 = h; = 0, f; for all i € 7, as required.

We now show that Hom commutes with inverse systems in the second variable. Let R
be a ring, let A be an R-module, and let ((M;), f7) be an inverse system of R-modules.
Then it is easily checked that (Hompg(A,M;), f2) is an inverse system of abelian groups,
so lim Homp (A, M;) exists: let g;: lim Homp(A, M;) — Hompg(A, M;) be the corresponding
maps. We also have maps f;,: Hompg(A,lim M;) — Hompg(A, M;) for i € Z such that 7*fj* =
fix, s0 by the universal property of inverse limits, there exists a unique group homomorphism
0: HOHlR(A,anMZ) — ]{MIHOHIR(A, Mz) such that fz* = gZH

We now construct a map ¢ inverse to 6. For each a € A, define a group homomorphism
¢i(a): limHomp (A, M;) — M; by ¢;(a)x = (giz)a for z € limHomp(A, M;) and a € A.
Then ¢;(a) = ff ¢;(a), so by the universal property of inverse limits, the ¢;(a) induce a group
homomorphism ¢(a): lim Hompg(A, M;) — lim M; such that f;¢(a) = ¢;(a). A routine check
shows that for x € lim Hompg (A, M;), a — ¢(a)(z) defines an element of Homp(A, lim M;),
so we can define a group homomorphism ¢: lim Hompg (A4, M;) — Hompg(A, lim M;) satisfying
fi(¢(x)(a)) = (gix)a. Then it is easily verified that 0¢ is the identity map on lim Hompg (A, M;)
and that ¢ is the identity map on Homp (A, lim M;) as required.

Now it would seem plausible to proceed as in the case of direct limits, namely to prove
that Extp(A,_) commutes with direct limits. Since inverse limits are just direct limits with
the arrows reversed, it follows that an exact sequence of inverse systems would induce an
exact sequence of inverse limits. But consider the following example.

We will construct inverse systems indexed by P. Let p,q € P be such that p,q > 2 and
¢ =1 mod p. Define A; = B; = Z for all i € Z, and C; = Z/pZ. We make (A;, o) into an
inverse system by defining o : A; — A; by aa = ¢/"‘a for i < j; we make (B 1,[31) into an
inverse system by defining ﬂf B; — B; by ﬁf b= ¢’ for i < j; and we make (CZ,%) into
an inverse system by defining 'yg ¢ = c for ¢+ < j. We now have an exact sequence of inverse
systems 0 — A B2 C — 0 by defining 0;: A; — B; by 0;a = pa, and ¢; : B; — C; to be
the natural epimorphism. However lim A; = lim B; = 0, and lim C; = Z/pZ, so the righthand
side of the sequence for the inverse limit is not exact.

Fifth Homework Due 9:00a.m., Monday, September 26.

(1) The purpose of this problem is to show that the Ext groups can be computed by using
injective resolutions in the second variable. Let R be a ring, let M, A be R-modules, and
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let (I,a0): 0 — A2 T 21 231, 2 ... be an injective resolution of the R-module A
(i.e. the sequence is exact and all the I; are injective R-modules).

(i) Use the fact that Hompg (M, _) is left exact to prove Ext% (M, A) = H°(Hompg(M, I)),
where Homp (M, I) denotes the complex

0 — Homp(M, Iy) =% Homp (M, I,) 225 Hompg(M, I) <25 ...

(ii) Apply the long exact sequence for Ext in the second variable to 0 — ker oy — Iy —
ker a; — 0 to deduce that Ext (M, A) = H (Homg (M, I)).

(iii) Use the long exact sequence for Ext to show that Ext’ (M, A) = Exth(M, ker ).
Deduce that Ext (M, A) = H"(Hompg(M, I)) as required.

Let k be a field, let k[X] and k[X, Y] denote the polynomial rings in one and two variables
respectively, and let k& denote the k[X,Y]-module with X,Y acting trivially (so aX =
aY =0 for all a € k).

(i) Prove that Extyix(k,k) = k if n =0 or 1, and is 0 if n > 2 (where k denotes the
k[X]-module with X acting trivially).

(ii) By using a change of rings theorem, prove that Extyy y(k[X], k) = Extyy(k, k) for
all n € N (where k[X] is the k£[X, Y]-module with Y acting trivially).

(iii) Let 0: k[X] — k[X] denote the k[X,Y]-map defined by #1 = X. Prove that the
induced map 0% Extyy y)(k[X], k) — Extix yi(k[X], k) is zero.

(iv) By considering the long exact sequence for Ext in the first variable for the exact
sequence of k[ X, Y]-modules 0 — k[X] N k[X] — k — 0, prove that Exty v y(k, k) =
k if n =0 or 2, is isomorphic to k @ k if n = 1, and is zero if n > 2.

Let R be a Noetherian integral domain with field of fractions K, let M be an R[X]-module,
and let A be a finitely generated R[X]-module. Suppose M is isomorphic to a direct
(possibly infinite) sum of copies of K as an R-module. Prove that Extyj(A4, M) = 0 for
all n > 2.

Let R be a ring and let A be a right R-module. Recall that the left R-module M is
finitely presented means that there exists an exact sequence F} — Fy — M — 0 with
Fy and Fy finitely generated free left R-modules. Thus a finitely presented left R-module
is finitely generated, but not conversely. (However if R is left Noetherian, then finitely
generated left R-modules are finitely presented.) If Torf(A, B) is a torsion group for all

finitely presented left R-modules B, prove that Torf’ (A, B) is a torsion group for all left
R-modules B and for all n € P.

Let R be a ring, let A be a finitely presented right R-module (see problem 4), and let (M;)
be a direct system of right R-modules. Prove that Homp (A, lim M;) = lim Hompz(A, M;)
(you will have to define your isomorphism). Deduce that if R is a right Noetherian ring
and B is a finitely generated right R-module, then Ext (B, lim M;) = lim Ext's (B, M;) for
all n € N. (For the Hom part of the problem, first do the case when A = R: here you will
want to use the natural isomorphism from Hompg(R, M) to M defined by f — f(1). Then
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prove the result when A is a finitely generated free R-module, and finally for arbitrary
finitely presented A by choosing an exact sequence F; — Fy — A — 0 where Fi, Fyy are
finitely generated free R-modules, and using the left exactness of Hompg(_, M).)

(6) Let R be an integral domain with field of fractions K, let A be an R-module, and let M
be a K-module. Then we may also view M as an R-module. Using (5) of the chapter 6,
prove that Extz (A4, M) = 0 for all n € P (taking the case n = 1, this of course means that
M is an injective R-module). Show further that if R is a PID and N is an R-submodule
of M, then M/N is an injective R-module (you will need to use the fact that in a PID,
every submodule of a free module is free).

Monday, September 26
Chapter 7
Limits (continued)

For the rest of this section on inverse limits, we will assume that our inverse system is
indexed by the directed set P with < denoting “less than or equal to” as usual. It is worth
noting that in this case, the f; are determined by fi”l, because f] = ff“ fﬁff e ;_1. The
technical condition we need to ensure that lim is exact is the Mittag-Leffler condition. This
says that if (M;, fzj ) is an inverse system indexed by the directed set (P, <), then for each
i € P there exists j > ¢ such that im fij = im fF for all k > j. An important situation when
this is trivially satisfied is when all the ff are onto: this applies to examples (i), (iii) and
(iv) near the end of the sixth (i.e. the previous) chapter. It can also be applied to the case
of a Cartesian product of a countable number of R-modules. Indeed suppose M7, M>, ... are
R-modules. Then for ¢ € P, we set N; = My & Mz & --- @& M;, and for i < j, we define
f]: N; — N; to be the natural projection with kernel N; 11 @ --- @ N;. Then f} is surjective
for all i < j, and lim M; = [];2, M;. We can now state

Theorem 1 Let 0 — (A;) TN (Bi) 2, (Ci) — 0 be an exact sequence of inverse systems.

If (A;) satisfies the Mittag-Leffler condition, then the induced sequence of inverse limits 0 —
lim A; — lim B; — lim C; — 0 is also exact.

Actually we will prove something stronger, and in the process define the derived functor of
lim, namely liLnl.

One way to construct lim A; when the index set is P is to define a: [[io, A — [[i2, 4
by a(a;) = (a; — fi ™ a;41). Then it is easy to verify that ker a = lim A; (use the construction
of inverse limit at the end of the sixth chapter). We now define lim" A; = coker & and then
we have an exact sequence of chain complexes
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0 0 0

| ! l
i=1 i=1 i=1
a | Bl vl
=1 =1 =1
| ! |

0 0 0

The long exact sequence for chain complexes (Lemma 1 of chapter 5) now yields a long exact
sequence

0—limA; — limB; — limC; — lim' 4; — lim' B; — lim' C; — 0,
so lim will be exact if (but not only if) lim' A; = 0. Thus we want to prove

Theorem Let R be a ring, and let (4;, ff ) be an inverse system of R-modules. If (A;)
satisfies the Mittag-Leffler condition, then 1iLn1 A; =0.

Proof First let us consider the special case when given ¢ € P, there exists j > ¢ such
that f/ = 0 (this will, of course, imply that f¥ = 0 for all & > j). As above, define
a: [, A — T12, 4 by ala;) = (a; — ff“aiﬂ), and let (a;) € [[;2; A;. Define b; =
a; + ff“azqu 4 fijflaj_l. Then the ith component of «(b;) is

- - - o . "
ai+ i a4+ f a0 — f7 i + fi ae + -+ f+1aj+f;7j1 aj+1+-0) = a;,

which shows that « is onto. ‘

Next we consider the case when all the f/ are onto. Given elements a; € A; (i € P), set
b1 = 0 and then choose b; 11 € A;y1 inductively by the condition f;+1bi+1 = b; — a;. This
shows that the map « of above is onto in this case as well, so we have now shown in these
two special cases that lmll A; =0.

Now consider the general case, and let (B;, gf ) be the inverse system with B; = ﬂ;’; fij A;

and gg the restriction of fzj to B;. Since (A;) satisfies the Mittag-Leffler condition, we see
that B; = f/ A; for some j > i (where j depends on ). Let (A;/B;, h?) be the inverse system
with h? the map induced by f7. Tt is easy to see that (B;) and (A;/B;) form inverse systems,
and then we have an exact sequence of inverse systems 0 — (B;) — (A;) — (A;/B;) — 0. By
the first part, lim'(A;/B;) = 0; furthermore all the maps g/ are onto and it follows also from
the first part that liLnl B; = 0. From the exact sequence of inverse systems
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0 — (Bi) — (Ai)) — (4i/Bi) — 0,

we obtain exact sequence --- — @11 B, — ml A, — ml(Ai/Bi) — 0, and the result
follows.

This completes the proof of Theorem 1.
Exercise Let 0 — (4;) — (B;) — (C;) = (D;) — 0 be an exact sequence of inverse
systems indexed by P. If ker~; : C; — D; is finite for all ¢ € P, prove that the induced map

v: lim C; — lim D; is onto.

In general the results involving lim are not as easy as the results involving lim. We state
without proof the following.

Theorem Let R be a ring, let n € N, let A, B be R-modules, and suppose A = Uf; A;
where the A; are R-submodules of A and A; C A;y; for all ¢ € P. Then there is an exact
sequence of abelian groups

0 — lim" Ext% *(A;, B) — Ext’}(A, B) — lim Exts(A;, B) — 0

(for n = 0, we interpret Ext}, ' (A;, B) to be 0). Though direct limits can be just considered
as a generalization of union, this theorem is not true if the union is replaced by an arbitrary
direct limit.

Tensor Product of Chain Complexes We will need this for the Kiinneth Formula. Given
two chain complexes, we want to take their tensor product (in a way to be defined) so that
the result is also a chain complex. When dealing with group cohomology, it will enable us to
construct a k[G x H]-resolution from kG and kH-resolutions. It is not immediately obvious
how we should construct the tensor product of two chain complexes, so here is the definition.

Definition Let R be a ring, and let

A&AQ&AliAoﬁo
B: -2, B g0

be chain complexes of R-modules. Then A®pg B is the chain complex of abelian groups with

(A®R B)n = @ Ar®337

r+s=n

and boundary map 0,, defined by

Op(a®@b)=a,a®@b+ (—1)"a® fBsb for a€ A,.,be Bs.

Similarly if
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A: 0254025 4 25 A4 — -

and B: O&BoiBlﬂBz_%..
are cochain complexes, then A ® zp B is a cochain complex with

Oon(a®b) =a,11a®@b+ (—1)"a® Bs41b for a€ A, b€ Bs.

Sixth Homework Due 9:00a.m., Monday, October 3.

(1) Let R be a ring, let M be an R-module, let Z be a directed set, and let {M; | i € T}
be a family of R-submodules of M. Assume that the partial order on 7 satisfies i < j
if and only if M; D M;. This means that we have an inverse system (M;, f}), where
f]: M; — M, denotes the natural inclusion.

(i) Prove that lim M; = ﬂ M;.
=
(ii) Assume that R = 7Z. Give an example where all the M, are uncountable, yet lim M, =
7.

(2) Let R be a ring, let M be an R-module, and let (4;) be a direct system of R-modules
(indexed by an arbitrary directed set). Prove that Hompg(lim A4;, M) = lim Hompg(A4;, M).

(3) Let R be a ring, and let (4;) be an inverse system of R-modules indexed by the set P.

(i) If R =7 and all the A; are finite abelian groups, prove that lilll A; = 0.
(ii) If R is a field and all the A; are finite dimensional vector spaces over R, prove that

lim' 4; = 0.

(4) Let p be a prime, and let Z,, denote the p-adic integers.

(i) Let (pZZ, fZJ ) denote the inverse system of abelian groups indexed by P, where for
i<j, fi: p/Z — p'Z denotes the inclusion map. Prove that ligll VA= Zy/ L.

(ii) Let (p'Zy, f]) denote the inverse system of abelian groups (or Z,-modules) indexed
by P, where for ¢ < j, f/: pZ, — p'Z, denotes the inclusion map. Prove that

liLnl p'Z, = 0.
(5) Let p be a prime.

(i) Prove that Exty(Z[1/p],Z) = Z,/Z.

(ii) Prove that Ext}(Q/Z,Z) = [[,Z, (where the Cartesian product is over all primes
q

q

a)/Z.

(6) Let R be an integral domain with field of fractions K.

q)-
(iii) Prove that Ext}(Q,Z) = (T]
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(i) Prove that K is a direct limit of free R-modules.
(ii) Give an example of a direct system of R-modules (M;) such that M; is torsion free
but not free for all 4, yet lim M; is free.

(The two parts are not related.)

