
Monday, August 22

Chapter 1
Policy Sheet and Introduction

Course 6125 (Topics in Algebra; Homological Algebra), index 7834
Instructor Peter A. Linnell
Office McBryde 404
Telephone 231-8001 and 951-0183
E-mail linnell@math.vt.edu

Assessment This will be based on homework which I will collect in once a week on Mondays.
There will be a choice of problems: students who have not passed the Ph.D. qualifying oral
exam will be required to hand in solutions to two problems; students who have passed the
Ph.D. qualifying oral exam will only be required to hand in solutions to one problem! (A
generous instructor!)
Late Homework Half credit (zero credit if received after I have given out the solutions
in class).
Homework Policy Students are allowed to discuss homework among themselves.
Prerequisites 5125–5126 Graduate Abstract Algebra (or consent of the instructor). Also
useful will be 5334 Algebraic Topology.

Books I have decided that there is no book entirely suitable for the course. If I had to
choose a book, it would be “Cohomology of Groups” by K. S. Brown, Graduate Texts in
Math. no. 87, Springer-Verlag, Berlin–New York, 1982, ISBN 0-387-90688-6. If you want to
buy it, order from Springer direct (call toll-free 1-800-SPRINGER); assuming it is in stock
you should receive it within 10 days and it would cost about $40. It is a very well written book
and all the material covered is important. However it assumes rather more algebraic topology
than is suitable for this course (to define CW-complex and prove the Hurewicz isomorphism
theorem would take too much time, and I think most of this class are not familiar with these
topics). Other books relevant to the course are as follows.
(1) “Representations and Cohomology I & II” (two books) by D. J. Benson, Cambridge
Studies in Advanced Math. nos. 30 & 31, Cambridge Univ. Press, Cambridge–New York,
1991, ISBN 0-521-36134-6 and 0-521-36135-4 (call toll free 1-800-872-7423). This has a wealth
of recent important material. On the other hand it is quite densely written and there is a
shortage of exercises and examples. Perhaps more relevant from my point of view is that it
deals only with finite groups, while I want to give finite and infinite groups equal emphasis.
(2) “Modular Representation Theory: New Trends and Methods” by D. J. Benson, Lecture
Notes in Math. 1081, Springer-Verlag, Berlin–New York, 1984, ISBN 0-387-13389-5. This is
the forerunner of (1), but it is not subsumed by (1) and has an appendix with many numerical
examples. Also being in the Springer Lecture Note series, it should be inexpensive; I would
guess about $30.
(3) “The Cohomology of Finite Groups” by L. Evens, Oxford Univ. Press, Oxford–New
York, 1991, ISBN 0-19-853580-5 (call toll free 1-800-451-7556). Similar to (1) but covers less
material at a slower pace.
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(4) “An Introduction to Homological Algebra” by C. Weibel, Cambridge Studies in advanced
Math. no. 38, Cambridge Univ. Press, Cambridge–New York, 1994, ISBN 0-521-43500-5. The
material here is quite close to that which will be covered in this course. However it is rather
disorganized, and there is a shortage of exercises and examples. Also only experts will find
chapters 1 and 2 comprehensible, though it does become easier later on.

(5) “Homology” by S. Mac Lane, Springer-Verlag, Berlin–New York, 1975, ISBN 0-387-
03823-X. A good reference for cohomology over general rings; however I would like to make
explicit calculations for group cohomology: also it is somewhat out of date.

(6) “A Course in Homological Algebra” by P. J. Hilton and U. Stammbach, Graduate Texts
in Math. no. 4, Springer-Verlag, Berlin–New York, 1971, ISBN 0-387-90032-2. Similar to (5),
but with a little more on group cohomology.

(7) “An Introduction to Homological Algebra” by J. J. Rotman, Pure and Applied Mathe-
matics Series no. 85, London–New York, 1979, ISBN 0-12-599250-5. Similar to (5) and (6).

(8) “Cohomology of Finite Groups” by A. Adem and R. J. Milgram, Grundlehren der Math-
ematischen Wissenschaften, vol. 309, Springer-Verlag, Berlin–New York, 1994, ISBN 0-387-
57025-X. Concentrates on cohomology of finite groups. Assumes a fair amount of algebraic
topology: for example chapter 2 assumes a knowledge of G-bundles and classifying spaces.
Also chapter 7 assumes a knowledge of the Chevalley groups and Dynkin diagrams. There
are no exercises.

Syllabus Unfortunately not all the students are familiar with tensor products, so that will
be the starting point of the course. The textbook you used for 5125–5126 should cover
tensor products, at least over commutative rings. However I will require tensor products over
noncommutative rings. Since much of this is very familiar to many of the class, I will cover
it quickly. For the ones who have not seen it before, it is important that you do not get lost
at this point, because tensor products are fundamental to the whole of Homological Algebra.
After that I will cover chain complexes and then I will define Ext and Tor.

Then I will turn to cohomology of groups. After defining the group ring RG of the group
G over the commutative ring R, I will cover the Künneth formula and Universal Coefficient
theorem. I will use these to determine the additive structure of H∗(G, Z) for any finitely
generated abelian group G.

The next topic will be cup products. This induces a ring structure on H∗(G,R) for any
commutative ring R, and is the reason why cohomology seems to be superior to homology,
even though the two theories are dual to each other. I will calculate the cohomology ring
H∗(G, k) for any finitely generated abelian group G and any field k. I will also consider the
case k = Z.

Notation

Z = integers Q = rational numbers
R = real numbers C = complex numbers
N = natural numbers (0, 1, 2, . . . ) P = positive integers (1, 2, 3, . . . )
∀ = for all ∃ = there exists
∈ = is an element of /∈ = is not an element of
∪ = union ∩ = intersection



3

⊆ = is a subset of ∅ = emptyset
|A| = order of A (possibly infinite) a|b = a divides b
A ⊂ B = A ⊆ B and A 	= B A\B = {a ∈ A

∣∣ a /∈ B}
� = is a subgroup (or subring) of A < B = A � B and A 	= B
H � G = H is a normal subgroup of G ∼= = is isomorphic to
ker θ = kernel of the map θ im θ = image of the map θ
Mn(R) = n × n matrices over a ring R
Mm,n(R) = m × n matrices over a ring R
GLn(R) = {A ∈ Mn(R)

∣∣ A is invertible}
Hn(G,R) = nth homology group of the group G with coefficients in the ring R
Hn(G,R) = nth cohomology group of the group G with coefficients in the ring R
(a, b) = greatest common divisor of a and b
[a, b] = lowest common multiple of a and b
Σn = symmetric group of degree n
NH(K) = normalizer in H of K (usually H and K will be subgroups)
CH(K) = centralizer in H of K (usually H and K will be subgroups)
I � R = I is an ideal of the ring R
P �p R = P is a prime ideal of the ring R
I �l R = I is a left ideal of the ring R
I �r R = I is a right ideal of the ring R
M � R = M is a maximal ideal of the ring R

Terminology and Assumed Elementary Results All rings will have a one, and modules
may be left or right modules. However unless otherwise stated, modules will be right modules
and mappings will be written on the left. Furthermore all modules will be unital modules:
this means that if M is a module, then m1 = m for all m ∈ M . If R is a ring and M,N
are right R-modules, then HomR(M,N) will denote the R-module homomorphisms from
M to N , i.e. {f : M → N | f(mr) = (fm)r for m ∈ M , r ∈ R}. If α : N → A is a
homomorphism of right R-modules, then we often denote the group homomorphism from
HomR(M,N) to HomR(M,A) defined by f �→ αf for f ∈ HomR(M,N) by α∗. Similarly if
β : M → B is a homomorphism of right R-modules, then we denote the group homomorphism
from HomR(B,N) → HomR(M,N) defined by f �→ fβ for f ∈ HomR(B, N) by β∗. Then for
any R-module maps α and β, we have (αβ)∗ = α∗β∗ and (αβ)∗ = β∗α∗, assuming of course
that the relevant compositions are defined.

Exercise 1 Let R be a ring and let M be a right R-module. Show that we can make
HomR(R,M) into a right R-module by defining (fr)s = f(rs) for f ∈ HomR(R,M), r, s ∈ R,
and then we have M ∼= HomR(R,M) as R-modules.
Exercise 2 Let R be a ring and let M be a right R-module. Show that we can make
HomR(M,R) into a left R-module by defining (rf)m = r(fm) for r ∈ R, f ∈ HomR(M,R)
and m ∈ M . (Often HomR(M,R) is called the dual of M and is denoted M∗.)
Exercise 3 Let R be a ring and let M be an R-module. Prove that for each m ∈ M , the
formula f �→ f(m) for f ∈ M∗ defines an element θ(m) of M∗∗. Prove further that θ is an
R-module homomorphism from M to M∗∗. In the special case R = Z, M = Q, show that
this is the zero map.
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Exercise 4 Let R be a ring, let M be an R-module, and let 0 → A
α→ B

β→ C be an exact
sequence of R-modules. Prove that the induced sequence of groups 0 → HomR(M,A) α∗→
HomR(M,B)

β∗→ HomR(M,C) is also exact.

Exercise 5 Let R be a ring, let M be an R-module, and let A
α→ B

β→ C → 0 be an exact

sequence of R-modules. Prove that the induced sequence of groups 0 → HomR(C,M)
β∗
→

HomR(B,M) α∗
→ HomR(A,M) is also exact.

Let R be a ring, let I be a set, and let {Mi | i ∈ I} be a family of R-modules. Then the
direct sum

⊕
i∈I Mi is the R-module whose elements are the sequences {mi} with i ∈ I and

mi = 0 for all but finitely many i, and the R-module structure is defined by {mi}r = {mir}
for r ∈ R. Similarly the cartesian sum

∏
i∈I Mi is the R-module whose elements are all

sequences {mi} with i ∈ I, and the R-module structure is again defined by {mi}r = {mir}
for r ∈ R. Of course if |I| < ∞, then

⊕
i∈I Mi

∼= ∏
i∈I Mi, but in general

⊕
i∈I Mi is not

isomorphic to
∏

i∈I Mi.

Exercise 6 Let I be a set, let R be a ring, let A be an R-module, and let {Mi | i ∈ I} be
a family of R-modules. Prove

(i) HomR(
⊕
i∈I

Mi, A) ∼=
∏
i∈I

HomR(Mi, A),

(ii) HomR(A,
∏
i∈I

Mi) ∼=
∏
i∈I

HomR(A,Mi),

(iii) HomR(A,
⊕
i∈I

Mi) ∼=
⊕
i∈I

HomR(A,Mi) if A is finitely generated.

(iv) Show (iii) is false without the hypothesis that
A is finitely generated.

Bimodules If R,S are rings, then M is an (R,S)-bimodule means

(i) M is a left R-module,
(ii) M is a right S-module,
(iii) If r ∈ R, s ∈ S, and m ∈ M , then (rm)s = r(ms).

In other words, M is both a left R-module and a right S-module, and (this is the content of
(iii)) the left and right actions commute (it is not enough to have only (i) and (ii), namely
that M is both a left R-module and right S-module).