(7) Let (R;) be a direct system of rings, let R = lim R;, let A be a right R-module, let B be
a left R-module, and let n € N.
(i) Prove that lim A ®r, B= A®g B.
(ii) Suppose R; is a flat left R;-module whenever i < j. Prove that lim TorZ (A, B)
Tor®(A, B) for all n € N.

~

Monday, October 3
Chapter 8
The Kunneth Formula

We start by stating the Kiinneth Formula.

Theorem (Kiinneth Formula) Let k be a commutative hereditary ring, let A be a chain
complex of projective k-modules, let B be a chain complex of k-modules, and let n € N.
Define

7 P H(A) @ Hy(B) — Hn(A®y B)

r4+s=n

as follows. If u € H,(A) and v € H4(B) are represented by a € A, and b € B, respectively,
then m(u®w) is represented by a®b € (A®y, B),. Then there is a natural short exact sequence
of k-modules

0— @ H(A)@pHi(B) > Hy(A®r B) — EH Torl(H,.(A),Hs(B)) — 0

r+s=n r+s=n—1
which splits, but not naturally.

Recall that an arbitrary ring R is right hereditary means that every right ideal of R
is projective (as a right R-module). It is a well known fact (not difficult to prove) that
this is equivalent to the property that every R-submodule of a projective right R-module is
projective. Of course a left hereditary ring is one in which every left ideal is projective, and
there exist rings which are right hereditary but not left hereditary. For commutative rings
though, it is clear that the properties of being left and right hereditary are equivalent. A
hereditary integral domain is called a Dedekind domain (so the Kiinneth formula applies if
k is a Dedekind domain). Important examples of Dedekind domains to keep in mind when
applying the Kiinneth formula are PID’s and the ring of integers in an algebraic number field.

Remarks and Consequences of the Kiinneth formula
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(i) If k is a field, then Tor¥(H,(A), Hy(B)) = 0 and so the Kiinneth formula becomes

H,(A®k B)=  H.(A) @ H(B)

r4+s=n

for n € N.

(i) Suppose (A, ap) and (B, By) are projective resolutions for the projective k-modules U and
V respectively. Then H,,(A) = H,(B) = 0 for all n € P, Hy(A) = U and Hyo(B) = V. In
particular H,(A) and H,(B) are projective k-modules for all r, s € N, so Tor?(H,.(4), Hy(B)) =
0 for all ,s € N. The Kiinneth formula now shows that (A ®x B,y ® fy) is a projective
resolution for U ®;, V. For group rings, this will show that if (P, ag) is a projective resolution
for k as kG-modules and (Q, 3p) is projective resolution for k as kH-modules, then (P ®j
Q, a0 ® fp) is a projective resolution for k as k[G x H]-modules.

(iii) Consider the special case B; = 0 for all s € P. Write M = By and let n € N. Since
Hs(B) = 0 for all s € P and Ho(B) = M, the Kiinneth formula now yields a natural exact
sequence which splits (but not naturally)

0 — H,(A) @ M — H,(A®), M) — Tor¥(H,_1(A), M) — 0.

(So for the above exact sequence M can be arbitrary, but A needs to be a complex consisting
of projective k-modules). This sequence is usually referred to as the “Universal Coefficient
Theorem”.

(iv) There is a Kiinneth formula for cochain complexes. Let k be a commutative hereditary
ring, let A be a cochain complex of projective k-modules, let B be a cochain complex of
k-modules and let n € N. Then there is a natural short exact sequence of k-modules which
splits (but not naturally)

0— @ H'(A)@pH(B) — H"(A®,B) — H Torf(H'(4),H*(B)) — 0.
r4+s=n r+s=n+1

(v) If k is not necessarily commutative but is left and right hereditary, then the exact sequence
and the splitting of the exact sequence in the Kiinneth formula is still valid, but it is no longer
a sequence of k-modules: it will be an exact sequence of abelian groups and it will split as
abelian groups.

Proof of the Kiinneth formula Let «, and 8, denote the boundary maps of A and B
respectively. We begin by considering a special case. Suppose A is a chain complex with
trivial boundary (so a, = 0 and A, = H,(A) for all » € N). Then A ®; B is the chain
complex with

(A®k B)n = @ Ar Rk Bs

r4+s=n
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and boundary @, ,,_,,(—=1)"t, ® B, where ¢, is the identity map on A,. Thus H, (A®; B) =
D, —n Hs(Ar ®% B) and since Hy (A, ® B) = A, @ Hs(B) by the Lemma 5 of chapter 5
(A, is projective, so certainly flat), we deduce that

7 P H.(A)® Hy(B) — H,(A®) B)

r+s=n

is an isomorphism. In general (i.e. when the boundary is not trivial), write C,, = ker v, : A,, —
A,y and D,, =ima,: A, — A,_1. Note that C,, and D,, are projective k-modules (because
k is hereditary). Regard C' and D as chain complexes with trivial boundary. Then 0 — C' —
A — D — 0 is an exact sequence of chain complexes and hence sois 0 - C®x B — A®, B —
D ®, B — 0 because D is projective. Now apply Lemma 1 of chapter 5 to obtain an exact
sequence

On+1

s Hy1 (D @y B) 2 H, (C @5 B) — Hy(A @y B) 2% Hy(D @) B) — -+

We also have an exact sequence 0 — D,,1 — C, — H,.(4) — 0 for all » € N, and so applying
the long exact sequence for Tor in the first argument yields an exact sequence

0 — Tor¥(H,(A), Hy(B)) — Dy41 @5, Hy(B) — C, @, Hy(B) — H,.(A) @ Hy(B) — 0.

Therefore we have a commutative diagram with exact rows

0 — P Torf(H.(A),H.B)) — & DriewH(B) — P Cr@Hy(B)
r4+s=n r4+s=n r4+s=n

6] vl
Pnit1 On+1
Hn+1(A Rk B) — Hn—l—l(D Rk B) — Hn(C Rk B)

— P H@epH(B) — 0

r+s=n
Tl
¢TL

N Hn(A®kB) - e

where § and «y are isomorphisms by the special case when A has trivial boundary. A routine
piece of diagram chasing shows that ker 7 = 0, im 7 = ker ¢,, and

ker 412 €D Tor}(H,(A),Hi(B)).

r4+s=n

But we have an exact sequence 0 — ker ¢,, — H,,(A ®) B) — kerd,, — 0, and the required
natural exact sequence follows easily.

It remains to show that the sequence splits. First consider the case when B (as well as
A) is projective. Write E,, = ker 3,,: B,, — B,_1. Since k is hereditary, im «,, and im 3,
are projective, so we may write A,, = C,, & C/, and B,, = E,, ® E, for some k-submodules
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C/ and E], but not naturally. It follows that the natural epimorphisms C;,, — H,,(A4) and

En

— H,,(B) can be extended to epimorphisms 7,: 4, — H,(A4) and ¢,,: B, — H,(B)

respectively, and hence to an epimorphism

(Y®8)n: (A®k B)n — €D H.(A) @ Hy(B).

r4+s=n

Ifa € A, and b € By, then (y®0)(a,.a®b+(—1)"a®[sb) = 0, because v, _1a,a =0 = d5_15sb.
Therefore (yg0), induces a homomorphism

(Y ®6): Ho(A®k B) — @D Ho(A) @ Ho(B).

r4s=n

Now elements of P H, (A) ®, Hs(B) can be represented by sums of elements of the form

r4+s=n-""T

c®e where ¢ € C,, and e € E,,, and then (y®d).7 is just induced by the map sending c®e to
c® e. This means that (y®d),7 is the identity on € H,(A) ®; Hs(B), i.e. the sequence
splits.

r4+s=n-""T

Seventh Homework Due 9:00a.m., Monday, October 10.

Let p be a prime, and let Z,, denote the p-adic integers.

(i) By considering Z, as a subgroup of [[;=, Z/p'Z, prove that every element of Z,, has
a unique representation of the form ag + pa; + --- + p™a, + --- where a; € N and
0<a; <p—1foralliecP. (Wemay consider Z/p'Z as {0,1,...,p" '}, and then for
b€ Z/p'Z, we may write b="by+bip+---+b;_1p"~* where 0 < b; <p—1.)

(ii) Prove that Z, is uncountable (you may use standard facts concerning uncountable
numbers, like the fact that the set of all sequences of 0’s and 1’s is uncountable).

(iii) If A is a countable free abelian group, prove that A is isomorphic to a subgroup of
Ly,.

(iv) Let A be a countable free abelian group. Prove that there exists a descending chain
of subgroups By D By D B3 D -+ of A such that A/B; = Z/p'Z for all i € P, and
NiZ1 Bi = 0.

You may assume that Z, is an integral domain of characteristic zero and that (-, p'Z, =

(
0.)

For any group K, we let K = lim K/K; where (K/K;, f/) is the inverse system with
indexing set Z, {K; | i € I} is the set of normal subgroups of finite index in K, and ff
is the natural epimorphism whenever ¢ < j. Now let G be a group which has a finitely
generated free abelian normal subgroup of finite index, and let H < G.

(i) Prove that there exists a family of normal subgroups of finite index in G {G; | i € P}
such that G; D G;4+1 for all ¢+ € P, and such that any subgroup of finite index in G
contains one of the G;.

(ii) Prove that H = lim H/G; N H, G = lim G/G;, and G/H = lim G/G; H.

(iii) Prove that G/H = G/H.
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(You may assume that if J is a cofinal subset of the directed set IC, and (M;) is an inverse
system indexed by IC, then lim(M;) is naturally isomorphic to the inverse limit obtained
by using the directed set J as indexing set instead of K.)

(3) Let p be a prime, and let K be the subfield of C generated by all pth power roots of unity.
Prove that Gal(K/Q) = Z, x Z/(p — 1)Z.

(4) Let k be a field, let k[[X]] denote the power series ring in X, let k[X, X 1] denote the
Laurent polynomial ring in X, and let k[[X, X ~']] denote the Laurent series ring in X.
(i) Prove that lim' X*k[X] = k[[X]]/k[X] and that lim" X°k[[X]] = 0.
(ii) Prove that

Exty ) (k[X, X '], k[X]) = k[[X]]/k[X] and that Extyxy(k[[X, X ], k[[X]]) = 0.

(5) Let k be an integral domain with field of fractions K, let U be a k[X]-module, let V be a
K[X]-module, let (A, ag) be a flat resolution of U with k[X]-modules, and let (B, o) be
a projective resolution of V' with K [X]-modules. Prove that (A ®y;x] B, ao ® Bo) is a flat
resolution of U ®jx) V' with k[X]-modules.

(6) Let p be a prime.
(i) Prove that p is a nonzero divisor in Z,.
(ii) If ¢ € Z and (p,q) = 1, prove that ¢ is invertible in Z,.
(iii) Let R be a commutative ring and let S be a multiplicatively closed subset of R. Give
an example to show that S~! does not commute with inverse limits in general.
(iv) Let R be aring and let A be an R-module. Give an example to show that Homp (A, )
does not commute with liLnl in general.

Monday, October 10
Chapter 9
The Kiinneth Formula (continued)

Exercise (cf. prob. 1 of previous homework.) Let p be a prime and let A # 1 be a free
abelian group. Prove that A has a descending chain of subgroups By D By D --- such that
A/B; 2 Z/p'Z for all i and ;= B; = 1 if and only if |A| < |R|.

Continuing the proof of the Kiinneth Formula, we need to show that the sequence splits
in the case when B is not a projective k-module. We will need the following result.

Lemma 1 Let k be a right hereditary ring and let B be a chain complex of k-modules.
Then there exists a free chain complex C and a chain map : C' — B such that the induced
maps 6;.: H;(C) — H;(D) are isomorphisms.

Let 8; and ; denote the boundary maps of B and C respectively. Then 6 is a chain map
means that we have a sequence of k-module maps 6;: C; — B; which commute with the
boundary maps, i.e. 6;7;+1 = Gi+16i+1-
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It is clear that Lemma 1 will follow from Lemmas 2 and 3 below.

Lemma 2 Let k be a ring and let B be a chain complex of k-modules. Then there exists a
chain complex C' of free k-modules such that H,,(C') = H,,(B) for all n € N.

Proof We construct the complex C' by induction on n. First we write Ho(B) = Cy/D where
Cy is a free k-module, and then we choose a free k-module D; and a k-map d;: D1 — Cp
such that im~; = D. Define vg to be the zero map on Cy. Now suppose we have constructed
free k-modules Cy,...,Cy, D1,...,Dyp11, and R-maps v;: C; — C;_1 such that ~;_1v; = 0,
ker~;_1/im~y; 2 H;_1(B) (1 < i< n), and a map §,4+1: Dy41 — C, such that v,0,41 =0
and kery, /im 6,41 = H,(B). Write H,11(B) = C),,,/D;,, ., and then define C\,, = C), . ®
Dyyy and Y41 = 08 0pv1: Cpq1 — €. Finally choose a free k-module D,, o and a k-
epimorphism 6,,42: Dy 42 — Cpi1 such that im 6,42 = D], | ®kerd, 1. Then it is easy to see
that v, Vn41 = 0, ker v,/ imynq1 = Hy (B), Yng10n42 = 0, and ker v, 11/im d, 40 = Hy 1 (B),
and the induction step is complete.

Lemma 3 Let k be a right hereditary ring, let B be a chain complex of k-modules, let C' be
a chain complex of projective k-modules, and let 6,,: H,,(C) — H,(B) be a k-map for each
n € N. Then there exists a chain map ¢ : C' — B such that ¢, = 0, for all n € N.

Proof We prove the result by induction on n. First set ¢_; to be the zero map on 0, and let
B, and 7, denote the boundary maps of B and C respectively. For n € N, having constructed
¢r : Cr — B, such that ¢p. = 0., Br¢r = ¢r_17,, ¢rkery, C ker 3, ¢rim~y,.11 C B4 for
0 <r <n-—1, we construct ¢,,: C,, — B, having the same properties (thus ¢, will then
satisfy the above properties for 0 < r < n). We have a commutative diagram

Tntl C, n, C, 1 Tnod C, o Tn-2
¢n71l l¢n72

Bn—l ? Bn—2 ?

ot g, P,

Now 6,, is a homomorphism ker~, /im~,+; — ker3,/im 3,41. Since ker-~, is a projective
k-module (k is hereditary and ker+, is a submodule of the projective k-module C,,), 0, lifts
to a homomorphism ¢ : ker~, — ker 3, (which maps im~,4+; into im 3,,4+1). Also im~, is
a projective k-module, so we may write C), = ker~y,, & D for some k-submodule D = im~,
of C,. Since ¢,,_17, maps D into im 3, there is a homomorphism §: D — B, such that
Brndd = ¢y _17nd for all d € D. We may now set ¢, = ®d6: kery, ®D = C,, — B,, and the
induction step is complete.