Examples

(1) If R is any ring and n ∈ N, then Rn (the direct sum of n copies of R) is an (R,R)-bimodule,
where the left and right R-module structures come from left and right multiplication by
the elements of R respectively.
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(2) If R is a commutative ring and M is a right R-module, then we can view M also as a left
R-module by defining rm = mr for r ∈ R and m ∈ M . Then (i) and (ii) of the above are
satisfied, and then (iii) is also satisfied and M becomes an (R,R)-bimodule.

(3) If R is any ring and M is a right R-module, then M is an (EndR(M,M), R)-bimodule.

Exercise 7 Let R,S be rings, let M be an (R,S)-bimodule, and let N be a right S-
module. Prove that HomS(M,N) becomes a right R-module by defining (fr)m = f(rm) for
f ∈ HomS(M,N), r ∈ R and m ∈ M .

Exercise 8 Let R,S be rings, let M be a right S-module, and let N be an (R,S)-bimodule,
Prove that HomS(M,N) becomes a left R-module by defining (rf)m = r(fm) for r ∈ R,
f ∈ HomS(M,N) and m ∈ M .

Projective Modules Let R be a ring and let P be an R-module. Then P is projective
if and only if every short exact sequence of R-modules of the form 0 → M → N → P → 0
splits. Then a basic result is that the following are equivalent:

(i) P is a projective R-module,
(ii) there exists an R-module Q such that P ⊕ Q is a free R-module,
(iii) given a short exact sequence of R-modules M

α→ N → 0, then the induced sequence
HomR(P,M) α∗→ HomR(P,N) → 0 is also exact, where α∗ is defined to be the map
f �→ αf .

Exercise 9 Let R be a ring, let P be a projective right R-module, and let e ∈ EndR(P ) be
an idempotent (i.e. e2 = e). Prove that eP is a projective R-module.

Exercise 10 Let I be a set, let R be a ring, and let {Mi | i ∈ I} be a family of projective
R-modules. Prove that

⊕
i∈I Mi is a projective R-module.

Exercise 11 For each i ∈ P, let Pi be a Z-module isomorphic to Z. Prove that
∏

i∈P
Pi is

not a projective Z-module.

Injective Modules The dual notion to a projective module is an injective module. Specifi-
cally to define injective module, one reverses the arrows in the definition of projective module
above, so if R is a ring and I is an R-module, then I is an injective R-module if and only if
every short exact sequence of R-modules of the form 0 → I → M → N → 0 splits. Then a
basic fact is that the following are equivalent:

(i) I is an injective R-module,
(ii) given a short exact sequence of R-modules 0 → M

α→ N , then the induced sequence

HomR(N, I) α∗
→ HomR(M, I) → 0 is also exact, where α∗ is defined to be the map

f �→ fα.

Unfortunately, there is no nice characterization of injective modules like (ii) for projective
modules; on the other hand every module M can be embedded in a unique “smallest injective
module”, called the injective hull of M .

Exercise 12 Prove that Q is an injective Z-module.
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Exercise 13 Let I be a set, let R be a ring, and let {Ii | i ∈ I} be a family of injective
R-modules. Prove that

∏
i∈I Ii is an injective R-module.

Remark In general the direct sum
⊕

i∈Ii
Ii is not an injective module, though examples

are less easy to find.

Tensor Products There are many reasons why one wants to construct tensor products,
and we will describe two of them here before making the formal definition.

Let F be a field, and let U, V be vector spaces over F of dimensions m,n respectively. It
is easy to construct a vector space of dimension m + n over F from these two vector spaces,
namely U⊕V , however it would be nice to also construct a vector space of dimension mn from
these two spaces in some natural way. The tensor product U ⊗F V will fulfill this purpose.

A second reason is to extend scalars. Let F be a field and let V be a vector space over F .
Often we want to consider V as a vector space over some larger field E: for example one may
want to compute the Jordan Canonical Form of an F -endomorphism of V , and then one wants
to work in the algebraic closure of F . One way to do this is to take a basis {e1, . . . , en} of V
(at least in the case when dimF V = n < ∞), and then consider the vector space over E with
basis {e1, . . . , en}. However this is non-canonical, and is also awkward when dimF V = ∞.
Here the tensor product V ⊗F E is what is required.

The above two examples are tensor products over a field; however it turns out that one
needs them over any ring.

Definition Let R be a ring, let M be a right R-module, and let N be a left R-module.
Let F be the free abelian group with basis {(m,n) | m ∈ M and n ∈ N}, and let E be the
subgroup of F generated by

{(m1 + m2, n) − (m1, n) − (m2, n) | m1, m2 ∈ M and n ∈ N,

(m,n1 + n2) − (m,n1) − (m,n2) | m ∈ M and n1, n2 ∈ N

and (mr, n) − (m, rn) | m ∈ M, n ∈ N and r ∈ R}.

Then M⊗RN is the abelian group F/E. It is conventional to denote the element E+(m,n) of
M ⊗R N by m⊗n, and then we can define a map τ : M ×N → M ⊗R N by τ(m,n) = m⊗n.
This map is in general neither a group homomorphism nor onto: however the image of τ
does generate M ⊗R N as an abelian group. Then we have for m,m1,m2 ∈ M and n ∈ N ,
(m1 + m2) ⊗ n = m1 ⊗ n + m2 ⊗ n and 0 ⊗ n = 0. We note that τ satisfies the following:

(i) τ(m1 + m2, n) = τ(m1, n) + τ(m2, n) for all m1, m2 ∈ M and n ∈ N,

(ii) τ(m,n1 + n2) = τ(m,n1) + τ(m,n2) for all m ∈ M and n1, n2 ∈ N,

(iii) τ(mr, n) = τ(m, rn) for all m ∈ M,n ∈ N and r ∈ R.

A map τ satisfying (i), (ii) and (iii) above is called a balanced (or R-balanced) map.

This is not a very enlightening definition: it can be difficult to comprehend because the
free abelian group F is very large, and then we factor out by the very large subgroup E, so
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what do we finish with? Also without further conditions on M and N , M ⊗R N is only an
abelian group; however if N is an (R,R)-bimodule (in particular if R is commutative — see
the section on bimodules), then we shall see that M ⊗R N is a right R-module.

It is much better to use the universal property of tensor products than to use the defini-
tion above.

Universal Property of Tensor Products Let R be a ring, let M be a right R-module, let
N be a left R-module, and let τ : M×N → M⊗RN denote the balanced map (m,n) �→ m⊗n.
Suppose we are given an abelian group G and a balanced map θ : M × N → G. Then there
exists a unique group homomorphism φ : M ⊗R N → G such that θ = φτ .
Proof That φ is unique is clear because the image of τ generates M ⊗R N as an abelian
group. To prove the existence of φ, first define a group homomorphism ψ : F → G by
ψ(m,n) = θ(m,n); this is a good definition because the elements {(m,n) | m ∈ M and
n ∈ N} are a Z-basis for the free abelian group F . Since θ is a balanced map, we have for
m,m1,m2 ∈ M , n, n1, n2 ∈ N and r ∈ R

ψ(m1 + m2, n) = ψ(m1, n) + ψ(m2, n)

ψ(m,n1 + n2) = ψ(m,n1) + ψ(m,n2)

and ψ(mr, n) = ψ(m, rn).

Thus ψ kills a generating set for E and it follows that E ⊆ ker ψ. Therefore there exists a
group homomorphism φ : F/E → G such that φ(m⊗n) = ψ(m,n) for all m ∈ M and n ∈ N ,
which is what is required.

It is routine to show that M ⊗R N is determined up to isomorphism by this universal
property. Precisely if (M ⊗R N)′ and τ ′ : M ×N → (M ⊗R N)′ satisfy the above for M ⊗R N
and τ : M × N → M ⊗R N respectively, then there exists a unique group isomorphism
α : M ⊗R N → (M ⊗R N)′ such that ατ = τ ′. It is also easy to verify that (M1⊕M2)⊗R N ∼=
M1 ⊗R N ⊕ M2 ⊗R N . We now establish the following.

Module Structure on M ⊗R N . Let R,S be rings, let M be an R-module and let N be
an (R,S)-bimodule. Then there exists a unique S-module structure on M ⊗R N such that
(m ⊗ n)s = m ⊗ (ns) for all m ∈ M,n ∈ N and s ∈ S.
Proof Fix s ∈ S and define σ : M×N → M⊗RN by σ(m,n) = m⊗ns. Since (m,n) �→ m⊗n
is a balanced map, we have for m,m1,m2 ∈ M , n, n1, n2 ∈ N and r, s ∈ R

σ(m1 + m2, n) = (m1 + m2) ⊗ ns = m1 ⊗ ns + m2 ⊗ ns = σ(m1, n) + σ(m2, n),

σ(m,n1 + n2) = m ⊗ (n1s + n2s) = m ⊗ n1s + m ⊗ n2s = σ(m,n1) + σ(m,n2),

σ(mr, n) = mr ⊗ ns = m ⊗ rns = σ(m, rn),

which shows that σ is an R-balanced map. Therefore by the universal property of tensor
products, there exists a unique group homomorphism ŝ : M ⊗R N → M ⊗R N such that
(m⊗n)ŝ = m⊗ns for all m ∈ M,n ∈ N . This establishes the uniqueness part of the S-module
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structure on M ⊗R N , and we now define us = uŝ for u ∈ M ⊗R N and s ∈ S. It remains to
check that this makes M ⊗R N into an S-module. Since ŝ is a group homomorphism, all we
need is that u(s+t) = us+ut for u ∈ M⊗R N and s, t ∈ S. Since the elements m⊗n generate
M ⊗R N as an abelian group, it is sufficient to do this when u is of the form m ⊗ n. But

(m ⊗ n)(s + t) = m ⊗ n(s + t) = m ⊗ (ns + nt)

= m ⊗ ns + m ⊗ nt = (m ⊗ n)s + (m ⊗ n)t

as required.

Of course if instead of N being an (R,S)-bimodule, M is an (S, R)-bimodule, then we can
make M ⊗R N into a left S-module by the rule s(m ⊗ n) = sm ⊗ n.

As a special case, consider the case when R = S and is commutative. Then we can view
N as an (R,R)-bimodule (see the section on bimodules). Thus M ⊗R N is an R-module via
(m ⊗ n)r = m ⊗ nr, and in fact it is determined by the following universal property, which
we state without proof because it is very similar to the previous case. Before proceeding, we
recall the definition of a bilinear map.

Definition of Bilinear Map Let R be a commutative ring, and let M,N,P be R-modules.
Then a map β : M×N → P is R-bilinear means for m,m1, m2 ∈ M , n, n1, n2 ∈ N and r ∈ R

(i) β(m1 + m2, n) = β(m1, n) + β(m2, n),
(ii) β(m,n1 + n2) = β(m,n1) + β(m,n2),
(iii) β(mr, n) =

(
β(m,n)

)
r,

(iv) β(m,nr) =
(
β(m,n)

)
r.