We now show that the sequence in the Kiinneth formula splits when B is an arbitrary
chain complex. By Lemma 1 we may choose a chain complex C' of free k-modules and a chain
map 0: C' — B such that the induced map 0; is an isomorphism. We now have a commutative
diagram with exact rows in which the top row splits and the two outside vertical maps are
isomorphisms.
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0 — P H@A)epH(C) — H,(A®xC) — P Tof(H.(4),H(C) — 0

r+s=n r4+s=n—1

| L@, L(1®0). I P 0.

r+s=n—1

0 — @ H(A)@pH(B) — Hy(A®xB) —  Torf(H.(4),H(B) — 0

r+s=n r+s=n—1

The Five Lemma shows that the middle vertical map is an isomorphism and a routine diagram
chase now shows that the bottom row splits, as required.

Group Rings To define the cohomology of a group G, we need to know what the group
ring of G is.

Definition Let G be a group and let k£ be a commutative ring. Then the group ring of
G over k is the associative k-algebra which is a free k-module with basis {g | ¢ € G} and
multiplication defined distributively using the group multiplication in G.

Thus we can consider kG as consisting of all formal sums »_ .
for all but finitely many g € G. If a = }_ c;a49 and 8 =3
multiplication is defined according to the formula

af = Z agbp, gh = Z(Z agh—lbh)g.

g,heG ge€G heH

agg where ay € k and ay = 0

geG bgg (agvbg S k), then the

There is no reason why we cannot make the same definition with k noncommutative, and
there are further generalizations of the concept of a group ring such as a crossed product;
however for group cohomology it seems best to restrict to the case k is commutative. We will
be especially interested in the cases when k is a field or the integers Z.

Remarks
(i) We identify G with the subset {1g | ¢ € G} of kG: thus G can be thought of as a subgroup
of the group of units of kG.

(ii) We identify k& with the subset {a11 | a1 € k} of kG: thus k can be thought of as a subring
(or k-subalgebra) of kG. Then we have kG = k if and only if G = 1.

(iii) We have an isomorphism of rings (= Z-algebras) kG ®z k = k, and this means that often
problems involving kG can be reduced to problems involving ZG.

(iv) kG is commutative if and only if G is abelian.

(v) Suppose G is a finitely generated free abelian group with free generators {x1,xa,...,z,}.
Then kG is isomorphic (as a k-algebra) to the Laurent polynomial ring

kX1, XTH Xo, X0t oo X, XY

in n indeterminants.
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(vi) kG is finitely generated as a k-module if and only if G is finite.

A useful property of kG is that it can be defined using the following universal property
which we shall quote without proof (this can be especially useful when constructing homo-
morphisms from kG to another ring).

Proposition Let G be a group, let k£ be a commutative ring, let R be a k-algebra, let U
denote the units of R, and let #: G — U be a group homomorphism. Then there exists a
unique k-algebra homomorphism ¢: kG — R such that ¢g = fg for all g € G. Moreover if S
is a k-algebra and H is a subgroup of the group of units of .S isomorphic to G with the above
universal property (i.e. if 6: H — U is a group homomorphism, then there exists a unique
k-algebra homomorphism ¢: S — R such that ¢h = 6h for all h € H), then there exists a
unique k-algebra isomorphism v : kG — S such that ¢g = ag for all g € G, where a: G — H
is a group isomorphism.

Exercise Let k be a commutative ring and let n € P. Prove that kG = k[X]/(X™ — 1) (as
k-algebras).

Using the above proposition we can define a k-algebra homomorphism ¢: kG — k be eg = 1
for all g € G. The map ¢ is called the augmentation map and ker ¢ is called the augmentation
ideal of kG, or the augmentation ideal of G over k.

Exercise Let kG be the group ring of the group G over the commutative ring k, and
let I denote the augmentation ideal of kG. Prove that [ is a free k-module with k-basis
{g—1€G|geG\1}.

The augmentation ideal of ZG will be denoted by the small German letter corresponding
to the capital Latin letter used to name the group. Thus by the above exercise, g is a free
Z-module with Z-basis {g — 1| g € G\}.

Theorem Let G be a group, let k be a commutative ring, and let I denote the augmentation
ideal of kG.

(i) I=g®gzk as kG-modules.

(i) g/g®> = G/G" as Z-modules. (G’ denotes the commutator subgroup of G.)

(iii) I/1? 2 G/G’' ®z k as k-modules.
Proof (i) For a € g and x € k, define 6: g®z k — [ by da ® v = xa. Then 0 is a
k-map which commutes with the action of G (here G acts by right multiplication on g and
trivially on k). Therefore 6 is a kG-module homomorphism. Since g is free as a k-module on
{g—1| g € G\1} (see previous exercise) we may well define a k-module map ¢: [ — g® k
by ¢(g —1) = g® 1. Then it is easily checked that # and ¢ are inverse to each other, hence 6
(and ¢) is a kG-isomorphism and the result is proven.

(ii) Since g is free as a Z-module on {g — 1| g € G\1}, we can well define a group homomor-
phism ¢: g — G/G' by ¢(g—1) = G'g (g9 € G\1). Now g? is generated as a Z-module by
{lg-D(h—1) | g,h € G}, and
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$g—1)(h=1)=0((gh—1) = (g—1) = (h—1)) =G'ghg'h™" =1,

so ¢ induces a group homomorphism ¢: g/g?> — G/G’. We now define a : G — g/g° by
g = g?>+(g—1). Then it is easily checked that v is a group homomorphism and so it induces
a group homomorphism ¢: G/G’" — g/g? such that ¥G'g = g% + (g — 1). Moreover ¢ and 1)
are inverses to each other, and the result follows.

(iii) From (ii) we have an exact sequence g> — g — G/G’ — 0. Applying ®zk to this

sequence, we obtain an exact sequence

g2®zki>9®zk—>G/G'®Zk:H0.

If we identify g ®z k with I via the isomorphism 6 of (i), then im o becomes identified with

I%.

Thus /1% = g/im « and the result follows.

Eighth Homework Due 9:00a.m., Monday, October 17.

Let 2 < p,q € Z with (p,q) = L. Define an inverse system of abelian groups (= Z-modules)
by M; = Z for all i € P and f/™': M;;; — M; to be multiplication by q.

(i) Prove that Exty(Z/pZ, M,) is finite for all i € P.
(ii) Prove that Exty(Z/pZ,lim M;) = 0.
(iii) Prove that lim Ext}(Z/pZ, M;) = Z./qZ.

Let R be a ring, let F' be a free R-module, and let (M;) be an inverse system of R-modules
indexed by P. Suppose 0 - K — F' — A — 0 is an exact sequence of R-modules such
that Homp (K, M;) is finite for all ¢ € P. Prove that Ext’s (A, lim M;) = lim Ext'z (A, M;)
forn =0, 1.

Let R be a commutative hereditary ring, and let A, B,C be R-modules. Prove that
Tork (A, Tork(B, C)) = Tork(Tork(A, B),C). (Consider Hy(P ®r Q ®r T).)

Let R be a ring and let A be a cochain complex. Prove that there exists an injective
cochain complex of R-modules with the same cohomology as A.

Let k£ be a right hereditary ring, let A be a projective chain complex of right k-modules,
and let B,C be chain complexes of left k-modules. Suppose #: B — (' is a chain map
such that the induced map 6,: H,(B) — H,(C) is an isomorphism for all n € N. Prove
that (1®6).: H,(A®k B) — H, (A ®; C) is an isomorphism for all n € N.

Let k be a commutative ring and let G, H be groups. Prove that k|G x H] = kG ®) kH
as k-algebras. (Recall that if k£ is a commutative ring and A, B are k-algebras, then we
can make A ®; B into a k-algebra by defining multiplication according to the formula
(1 ® B1)(2 ® B2) = a1 @ (152 (a1, 0 € A, (1,02 € B). Since elements of the form
a® [ generate A®y B as a k-module, this uniquely defines the multiplication on A®y, B.)
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(7) Let A be an abelian group such that for each n € P, A has only finitely many elements of
order n.
(i) Let p be a prime and let B; = Z/p'Z. 1f (B;, flj) is the direct system indexed by P,
where the ff are the natural inclusions for ¢ < j, prove that liLnl Ext% (B;, A) = 0.
(ii) Use the quoted theorem at the end of chapter 7 to prove that

Ext},(Q/Z, A) 2= [ [ lim A/(Aq"),

where the Cartesian product is over all primes q.

Monday, October 17
Chapter 10
Group Cohomology

Let G be a group, let £ be a commutative ring, and let M be a kG-module. Then to say
that G acts trivially on M means that mg = m for all ¢ € G. We can always regard k as a
kG-module with G acting trivially, and then if I is the augmentation ideal of kG, we have
k =2 kG/I as kG-modules. If N is any kG-module, then N can be considered as a ZG-module
and N ®kg k = N/Ng as kG-modules (use HW1 prob. 1).

We can now define the homology and cohomology groups of G with coefficients in a ZG-
module M.

Definition Let G be a group and let n € N.
(i) If M is a left ZG-module, then the nth homology group of G with coefficients in M is
H, (G, M) = Tor’%(z, M).
(ii) If N is a right ZG-module, then the nth cohomology group of G with coefficients in
N is H"(G,N) = Extyo(Z, N).

In both (i) and (ii), Z is regarded as a right ZG-module with G acting trivially, and H,,(G, Z) is
often termed the nth homology group of G, and H" (G, Z) is often termed the nth cohomology
group of G. The reason for using right coefficient modules for cohomology but left coefficient
modules for homology, is that then we can use one and the same projective resolution of right
ZG-modules for Z to calculate the relevant Ext and Tor groups.

Remarks and Examples Let us calculate H,, (G, M) and H" (G, N) in some special cases.
(1) If G = 1, then Ho(G, M) = M as Z-modules, and H, (G, M) = Tor’(Z, M) = 0 if
n # 0.

(2) If G = 1, then H*(G, N) = N as Z-modules, and H"(G, N) = Ext}(Z, N) = 0 if n # 0.
(3) Ho(G, M) = M/gM.

(4
(
(

)

) H°(G,N) = N, (Here N¢ = {zx € N | g = x for all g € G}.)
5) H,(G, M) =0 for all n € P if M is a flat ZG-module.
6) H"(G,N) =0 for all n € P if N is an injective ZG-module.
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(7) Let k be a commutative ring. We could consider homology and cohomology groups
“over k7, but we would not get anything new. For example we could define H,, (G, M) =
Tor®%(k, M) for any left kG-module M. However Tor*®(k, M) = Tor’®(Z, M) because if
(P, ap) is a projective resolution of Z with ZG-modules, then (P ®z k, ap ® 1) is a projective
resolution of k with kG-modules, and we have

PR EkQra M=Z2PQy7Z Rz M =P Qga M.
A similar comment applies to cohomology using Extyg(k, N) = Extzg(Z, N) for any right
kG-module N (remark 5 of chapter 6).

(8) We have H (G, Z) = Tor?“(Z,7) = Tor?(ZG/g,ZG/g). Applying HW3 prob. 7(iii), we
see that

Hi(G,Z) =~ g/g* 2 G/G

by the Theorem of chapter 9.

(9) We have H'(G, Z) = Ext},4(Z, Z), so application of the long exact sequence for Ext in the
first variable to the exact sequence 0 — g = ZG — Z — 0 (where « is the natural inclusion)
yields an exact sequence

0 — Homzg(Z, Z) — Homze (ZG, Z) % Homze (g, Z) — HY(G, Z) — 0,

because Ext}(ZG,Z) = 0. Now if f € Homyg(ZG,7Z), then f(g —1) = f(1)(g — 1) = 0 for
all g € G, so f(g) = 0. Therefore a*f = 0 and it follows that Hy(G,Z) = Homyza(g,Z). If
f € Homyq(g,Z), then f((g— 1)(h —1)) = (f(g —1))(h — 1) = 0 for all g,h € G, hence
f(g%) = 0 and we deduce that H; (G, Z) = Homzc(g/g%,7Z). The Theorem of chapter 9 shows
that g/g% = G/G’ and we conclude that H' (G, Z) = Homy(G /G, Z).

Long Exact Sequences Let G be a group, and let 0 = A — B — C — 0 be an exact
sequence of left kG-modules. Then the long exact sequence for TorZ¢ (Z,_) yields a long exact,
sequence

-—H,(G,A) — H,(G,B) — H,(G,C) — H,,_1(G,A) — - -+
-— Ho(G,A) — Hy(G, B) — Hy(G,C) — 0.

This sequence is often termed the long exact homology sequence. Similarly an exact sequence
of right kG-modules yields a long exact sequence

0 —HG, A) — H(G,B) — H(G,C) — - --
. — H"(G,A) — H"(G,B) — H"(G,C) — H" "} (G, A) — -

Inflation and Restriction Let G and H be groups, let M be a ZH-module, and let
0: G — H be a group homomorphism. Then 0 extends to a ring homomorphism 0: ZG — ZH,
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so by HW3 prob. 6, 6 induces well defined group homomorphisms 6} : Exty;(Z,M) —
Exty.(Z,M) for all n € N. In other words, € induces well defined group homomorphisms
0:: H"(H,M) — H"(G, M) for all n € N. On identifying H'(H,Z) with Homz(H/H',7),
this is just the homomorphism you would expect; namely given f € Homy(H/H’,7Z) and
g € G, then 6 f(G'g) = f(H'fg). In the special case when H = G/K for some K < G and
0: G — H is the natural epimorphism, then 6} is called the inflation map; and in the special
case when G < H and 6 is the inclusion, then 6} is called the restriction map.

Shapiro’s Lemma This is the cohomological version of Frobenius reciprocity in character
theory of finite groups: in fact some mathematicians think that Shapiro’s lemma should be
called Frobenius reciprocity. In any case it is an important tool when performing calculations.
First we need the following easy but fundamental result.

Proposition Let H < G be groups, and let R be a commutative ring. Then RG is free
both as a left RH-module and as a right RH-module.

Proof Let T be a right transversal for H in G. Then it is easy to see that T is a free basis
for RG as a left RH-module. Similarly by taking a left transversal S for H in G, we see that
RG is free as a right RH-module, with basis S as required.

The above proposition shows in particular that if P is a projective RG-module, then P is also
a projective RH-module. Thus we can now apply Lemma 7 of chapter 5 to deduce that

Theorem (Shapiro’s lemma) Let H < G be groups, let R be a commutative ring, let M be
a left RH-module, and let n € N. Then H,, (G, ZG ®zy M) = H,,(H, M).

There is a similar result for cohomology: we just state it, leaving the proof to a future
homework exercise (homework 11, prob. 1).