Note that when R is a commutative ring, then the map τ : M × N → M ⊗R N defined by
τ(m,n) = m ⊗ n is R-bilinear.

Universal Property of Tensor Products Over Commutative Rings Let R be a
commutative ring, let M and N be R-modules, and let τ : M × N → M ⊗R N denote the
R-bilinear map (m,n) �→ m ⊗ n. Suppose we are given an R-module P and an R-bilinear
map β : M ×N → P . Then there exists a unique R-map θ : M ⊗R N → P such that β = θτ .

Examples In these examples, you will find that M ⊗R N behaves in a similar way to
HomR(M,N).
(1) Let K be a field, and let U, V be vector spaces over K with bases {u1, . . . , um} and

{v1, . . . , vn} respectively. Then U ⊗K V is the vector space with basis {ui ⊗vj | 1 ≤ i ≤ m
and 1 ≤ j ≤ n}.

Proof To see this, let us consider U as m×1 column vectors and V as 1×n row vectors. Then
we can define a K-bilinear map τ : U×V → Mm,n(K) by τ(u, v) = uv (matrix multiplication),
which is well defined because the matrices u, v have compatible size. We want to show that
Mm,n(K) has the universal property for tensor products over the commutative ring K, so
suppose W is a K-module and we have a K-bilinear map β : U × V → W . We may assume
that {u1, . . . , um} and {v1, . . . , vn} are the standard K-bases for U and V respectively. Then
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{uivj | 1 ≤ i ≤ m} and {1 ≤ j ≤ n} is a K-basis for Mm,n(K), so we can define a K-map
θ : Mm,n(K) → W by θ(uivj) = β(ui, vj). If u =

∑
aiui ∈ U and v =

∑
bivi ∈ V , then

θτ(u, v) = θτ
(∑

i,j

(aiui, bjvj)
)

= θ
∑
i,j

aibjuivj =
∑
i,j

aibjβ(ui, vj)

=
∑
i,j

β(aiui, bjvj) (because β is bilinear)

= β(u, v),

hence β = θτ . Also if θ′ : Mm,n → W is another K-map satisfying β = θ′τ , then θ′ = θ
because θ and θ′ agree on the K-basis {uivj} of Mm,n(K). This establishes the universal
property and it follows that M ⊗K N ∼= Mm,n(K).

(2) Let R be a ring, and let M be a right R-module. Then M ⊗R R ∼= M as right R-modules.
Proof Define τ : M × R → M by τ(m, r) = mr for m ∈ M and r ∈ R. Then it is easily
checked that τ is a balanced map. Suppose P is a right R-module and β : M × R → P is
a balanced map. Then we define θ : M → P by θm = β(m, 1). Then it is easily checked
that θ is a group homomorphism satisfying β = θτ . Also if θ′ : M → P is another group
homomorphism satisfying β = θ′τ , then it is clear that θ′ = θ. Thus the universal property
for tensor products is verified and it follows that M ⊗R R ∼= M as right R-modules.

(3) Z/2Z ⊗Z Z/3Z = 0.
Proof The elements of the form m⊗n for m ∈ Z/2Z and n ∈ Z/3Z generate Z/2Z⊗Z Z/3Z
as a Z-module, so we need to prove that all these elements are zero. Now

(m ⊗ n)2 = m ⊗ n2 = m ⊗ 2n = m2 ⊗ n = 0 ⊗ n = 0,

and similarly (m⊗n)3 = 0. Therefore m⊗n = (m⊗n)3− (m⊗n)2 = 0−0 = 0 as required.

(4) Let R,S be a rings, let M be a right R-module, let N be an (R,S)-bimodule, and let P
be a left S-module. Then (M ⊗R N) ⊗S P ∼= M ⊗R (N ⊗S P ) as abelian groups.

Proof (sketch) For p ∈ P , define fp : M × N → M ⊗S (N ⊗R P ) by fp(m,n) = m ⊗
(n ⊗ p). Then it is easily checked that fp is an R-balanced map, hence it induces a group
homomorphism f̂p : M⊗RN → M⊗R(N⊗SP ). Since m⊗(ns⊗p) = m⊗(n⊗sp) for s ∈ S and
the elements m⊗n generate M ⊗R N , it follows that f̂p(us) = f̂sp(u) for all u ∈ M ⊗R N . We
can now define an S-balanced map f : (M⊗R N)×P → M⊗R (N⊗S P ) by f(u, p) = fp(u) for
u ∈ M ⊗R N , and this induces a group homomorphism f : (M ⊗R N)⊗S P → M ⊗R (N ⊗S P )
satisfying f((m ⊗ n) ⊗ p) = m ⊗ (n ⊗ p). Similarly there exists a group homomorphism
g : M ⊗R (N ⊗S P ) → (M ⊗R N) ⊗S P such that g(m ⊗ (n ⊗ p)) = (m ⊗ n) ⊗ p. Then fg
and gf are the identity maps (because they agree with the identity on a generating set), and
it follows that f (and g) is an isomorphism as required.

Exercise 14 Let F ⊆ E be fields, let U be an F -vector space with basis B, and let V be
an E-vector space also with basis B. Prove that U ⊗F E ∼= V as E-vector spaces.
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Exercise 15 Let R be a commutative ring, and let M,N be R-modules. Prove that the
mapping m ⊗ n �→ n ⊗ m defines an R-isomorphism M ⊗R N → N ⊗R M .

Exercise 16 Let R be a commutative ring, let S be a multiplicatively closed subset of R,
and let M be an R-module. Prove that M ⊗R S−1R ∼= S−1M as S−1R-modules. (Recall
that S−1M is the S−1R-module obtained from M by inverting all the elements in S. It
consists of elements s−1m with s−1m = s−1

1 m1 if and only if there exists t ∈ S such that
(ms1 − m1s)t = 0. The S−1R-module structure is given by (s−1m)(t−1r) = (st)−1(mr).)

Exercise 17 Let a, b be nonzero integers, and let l = (a, b). Prove that Z/aZ ⊗Z Z/bZ ∼=
Z/lZ.

If R is a ring, A,M are right R-modules, B, N are left R-modules, α : A → M is a
right R-map and β : B → N is a left R-map, then it is easily checked that the formula
a⊗b �→ α(a)⊗β(b) (for a ∈ A, b ∈ B) well defines a group homomorphism A⊗R B → M⊗RN :
this is usually denoted α⊗ β. If θ : M → U is a right R-map and φ : N → V is a left R-map,
then αθ ⊗ βφ = (α ⊗ β)(θ ⊗ φ) : A ⊗R B → U ⊗R V .

Example Define μ : Z/27Z → Z/9Z by μ[n] = [3n] where for n ∈ Z, [n] denotes the residue
class modulo 27 or 9. Let ι denote the identity map on Z/9Z. Then μ⊗ ι : Z/27Z⊗Z Z/9Z →
Z/9Z ⊗Z Z/9Z can be identified with the map “multiplication by 3” from Z/9Z → Z/9Z.
Proof This is because there are isomorphisms θ : Z/27Z ⊗Z Z/9Z → Z/9Z, φ : Z/9Z ⊗Z

Z/9Z → Z/9Z such that θ[1]⊗[1] = [1], φ[1]⊗[1] = [1], and (μ⊗ι)[1]⊗[1] = [3]⊗[1] = 3[1]⊗[1].

The following is the corresponding result to Exercises 4 and 5 for tensor products.

Theorem Let R be a ring, let M be a left R-module, and let A
α→ B

β→ C → 0 be an exact
sequence of right R-modules. Then the induced sequence of abelian groups

A ⊗R M
α⊗1−→ B ⊗R M

β⊗1−→ C ⊗R M −→ 0

(where 1 denotes the identity map on M) is also exact.
Proof The image of β ⊗ 1 contains all elements of the form βb ⊗ m (b ∈ B, m ∈ M), and
hence all elements of the form c ⊗ m (c ∈ C,m ∈ M) because β is surjective. Since these
elements generate C⊗R M , it follows that β⊗1 is also surjective and hence we have exactness
at C ⊗R M . Since (β ⊗ 1)(α ⊗ 1) = βα ⊗ 1 = 0 ⊗ 1 = 0, it follows that imα ⊗ 1 ⊆ ker β ⊗ 1
and it remains to prove that kerβ ⊗ 1 ⊆ im α ⊗ 1.

Let I = im α⊗1, and choose a function f : C → B such that βf = 1C where 1C denotes the
identity map on C. Define θ : C×M → (B⊗RM)/I by θ(c,m) = I+f(c)⊗m. Then it is easily
checked that θ is a balanced map and does not depend on the choice of f , so it induces a group
homomorphism φ : C⊗RM → (B⊗RM)/I such that φc⊗m = I+fc⊗m. Now β⊗1I = 0, so
β⊗1 induces a group homomorphism ψ : (B⊗RM)/I → C⊗RM such that ψ(I+x) = (β⊗1)x
for all x ∈ (B ⊗R M)/I. Therefore φψ(I + b ⊗ m) = φβb ⊗ m = I + fβb ⊗ m = I + b ⊗ m
(because θ does not depend on the choice of f , so we could have chosen f to send βb to b).
Since the elements of the form I + b⊗m generate (B⊗R M)/I as an abelian group, it follows
that φψ is the identity map. Thus if y ∈ ker β ⊗ 1, then ψ(I + y) = 0 and φψ(I + y) = I + y,
hence y ∈ I and the result is proven.
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In the language of category theory (don’t worry if you don’t know any category theory —
the meaning of the following terminology should be clear) Exercise 4 says that the functor
HomR(M, ) is left exact, Exercise 5 says that the functor HomR( , M) is left exact, and the
above theorem says that the functor ⊗ M is right exact. However, the following exercise
says that if the words “left” and “right” are interchanged in the above statements, then they
all become false.

Exercise 18
(i) Give an example of a ring R, an R-module M , and a short exact sequence of R-modules

A
θ→ B → 0 such that the induced sequence HomR(M,A) θ∗→ HomR(M,B) → 0 is not

exact.
(ii) Give an example of a ring R, an R-module M , and a short exact sequence of R-modules

0 → A
θ→ B such that the induced sequence HomR(B, M) θ∗

→ HomR(A,M) → 0 is not
exact.

(iii) Give an example of a ring R, an R-module M , and a short exact sequence of R-modules
0 → A

θ→ B such that the induced sequence 0 → A ⊗R M
θ⊗1→ B ⊗R M is not exact.

The above can be considered the starting point of Homological Algebra: the failure of the
exactness of the functors HomR( , M), HomR(M, ), ⊗R M . The failure of the exactness
of these functors gives rise to new infinite families of functors, namely TorR

n and Extn
R for all

n ∈ N. To obtain these new functors, we need to study chain complexes.

Chain Complexes Let R be a ring. Then a sequence of R-modules

A : · · · ∂n+2−→ An+1
∂n+1−→ An

∂n−→ · · · ∂2−→ A1
∂1−→ A0

∂0−→ 0

is a chain complex means that ∂n∂n+1 = 0 for all n ∈ N. The ∂n are called the boundary
maps, and we say that A is projective (respectively free) if and only if all the An are projective
(respectively free). Since im ∂n+1 ⊆ ker ∂n, we can define the nth homology group Hn(A) of
A to be ker ∂n/ im ∂n+1.

Similarly a cochain complex B is a sequence of R-modules B : 0 δ0→ B0
δ1→ B1

δ2→ · · · such
that δn+1δn = 0 for all n ∈ N. In this case we define the nth cohomology group Hn(B) to be
ker δn+1/ im δn.

Example Let P : · · · θ2→ P1
θ1→ P0

θ0→ 0 be a sequence of Z-modules such that for each n ∈ N
we have P2n = Z/4Z, P2n+1 = Z, θ2n+1(1) = [2] and θ2n = 0, where [2] denotes the residue
class of 2 modulo 4. Then P is a chain complex, H2n(P ) ∼= Z/2Z, and H2n+1(P ) ∼= Z.

Suppose L is a left R-module and ι denotes the identity map on L. Then A ⊗R L will
denote the chain complex (of abelian groups)

· · · ∂n+2⊗ι−→ An+1 ⊗R L
∂n+1⊗ι−→ An ⊗R L

∂n⊗ι−→ · · · ∂2⊗ι−→ A1 ⊗R L
∂1⊗ι−→ A0 ⊗R L

∂0⊗ι−→ 0.

We note that this is a chain complex because (∂n ⊗ ι) (∂n+1 ⊗ ι) = (∂n∂n+1) ⊗ ι = 0.
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Similarly if N is a right R-module, then HomR(A,N) will denote the cochain complex (of
abelian groups)

0
∂∗
0−→ HomR(A0, N)

∂∗
1−→HomR(A1, N)

∂∗
2−→ · · ·

· · · ∂∗
n−→ HomR(An, N)

∂∗
n+1−→ HomR(An+1, N)

∂∗
n+2−→ · · · .

As above we note that this is a cochain complex because ∂∗
n+1∂

∗
n = (∂n∂n+1)∗ = 0.

Let R be a ring and let M be a right R-module. Then a resolution of M (as an R-module)
is an exact sequence of R-modules

(P, ε) : · · · ∂3−→ P2
∂2−→ P1

∂1−→ P0
ε−→ M −→ 0, (1)

and then we shall write P for the chain complex

· · · ∂3−→ P2
∂2−→ P1

∂1−→ P0
∂0−→ 0. (2)

Thus Hn(P ) = 0 for all n ∈ P and H0(P ) = M . Also we shall write P for (2) even if (1) is
only a chain complex. We can now define Ext and Tor.

Let R be a ring, let M be a right R-module, and let

(P, ε) : · · · ∂3−→ P2
∂2−→ P1

∂1−→ P0
ε−→ M −→ 0

be a projective resolution of M .

Definition Let L be a left R-module and let N be a right R-module.
(i) Extn

R(M,N) = Hn(HomR(P,N)).
(ii) TorR

n (M,L) = Hn(P ⊗R L).

Of course we must check that Extn
R(M,N) and TorR

n (M,L) are well defined, which means
that they do not depend on the choice of the resolution P .

First Homework Due 9:00 a.m., Monday, August 29.

(1) Let R be a ring, let M be a right R-module, and let I �l R. Prove that M⊗RR/I ∼= M/MI
as abelian groups. Prove further that if I � R, then the above isomorphism can be taken
as one of right R-modules.

(2) Let R,S be rings, let M be a right R-module, let P be a right S-module, and let N be an
(R,S)-bimodule.

(i) If f ∈ HomS(M⊗RN,P ), show that we can define f̂ : M → HomS(N,P ) by (f̂m)n =
f(m ⊗ n) for m ∈ M,n ∈ N . Then prove that the rule f �→ f̂ uniquely defines a
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group homomorphism from HomS(M ⊗R N,P ) to HomR(M, HomS(N,P )). (Recall
the right R-moduule structure of HomS(N,P ) from Exercise 7.)

(ii) If g ∈ HomR(M, HomS(N,P )), show that we can define a map g̃ : M⊗RN → P which
satisfies g̃(m⊗ n) = (gm)n for all m ∈ M and n ∈ N . Then the map g �→ g̃ uniquely
defines a group homomorphism HomR(M, HomS(N,P )) to HomS(M ⊗R N,P ).

(iii) Prove that HomS(M ⊗R N,P ) ∼= HomR(M, HomS(N,P )) as abelian groups by show-
ing that the maps ˆ and ˜ are inverse to each other.

(3) Prove that Q ⊗Z (Q ⊕ Z/2Z) ∼= Q as Z-modules.

(4) Let A : · · · α3→ A2
α2→ A1

α1→ A0
α0→ 0 be a chain complex of Z-modules, and let [n] denote

the residue class of the integer n in Z/8Z or Z/4Z. Suppose for each r ∈ N, we have
A2r = Z/8Z, A2r+1 = Z/4Z, α2r+2[n] = [2n], and α2r+1[n] = [4n].
(i) Determine Hr(A) for r ∈ N.
(ii) Prove that H0(A ⊗Z Z/4Z) ∼= Z/4Z and that Hr(A ⊗Z Z/4Z) ∼= Z/2Z for r ∈ P.

Monday, August 29

Chapter 2
Chain Complexes

We need the following lemma to show that Ext and Tor are well defined.
Lemma 1 Let M,N be R-modules, let θ−1 : M → N be an R-map, let

(P, α0) : · · · α2−→ P1
α1−→ P0

α0−→ M −→ 0

be a chain complex of R-modules with P projective, and let

(Q, β0) : · · · β2−→ Q1
β1−→ Q0

β0−→ N −→ 0

be a resolution of N .
(i) There exist R-maps θi : Pi → Qi such that θi−1αi = βiθi for all i ∈ N.
(ii) If φi : Pi → Qi are R-maps such that φi−1αi = βiφi (i ∈ N) and φ−1 = θ−1, then

there exist R-maps hi : Pi → Qi+1, h−1 = 0, such that

θi − φi = hi−1αi + βi+1hi for all i ∈ N.

Proof For convenience we define αi = βi = θi−1 = φi−1 = hi−1 = 0 for all i < 0. Note that
then we have ker βi−1 = im βi for all i ∈ Z.
(i) We use induction. Suppose n + 1 ∈ N and we have constructed R-maps θi : Pi → Qi such
that θi−1αi = βiθi for all i ≤ n; we can obviously do this for n = −1. We now do this for
n + 1. Note that θn−1αn = βnθn tells us that

βnθnαn+1 = θn−1αnαn+1 = 0,

hence im θnαn+1 ⊆ ker βn. But (Q, β0) is a resolution, so kerβn = im βn+1 and we deduce
that im θnαn+1 ⊆ imβn+1, thus we can consider θnαn+1 ∈ HomR(Pn+1, im βn+1). Since
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Pn+1 is projective, the map βn+1 ∗ : HomR(Pn+1, Qn+1) → HomR(Pn+1, im βn+1) is onto,
hence there exists θn+1 ∈ HomR(Pn+1, Qn+1) such that βn+1 ∗ θn+1 = θnαn+1. Therefore
βn+1θn+1 = θnαn+1, which completes the induction step as required.

(ii) Again we use induction. Suppose n+1 ∈ N and we have constructed maps hi : Pi → Qi+1

such that θi − φi = hi−1αi + βi+1hi for all i ≤ n. We can obviously do this for n = −1 by
taking h−1 = 0. Now

θn − φn − hn−1αn = βn+1hn

yields (θn − φn − hn−1αn)αn+1 = βn+1hnαn+1

hence θnαn+1 − φnαn+1 = βn+1hnαn+1 because αnαn+1 = 0.

Therefore βn+1(θn+1 − φn+1 − hnαn+1) = θnαn+1 − φnαn+1 − βn+1hnαn+1 = 0.

Since (Q, β0) is a resolution, kerβn+1 = im βn+2 and we deduce that im(θn+1 − φn+1 −
hnαn+1) ⊆ im βn+2. Therefore we may view

(θn+1 − φn+1 − hnαn+1) ∈ HomR(Pn+1, im βn+2).

Since Pn+1 is projective, the map βn+2 ∗ : HomR(Pn+1, Qn+2) → HomR(Pn+1, im βn+2) is
onto, hence there exists hn+1 ∈ HomR(Pn+1, Qn+2) such that βn+2 ∗ hn+1 = θn+1 − φn+1 −
hnαn+1. Therefore βn+2hn+1 = θn+1 − φn+1 − hnαn+1, which completes the induction step
as required.

We now apply Lemma 1 in the special case when P and Q are both projective resolutions
to obtain uniquely defined maps between the complexes HomR(P, L) and HomR(Q, L) for
any R-module L. This will establish that Extn

R(M,L) is well defined, and also show that an
R-map from M to N induces a group homomorphism from Extn

R(N,L) to Extn
R(M,L) for any

n ∈ N. We shall further show that an R-module map A → B induces a group homomorphism
Extn

R(M,A) → Extn
R(M,B) for all n ∈ N.

Lemma 2 Let R be a ring, let L,M,N be R-modules, let θ−1 : M → N be an R-map, and
let

(P, α0) : · · · α2−→ P1
α1−→ P0

α0−→ M −→ 0

and (Q, β0) : · · · β2−→ Q1
β1−→ Q0

β0−→ N −→ 0

be projective resolutions of M and N respectively.

(i) If θi : Pi → Qi are R-maps with θi−1αi = βiθi for all i ∈ N, then θ∗i : HomR(Qi, L) →
HomR(Pi, L) induces a well defined map, also denoted θ∗i , from Hi(HomR(Q, L)) to
Hi(HomR(P,L)) satisfying θ∗i (f + im β∗

i ) = fθi + im α∗
i for f ∈ ker β∗

i+1.
(ii) If φi : Pi → Qi are also R-maps such that φi−1αi = βiφi for all i ∈ N and θ−1 = φ−1,

then φ∗
i = θ∗i : Hi(HomR(Q,L)) → Hi(HomR(P, L)).
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Proof (i) First we show that the definition of θ∗i does not depend on f ; i.e. if f + im β∗
i =

g + im β∗
i , then fθi + im α∗

i = gθi + im α∗
i . Set k = f − g. Then k ∈ im β∗

i , so k = k′βi for
some k′ ∈ HomR(Qi−1, L), hence kθi = k′βiθi = k′θi−1αi, so kθi ∈ im α∗

i . It follows that
fθi − gθi ∈ im α∗

i as required.
Now we show that θ∗i maps into Hi(HomR(P, L)), i.e. fθi ∈ ker α∗

i+1 This is clear because

α∗
i+1(fθi) = fθiαi+1 = fβi+1θi+1 = (β∗

i+1f)θi+1 = 0,

where we have used f ∈ kerβ∗
i+1.

(ii) By Lemma 1, we know there exist R-maps hi : Pi → Qi+1 such that θi − φi = hi−1αi +
βi+1hi for all i ∈ N. Suppose f ∈ HomR(Qi, L) and β∗

i+1f = 0 (so f represents an element of
Hi(HomR(Q,L))). Then fβi+1 = 0, so fθi − fφi = fhi−1αi = α∗

i (fhi−1), hence θ∗i f − φ∗
i f ∈

im α∗
i . This shows that θ∗i f and φ∗

i f represent the same element of Hi(HomR(P, L)) as
required.