Theorem (Shapiro’s lemma) Let H < G be groups, let R be a commutative ring, let N be
an RH-module, and let n € N. Then H" (G, Homzy (ZG,N)) 2 H"(H,N).

Diagonal Action Let G, H be groups, let k£ be a commutative ring, let M be a kG-module
and let N be a kH-module. Then we can make M ®j N into a k[G x H|-module by defining
m®mn(g,h) =mg®@nh. If M and N are free, then it is easy to see that M ®;, N is also free.
It follows that if M and N are projective, then M ®; N is also projective.

Now suppose M and N are both kG-modules. Then we can make M ®y N into a kG-module
by defining m ® ng = mg ® ng. Similarly we can make Homy (M, N) into a kG-module by
defining (fg)m = f(mg~1)g for all f € Homy (M, N), g € G, m € M. These actions are often
called the diagonal actions of G on M ®; N and Homy (M, N). They are of great importance
when dealing with group cohomology, partly because of the following fundamental result.

Theorem Let GG be a group, let k be a commutative ring, let P be a projective kG-module,
and let M be a kG-module which is projective as a k-module. Then P ®; M is a projective
kG-module.
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Proof Let N be any kG-module. By HW1 prob. 2, there is an isomorphism of k-modules
between Homy (P ®; M, N) and Homy (P, Homy (M, N)) which is manifestly natural, hence it
induces an isomorphism

Homkg(P R M, N) = Homkg(P, Homk(M, N))

Since M is projective as a k-module, Homy (M, _) is exact, and since P is a projective kG-
module, Homyg (P, ) is also exact. It follows that Homyg (P ®) M, _) is exact, which means
that P ®j; M is a projective kG-module.

Ninth Homework Due 9:00a.m., Monday, October 24.

(1) Let R =7Z[X1, Xs,...] be a polynomial ring in any number of variables, let A be a right
R-module, let B be left R-module, and let n,p € N. Suppose B is free as a Z-module.

(i) If P is a projective R-module, prove that P ® g B is a projective Z-module.
(ii) Prove that Tor’(A, B/pB) = Torf(A, B) ®y Z/pZ & Tor}(Tor?_| (A, B),Z/pZ) as
abelian groups.

(If n = 0 in the above, then we interpret Tor,,_; to be 0.)

(2) Let k be a field, let U be a k[X]-module, and let V be a k[Y]-module.

(i) Prove that U®; V can be made into a k[X, Y]-module according to the rule u®@v X =
uX @u, u®vY =u® (vY) for uw € U, v € V. Prove further that if U and V are
projective, then U ®;, V' is a projective k[ X, Y]-module.

(ii) Let n € N. Use the Kiinneth Theorem to prove that

Torf XY (U @ V k) = @ TorfX (U, k) @4 TorkM(V, k)

r4+s=n

as k[X,Y]-modules. (Of course k denotes the module with X and Y acting trivially;
that is aX = aY =0 for all a € k).

(3) Let R be a ring, let A be a chain complex of right R-modules, let B be a chain complex
of left R-modules, and let «,: A, — A,,_1 denote the boundary maps of A. Suppose A,
and im a,, 41 are flat R-modules for all n € N.

(i) Prove that ker i, is a flat R-module for all n € N.
(ii) Prove that there is a natural short exact sequence of abelian groups

0— P H(A)®rH,(B) > Hy(A®rB) — P Torf(H,(A),H,(B)) — 0.

r+s=n r4+s=n—1

(4) Let A< G be groups with G/A finite.

(i) If ZA is a Noetherian ring, prove that ZG is a Noetherian ring.
(ii) Suppose A is a finitely generated free abelian group. Prove that ZA is a Noetherian
ring. Deduce that ZG is also a Noetherian ring.
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(By a Noetherian ring, we mean a ring which is both left and right Noetherian.)

(5) Let A< G be groups such that A is finitely generated abelian and G /A is finite, let (M;) be
a direct system of ZG-modules, and let n € N. Prove that H" (G, lim M;) = lim H" (G, M;).

(6) Let (G;) be a direct system of groups, and let n € N.

(i) Prove that Z[lim G;] = lim ZG;.

(ii) In the case that the direct limit is a union (i.e. all the corresponding maps fZJ are
inclusions), prove that H, (lim G;,Z) = lim H,,(G;,Z). (Use HW6, prob. 7 and the
Proposition in Shapiro’s lemma.)

(iif) Prove that H'(lim G;, Z) = lim H' (G}, Z).

Monday, October 24
Chapter 11
Group Cohomology, basic results

To get some examples, we shall calculate the cohomology of a finite cyclic group. Let k
be a commutative ring, let n € P, and let G = (g) be a finite cyclic group of order n. We
are going to determine H" (G, k) (where G is acting trivially on k.) The cases r = 0 (answer
k) and r = 1 (answer Hom(G, k)) were covered at the beginning of chapter 10. Let us write
kn = {a € k| na =0}. Then H'(G, k) = k,. We can obtain the other cohomology groups by
dimension shifting. We have an exact sequence

0 — kg — kG >k —0, (1)

where ¢ is the augmentation map and kg denotes the augmentation ideal of kG. We can also
define a kG-epimorphism a: kG — kgby al =g —1. If v = Z?:_Ol g', then it is not difficult
to see that ker o = kv and that kv =2 k as kG-modules. Thus we also have an exact sequence

0—k— kG 2 kg — 0. (2)

Applying the long exact sequence for Extrg in the first variable to the exact sequences (1)
and (2), we see that H"(G, k) = H""?(G, k) for all » > 1, H*(G, k) = Ext}4(g, k), and there

is an exact sequence

0 — Ext®a(g, k) 2% ExtOu(kG, k)~ Ext®a(k, k) — Extla(g, k) 5 Extls(kG, k),

where p is the restriction map from Homyg (kG, k) — Homyq(kv, k). Therefore Exty (g, k) =
Homyg(k, k)/imp. If f € Homyg(kG, k), then f(z) = f(1) for all z € G, and we see that
f(v) =nf(1). It follows that im p = nk and hence Ext;(g, k) = k/nk. Summing up,
k if r =0,
H"(G,k) = k, ifrisodd,
k/nk if 0 < r is even.
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Let us apply the diagonal action to the direct product of two groups. Let k be a commu-
tative hereditary ring, let G, H be groups, let (P, ag) be a projective resolution of k as kG-
modules, and let (Q, 5y) be a projective resolution of k as kH-modules. Then the Kiinneth
formula shows that (P ® Q, ag® (3p) is a projective resolution of k ®y k as k[G x H]-modules.
Obviously G x H acts trivially on k ®j k, so k ®x k = k. Thus we can calculate the groups
H"(G x H,k) using the projective resolution (P ®j Q, oy ® [y). We require the following
lemma.

Lemma Let G, H be groups, let £ be a commutative ring, let P and @ be chain complexes
of kG and kH-modules respectively, and let U and V be kG and kH-modules respectively.
Then there is a natural homomorphism of chain complexes

0: Homkg(P, U) (S HomkH(Q, V) — Homk[ng](P Rk Q,U Qp V)

defined by (0f @ g)(u @ v) = fu ®vg for f € Homyg(P,,U), g € Homyp (Qs, k), u € P,
v E Q5.

The proof is routine with the necessary maps set up. Even though there is an awkward sign
(—1)" involved in the definition of the tensor product of chain complexes, no sign is needed
in the definition of 6.

Exercise Show that 6 need not always be an isomorphism.

There are several hypotheses which will make 6 an isomorphism. The most convenient seems
to be the following.

Theorem In the above Lemma, assume that P is a finitely generated projective kG-module
and that U = k (where as usual, G is acting trivially on k). Then € is an isomorphism.

Proof Because Homya(—, k) commutes with finite direct sums, it follows easily that we need
only consider the case P = kG. But then we have an inverse map defined by ¢f = ¢ ® h for
J € Homygxm)(P ®k Q,k ®; V), where e: kG — k is the augmentation map (so eg = 1 for
all g € G), and h: Q — V is defined by hq = f(1® q) for all ¢ € Q.

We now want to apply the Kiinneth formula to the cochain complexes Homyq (P, k) and
Homy g (Q, k), but some words of caution are necessary here. To apply the Kiinneth formula,
we need the Homyg (P, k) to be projective as k-modules for all » € N. If P, & kG, then
this is certainly so because Homyg(kG, k) = k as k-modules. It follows that this is also the
case if P, is a finitely generated projective kG-module. However this is not so if P, is not
finitely generated: if P, & @;°, kG, then Homyg (P, k) = [];2, k, (see exercise 6(i) on the
first chapter), which is not projective in general (though it certainly will be if k is a field).

Exercise Show that [[;-, Z is not a free abelian group. (Write A = [];2, Z. We think of
A as all infinite sequences (a;) with a; € Z. Let B = {(a;) | for each n € P, a; € 2"Z for all
but finitely many i}. Show that B is an uncountable subgroup of A, and B/2B is countable.
Now if A is free, then so is B (we use the theorem that subgroups of free abelian groups are
free) and now we have a contradiction.)
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We need the following definition.

Definition Let G be a group and let £ be a commutative ring. Then we say that G is
of type FP,, over k if the trivial kG-module k admits a projective resolution with finitely
generated kG-modules. We say that G is of type FP, to mean that G is of type FP,, over
Z.

Exercise If kG is Noetherian, prove that G is of type FP., over k. Deduce that if G has a
finitely generated abelian subgroup of finite index, then G is of type FP,

Thus the above exercise shows that there are plenty of groups of type FP,, in particular all
finite groups. If G is of type FP, over Z, then Z has a projective resolution (P, ag) in which
all the modules are finitely generated. Since (P ®z k, a9 ® 1) is a projective resolution of k
with finitely generated kG-modules, it follows that G is of type FP, over k. It is an open
problem at the moment to as whether the reverse is true: namely that if G is of type FP,
over k, then G is of type FP, over Z.

We now assume that G is of type FP,, over k, so we assume that the chain complex
P consists of finitely generated projective kG-modules, and the chain complex ) consists of
projective kH-modules (not necessarily finitely generated) and apply the Kiinneth formula
for cochain complexes to obtain a natural exact sequence of kG-modules which splits:

0 —s @ "(Homyug (P, k)) @ H® (Homy g (Q, k)) — H™(Homye (P, k) @5 Homyp (Q, k))

— @ Tor¥ (H" (Homy (P, k)), H* (Homy 5 (Q, k))) — 0.
r+s=n+1

Combining the above Theorem with H" (Homyg (P, k)) = H" (G, k) and H*(Homyp (Q, k)) =
H*(H, k), we obtain an exact sequence of k-modules which splits (remember that the two
hypotheses we need are that G is of type FP,, and that k is commutative hereditary):

0— @P H(G,k)eyH (H k) — H*(GxH k) — P Torf(H' (G, k),H*(H,k)) — 0.
r+s=n r+s=n+1

Thus once H" (G, k) has been calculated for G cyclic, it can be calculated when G is any finitely
generated abelian group (since ZG is Noetherian when G is finitely generated abelian).

Remark In view of this stronger result (as compared with the original version which re-
quired that H be of type FP ), the hypotheses for problem 9 of the eleventh homework can
be weakened, but I will let the original problem stand.

Example H*(Z/6Z x Z/3Z,Z). Since Z is a commutative hereditary ring, we can apply the
sequence of above to obtain a split exact sequence
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0 — @ H'(2/6Z,7) @z H*(Z/3Z,Z) — H*(Z/6Z x /3L, )
r+s=4

— P Torl(H'(Z/6Z,7),H°(Z/3Z, 7)) — 0.
r4+s=>5

Using the calculation for the cohomology of a finite cyclic group, we have HO(Z/ 6Z,7) =
7 = H%(2/37,7), H"(Z/6Z,7) = 0 = H"(Z/3Z,Z) if r is odd, H"(Z/6Z,Z) = Z/6Z and
H"(Z/37,7) = 7./37 if 0 < r is even. It follows easily that H*(Z/6Z x Z/37,7) = 7./37 @
Z7)37 ©7Z)6Z.

Universal Coefficient Theorem We can also apply the Universal Coefficient Theorem to
group cohomology. Let G be a group of type FP, and let (P, ap) be a projective resolution of
the trivial ZG-module Z with finitely generated ZG-modules. Let n € N and let M be a ZG-
module which is free as a Z-module. Since Homyg (ZG, M) = M, we see that Homzq(ZG, M)
is free as a Z-module and it follows that Homzg(Q, M) is free as a Z-module for any finitely
generated projective ZG-module Q). Therefore Homyg (P, M) is a chain complex of projective
Z-modules, so we can apply the Universal Coefficient Theorem to obtain a split exact sequence
(of k-modules)

0 — H"(Homgzq (P, M)) ®z k — H™"(Homyzg(P, M) @z k) — Tor?(H" (G, M), k) — 0.

Now Homyg (P, M)®zk is naturally isomorphic to Homyg (P®rk, M @kk) (map f®x for z € k
to the homomorphism f®z, where & denotes that map multiplication by = on k; that this map
is an isomorphism depends on P consisting of finitely generated projective ZG-modules: it is
easy to see that it is an isomorphism in the case P = Z(G, hence it is an isomorphism for any
finitely generated projective ZG-module) and (P ®j k, ap ® 1) is a projective resolution of k
by the Theorem at the end of the last chapter. By remark (7) of chapter 10, H" (Homyg (P ®y
k,M ® k)) = H"(G, M ®j k) and we deduce that H"(Homyzg (P, M) ®z k) = H" (G, M).
Therefore

H"(G, M ®z k) 2 H"(G, M) @z k @ Tory (H" (G, M), k).

Dual Universal Coefficient Theorem for group homology Using similar techniques
as for the Kinneth formula and Universal Coeflicient Theorems, one can obtain formulae
which involve both H” and H,,. Here is one typical formula.

Theorem Let G be a group and let k£ be a commutative ring. Then there is a natural exact
sequence of k-modules which splits

0 — Exty(H,_1(G,Z), k) — H"(G, k) — Homy(H, (G, Z), k) — 0,

for all n € N (where we interpret H,,_1(G,Z) = 0 if n = 0).
It may be asked why one considers the groups H" (G, M) instead of the apparently more
general Exty~(A, B): surely we are losing something. The next result shows that we lose
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very little. Furthermore when we come to the Lyndon-Hochschild-Serre spectral sequence of
a group extension, we will want to work with H" rather than Ext".

Theorem Let k be a commutative ring, let n € N, let G be a group, and let A, B be
kG-modules. If A is projective as a k-module, then Ext}~ (A, B) = H"(G,Homy(A, B)).