Now we can show that Extn
R(M,L) does not depend on the choice of the projective reso-

lution P . Indeed suppose

(P, α0) : · · · α2−→ P1
α1−→ P0

α0−→ M −→ 0

and (Q, β0) : · · · β2−→ Q1
β1−→ Q0

β0−→ M −→ 0

are projective resolutions for M . Then Lemma 1 shows that there are R-maps θi : Pi → Qi,
φi : Qi → Pi such that

θi−1αi = βiθi and φi−1βi = αiφi

for all i ∈ N. Applying Lemma 2, we see that θi and φi induce group homomorphisms

θ∗i : Hi(HomR(Q,L)) → Hi(HomR(P, L)) and φ∗
i : Hi(HomR(P, L)) → Hi(HomR(Q,L))

respectively. Now let ιi : Pi → Pi denote the identity map and use Lemma 2(ii). Since
φi−1θi−1αi = αiφiθi and ιi−1αi = αiιi, we see that

(φiθi)∗ = ι∗ : Hi(HomR(P, L)) → Hi(HomR(P, L))

and hence θ∗i φ∗
i is the identity map on Hi(HomR(P, L)). Similarly φ∗

i θ
∗
i is the identity on

Hi(HomR(Q,L)). Therefore Hi(HomR(P, L)) ∼= Hi(HomR(Q, L)), thus Extn
R(M,L) does not

depend on the choice of P .
Suppose now that ψ : M → N is a homomorphism of R-modules. We shall use the notation

of Lemma 2 and set θ−1 = ψ. This shows that there exist well defined group homomorphisms
ψ∗

i : Exti
R(N,L) → Exti

R(M,L) which satisfy

ψ∗
i (f + im β∗

i ) = fθi + im α∗
i .

Perhaps we should be careful what we mean by well defined. Certainly the ψ∗
i do not

depend on the choice of the θi, however they do depend on the choice of the resolutions P and
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Q. Suppose we have different resolutions P̃ and Q̃ from which we obtain corresponding Ext
groups Ẽxt

i

R(M,L), Ẽxt
i

R(N,L) with corresponding maps ψ̃∗
i : Ẽxt

i

R(N,L) → Ẽxt
i

R(M,L).

From the above there are isomorphisms μi : Exti
R(M,L) → Ẽxt

i

R(M,L), νi : Exti
R(N,L) →

ẼxtR(M,L). Then we have the following commutative diagram.

Exti
R(N,L)

ψ∗
i−→ Exti

R(M,L)
νi ↓ ↓ μi

Ẽxt
i

R(N,L)
ψ̃∗

i−→ Ẽxt
i

R(M,L)

Thus if, for example ψ∗
i is an isomorphism, then so is ψ̃∗

i . Also if M = N , then we can take
P = Q and then ψ∗

i only depends on P .

Second Homework Due 9:00 a.m., Monday, September 5.

(1) Let k be a field, let R = k[X]/(X4), and let A : · · · α3→ A2
α2→ A1

α1→ A0
α0→ 0 be a chain

complex of R-modules. Suppose for each n ∈ N we have An = R, αn+1(1 + (X4)) =
X2 + (X4), and α0 = 0.
(i) Determine Hn(A) for all n ∈ N.
(ii) Prove that H0(A ⊗R k[X]/(X3)) ∼= k ⊕ k and Hn(A ⊗R k[X]/(X3)) ∼= k for all n ∈ P

as k-modules.

(2) Let R be a ring, let M,N be R-modules, and let θ−1 : M → N be an R-map. Suppose

(Q,α0) : 0 −→ M
α0−→ Q0

α1−→ Q1
α2−→ Q2

α3−→ · · ·
and (I, β0) : 0 −→ N

β0−→ I0
β1−→ I1

β2−→ I2
β3−→ · · ·

are cochain complexes with (Q,α0) exact (i.e. ker αi+1 = im αi for all i ∈ N and α0 a
monomorphism) and (I, β0) injective (i.e. Ii is an injective R-module for all i ∈ N).
(i) Prove that there exist R-maps θi : Qi → Ii such that βiθi−1 = θiαi for all i ∈ N.
(ii) Suppose φi : Qi → Ii are R-maps such that βiφi−1 = φiαi (i ∈ N) and φ−1 = θ−1.

Prove that there exist R-maps hi : Qi → Ii−1 such that

θi − φi = βihi + hi+1αi+1.

(3) Let R be a ring, let M be a right R-module, let L be a left R-module, and let

(P, α0) : · · · α2−→ P1
α1−→ P0

α0−→ M → 0

and (Q, β0) : · · · β2−→ Q1
β1−→ Q0

β0−→ M → 0

be projective resolutions for M . Prove that Hn(P ⊗R L) ∼= Hn(Q⊗R L) as abelian groups
for all n ∈ N.
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(4) Let r ∈ N and q, n ∈ P. If q|n and l = (n/q, q), prove that Ext0
Z/nZ

(Z/qZ, Z/qZ) ∼= Z/qZ
and Extr

Z/nZ
(Z/qZ, Z/qZ) ∼= Z/lZ as abelian groups.

(5) Let I be a set, let R be a ring, let A be an R-module, let n ∈ N, and let {Mi | i ∈ I} be
a family of R-modules. Prove that Extn

R(
⊕
i∈I

Mi, A) ∼=
∏
i∈I

Extn
R(Mi, A).

Friday, September 2

Chapter 3
Ext and Tor

Remarks and Exercises

(i) Let R be a ring and let M,N be R-modules. Then Ext0R(M,N) ∼= HomR(M,N). Proof:
let

(P, α0) : · · · α2−→ P1
α1−→ P0

α0−→ M −→ 0

be a projective resolution of M . Then Ext0R(M,N) = H0(HomR(P, N)), so Ext0R(M,N) ∼=
ker α∗

1. Furthermore (see Exercise 5 from chapter 1)

0 −→ HomR(M,N)
α∗

0−→ HomR(P0, N)
α∗

1−→ HomR(P1, N)

is exact, hence ker α∗
1 = imα∗

0
∼= HomR(M,N) as required.

(ii) Let R be a ring, let M be a right R-module, and let N be a left R-module. Then
TorR

0 (M,N) ∼= M ⊗R N . Proof: exercise.

(iii) In general Extn
R(M,N) and TorR

n (M,N) only have the structure of an abelian group.
However if M is a right R-module and N is an (R,S)-bimodule, then TorR

n (M,N) is a right
S-module for all n ∈ N. To see this, take a projective resolution

(P, α0) : · · · α2−→ P1
α1−→ P0

α0−→ M −→ 0

of M . Then

TorR
n (M,N) =

ker(αn ⊗ 1)
im(αn+1 ⊗ 1)

.

Since Pi ⊗R N is a right S-module and αi ⊗ 1 is an S-map for all i ∈ N, it follows that
ker(αi ⊗ 1) and im(αi ⊗ 1) are right S-modules and hence TorR

n (M,N) is a right S-module.
This means that in (ii), TorR

0 (M,N) ∼= M ⊗R N as right S-modules.
Similarly if M is a right R-module and N is an (S, R)-bimodule, then ExtR

n (M,N) is a
left S-module. Thus in (i) above, we have Ext0R(M,N) ∼= HomR(M,N) as left S-mmodules.
Furthermore if M is an (S,R)-bimodule and N is a left R-module, then TorR

n (M,N) is a left
S-module, and if M is an (S,R)-bimodule and N is a right R-module, then Extn

R(M,N) is
a right S-module. However we cannot apply the above arguments to obtain this because we
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cannot in general choose a resolution of M consisting of bimodules and bimodule maps; we
will demonstrate the S-module structures of this paragraph later.

(iv) Let R = Z[X]/(X2), let k denote the R-module Z/2Z with X acting trivially (so aX = 0
for a ∈ k), let Z be the R-module also with X acting trivially (so zX = 0 for all z ∈ Z),
and let us calculate TorR

n (Z, k) for n ∈ N. First we obtain a projective resolution for Z; one
possibility is

(P, α0) : · · · α3−→ R
α2−→ R

α1−→ R
α0−→ Z −→ 0

where Pi = R for all i ∈ N, α01 = 1, X̄ = X + (X2) (the image of X in R), and αi1 = X̄ for
all i ∈ P. Then P ⊗R k is the complex

· · · α3⊗1−→ R ⊗R k
α2⊗1−→ R ⊗R k

α1⊗1−→ R ⊗R k −→ 0

where 1 is the identity map. Since R⊗R k ∼= k and X̄ ⊗ a = 1⊗Xa = 1⊗ 0 = 0 for all a ∈ k,
it follows that the above complex is

B : · · · β3−→ k
β2−→ k

β1−→ k
β0−→ 0

where Bi = k and βi = 0 for all i ∈ N. Then Hi(B) = kerβi/ imβi+1 = k/0 ∼= k for all i ∈ N.
It follows that TorR

n (Z, k) ∼= k for all n ∈ N.

(v) Let R be a ring, let I be a set, let A be a left R-module, and let {Mi | i ∈ I} be a family
of right R-modules. Then TorR

n (
⊕

i∈I Mi, A) ∼= ⊕
i∈I TorR

n (Mi, A) for all n ∈ N. Proof: For
each i ∈ I, let

(P i, αi
0) : · · · αi

3−→ P i
2

αi
2−→ P i

1

αi
1−→ P i

0

αi
0−→ Mi −→ 0

be a projective resolution for the R-module Mi Then

(
⊕
i∈I

P i,
⊕
i∈I

αi
0) : · · · ⊕αi

3−→
⊕
i∈I

P i
2

⊕αi
2−→

⊕
i∈I

P i
1

⊕αi
1−→

⊕
i∈I

P i
0

⊕αi
0−→

⊕
i∈I

Mi −→ 0

is a projective resolution of
⊕

i∈I Mi (the resolution is projective because the direct sum of
an arbitrary number of projectives is projective), so

TorR
n (

⊕
i∈I

Mi, A) = Hn((
⊕
i∈I

P i) ⊗R A) =
ker(⊕i∈I αi

n) ⊗ 1
im(⊕i∈I αi

n+1) ⊗ 1
.

Now define a homomorphism θn : (
⊕

i∈I P i
n) ⊗R A → ⊕

i∈I(P i
n ⊗R A) as follows. If

u ∈ ⊕
P i

n has components ui ∈ P i
n (where ui = 0 for all but finitely many i ∈ I) and

a ∈ A, then set θn(u ⊗ a) to be the element of
⊕

i∈I(P i
n ⊗R A) whose ith component is

ui ⊗a. It is then routine to check that θn is a well defined group homomorphism. We want to
construct a map which is inverse to θn, so for j ∈ I, let φj

n : P j
n → ⊕

i∈I P i
n denote the natural

monomorphism, and set φn =
⊕

i∈I φi ⊗ 1. Then it is easily checked that φn is a well defined



19

group homomorphism
⊕

i∈I P i
n ⊗R A → (

⊕
i∈I P i

n) ⊗R A, and that θnφn and φnθn are the
identity maps. It follows that θn is an isomorphism from (

⊕
i∈I P i

n)⊗R A → ⊕
i∈I P i

n⊗R A.
Continuing with the notation that u ∈ ⊕

i∈I P i
n has components ui, let v ∈ ⊕

i∈I P i
n−1

have components vi = αi
nui. Then we have for a ∈ A

θn−1(⊕i∈I αi
nu) ⊗ a = θn−1v ⊗ a = ⊕i∈I (αi

n ⊗ 1)θnu ⊗ a,

hence θn−1(⊕i∈I αi
n) ⊗ 1 = ⊕i∈I (αi

n ⊗ 1)θn because the elements of the form u ⊗ a generate
(
⊕

i∈I P i
n)⊗RA as an abelian group. It follows that θn maps ker(⊕i∈I αi

n)⊗1 to ker⊕i∈I (αi
n⊗

1). Similarly θn+1 maps im(⊕i∈I αi
n+1) ⊗ 1 to im⊕i∈I (αi

n+1 ⊗ 1). Therefore

ker(⊕i∈I αi
n) ⊗ 1

im(⊕i∈I αi
n+1) ⊗ 1

∼= ker⊕i∈I (αi
n ⊗ 1)

im⊕i∈I (αi
n+1 ⊗ 1)

=
⊕
i∈I

ker αi
n ⊗ 1

im αi
n+1 ⊗ 1

=
⊕
i∈I

Hn(P i
n ⊗R A).

This establishes TorR
n (

⊕
i∈I Mi, A) ∼= ⊕

i∈I TorR
n (Mi, A) as required.

(vi) Exercise: let R be a ring, let I be a set, let A be a left R-module, and let {Mi | i ∈ I} be a
family of right R-modules. Then in (v) it was proved that (

⊕
i∈I Mi)⊗R A ∼= ⊕

i∈I(Mi⊗R A)
and the proof depended on a number of routine verifications. By the same proof we have
(
∏

i∈I Mi)⊗R A ∼= ∏
i∈I(Mi ⊗R A) (where we need to do similar routine verifications), or do

we? Give an example with Mi ⊗R A = 0 for all i ∈ I, yet (
∏

i∈I Mi) ⊗R A 	= 0. Where does
the proof in (v) go wrong here?

(vii) Let R be a ring, let I be a set, let A be an R-module, and let {Mi | i ∈ I} be a family
of R-modules. Then Extn

R(A,
∏

i∈I Mi) ∼=
∏

i∈I Extn
R(A,Mi) for all n ∈ N. Proof: Let

(P, α0) : · · · α3−→ P2
α2−→ P1

α1−→ P0
α0−→ A −→ 0

be a projective resolution for the R-module A. Then

Extn
R(A,

∏
i∈I

Mi) = Hn(HomR(Pn,
∏
i∈I

Mi)).

Now (see Exercise 6(ii) from the chapter 1) HomR(Pn,
∏

i∈I Mi) ∼= ∏
i∈I HomR(Pn,Mi) : if

this isomorphism is called θn, then it is given as follows. For j ∈ I let πj :
∏

i∈I Mi → Mj

denote the projection onto Mj (i.e. pick out the jth component). Then for

f ∈ HomR(Pn,
∏
i∈I

Mi),

θnf is the element whose components are πif . For n ∈ N, let α∗
n : HomR(Pn,

∏
i∈I Mi) →

HomR(Pn+1,
∏

i∈I Mi) and

αj ∗
n : HomR(Pn, Mj) → HomR(Pn+1, Mj)

denote the maps induced by αn. Then it is not difficult to check that θn maps ker α∗
n to∏

i∈I kerαi ∗
n and im α∗

n+1 to
∏

i∈I im αi ∗
n+1. Since



20

Hn(HomR(Pn,
∏
i∈I

Mi)) =
ker α∗

n

im α∗
n+1

and Hn(HomR(Pn, Mi)) =
ker αi ∗

n

im αi ∗
n+1

,

we see that Hn(HomR(Pn,
∏

i∈I Mi)) =
∏

i∈I Hn(HomR(P, Mi)) and the result follows.

(viii) Exercise: Let R be a ring, let I be a set, let A be a right R-module, and let {Mi | i ∈ I}
be a family of left R-modules. Then TorR

n (A,
⊕

i∈I Mi) ∼=
⊕

i∈I TorR
n (A,Mi) for all n ∈ N.

(ix) Let R be a ring, let P be a projective R-module, and let M be an R-module. Then
Extn

R(P,M) = 0 for all n ∈ P. Proof: exercise.

(x) Let R be a ring, let P be a projective left R-module, and let 0 → A
α→ B be an exact

sequence of right R-modules. Prove that

0 → A ⊗R P
α⊗1−→ B ⊗R P

is an exact sequence of abelian groups.

(xi) Let R be a ring, let n ∈ P, let P , M be right R-modules, and let Q, N be left R-modules.
If P and Q are projective, prove that TorR

n (P, N) = TorR
n (M,Q) = 0.

Tor for abelian groups One may ask the reason for the name Tor; the following is an
explanation. It turns out that TorZ

n(A,B) is a torsion group (i.e. all the elements have finite
order) for all abelian groups (i.e. Z-modules) A, B, and for all n ∈ P. First we prove the
following result.

Proposition Let q ∈ P and let B be an abelian group. Then
(i) TorZ

0 (Z/qZ, B) ∼= B/qB.
(ii) TorZ

1 (Z/qZ, B) ∼= {b ∈ B | bq = 0}.
(iii) TorZ

n(Z/qZ, B) = 0 for all n ≥ 2.

Proof Let μ : Z → Z denote multiplication by q, and let π : Z → Z/qZ denote the natural
epimorphism. Then

0 −→ Z
μ−→ Z

π−→ Z/qZ −→ 0

is a projective resolution for Z/qZ. Since Z⊗Z B ∼= B, it follows that TorZ

n is Hn of the chain
complex

0 −→ B
ν−→ B −→ 0

where ν denotes multiplication by q. This proves the result.

Corollary Let A be a finitely generated abelian group and let B be any abelian group.
Then

(i) TorZ

1 (A,B) is a torsion group.
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(ii) TorZ

n(A,B) = 0 for all n ≥ 2.

Proof Since A is finitely generated, it is a direct sum of cyclic groups. Also TorZ

n(Z, B) = 0
for all n ∈ P by (xi) above. Now apply (v) and the above proposition.

This shows that TorZ

n(A,B) is a torsion group for all n ∈ P, provided that A is finitely
generated. To establish that TorZ

n(A,B) is a torsion group for all abelian groups A is just
beyond the techniques so far developed. It will follow from the fact that Tor commutes with
direct limits, to be covered later.

Monday, September 5

Chapter 4
Long Exact Sequences

Let R be a ring, let L,M,N be R-modules, and let n ∈ N. We have already shown that an R-
map θ : M → N induces a well defined group homomorphism θ∗n : Extn

R(N,L) → Extn
R(M,L).

We now show that θ also induces a well defined group homomorphism θn∗ : Extn
R(L, M) →

Extn
R(L,N) as follows: as usual, let

(P, α0) : · · · α2−→ P1
α1−→ P0

α0−→ L −→ 0

be a projective resolution of the R-module L. For n ∈ N, let

α∗
n : HomR(Pn−1,M) → HomR(Pn, M) and β∗

n : HomR(Pn−1, N) → HomR(Pn, N)

denote the maps induced by αn (where α∗
0 = β∗

0 = 0). Then

Extn
R(L,M) = Hn(HomR(P, M)) =

ker α∗
n+1

im α∗
n

.

Now for each n ∈ N, θ induces a map θn∗ : HomR(Pn, M) → HomR(Pn, N) (defined by
θn∗f = θf). Since α∗

n+1θn∗ = θn+1 ∗ α∗
n+1, it follows that θn∗ maps ker α∗

n+1 to ker β∗
n+1 and

im α∗
n to im β∗

n. Therefore θn∗ induces a well defined map (which we will also call θn∗) from
Extn

R(L,M) to Extn
R(L,N). It is easy to see that if φ : N → K is an R-module homomorphism,

then (φθ)n∗ = φn∗θn∗. In the same sense as with the maps θ∗n, the θn∗ do not depend (“up to
isomorphism”) on the choice of the resolution (P, α0) of L, in a way which we make precise
as follows. Suppose

(Q, β0) : · · · β2−→ Q1
β1−→ Q0

β0−→ L −→ 0

is another projective resolution for L. Then as in chapter 2 (Chain Complexes), we obtain

Ext groups Ẽxt
i

R(L,M) = Hi(HomR(Q, M)) and Ẽxt
i

R(L, N) = Hi(HomR(Q, N)) with cor-

responding group homomorphisms θ̃i∗ : Ẽxt
i

R(L, M) → Ẽxt
i

R(L, N). There will also exist iso-

morphisms μi : Exti
R(L,M) → Ẽxt

i

R(L, M) and νi : Exti
R(L, N) → Ẽxt

i

R(L, N). Then we will
have the following commutative diagram:
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Exti
R(L, M) θi∗−→ Exti

R(L, N)
μi ↓ ↓ νi

Ẽxt
i

R(L, M) θ̃i∗−→ Ẽxt
i

R(L, N),

and we will have properties such as θ∗i is onto if and only if θ̃∗i is onto.
We now show how bimodule structures on the modules M,N, induce module structures

on the Ext and Tor groups. We will just consider one case. Suppose R,S are rings, M
is an (S,R)-bimodule and N is a right R-module. If s ∈ S, let ŝ : M → M denote the
map “left multiplication by s”. Then ŝ is a right R-map, so for n ∈ N, it induces a group
homomorphism s∗n : Extn

R(M,N) → Extn
R(M,N). It is easily checked that if t ∈ S, then

s∗nt∗n = (tnsn)∗. Therefore Extn
R(M,N) is a right S-module. (Perhaps this last step needs

a little explanation: we are writing our mappings on the left: the fact that s∗nt∗n = (tnsn)∗

means that things are twisted round, so we do not get a left S-module structure. However
if we write our mappings on the right, then things are OK: we would have t∗ns∗n = (ts)∗n and
then we obtain a right S-module structure.)

The alert student would have noticed that in some of the cases we have obtained two ways
to obtain a module structure on Ext and Tor: the obvious question is whether these are the
same. The answer is yes (see exercises below).

Exercises/Examples
(1) Let R be a ring, let M be a right R-module, let N be an (S, R)-bimodule, and let n ∈ N.
Then there are two ways we can make Extn

R(M,N) into a left S-module: either by using the
method of (iii) of the previous chapter (where we let (P, α0) be a projective resolution of M
and then use the fact that the chain complex HomR(P, N) has a left S-module structure),
or for s ∈ S considering the R-endomorphism ŝ of N “left multiplication by s” which will
induce a group homomorphism sn∗ of Extn

R(M,N). Prove that the two S-module structures
on Extn

R(M,N) are the same.