Of course, Homy (A, B) has the diagonal action as described at the end of the last chapter.

Proof Let (P, ag) be a resolution of the kG-module k with projective kG-modules. Then
(P®y A,ap ®1) is a resolution (because A is projective and hence flat as a k-module) of the
kG-module k ®); A= A and by the Theorem at the end of the last chapter, this resolution is
projective as kG-modules. Therefore

Ext!(A, B) = H"(Homyq (P @y, A, B)) = H"(Homy (P, Homy (A, B)))
~ Ext!, (k, Homy (A, B)) = H"(G, Homy (A, B))

by Remark (7) of chapter 10.

Thus the only thing we have lost is that we need to assume that A is projective as a k-module.
However one has long exact sequences and the Universal Coefficient Theorem available to
deduce the more general results. In any case the hypothesis that A is projective as a k-
module is vacuous if & is a field (and this is an important case).

There is a similar result for Tor,, and H,, which we now state; the proof is left to a future
homework exercise (homework 12, prob. 7).

Theorem Let k be a commutative ring, let A be a right kG-module, let B be a left kG-
module, and let n € N. If A is flat as a k-module, then Tor*“ (A4, B) =~ H, (G, A ®; B).

Transfer map If H < G are groups, then the restriction map gives us a homomorphism
H"(G,M) — H"(H, M); we would like to have a map going the other way, but this is not
always available. However in the case [G : H] < oo, we do have a map H"(H, M) — H" (G, M)
which is called the transfer: it is often also called the corestriction. We define it as follows.
Let {x1,...,x,} be a right transversal for H in G, and let (P, ag) be a projective resolution
of Z with ZG-modules. Then for each r € N, we can define a map 6,.: Homzy (P, M) —
Homyq (P, M) by 0,.f = i, xifxi_l, or more explicitly

n
0 flu = Zf(u:cl_l)xz for u € P,.
i=1
Then the 6, commute with the coboundary maps .., and hence they induce homomorphisms
0r: H (H,M) — H"(G, M), usually denoted trg ¢ and called the transfer homomorphism.
The following Lemma is extremely important (resg g denotes the restriction map from G to

Lemma Let H < G be groups with n =[G : H| < oo, let r € N, let M be a ZH-module,
and let o € H"(G, M). Then try ¢ resg, g o = no.
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Proof Let {z1,...,2,} be a right transversal for H in G, and let (P, ) be a projective
resolution of Z. If f € Homgye (P, M) is represented by o, then Y ., z; fa?i_l is represented
by trg,gresg,mo. Since f € Homzq(Pr, M), xif.rjl = f and hence > " | :Uifa:;1 = nf.
Therefore trg g resq, g o is represented by nf and the result follows.

(1)

Tenth Homework Due 9:00a.m., Monday, October 31.

Let (G;) be a direct system of groups with lim G; = G, let U be a ZG-module, and let
n € P. Prove that li_n;Tor%Gi(U, ZG) = 0. (Roughly speaking the argument goes as
follows: an element in lim Tor2% (U, ZG) is the image of an element € Tor2% (U, ZG;)
for some j >4, and then the image of € Tor“%i (U, ZG}) is zero.)

Let H, G be groups, let n € N, let A be a right ZG-module, and let B be a left ZG-module.
Sketch a proof that a group homomorphism 6: H — G induces a natural map of abelian
groups . : Tor“H (A, B) — Tor““(A, B). What does the map 6,.: H;(H,Z) — H,(G,7Z)
correspond to group theoretically (i.e. in terms of the groups G, H not using Hy)?

Let (G;) be a direct system of groups with lim G; = G and let U be a right ZG-module.

(i) Prove that if P is a projective left ZG-module and n € P, then lim Tor2“ (U, P) = 0.

(i) Prove that if M is any left ZG-module, then lim Tor?% (U, M) = Tor?® (U, M).

(iii) Prove that if M is any left ZG-module, then lim Tor” (U, M) = Tor’® (U, M) for all
n € N.

Let G be a finite group. Prove that H'(G, Z) = 0. Deduce that H*(G, g) = 0.

Let H < G be groups, and let T be a right transversal for H in G.

(i) If I <ty ZH, prove that IZG = @,  It.
(ii) If g is a finitely generated right ideal of ZG, prove that G is a finitely generated
group.
(iii) If ZG is right Noetherian, prove that G has the maximum condition on subgroups
(i.e. there does not exist a strictly ascending chain of subgroups H; < Hy < H3 <
- < G).

Let G be a group. Prove that G is a finitely generated group if and only if g is a finitely
generated ZG-module. (If G = (g1, g2, ... ), prove that g = (91 —1)ZG+ (92— 1)ZG+- - - .)

Let G = A x H be the split extension (i.e. semi-direct product) of the group A with the
group H. Thus A< G, G = AH and AN H = 1. Let M be a ZG-module with G acting
trivially and let n € N. Prove that H"(H, M) is naturally isomorphic to a subgroup of
H" (G, M), but show by example that H" (A, M) need not be isomorphic to a subgroup of
H" (G, M).

Let G be a group. Prove that H*(G, ZG) = Z if G is finite, and that H*(G, ZG) = 0 if G
is infinite.
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(9) Let G = Z be the infinite cyclic group and let M be a ZG-module.

(i) Prove that ZG = g as ZG-modules. (Let G = (g) and map 1 to g — 1.)

(ii) Prove that H"(G, M) =0 for all n > 2.

(iii) Prove that G acting by right multiplication on ZG induces the identity action on
HY(G, ZG).

(iv) Prove that H' (G, ZG) is a quotient of Z.

(v) Prove that H' (G, ZG) = Z.

Monday, October 31
Chapter 12
Group Cohomology, further results

As a quick application of the transfer map at the end of the last chapter, we have the
following.

Proposition Let G be a finite group, let M be a ZG-module, let n = |G|, and let r € P.
Then nH"(G, M) = 0 (thus if G is a finite group, all the cohomology groups H" (G, M) are
torsion groups for all r > 0).

Proof Let o0 € H'(G, M) and let 1 denote the identity group. Then resg ;0 = 0 because
H"(1, M) = 0 for all » € P. Therefore by the Lemma at the end of the last chapter, no = 0.

There is also a transfer map H,. (G, M) — H,.(H, M) when H < G: this will be covered in
a future homework exercise (homework 13, prob. 4). In the case H is the Sylow p-subgroup of
the finite group G and r = 1, this is an important tool in the theory of finite groups, especially
in the theory of finite simple groups.

The Trace Map Let H < G be groups. Since ZG is a free Z-module with basis {¢g | g € G},
we can define a map try: ZG — ZH by tryg =0if g € G\H, and tryg = g if g € H (tr
stands for “trace”, and hopefully it will not be confused with the transfer map defined at the
end of the last chapter); it is easy to verify that try is both a right and left ZH-map (though
it will not be a ZG-map). This map has many applications, one of which is the following
result.

Theorem Let H < G be groups and let M be a right ZH-module. If [G : H] is finite, then
Homyzy (ZG, M) = M ®Qzy ZG as right ZG-modules.

Proof Define §: M ®@zy ZG — Homyzy (ZG, M) by (m @ ) = mtryg af for m € M and
a, B € ZG. Then it is easy to see that 0 is a well defined ZG-map. This map does not depend
on [G : H] being finite. To define a map the other way, first let 7" be a right transversal for
H in G. Then for f € Homzy(ZG, M), set ¢f = > ,cr f(t7!) @t € M ®zy ZG (this does
depend on [G : H] < o0); we note that this does not depend on the choice of transversal
T because f((ht)™!) ® ht = f(t~!) ® t. This is obviously a Z-map: in fact it is a ZG-map
because for f € Homyy(ZG, M) and g € G,
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(6f)g=> (ftT) @t)g

teT

=) flgt™) ot

teT

by replacing ¢ with tg in the summation and noting that {tg | ¢ € T'} is still a right transversal
for H in G,

=> (fot 't

teT

= ¢(f9).

Then for a =Y, cpout € ZG (ay € ZH) and m € M, ¢gd(m @ a) = >, cpm(trgat™) @t =
Dpermar @t = 3, .om® ot = m ® a. Therefore ¢ is the identity map. Also for

f € Homyp (ZG, M), (00f)1 =03 ,cr f(ETH) @)1 =3, e f(t1) trg t = (1), hence 0¢ is
also the identity. This establishes the required isomorphism.

Combining this Theorem with the first homework problem in the case H = 1, we obtain
the following result which was mentioned earlier.

Theorem Let G be a finite group and let n € P. Then H"(G, ZG) = 0.
Eleventh Homework Due 9:00a.m., Monday, November 7.

(1) Let H < G be groups, let M be a ZH-module, let n € N, and let (P, ) be a projective
resolution of Z with ZG-modules.
(i) Prove that H"(H, M) = H" (Homyzq (P, Homz g (ZG, M))) (use HW1 prob. 2(iii)).
(ii) Prove that H" (G, Homgzy (ZG, M)) = H"(H, M).

(2) This and the next problem are for those students who know a little about Lie algebras. Let
k be a field, let g be a Lie algebra over k, let Ug denote the universal enveloping algebra
of g, and let I'g denote the augmentation ideal of Ug. Thus if we view g as a subspace of
Ug, then Ig is the ideal of Ug generated by g.

(i) Prove that the natural injection ¢: g — Ug maps [g,g] into (Ig)?. Deduce that ¢
induces a map g/[g, 9] — Ig/(Ig)>.

(i) Prove that there is a k-module map 7: Ig — g/[g, g] which maps (Ig)? to 0. Deduce
that 7 induces a k-module map Ig/(Ig)? — g/[g, g]-

(iii) Prove that Ig/(Ig)? = g/[g,9]. (Same proof as for augmentation ideals of group
rings).

(3) Let g be a Lie algebra over a commutative ring k, and let M be a g-module. Then
we may view M as a Ug-module, and we define H" (g, M) = Ext{;,(k, M), where Ig is
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acting trivially on k. If M is a trivial g-module (i.e. M Ig = 0), prove that H' (g, M) =
Homy (g/[g; g], M).

(4) Prove that H*(Z/6Z x Z/37 x Z./37,7) = (Z./3Z)° & Z/6Z.

(5) Let G, H be any groups, and let k be a commutative hereditary ring. Prove that there is
a short exact sequence of k-modules

0— P H.(G k)@kH,(H, k) — Hy(GxH,k) — ) Torf(H,(G, k), Hy(H, k)) — 0

r4s=n r+s=n—1

which splits. (Of course this sequence is natural, but don’t verify this.)

(6) Let k be a commutative ring, let G be a group, and let M be a ZG-module which is free
as a Z-module. Prove that

H, (G, M ®z k) = H, (G, M) ®z k ® Tor?(H, _1(G, M), k)

as k-modules (if n = 0, interpret H,,_1 (G, M) = 0).

(7) Let n,r € N, and let G = Z". Prove that H'(G,Z) = Z(7) where (") denotes the binomial
‘ n
coefficient '(L)' (interpret z(%) = 0 for n < r. First do the case n = 1 using HW10
rl(n—r)!

prob. 9(i)). Deduce that H" (G, k) = k() as k-modules for any commutative ring k.

(8) Let G be a finitely generated free abelian group, let H be a finite group, and let n € N.
Prove that H"(G x H,Z) =@, ,_, H'(G,Z) ®z H*(H,Z).

(9) Let G be a group, let k be a commutative ring, let A be a flat right kG-module, and let
B be a left kG-module.

(i) If P is a right kG-module, prove that (P ®x A) ®ke B is naturally isomorphic to
P ®rg (A ®y B). (Just establish the isomorphism: it is not necessary to verify that
it is natural.) Of course G is acting diagonally on A ®j B and P ®j A.

(ii) If P is a flat right kG-module, prove that P ®; A is also a flat right kG-module.

(iii) Prove that Tor*@ (A, B) = H, (G, A ®; B) for all n € N.

Monday, November 7

Chapter 13
Graded Algebras

Notation Let G be a group, let k£ be a commutative ring, and let M be a kG-module. Then
it is standard to define H*(G, M) = @, .y H" (G, M). Similarly if N is a left kG-module, then
one defines H, (G, N) = @, oy H, (G, N).

Group cohomology (H*(G, M)) is studied much more than group homology (H.(G, N)),
and the reason seems to be that if k is a commutative ring, then H*(G, k) can be made into
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a ring, in fact a k-algebra, whereas there does not appear to be a corresponding construction
for group homology. In general one cannot make Extr(M, N) into a ring. The fact that one
can make H*(G, k) into a ring depends crucially on the diagonal action of G on the tensor
product of two kG-modules. Actually one can make this construction using bialgebras (Hopf
algebras without an antipode), rather than just for group rings as we are going to do here.

So let G be a group, let £ be a commutative ring, and let M be a kG-module. We
are going to make H*(G, k) into an anticommutative graded k-algebra, and H*(G, M) into a
graded H* (G, k)-module. Let us recall what is meant by an anticommutative graded algebra,
and what is meant by a graded module.

Definition Let k be a commutative ring, and let A be a k-algebra (not necessarily commu-
tative). Suppose we can write A = @, .y Ar (as a k-module) such that A,A, C A, for all
r,s € N. Then we say that A is a graded k-algebra. The elements A, are called the homoge-
neous elements of degree r. To say that a € A has degree r will mean that a is homogeneous
of degree r; i.e. a € A,.

Examples

(i) Any algebra A can be trivially graded by setting A9 = A and A, =0 for all r € P.

(ii) Any polynomial ring k[ X1, Xo,...] is a graded algebra, by letting A, be the homogeneous
polynomials of total degree r. Thus for k[X,Y], we let Ag =k, Ay = kX + kY, Ay = kX? +
EXY+EY? A3 = kX3 4+EX?Y +kXY2+EkY3, and in general A, = kX" +kX " 1Y+ kY.

Exercise Let k be a commutative ring, and let A = P
that Ag is a subring of A, and that €

ren Ar be a graded k-algebra. Prove
r>n A, is a two-sided ideal of A for all n € N.

If A is a graded k-algebra, then is should be obvious what the definition of a graded
A-module is.

Definition Let k£ be a commutative ring, let A be a graded k-algebra, and let M be an
A-module. Then M is a graded A-module means that we can write M = @,y M, (as
k-modules) such that M, A; C M, for all r,s € N. The elements of M, are called the
homogeneous elements of degree r of M

Examples
(i) If A is a graded k-algebra, then A is itself a graded A-module.

(ii) Let A = k[X1, Xa,...] be a polynomial ring, graded by total degree as above, and let k
denote the A-module with all the X; acting trivially (so bX; = 0 for all b € k and for all 7).
Then M = k is a graded A-module with My = k and M, = 0 for all r € P.

Exercise Let k be a commutative ring and let A be a graded k-algebra. Prove that @, A,
is a graded A-module for all n € N.

It is obvious what is meant by a commutative graded k-algebra: it is a graded k-algebra
which is commutative. However the algebra H*(G, k) turns out not to be commutative, but

anticommutative. This means that if A = @, .y A, is an anticommutative graded k-algebra,
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then a,as = (—1)"%asa, for all a, € A, and for all a; € A (1, s € N). The reason for H*(G, k)
being anticommutative rather than commutative is the sign involved when defining the tensor
product of two chain complexes, as we shall see later.

Examples

(i) If A is a commutative graded k-algebra, then P, .y A2, is an anticommutative graded
subalgebra of A. Also if A has no elements of odd degree, then the concepts of commutative
and anticommutative coincide.

(ii) If k is a field of characteristic 2, then the concepts of commutative and anticommutative
coincide.

(iii) Let k be a commutative ring, let A be the free k-module of rank 4 with basis {1, a, b, ¢},
and we make A into a k-algebra by defining a multiplication as follows. 1 will be the identity,
thus 11 =1,la=a=ual, lb=b=>bland lc=c=cl. Also a®> =b%>=c?> = ac = ca = bc =
cb =0, and ab = —ba = ¢. We grade A so that k1 are the homogeneous elements of degree 0,
ka + kb are the homogeneous elements of degree 1, and kab are the homogeneous elements of
degree 2. Then A is an anticommutative graded k-algebra.

Exercise Verify the above statement, that indeed A is an anticommutative graded k-algebra
(you need to check the associative law).

In fact there is an easy construction of A as follows. Let B be the k-algebra with basis {1, z},
where the multiplication is defined by 11 = 1, 1z = 2 = z1, and z? = 0. It is easy to check
that this yields a k-algebra structure on B (associative law is easy to check in this case). In
fact B = k[X]/(X?) as k-algebras. We can make B into an anticommutative graded k-algebra
by letting k1 be the homogeneous elements of degree 0, and kx be the homogeneous elements
of degree 1. Then A = B ®; B as anticommutative k-algebras, where the tensor product of
anticommutative graded k-algebras is as defined in the next paragraph.

If A, B are anticommutative graded k-algebras, then their tensor product becomes an
anticommutative graded k-algebra with product

(a ® b)(a/ ® bl) — (_1)degbdega’aa/ ® bb/7

where b,a’ are homogeneous elements of B and A respectively. It is then routine to check
that A ® B is indeed an anticommutative graded k-algebra. Perhaps the only thing which is
not immediately obvious is the associative law. First we verify it for homogeneous elements:
suppose a,a’,a’ € A and b, b, b” € B are homogeneous of degrees r,r’, 7" and s, s, s” respec-
tively. Then a computation shows that

(a@b)@ @v))(@” ©b") = (1) ad'a” @ W't = (a@b)((a' @ V)(a" ®b")).

The case for general (not necessarily homogeneous elements) now follows from the k-bilinearity
of the tensor product. It is a general technique that when one is trying to prove something
about graded algebras, often one needs only check that the required equalities hold for the
homogeneous elements.
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Exercise Let k be a commutative ring, and let A, B be graded anticommutative k-algebras.
Prove that the map 7: A ®, B — B ®; A defined by 7a ® b = (—1)d@adeebp @ g (a,b
homogeneous) is an isomorphism of graded k-algebras.

Cup Products After the digression into graded algebras, we can now return to cup prod-
ucts. Let

(Pe): 2P 2P 57— 0

be a projective resolution of Z with ZG-modules. Then by the Kiinneth formula and the
Theorem at the end of the tenth chapter, (P®z P, e®¢) is a projective resolution of Z®yzZ with
projective ZG-modules, where G is acting diagonally. We also have a natural isomorphism of
ZG-modules p: Z @y 7 — Z defined by pa ® b = ab for a,b € Z. Thus if 7 = pu(e ® €), then
(P ®z P, ) is a projective resolution of Z with ZG-modules. By Lemma 1 of chapter 2, there
exists a chain map

0: P— P&z P (1)
extending the identity map on Z.

Twelfth Homework Due 9:00a.m., Monday, November 14.

(1) Let G be a finite cyclic group, and suppose 0 — A % B — C — 0 is an exact sequence of
ZG-modules.

(i) Prove that there is an isomorphism 9:vH1(G7 A) — H3(G, A) such that 0(ker ay,) =
ker ag«. (s is the map H'(G, A) — H'(G, B).)
(ii) Prove that there is an exact hexagon of groups

HY(G, A) — H' (G, B)
/! N\
H*(G, C) HY(G,C)
AN /
H?*(G, B) «— H*(G, A)

(2) Let G be a finite cyclic group. Then an important tool in number theory is the Herbrand
quotient h(A), defined as follows. Let A be a ZG-module such that the cohomology groups
H'(G, A) and H?*(G, A) are both finite. Then we set h(A) = |H*(G, A)|/|HY(G, A)| (so
h(A) is some rational number).

(i) Prove that if 0 - A — B — C — 0 is an exact sequence of abelian groups, then
|B| = | A||C] (assume for simplicity that A, B, C are all finite, though the result is still
true without this hypothesis if correctly interpreted).

(ii) Let 0 = A — B — C — 0 be an exact sequence of ZG-modules, and suppose that
H'(G, A), H(G, B) and H (G, C) are finite for i = 1,2. By splitting the exact hexagon
of the previous problem up into short exact sequences, prove that h(B) = h(A)h(C).
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Let G be a finite group.

(i) By considering the exact sequence of ZG-modules 0 — Z — Q — Q/Z — 0 (where G
acts trivially on each term), prove that H*(G,Z) = Hom(G, Q/Z).

(ii) If n € P, prove that H*(Z/nZ,Z) = Z/nZ (using (i), but not the formula I gave in
class for the cohomology of a cyclic group).

(iii) Using the Universal Coefficient Theorem for group cohomology, deduce from (ii) that
H*(Z/nZ, k) = k/nk as k-modules. (Again, don’t use the formula I gave in class for
the cohomology of a cyclic group, but you may assume that H> (Z/nZ,7) =0.)

Let G be a finite group. Using the techniques and results of the previous problem, prove

(i) H*G,Z)=G/G".

(ii) Prove that H"(G,Q/Z) = H" (G, Z) for all r € P.

(iif) Prove that H""'(G,Z) = lim H"(G,Z/nZ) for all r € P. Here (Z/mZ, 1) is the
direct system of cyclic groups where there is a map f),: Z/mZ — Z/nZ if and only
if m|n, and all the f' are monomorphisms.

Let k£ be a commutative ring and let M be a right kG-module.

(i) Prove that M ®) kG = M ® kG as kG-modules, where on the left G is acting
diagonally, and on the right M is viewed as a k-module. On both sides, kG is a right
kG-module via right multiplication by kG. (Map m ® g to mg~! ® g.)

(ii) Prove that if M is free as a k-module and F' is a free kG-module, then M ®j F' (where
G is acting diagonally) is a free kG-module.

(iii) Prove that if M is projective as a k-module, and P is a projective kG-module, then
M ®j, P is a projective kG-module (where G is acting diagonally).

Let p be a prime, let £ be a field of characteristic p, and let G = H x P be the split
extension of the normal subgroup H with the subgroup P. If P is the Sylow p-subgroup
of G, prove that H"(G, k) = H" (P, k) as k-modules for all n € N.

Let p be a prime, let k£ be a field of characteristic p, let G be a finite p-group, let M be
a ZG-module which is projective as a Z-module, and let n € N. If H"(G, M ®z k) = 0,
prove that H" (G, M) = 0.

Let 1 < p € R. One defines LP-cohomology groups H" (G, M) in the same way as the
ordinary cohomology groups except that one requires M to be a Banach space such that
the action of G on M is continuous, that maps are continuous with respect to the LP-norm,
and that one replaces the image with the closure of the image.

Tt turns out that " (G, M) is M€ (just as in the ordinary cohomology case, and the proof is
the same). Let L”(G) denote the Banach space {3 ;a9 | ag € Cand ) ¢ |ag|” < oo}.
Then G acts (continuously) by right multiplication on LP(G): (deG agg)T = > gec 49T
for z € G, and in this way CG is a CG-submodule of L”(G) (in fact, LP(G) is the closure
of CG in the LP-norm).

Prove that ﬁO(G, LP(G)) = 0 if and only if G is infinite.
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(9) Let H < G be groups such that H = Z, and let M be a ZG-module. Suppose [G : H] =
n < 00.

(i) Prove that H"(H, M) =0 for all r > 1 (use HW10 prob. 9(i)).
(ii) Prove that nH" (G, M) =0 for all r > 1.

Monday, November 14

Chapter 14
Cup Products

Let M be a ZG-module and let k be a commutative ring (one possibility that we shall be
examining presently is the case M = k; when considering k as a ZG-module or kG-module,
unless otherwise stated, we shall always assume that the action of G on k is trivial: i.e. ag = a
for all @ € A and g € G). We shall calculate H*(G, M) and H*(G, k) using the projective
resolution P of Z at the end of the last chapter. Suppose u € H' (G, M) and = € H*(G, k).
We want to define the product uz: this will make H*(G, k) into a ring in the case M = k, and
H*(G, M) into a right H*(G, k)-module. Choose f € Homzg(P,, M) and g € Homgg(Ps, k)
representing u and x respectively (thus we assume that oy f =0 = £}, ,9). Then f®g €
Homyg (P, ®z Ps, M), where (f ® g)(a®b) = f(a) g(b) for a € P. and b € Ps. Let us calculate
the boundary of f ® g: it is

i f®g+(=1)"f® B9 =0.

Therefore f®g represents an element 'z’ of H" ¥ (Homyg (P®z P, M)). Tt is not difficult to see
that this element depends only on v and x, and not on the choice of f and g. Using Lemma 2
of chapter 2, it follows that 6*(u’z’) is a well defined element of H"™*(Homgzg(P, M)), which
does not depend on the choice of §. Therefore (f ® g)0 represents a well defined element of
H"**(G, M), which we shall denote by uz.

We make the following two notes.

(i) ux does not depend on the choice of f, g, and 6: it only depends on u and z.
(ii) It is important to compute ux using the same resolution of Z as used for u and z.

If v is an arbitrary element of H*(G, M), then we shall use the notation v; to denote the
ith component of v: thus v; € H'(G, M) and v = ), .y v;. We can now define the cup product
vy of arbitrary elements in H* (G, M) and H* (G, k) respectively by

(vy)r = Y viy;-

i+j=r

There is an obvious way to give H*(G, M) a grading: namely we let the homogeneous
elements of degree n be the elements of H" (G, M). We now have the following theorem.

Theorem Let G be a group, let k be a commutative ring, let M be a right kG-module,
and let 7: Z — k be the unique ring homomorphism (so ma = al for all a € Z). Then
H*(G, k) is a graded anticommutative k-algebra with a 1, and H*(G, M) is a graded right
H*(G, k)-module. If (P, ap) is a projective resolution for Z with ZG-modules and e € H°(G, k)
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represents mo € Homya (P, k), then ue = u for all u € H*(G, M). (Thus H*(G, k) has a 1
and H*(G, M) is a unital H*(G, k)-module.)

Proof We shall leave the proof of the properties of e as an exercise. Everything else is now
clear except the anticommutativity: we must prove that if z € H"(G,k) and y € H*(G, k),
then zy = (—1)"*yz.

Let (P,ap) be a projective resolution for Z with ZG-modules, let f € Homgyg (P, k)
represent z, let g € Homyg (Ps, k) represent y, and let u: Z ®z Z — 7 denote the ZG-module
map defined by p(a ® b) = ab. Then (P ®z P, u(ap ® ap)) is also a projective resolution of Z
with ZG-modules, so there exists a chain map 6: P — P ®z P extending the identity map on
Z. By definition, (f ® g)0 and (g ® f)0 € Homz(P, s, k) represent xy and yz € H' (G, k)
respectively, and application of Lemma 2 of chapter 2 shows that

0*: H"*(Homza(P ®z P, k)) — H"*(Homzg (P, k))

is an isomorphism. Therefore we want to show that f ® g and (—1)"*g ® f represent the same
element in H"*(Homzg (P @z P, , k)).

Define a chain map 7: P®yz P — P ®z P by 7(a®b) = (=1)"(b ® a) for a € P, and
b € P, (we need the (—1)" to ensure that 7 commutes with the boundary maps). Then
(feg)r=(-1)"*(9® f), and the induced map

7 H*(Homzg (P ®z P)) — H™"¥(Homgzg (P ®z P))

is the identity by Lemma 2 of chapter 2. This proves the result.

Exercise Prove that ue = u for all u € H*(G, M) in the above Theorem. Here is an outline
of what to do.

(i) By dimension shifting, we may assume that « € H’(G, M) (you will need to use the
fact that every module can be embedded in an injective module).

(ii) Prove that ue = u for all u € H*(G, M) in the case Py = ZG and g = g ® g for all
g €G.

(iii) Prove that ue = u for all u € H*(G, M) for arbitrary P,.

Various group maps between the various H" (G, M) are in fact ring and/or module maps,
and a large number of results can now be read off. For example

Theorem (Kiinneth theorem) Let G, H be groups, and let k be a commutative hereditary
ring. Suppose G is of type FP,, over k. Then there is a natural monomorphism of anticom-
mutative graded k-algebras m: H*(G, k) ®, H*(H, k) — H*(G x H,k). If k is a field, then 7

is an epimorphism.

Remarks

(i) A homomorphism of graded k-algebras will normally mean an algebra homomorphism
which respects the grading. In this case it is obvious that 7 respects the grading.

(ii) When £ is a field, it follows from the above Theorem that once we have calculated the
ring structure of H*(G, k) for G cyclic, then we have calculated the ring structure of H* (G, k)
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for any finitely generated abelian group (since any finitely generated abelian group is a direct
product of cyclic groups).

(iii) Unfortunately there does not appear to be any useful ring structure on the Tor term
in the Kiinneth formula, so if k£ is a commutative hereditary ring which is not a field (and
the important case here is when k = Z), it is not clear how to calculate the ring structure of
H*(G x H,k) from that of H*(G, k) and H*(H, k). In fact when k is a field, in general the
cohomology rings with coefficients in Z are far more complicated than the cohomology rings
with coefficients in k.

Proof of Theorem This is just the result at the bottom of the first lemma of chapter 11; all
that we need to do is to verify that the map 7 respects multiplication (i.e. the cup product).
Since 7 respects addition (because it is a group homomorphism), it will be sufficient to check
this on homogeneous elements.