(2) Let R be a ring, let L be an (S,R)-bimodule, let M,N be a left R-modules, and let n ∈ N.
(i) Prove that TorR

n (L,M) and TorR
n (L, N) have well defined left S-module structures.

(ii) If θ : M → N is a left R-module map, prove that it induces a map θn,∗ : TorR
n (L, M) →

TorR
n (L,N) of left S-modules.

(iii) Prove that TorR
n (L,M) has the structure of an (S, EndR(M))-bimodule. (Remark:

since M is a left R-module, it is conventional to write elements of EndR(M) on the
right.)

(3) Let R be a ring, let M,N be R-modules, and let q ∈ Z. Let μ : M → M denote “left
multiplication by q”. Prove that the induced maps μ∗

n : Extn
R(M,N) → Extn

R(M,N) are also
“left multiplication by q”.

(4) Let R be a commutative ring, let r ∈ R, and let M,N be R-modules. Suppose Mr = 0
and Nr = N . Give an example with TorR

i (M,N) 	= 0.

Long Exact Homology Sequences We now come to a very important tool for computing
the Ext and Tor groups, namely if we are given an exact sequence of R-modules 0 → A →
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B → C → 0, we get long exact sequences connecting the Extn
R and TorR

n groups. This will
enable us to calculate many of the Ext and Tor groups. Theses sequences are very like the
exact homology sequence and Mayer-Vietoris sequence in Algebraic Topology. Recall the
exact homology sequence of Algebraic Topology. It says that if A ⊆ X are topological spaces,
then there is an infinite exact sequence

· · · −→ Hq(A)
α∗

q−→ Hq(X) −→ Hq(X,A)
∂q−→ Hq−1(A) −→ · · · ,

where α∗
q denotes the map induced by the inclusion of A in X and ∂q is called the connecting

homomorphism.
Let me state corresponding theorems for Ext and Tor.

Theorem Let R be a ring, let M be an R-module, and let 0 → A
α→ B

β→ C → 0 be an
exact sequence of R-modules. Then there exist long exact sequences

0 −→Ext0R(M,A) α0∗−→ Ext0R(M,B)
β0∗−→ Ext0R(M,C) ∂1−→ Ext1R(M,A) α1∗−→ Ext1R(M,B)

β1∗−→ · · ·
· · · ∂n−→ Extn

R(M,A) αn∗−→ Extn
R(M,B)

βn∗−→ Extn
R(M,C)

∂n+1−→ Extn+1
R (M,A)

αn+1 ∗−→ · · ·

and

0 −→Ext0R(C,M)
β∗
0−→ Ext0R(B,M)

α∗
0−→ Ext0R(A,M) ∂1−→ Ext1R(C,M)

β∗
1−→ Ext1R(B, M)

α∗
1−→ · · ·

· · · ∂n−→ Extn
R(C,M)

β∗
n−→ Extn

R(B, M)
α∗

n−→ Extn
R(A,M)

∂n+1−→ Extn+1
R (C,A)

β∗
n+1−→ · · ·

Similarly we have long exact sequences for Tor:
Theorem Let M be a right R-module, and let 0 → A

α→ B
β→ C → 0 be an exact sequence

of left R-modules. Then there is a long exact sequence

· · · ∂n+1−→ TorR
n (M,A) αn∗−→ TorR

n (M,B)
βn∗−→ TorR

n (M,C) ∂n−→ TorR
n−1(M,A)

αn−1 ∗−→ · · ·
· · · α1∗−→TorR

1 (M,B)
β1∗−→ TorR

1 (M,C) ∂1−→ TorR
0 (M,A) α0∗−→ TorR

0 (M,B)
β0∗−→ TorR

0 (M,C) −→ 0.

Theorem Let M be a left R-module, and let 0 → A
α→ B

β→ C → 0 be an exact sequence
of right R-modules. Then there is an long exact sequence

· · · ∂n+1−→ TorR
n (A,M) αn∗−→ TorR

n (B, M)
βn∗−→ TorR

n (C,M) ∂n−→ TorR
n−1(A,M)

αn−1 ∗−→ · · ·
· · · α1∗−→TorR

1 (B,M)
β1∗−→ TorR

1 (C,M) ∂1−→ TorR
0 (A,M) α0∗−→ TorR

0 (B, M)
β0∗−→ TorR

0 (C,M) −→ 0.
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Thus, for example in the last sequence, given TorR
n (A,M) and TorR

n (C,M) for all n, one can
hope to calculate with the aid of this sequence TorR

n (B, M) for all n. For a quick application,
we will prove the following.

Proposition Let R be a ring and let P be an R-module. If Ext1R(P, M) = 0 for all R-
modules M , then P is a projective R-module.

Proof Let 0 → A → B → C → 0 be an exact sequence of R-modules. Then using the first
long exact sequence involving the Ext groups, we obtain an exact sequence of abelian groups

0 → HomR(P,A) → HomR(P, B) → HomR(P, C) → 0

because Ext0R(P,A) ∼= HomR(P,A) and Ext1R(P, A) = 0. This shows that P is a projective
R-module (see (iii) in the paragraph on projective modules on the policy sheet).

We shall just establish the second sequence involving the Ext’s. For this we need the
Horseshoe Lemma (using injective resolutions, one can avoid the use of this lemma).

Horseshoe Lemma Let R be a ring, let 0 → A
θ−1→ C

φ−1→ B → 0 be a short exact sequence
of R-modules, and let

(P, α0) : · · · α2−→ P1
α1−→ P0

α0−→ A −→ 0,

(Q, β0) : · · · β2−→ Q1
β1−→ Q0

β0−→ B −→ 0

be projective resolutions for A,B respectively. For each n ∈ N set Kn = Pn⊕Qn, let θn : Pn →
Kn denote the natural inclusion, and let φn : Kn → Qn denote the natural projection with
kernel Pn. Then there exist R-maps γn : Kn → Kn−1 for n ∈ P and γ0 : K0 → C such that
(K, γ0) is a projective resolution for C, θn−1αn = γnθn, and φn−1γn = βnφn.

Proof (sketch) We use induction, so suppose the maps γi have been constructed for all
i ≤ n. We show that we can construct γn+1.

First we show that φn maps ker γn onto imβn+1. Indeed suppose u ∈ im βn+1. Write
u = φnv where v ∈ Kn. Then φn−1γnv = βnφnv = βnu = 0, so γnv = θn−1w for some
w ∈ Pn−1. Since γn−1γnv = 0, it follows that θn−2αn−1w = 0 so αn−1w = 0 and hence
we may write w = αnx for some x ∈ Pn. Set y = θnx. Then φn(v − y) = φnv = u and
γn(v − y) = γnv − θn−1αnx = 0, as required.

Since Qn+1 is projective and φn maps ker γn onto im βn+1, it follows that there exists an
R-map β′

n+1 : Qn+1 → ker γn such that φnβ′
n+1 = βn+1. Now set γn+1 = (αn+1, β

′
n+1). Then

clearly θnαn+1 = γn+1θn+1, φnγn+1 = βn+1φn+1, so it remains to show that ker γn = im γn+1.
Since γnγn+1θn+1 = θn−1αnαn+1 = 0 it follows that γn+1 maps the first coordinate Pn+1

of Kn+1 to ker γn, and since β′
n+1 maps into ker γn, it follows that γn+1 maps the second

coordinate Qn+1 of Kn+1 also into ker γn. Therefore im γn+1 ⊆ ker γn.
Let u ∈ Kn. Then
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γnu = 0 =⇒ φn−1γnu = 0 =⇒ βnφnu = 0
=⇒ φnu = βn+1v for some v ∈ Qn+1

=⇒ φnu = βn+1φn+1w for some w ∈ Kn+1

=⇒ φnu = φnγn+1w for some w ∈ Kn+1

=⇒ u = γn+1w + θnx for some x ∈ Pn.

Since γnu = 0, it follows that γnθnx = 0, so θn−1αnx = 0 and hence x = αn+1y for some
y ∈ Pn+1. Therefore u = γn+1(w + θn+1y) as required.

This completes the induction step, and it is not difficult to show that the induction starts.

Third Homework Due 9:00 a.m., Monday, September 12.

(1) Let R be a ring.

(i) Let n ∈ P. If I is injective R-module, prove that Extn
R(M, I) = 0 for all R-modules

M .
(ii) Let I be an R-module. If Ext1R(M, I) = 0 for all R-modules M , prove that I is an

injective R-module.

(2) Let q ∈ P and let A be an abelian group. Prove:

(i) Ext0
Z
(Z/qZ, A) ∼= {a ∈ A | aq = 0}.

(ii) Ext1
Z
(Z/qZ, A) ∼= A/qA.

(iii) Extn
Z
(Z/qZ, A) = 0 for all n ≥ 2.

(3) Let A be a finitely generated abelian group and let B be any abelian group.

(i) Prove that Ext1
Z
(A,B) is a torsion group.

(ii) Prove that Extn
Z
(A,B) = 0 for all n ≥ 2.

(iii) By considering the group
⊕∞

q=2 Z/qZ, prove that Ext1
Z
(C,B) can have elements of

infinite order.

(4) Let A,B be abelian groups. Prove that Extn
Z
(A,B) = TorZ

n(A,B) = 0 for all n ≥ 2.

(5) Let R be a commutative ring, let I, J � R, let M,N be R-modules, and let n ∈ N.

(i) If MI = 0, prove that Extn
R(M,N)I = 0.

(ii) If NJ = 0, prove that Extn
R(M,N)J = 0.

(iii) If MI = NJ = 0 and I + J = R, prove that Extn
R(M,N) = 0.

(6) Let R,S be rings, let M,N be S-modules, and let θ : R → S be a ring homomorphism.

(i) Prove that M,N become R-modules by defining mr = mθr for m ∈ M or N , r ∈ R
and s ∈ S. Prove also that if f : M → N is an S-module map, then it is also an
R-module map.
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(ii) Let

(P, α0) : · · · α2−→ P1
α1−→ P0

α0−→ M −→ 0

and (Q, β0) : · · · β2−→ Q1
β1−→ Q0

β0−→ M −→ 0

be projective resolutions for M as R and S-modules respectively. Viewing (Q, β0) as
a sequence of R-modules (not necessarily projective), prove that there exist R-maps
θn : Pn → Qn such that βnθn = θn−1αn for all n ∈ N, where θ−1 is the identity map
on M .

(iii) Prove that the θn induce well defined group homomorphisms θ∗n : Extn
S(M,N) →

Extn
R(M,N). (You will need to set θ∗n(f + im β∗

n) = fθn + im α∗
n for f ∈ ker β∗

n+1.)
(iv) Prove that if φn : Pn → Qn are R-maps satisfying βnφn = φn−1αn, then φ∗

n =
θ∗n : Extn

S(M,N) → Extn
R(M,N).