Let (P, ap) be a projective resolution of Z with ZG-modules, and let (@, (p) be a projective
resolution of Z with ZH-modules. Define pu: Z ®7 Z — Z by p(a ® b) = ab for a,b € Z. then
(P®z P, n(ap®ayg)) is a projective resolution of Z with ZG-modules, and (Q®zQ, 1(5o®z00))
is a projective resolution of Z with ZH-modules. Let : P - P®z P and ¢: Q — Q ®z Q
be chain maps extending the identity on Z.

Let r,s € N, let u € H" (G, k) be represented by f € Homyg (P, k), let v’ € HT/(G, k) be
represented by f’ € Homyza (P, k), let v € H*(G, k) be represented by g € Homy(Ps, k), and
let v’ € HS,(G, k) be represented by ¢’ € Homzc(Py, k). We need to show that 7 ((u®v)(u' ®
v')) = m(u®v)m (v ®@v’). By definition, 7(u®v) is represented by f®g € Homz:((Pr®0zQ5), k)
and 7(u’ ®v') is represented by f' ® ¢’ € Homzg((P ®z Qs ), k). Define a chain map

T: PR PRz QR Q — PRy QR PRy Q

by T(p@p ®q®q) = (—1)desrdes “p®q®p @q, where p,p’ and ¢, ¢’ are homogeneous
elements of P and @ respectively (we need the (—1)4¢87de84 to ensure that 7 commutes with
the boundary maps). Then by definition of the cup product, (u ® v)(u’ ® v') is represented
by

(f ®Ig& f/ ® g,)T(G ® ¢) € HomZ[GxH](Pr+r’ Xz Qs—i—s’v k)
Also uu' is represented by (f ® f')0 € Homyg (P, 1,7, k), and vv’ is represented by (¢ ® ¢')¢ €
Homyzpy (Qs+s, k). Therefore m(uu’ ® vv') is represented by
(f ® f/ ®g® gl)(e ® ¢) € HomZ[GxH] (P’r-i—r’ ®z Qs—l—s’a k)
But (f@g® f @g)r=(-1)""(fef @gg)and (u@v)(u @v') = (=1)"uu' @ vv/,

and the result follows.

We list some further properties of the cup product.

Theorem Let G, H be a groups, let £ be a commutative ring, let L, M, N be kG-modules,
let w € H(G, M), and let x € H*(G, k).

(i) If6: H— G is a homomorphism, then 6*(ux) = 0*(u)0*(z).
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(ii) If ¢: M — N is a kG-map, then ¢.(uz) = ¢ (u)z.

(iii)) f0 = L - M — N — 0 is exact and 0: H*(G, N) — H*(G, L) is the map induced
by this sequence, then §(vx) = (dv)x for v € H* (G, N).

(iv) If H < G and [G : H| < 00, then try ¢((resq pu)y) = utry gy for y € H*(H, k).

The Bockstein Map This is an important map in group cohomology. Among other things,
it can facilitate the calculation of the cohomology of a cyclic group, especially its ring structure.
There are several versions of the Bockstein, the most useful seems to be the following.

Definition of the Bockstein Map Let p be a prime, let k& be the field Z/pZ, and let G
be a group. Then we have a short exact sequence of ZG-modules 0 — k — Z/p*Z — k — 0
(where G acts trivially on each term), hence the long exact sequence for cohomology yields
an exact sequence

— H(G, k) 25 B k) —

and we call f3,, the Bockstein map. We can extend f,, to be defined on H"(G, K) for an
arbitrary field K of characteristic p by using a variant of the Universal Coefficient Theorem
for group cohomology of chapter 11.

Exercise Let £k C K be fields, let G be a group of type FP., over k, and let M be a
kG-module. Prove that H" (G, M ®; K) 2 H" (G, M) ® K for all r € N.

Thus for an arbitrary field K of characteristic p, we define the Bockstein (still denoted £3,,)
from H"(G, K) to H"*' (G, K) to be 8, ® 1, though we need in this case to assume that G is
of type F P, over k.

How is (3,, defined at the cochain level? Let

(Pyag): - %P 25 Py 2% Z —0

be a projective resolution of Z with ZG-modules, and let v € H"(G, k) be represented by
f € Homgzg(P,, k) (so we assume that fa,y; = 0). Since P is projective, we may lift f
to a map f € Homgg(Pp,Z/p?Z). Then (see chapter 5) fani1: Poyy — Z/p*Z has image
contained in pZ/pQZ = k, because fa,y1 = 0. Then foszrl € Homyg (P41, k) represents
Bru. We now have the following properties of the Bockstein map.

Theorem Let G be a group, let p be a prime, and let K be a field of characteristic p.
Assume that G is of type of FP, in the case K # Z/pZ.

(i) Bn+1Bn = 0 (because ay 410,42 = 0).

(i) Bo=0.

(iii) Suppose r € N, x € H"(G, K) and y € H*(G, K). Then f(xy) = (Bx)y + (—1)"xBy.
Proof We shall leave the proofs of (i) and (ii) as exercises, and just prove (iii).

We may assume that K = k = Z/pZ and that y is homogeneous of degree s for some
s € N. Let

(Pag): -+ 2P 2L P 2% 7 —0
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be a projective resolution of Z with ZG-modules, let f € Homzq (P, k) and g € Homgg (Ps, k)
represent x and y respectively, and let pu: Z ®z Z — Z be the map defined by u(a ® b) = ab.
Then (P ®z P, u(ap ® ap)) is also a projective resolution of Z, so there exists a chain map
0: P — P ®y P extending the identity map on Z. Then zy is represented by (f ® g)f €
HOH]ZG(PT+5, k)

Lift f and g to elements f and § of Homyg (P,, Z/p?Z) and Homyq (P, Z,/p?Z) respectively.
Then (f ® §)0 € Homyg(Prys, Z/p?Z) lifts (f © )0 and so Bri(zy) is represented by (f ®
§)0rssris11 € Homyg(Prysi1, k). Let O denote the boundary map on P®y P; thus 0,4 s(u®
v)=au®v+ (—1)"u® asv for u € P. and v € Ps. Then (3,4 ,(zy) is represented by

(f ® g)ar+s+19 = (fa’r—i-l b2y g + (*1)?”]?@ gas-ﬁ-l)g'

I claim that (under the appropriate identifications), fAOéT_A'_l ®g= fozTH ® g and f ® gousy1 =
f ® gasy1. Once this is established, then the result follows because foer represents Gz, g
represents y, f represents x, and gasyq represents (y.

We prove the claim; without loss of generality, we need only prove faTH ®Rg= faTH ®g.
Ifue Py, ve Qs then fa,py ®§(u®v) = (fariu)(gu). Let m: Z/p*Z — Z/pZ be the
natural epimorphism, and let v: Z/pZ — 7Z/p?Z be the natural injection. Now faH_lu €
pZ/p*Z (by construction of the Bockstein map), so we may write fozr+1u = xq for some
xo € Z/pZ. Using the Lemma below (faT+1u)(§v) = Y(zomwgv). By definition, 7§ = ¢, so
(fars1u)(§0) = $(zogv) = (tz0)gv. Therefore

(farn1u)(gv) = (fariiu)(gv)

for all u, v, hence faTH ®Rg= farﬂ ® g and the claim is established.

Lemma Let p be a prime, let x,y € Z/p®Z, let w: Z/p?Z — Z/pZ be the natural epimor-
phism, and let : Z/pZ — 7/pZ be the natural injection. Suppose x € pZ/p*Z and = = px
where z¢ € Z/pZ. Then zy = ¢ (zomy).

Thirteenth Homework Due 9:00a.m., Monday, November 28.

(1) Let G = (g) be a cyclic group, and let M be a ZG-module.

(i) Prove that multiplication by 1 — g on M (i.e. the map m — m(1 — g) for all m € M)
induces the zero map on H" (G, M) for all r € N.

(ii) Prove that if M is finite and M = 0, then multiplication by 1 — g on M is a
ZG-automorphism.

(iii) Prove that if M is finite and M = 0, then H"(G, M) = 0 for all r € N.

(2) Let G be a finite group and let M be a finitely generated ZG-module. Prove that H" (G, M)
is a finitely generated abelian group for all r € N. Deduce that H" (G, M) is a finite group
for all r € P.

(3) Let H < G be groups and let M be a ZH-module. Prove that M ®zy ZG is isomorphic
to ZG-submodule of Homyzy (ZG, M).
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Let H < G be groups such that [G : H| = n is finite, let {z1,...,2,} be a right transversal

for H in G, and let M be a left ZH-module. Let (P, agp) be a projective resolution of Z with

ZG-modules. For r € N, define 0: P, @z M — P, @z M by 0(pom) =31 pr; ' @z;m.

(i) Prove that 6 is a well defined map that does not depend on the choice of transversal
{ZEl,...,.’,En}. .

(ii) Prove that € induces a well defined map 0: P. ®zc M — P, Qz M.

(iii) Prove that 6 induces a well defined map 07 : H,.(G, M) — H,.(H, M) for all r € N.

Let k be a field, and let A be a finitely generated anticommutative graded k-algebra: this
means that there exists a finite subset X of A such that every element of A can be written
as a (finite) k-linear sum of products of elements of X. Let B denote the subalgebra of A
consisting of sums of elements of even degree.

(i) Prove that there exists a finite subset Y of A consisting of homogeneous elements of A
such that every element of A can be written as a k-linear sum of products of elements
of Y.

(ii) Prove that there exists a finite subset Z of B consisting of homogeneous elements of B
such that every element of B can be written as a k-linear sum of products of elements
of Z. Deduce that B is a Noetherian ring.

(Continuation of the previous problem.) Let k be a field, let A be a finitely generated
anticommutative graded k-algebra, let B be the subalgebra of A consisting of sums of
elements of even degree, and let M be the subset of A consisting of sums of elements of
odd degree.

(i) Prove that M is a finitely generated B-submodule of A. Deduce that M is a Noetherian
B-module.
(ii) Prove that A is a (right and left) Noetherian ring.

Let k be a field with characteristic not equal to two, let A be an anticommutative graded
k-algebra, let B be the subalgebra of A consisting of sums of elements of even degree, and
let M be the subset of A consisting of sums of elements of odd degree.

(i) Prove that the B is a central subalgebra of A.

(ii) Prove that if z € A is homogeneous of odd degree, then z? = 0.

(iii) Let X be a finite subset of order n consisting of homogeneous elements of M. Prove
that any product aias ... of elements of A, with at least n 4+ 1 of the a; € X, is 0.

(iv) If N is an ideal of A which is generated by a finite number of elements of M (so N is
finitely generated as a right A-module), prove that N is a nilpotent ideal (i.e. there
exists t € P such that N* = 0).

Let G be a group, let 1 < p € R, let a € LP(G) (see HW 12, prob. 8), and let : CG —
L?(G) denote the inclusion map.

(i) Suppose g € G has infinite order. If ag — o € CG, prove that a € CG. Deduce that
6.,: H'(G,CG) — H'(G,L?(@)) is injective.

(ii) Suppose G is infinite and we can write G = |J;=, G;, where the G; are finite subgroups
of Gand G; C G5 C ---. Prove that there exists a« € LP(G)\CG such that ag—a € CG
for all g € G. Deduce that 6y, : H'(G,CG) — H' (G, LP(@G)) is not injective.
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Monday, November 28
Chapter 15
Cohomology Rings

We have already introduced the notation for @:°,H'(G, M): this is standard. We shall
also use the less standard though often seen

HY(G, M) = P H*(G, M) and HYG, M) =PH> (G, M).
i=0 i=0

Exterior Algebra The anticommutative graded k-algebra B of Example (iii) of chapter 13
is often called the exterior algebra on the one generator x. The exterior algebra on the d-
generators {1, ..., 24} is the algebra B®y - - -®j, B (where B appears d-times in the foregoing
tensor product), and is denoted Eg[z1,. .., z4] (of course when we are taking tensor products,
we are doing it as anticommutative k-algebras, so that what results is an anticommutative
k-algebra). Thus Ex[z1,...,74] = Ep[z1] @k - - @k Ex[z4], as a k-module is free of rank 2¢,
and the z; satisfy 7 = 0 and x;ix; = —xjx; for i # j.

The Cohomology Ring of a Cyclic Group Let k£ be a commutative ring and let G
be a finite cyclic group. We shall calculate the ring structure on H*(G, k); we have already
calculated the additive structure (see chapter 11). Let us recall some of the proof. We have
an exact sequence

0 — kg — kG >k — 0, (1)

where € is the augmentation map and kg denotes the augmentation ideal of kG. We also have
a kG-epimorphism «a: kG — kg defined by al = g — 1, and then we have an exact sequence

0 —k— kG % kg — 0. (2)

Applying the long exact sequence for Exty in the second variable to (1) and (2) respectively
and using H"(G,kG) = 0 for all r € P (because G is finite, see chapter 12), we obtain
isomorphisms ~,: H'(G,k) — Ht(G,kg) and 6,: H'(G, kg) — H (G, k) for all r € P.
Thus if we set 6, = 6p417-: H (G, k) — H""2(G, k), then 6, is an isomorphism for all r € P.
Let us consider two important cases.

Case 1 k =7/pZ. Let pbe a prime and let k = Z/pZ. We shall assume that p||G| (if p t |G,
then as we have seen earlier H"(G,k) = 0 for all » € P, and then we have H*(G, k) & k).
The long exact cohomology sequence in the second variable applied to (1) yields an exact
sequence

. — H°(G, k) =% HY(G, kg) — 0,

because H' (G, kG) = 0 (G is finite). We claim that 7 is an isomorphism: this is not hard
to do by direct calculation, but we shall show this using previous results. Because d; is an
isomorphism, we see that H'(G, kg) = H?(G, k). From the results on the cohomology of a
cyclic group from chapter 11, we see that H?(G, k) = k and we deduce that H' (G, kg) = k.
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Since HO(G, k) = k, it follows that vy is an isomorphism as claimed. We now see that ag is
an isomorphism and hence ;. is an isomorphism for all r € N,

Set © = 6y1 € H*(G,k). Using part (iii) of the third theorem of the previous chapter
twice, we see that 6,4 s(uv) = (6,u)v for all w € H'(G, k) and v € H*(G, k), so applying this
with v = 1 and v =y, we deduce that 0,y = xy for all y € H"(G, k). Thus

multiplication by x is an isomorphism H" (G, k) — H""%(G, k) for all » € N. (3)

Define a ring homomorphism ¢ from the polynomial ring k[X] — H®V(G, k) by ¢X = z.
Then (1) above shows that ¢ is an isomorphism, hence H®V (G, k) = k[X]. We now have a
further subdivision of cases, namely p is odd and p is even.

Case 1la p is odd. Let y be any nonzero element of H'(G,k). Because k is a field of
characteristic not equal to two, HW 13, prob. 7(ii) shows that y> = 0. Using (3), it now
follows that H*(G, k) is the k-algebra with k-basis {2y’ | i € Z and j = 0 or 1}, and
multiplication is determined by the rules y? = 0 and 2y = —yz. Another way of saying this is
that H" (G, k) = k[X] @, E[y]. Alternatively we can write H*(G, k) = k[z,y]/ (22, 2y — yx),
the free k-algebra on generators {x,y} factored out by the two-sided ideal generated by 7>
and xy — yx.

Case 1b p = 2. Here we need a further subdivision of cases, depending on whether 4||G].
We will just do the case |G| = 2 and leave the others as exercises, so assume now that |G| = 2.
Let g € G\1 (so G = {1,g}). Since (9 —1)g=9¢g> —g=1—g=g—1in kG (where we have
used the fact that —1 = 1 in characteristic 2) and kg = (¢9—1)kG, it follows that g = o for all
o € g and hence g 22 k as kG-modules. Since it was proved earlier that ~, is an isomorphism
for all » € N, we have now established that ,: H"(G,k) — H ™! (G, k) is an isomorphism
for all € N. Set w = 1 € H' (G, k). Using part (iii) of the third theorem of the previous
chapter, we see that 7,4s(uv) = (y-u)v for all w € H' (G, k) and v € H*(G, k), so applying
this with v = 1 and v = y, we deduce that ~,y = wy for all y € H" (G, k). Thus

multiplication by w is an isomorphism H"(G, k) — H" (G, k) for all » € N. (4)
Define a ring homomorphism from the polynomial ring k[X] — H*(G,k) by v X = w.
Then (4) above shows that 1 is an isomorphism and hence H*(G, k) = k[X].

Exercise Compute the cohomology ring for the finite cyclic group G with coefficients Z /27
when |G| # 2.

Summing up, we have the following theorem.

Theorem Let p be a prime, and let G = Z/nZ where n € P and p|n.
(i) Ifpisodd or 4|n, then H*(G, k) = k[z,y]/(2?, vy—yx), where degx = 2 and degy = 1.
(i) If p = 2 and 4 t n, then H*(G, k) = k[X] where deg X = 1.

Exercise Using the Universal Coefficient theorem, show that the above result remains true
if k is replaced by any field of characteristic p.

Case 2k =7Z. Letn =|G|. The computation of the cohomology of a finite cyclic group from
chapter 11 shows that H*(G,Z) = Z, H"(G,Z) = Z/nZ if r € P is even, and H"(G,Z) = 0
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if 7 € P is odd. Thus we need only worry about H®V(G, k). As before we have 6, is an
isomorphism for all » € P; however we can only assert that 7 is onto and hence we only
have that 6y is onto. Let z = 0yl € HQ(G,Z). Using the third theorem of the previous
chapter again, we see that 6,y = xy for all y € H" (G, Z). Therefore multiplication by x is an
isomorphism H" (G, Z) — H""%(G, Z) for all € P, and is an epimorphism for r = 0. Define a
ring homomorphism ¢ from the polynomial ring Z[X] — H*(G,Z) by ¢X = z. Then ¢ is an
epimorphism with kernel (nX). We conclude that H*(G,Z) = Z[X]/(nX), where deg X = 2.

The Bockstein Let us compute the Bockstein map in the case G = Z/pZ where p is a
prime. The exact sequence 0 — Z/pZ — 7/p*7Z — 7./pZ — 0 yields an exact sequence

0 —H°(G,Z/pZ) — H'(G,Z/pZ?) — HY(G, Z/pZ) 2 0\ (G, Z/pZ) — - -
. — H'(G,Z/pL) — H'(G,Z/pL?) — H'(G,Z/pZ) 20 B (G, Z/pZ) — - -

Now H"(G,Z/pZ) = Z/pZ for all r € N, H" (G, Z/p*Z) = Z/pZ for all r € P, (use the results
on the cohomology of a cyclic group from chapter 11) and HO(G, Z/p*7) = 7./p*Z. Therefore
Bo = 0 and maps in the above sequence after that are alternately an isomorphism and zero.
It follows that B, = 0 and (2,41 is an isomorphism for all » € N; in particular (; is onto.
Using this and the theorem for the cohomology ring of a finite cyclic group, when p is an odd
prime and k = Z/pZ, we may now write

H* (G, k) = k[u] ® Eg[u]

where u is any nonzero element of H' (G, k). There is a natural isomorphism between H' (G, k)
and Hom(G, k) = Hom(Z/pZ,Z/pZ), and Hom(Z/pZ, Z/pZ) has a canonical nonzero element,
namely the identity map ¢, so it is conventional to choose u to correspond to ¢. Doing this
can be helpful in making certain diagrams commutative.

Elementary Abelian p-groups Let p be a prime, let k be the field Z/pZ, and let G be
an elementary abelian p-group. Then we may write G = G1 X --- X G4 where d € P and
the G; are groups of order p. Using the Kiinneth theorem (see previous chapter) we have
H*(G, k) = H*(G1,k) @, - - @ H (Gg, k). For i =1,...,d, choose u; € H*(Gj, k)\0. We can
now state

Theorem Let 3: H(G;, k) — H?(G;, k) denote the relevant Bockstein map.

(i) If p is odd, then H*(G, k) & k[Bus, ..., fuq] @k Elu, ..., uq).
(ii) If p = 2, then H*(G, k) = k[uq, . .., uq].

Fourteenth Homework Due 9:00a.m., Monday, December 5.

(1) Let G be a finite cyclic group and let M be a finite (i.e. |M| < oo) ZG-module.

(i) If M = M%, prove that the Herbrand quotient h(M) (see HW 12, prob. 2) is 1.
(i) If ME = 0, prove that h(M) =1 (use HW 13, prob. 1).
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(2) (Continuation of the previous problem.) Let G be a finite cyclic group and let M be a
finite ZG-module.

(i) Prove that h(M) =1 when M is finite. ‘ A
(ii) Suppose B is a ZG-submodule of the ZG-module A. Assume that H'(G, 4), H'(G, B)
and H'(G, A/B) are finite for i = 1,2. If A/B is finite, prove that h(A) = h(B).

(3) Let k be a commutative hereditary ring. Determine the ring structure of H*(Z, k). Hence
determine the ring structure of H*(Z x Z, k). (The same result is still true if the hypothesis
that k is hereditary is dropped.)

(4) Let G = Z x Z let p be a prime, and let k = Z/pZ. Prove that 5,.: H (G,Z/pZ) —
H" Y (G, Z/pZ) (where §, is the Bockstein map) is the zero map for all r € N.

(5) Let H < G be groups such that [G : H] < oo, let k be a field of characteristic p,
and assume that p 1 [G : H|. Let R = resq g H'(G,k) and let T' = kertry ¢, where
trg,c: H'(H, k) — H"(G, k) denotes the transfer map.

(i) Prove that H*(H,k) = R® T (as k-modules).
(ii) Prove that RR C R.
(iii) Prove that R =TR C T.

(6) (Continuation of the previous problem.) Let H < G be groups such that [G : H] < oo,
let k& be a field of characteristic p, and assume that p { [G : H|. If I,J <, H*(G, k) and
(resq,m I) H*(H, k) = (vesq,m J) H*(H, k), prove that I = J. Deduce that if H*(H, k) is
right Noetherian, then so is H*(G, k).

(7) Let G = Z/27Z = (g) (the cyclic group of order two generated by the element g), and let
T denote the ZG-module Z with G-action defined by tg = —t for all t € T.

(i) Prove that T'= g as ZG-modules. Deduce that there is an exact sequence 0 — T —
7G — 7 — 0.

(ii) Prove that (¢+1)g = g+1 in ZG. Deduce that (94 1)ZG = Z as ZG-modules (where
as usual, we assume that the action on Z is given by ag = a for all a € Z).

(iii) Define a ZG-map 0: ZG — T by 61 = 1. Prove that ker§ = (1 + g)ZG. Deduce that
there is an exact sequence of ZG-modules 0 — Z — ZG — T — 0.

(8) (Continuation of the previous problem.) Let G = Z/2Z = (g), and let T denote the
ZG-module Z with G-action defined by tg = —t for all t € T'.

(i) Let r € N. Using the exact sequences of the previous problem and the results for the
cohomology of a cyclic group from chapter 11, prove that H"(G,T) = 0 if r is even,
and H"(G,T) 2 Z/2Z if r is odd.

(ii) Let K = Z/4Z be the ZG-module with G-action defined by ag = —a for all a € K.
Prove that H" (G, K) = Z/2Z for all r € N.

(9) (Continuation of the previous problem.) Let G = Z/2Z = (g), let K = Z/4Z be the
ZG-module with G-action defined by ag = —a for all @ € K, and let » € N. Then



82

(prove this) we have an exact sequence of ZG-modules 0 — Z/2Z — K — Z/27 — 0,
where G acts trivially on Z/2Z. Therefore we can define a “twisted Bockstein” map
B.: H'(G,7/27) — H"t1 (G, Z/2Z) to be the map associated to the long exact cohomology
sequence for 0 — Z/2Z — K — 7 /27 — 0. Prove that (. is an isomorphism if r is even,
and [ is zero if r is odd.

Monday, December 5
Chapter 16

Cohomology Rings (continued)

The Bockstein again We give another way to describe the Bockstein map, which will be
of use when calculating the cohomology ring of an abelian group with coefficients in Z. Let p
be a prime. Then we have an exact sequence of Z-modules 0 — Z & Z 5 Z/pZ — 0, where
w1 is multiplication by p and 7 is the natural epimorphism. We can make this into an exact
sequence of ZG-modules by letting G act trivially on each term (i.e. mg = m for all m and
for all g € G). The long exact cohomology sequence applied to this yields an exact sequence

0 — H'(G,Z) ** H(G, Z) ™ H'(G, Z/pl) - H'(G, Z) ™ -

T HY(GL ZpZ) P HUHG, Z) Y NG, 2) T (1)

I claim that 7(, 41y« 0 H"(G,Z/pZ) — H"" (G, Z/pZ) is in fact the Bockstein map. In the
construction of the Bockstein map from chapter 12, we have an exact sequence of ZG-modules

0— Z/pZ 5 2./p*2 5 7./pZ — 0, also with G acting trivially on each term, where p/ is
multiplication by p and 7’ is the natural epimorphism. Putting this together with the exact
sequence from above, we obtain the following commutative diagram with exact rows.

0o — 7z Y 7z o oz/pz —0
Tl (N v
0 — Z/pz X z/p*7 = Z/pZ —0
where 1 is the natural epimorphisms and ¢ is the identity map. Applying the long exact
cohomology sequence and using the fact that it is natural, we obtain a commutative diagram

(G, Z/pz) 2% H™N(G,Z)

Lnx l l« 7r(n+1)>s<

HY(G,Z/pZ) % H"YG,Z/pZ)

where 3, is the Bockstein map. Since ¢y is the identity map, it follows that 8, = 7(,41)« On
as claimed.

Cohomology rings with coefficients in Z We first need the following lemma, which does
not depend on the cup product structure of the cohomology ring.

Theorem Let G be an elementary abelian p-group and let n € P. Then pH"(G,Z) = 0.
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Proof By the results on the cohomology of a cyclic group from chapter 11, the result is
certainly true if |G| = p. In general if |G| > p, write G = H x J where |H|,|J| < |G|. By
the Kiinneth formula (applicable since G has type FP, and Z is a commutative hereditary
ring), we have a split exact sequence

0— P H'(G,Z)®:H°(H,Z) — H*(GxH,Z) — P Torf(H(G,Z),H(G,Z)) — 0.
r4+s=n r4+s=n-+1

If A and B are Z-modules and pA = pB = 0, then p(A ®z B) = 0 = pTorz(A, B). Thus the
result follows by induction on |G|.

Let G be an elementary abelian p-group, let k = Z/pZ, and let us return to the exact
sequence (1). The above result shows that in this case i, = 0 for all n € P, hence we obtain
an exact sequence

0 — H"(G,Z) == H"(G, k) 2% H' (G, Z) — 0
for all n € P. Thus for n € N,

ker 0,, = ker m, 1 1.0, = ker f3,,.
Define

H'(G,Z)=H"(G,Z) ifn>0,
(G, Z) =k,

SO ﬁ*(G, Z) = H*(G,Z)/(p) as anticommutative graded k-algebras. Now mp, induces an
isomorphism fIO(G,Z) — H%G, k) because pH(G,k) = 0, hence m, induces a k-algebra
monomorphism fI*(G, Z) — H*(G, k) with image im m, = ker 0. It follows that H (G,Z) =
ker 3, (this is a ring isomorphism, even though (. is not ring homomorphism). Thus to

calculate H (G, Z) (and hence also H*(G, Z)), it will be sufficient to determine the kernel of
the Bockstein map.

Example Let G be an odd prime, let G = Z/pZ x Z/pZ, and let {u,v} be a k-basis for
HY(G, k). Then H' (G, Z) = k[Bu, Bv] @ Ex[ufv — vBul.

Remarks Since H' (G, k) = Hom(G, k), it follows that H'(G, k) = k @ k, hence H'(G, k)
has a k-basis consisting of two elements. Also when evaluating the tensor product above, it
should be born in mind that Su, v have degree two and that ufv — vBu has degree three;
thus Ej[ufv — vfu] has no elements in degrees one and two.

Proof Set x = pu and y = PBv. From the theorem at the end of the previous chapter,
H*(G, k) = k[z,y] @k Ejlu,v]. Thus we may write the general element of H*(G, k) uniquely
in the form f1 + fou + f3v + fyuv where f; € k[x,y] for i = 1,2,3,4. We want to calculate
ker 3. Note that 3f; = 0 for all 4; this is because B(z'y?) = (Bz)z* 1y’ + xB(x*"1y7) and
Bx = Py = 0, so we can prove this by induction on ¢ + j.
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B(f1 + fou+ f3v + fauv) = 0 <= fox + fzy = 0= fy(xv — yu)
< fas=0and fo =yf, f3=—af

for some f € k[x,y]. Thus if w € i (G, k), then fw = 0 if and only if w can be written in
the form f1 + f(yu — av) for some f, fi € k[z,y], and the result follows.

Exercise Let G = Z/27 x 7/27, and let {z,y} be a k-basis for H'(G,k). Prove that
H (G,Z) = k[2?,y?, 2%y + xy?] (i.e. the subring of the polynomial ring over k in the variables
z,y generated by x2,y?, %y + xy?.)

Copies of handwritten solutions to all the homework problems are available on request.
Peter A. Linnell, January 9, 1995
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