(This is a very important result which will be used later. Its proof is very similar to the
results we have been doing in class that module homomorphisms induce homomorphisms in
Ext and Tor. There is an analogous result for Tor: namely the following. Let R,S be rings, let
M be a right S-module, let N be a left S-module, and let θ : R → S be a ring homomorphism.
Then there exist well defined group homomorphisms θn∗ : TorR

n (M,N) → TorS
n(M,N) for all

n ∈ N.)

(7) Let R be a ring, let I �r R, and let J �l R.

(i) Prove that the map i �→ i⊗ (1 + J) defines a group epimorphism I → I ⊗R R/J with
kernel IJ .

(ii) Prove that TorR
1 (R/I,R/J) is isomorphic to the kernel of the map I ⊗R R/J →

R ⊗R R/J defined by i ⊗ (1 + J) �→ i ⊗ (1 + J). (Use the long exact homology
sequence.)

(iii) Prove that TorR
1 (R/I,R/J) ∼= I ∩ J

IJ
.

Monday, September 12

Chapter 5
Commutative Diagrams

We now come to the two fundamental lemmas for obtaining the long exact sequences
involving Ext and Tor. There is one for chain complexes, and one for cochain complexes.

Lemma 1 Let R be a ring, and let 0 → A
θ→ B

φ→ C → 0 be an exact sequence of R-chain
complexes; i.e. a commutative diagram of R-modules and R-maps with exact rows (but not
necessarily exact columns)
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α3 ↓ β3 ↓ γ3 ↓
0−→A2

θ2−→B2
φ2−→C2−→0

α2 ↓ β2 ↓ γ2 ↓
0−→A1

θ1−→B1
φ1−→C1−→0

α1 ↓ β1 ↓ γ1 ↓
0−→A0

θ0−→B0
φ0−→C0−→0

↓ ↓ ↓
0 0 0

Then there exists a long exact sequence (of R-modules)

· · · −→Hn+1(C)
∂n+1−→ Hn(A) θn∗−→ Hn(B)

φn∗−→ Hn(C) ∂n−→ Hn−1(A)
θn−1 ∗−→ · · ·

· · · ∂1−→ H0(A) θ0∗−→ H0(B)
φ0∗−→ H0(C) −→ 0.

Proof (Sketch) The proof is very similar in spirit to the Horseshoe Lemma, so we will no
more than define the relevant maps: the only maps which are not easy to define are the ∂’s.
These are often termed the connecting homomorphisms.

The θ∗ and φ∗ maps are induced by the θ and φ. Specifically, θn∗a = θna + im βn+1 for
a ∈ ker αn, while φn∗b = φnb + im γn+1 for b ∈ kerβn. To define ∂n, suppose c̄ ∈ Hn(C)
is the element c + im γn+1 where c ∈ ker γn. Since φn is onto, we may choose b ∈ Bn such
that φnb = c. Then φn−1βnb = γnφnb = γnc = 0, hence there exists a ∈ An−1 such that

θn−1a = βnb, because 0 → An−1
θn−1→ Bn−1

φn−1→ Cn−1 → 0 is exact. It is easy to check
that a ∈ kerαn−1, so a + im αn defines an element ā ∈ Hn−1(A). Then it is not difficult to
show that the rule ∂nc̄ = ā yields a well defined R-map Hn(C) → Hn−1(A), and the resulting
sequence is exact.

We have a similar result for cochain complexes.

Lemma 2 Let R be a ring, and let 0 → A
θ→ B

φ→ C → 0 be an exact sequence of R-cochain
complexes; i.e. a commutative diagram of R-modules and R-maps with exact rows (but not
necessarily exact columns)
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α3 ↑ β3 ↑ γ3 ↑
0−→A2

θ2−→B2
φ2−→C2−→0

α2 ↑ β2 ↑ γ2 ↑
0−→A1

θ1−→B1
φ1−→C1−→0

α1 ↑ β1 ↑ γ1 ↑
0−→A0

θ0−→B0
φ0−→C0−→0

↑ ↑ ↑
0 0 0

Then there exists a long exact sequence (of R-modules)

0 −→H0(A) θ0∗−→ H0(B)
φ0∗−→ H0(C) ∂1−→ H1(A) θ1∗−→ H1(B)

φ1∗−→ · · ·
· · · ∂n−→ Hn(A) θn∗−→ Hn(B)

φn∗−→ Hn(C)
∂n+1−→ · · · .

Proof The proof of this is a homework exercise.

We now apply the above Lemmas to obtain the long exact sequences for Ext.

Corollary 3 Let R be a ring, let M be an R-module, and let 0 → A
α→ B

β→ C → 0 be an
exact sequence of R-modules. Then there is a long exact sequence

0 −→Ext0R(M,A) α0∗−→ Ext0R(M,B)
β0∗−→ Ext0R(M,C) ∂1−→ Ext1R(M,A) α1∗−→ Ext1R(M,B)

β1∗−→ · · ·
· · · ∂n−→ Extn

R(M,A) αn∗−→ Extn
R(M,B)

βn∗−→ Extn
R(M,C)

∂n+1−→ Extn+1
R (M,A)

αn+1 ∗−→ · · · .

Proof Let

(P, μ0) : · · · μ2−→ P1
μ1−→ P0

μ0−→ M −→ 0

be a projective resolution for M . Then we have an exact sequence of cochain complexes

0 −→ HomR(P,A) θ−→ HomR(P, B)
φ−→ HomR(P, C) −→ 0.

Here θn = α∗ : HomR(Pn, A) → HomR(Pn, B), φn = β∗ : HomR(Pn, B) → HomR(Pn, C),
αn = μ∗

n : HomR(Pn−1, A) → HomR(Pn, A), βn = μ∗
n : HomR(Pn−1, B) → HomR(Pn, B),

and γn = μ∗
n : HomR(Pn−1, C) → HomR(Pn, C). Note that

0 −→ HomR(Pn, A) θn−→ HomR(Pn, B)
φn−→ HomR(Pn, C) −→ 0.
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is exact because Pn is projective; thus the sequence of cochain complexes is exact. Now apply
Lemma 2.

Corollary 4 Let R be a ring, let M be an R-module, and let 0 → A
α→ B

β→ C → 0 be an
exact sequence of R-modules. Then there is a long exact sequence

0 −→Ext0R(C,M)
β∗
0−→ Ext0R(B,M)

α∗
0−→ Ext0R(A,M) ∂1−→ Ext1R(C,M)

β∗
1−→ Ext1R(B, M)

α∗
1−→ · · ·

· · · ∂n−→ Extn
R(C,M)

β∗
n−→ Extn

R(B, M)
α∗

n−→ Extn
R(A,M)

∂n+1−→ Extn+1
R (C,A)

β∗
n+1−→ · · · .

Proof Let

(P, α0) : · · · α2−→ P1
α1−→ P0

α0−→ A −→ 0,

(T, γ0) : · · · γ2−→ T1
γ1−→ T0

γ0−→ C −→ 0

be projective resolutions for A,C respectively. By the Horseshoe Lemma, we obtain a com-
mutative diagram with exact rows and the outer columns exact

α3 ↓ β3 ↓ γ3 ↓
0−→P2

θ2−→Q2
φ2−→T2−→0

α2 ↓ β2 ↓ γ2 ↓
0−→P1

θ1−→Q1
φ1−→T1−→0

α1 ↓ β1 ↓ γ1 ↓
0−→P0

θ0−→Q0
φ0−→T0−→0

α0 ↓ β0 ↓ γ0 ↓
0−→ A

θ−1−→ B
φ−1−→ C−→0

↓ ↓ ↓
0 0 0

where (Q, β0) is a projective resolution for B. Since T is projective, the sequence 0 →
HomR(Tn,M)

φ∗
n→ HomR(Qn,M)

θ∗
n→ HomR(Pn, M) → 0. is exact for all n ∈ N. Now apply

Lemma 2.

Let us give another application of these long exact sequences. For this we will assume the
well known result (mentioned in the first chapter) that every module can be embedded in an
injective module; this result is proved in nearly any book on homological algebra, and may
be in the book you used for 5000 Algebra.
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Example Let R be a ring, let M be an R-module, and let n ∈ N. If Extn
R(M,A) = 0 for

all R-modules A, then Extt
R(M,B) = 0 for all t ≥ n and for all R-modules B.

Proof By induction on t, we need only consider the case t = n+1. We may embed B in an
injective R-module I, and then there exists a short exact sequence 0 → B → I → A → 0 for
some R-module A. Applying the long exact sequence for ExtR, we obtain an exact sequence
of abelian groups

· · · −→ Extn
R(M, I) −→ Extn

R(M,A) −→ Extn+1
R (M,B) −→ Extn+1

R (M, I) −→ · · · .

By Exercise 1 of the third homework, Extn+1
R (M, I) = 0 because I is injective and n + 1 ≥ 1.

The result follows.

Change of Rings There are many results concerning the affect of ExtR and TorR when
the ring R is changed. There has already been one along these lines, namely problem 6 from
the previous (third) homework. In that problem it showed that a homomorphism R → S of
rings gives a corresponding natural homomorphism θM,N : Extn

S(M,N) → Extn
R(M,N). The

adjective natural here means that the maps induced in Ext by module homomorphisms will
commute with θM,N . Also the θM,N will commute with the connecting homomorphism in
long exact sequences. Thus for example, if 0 → A → B → C → 0 is an exact sequence of
R-modules, then there exists a commutative diagram

Extn
R(M,C)

∂n+1−→ Extn+1
R (M,A)

θM,C ↓ ↓ θM,A

Extn
R(M,C)

∂n+1−→ Extn+1
R (M,A).

In this case there is no assertion that the θ’s are isomorphisms; in fact usually they will
not be isomorphisms, but the existence of these natural homomorphisms can be a powerful
tool. We shall now consider some of these change of rings theorems where we in fact do have
isomorphisms.

Let R be a ring and let M be an R-module. Recall that M is flat means that if 0 → A →
B → C → 0 is an exact sequence of R-modules, then the induced sequence

0 −→ A ⊗R M −→ B ⊗R M −→ C ⊗R M −→ 0

is also exact. Since taking tensor product is always right exact, an equivalent formulation of
this is that given an exact sequence 0 → A → B, then the induced sequence 0 → A⊗R M →
B ⊗R M is also exact. By definition, all projective modules are flat, though the converse
is not true: this will become apparent in what follows. An important example of a flat
module is that of a ring obtained by localization. Let R be a commutative ring and let S be a
multiplicatively closed subset of R. Then S−1R is a flat R-module. To see this let 0 → A

α→ B
be an exact sequence of R-modules. By Exercise 16 of the first chapter, A⊗R S−1R ∼= S−1A;
the isomorphism is given by m ⊗ s−1r �→ ms−1r. It is easy to see that this isomorphism is
natural, so we have a commutative diagram



31

A ⊗R S−1R
α⊗1−→ B ⊗R S−1R

↓ ↓
S−1A

S−1α−→ S−1B

where the vertical arrows are isomorphisms, and S−1α denotes the map s−1a �→ s−1αa.
Since A → B → C exact implies S−1A → S−1B → S−1C is also exact, it now follows that
0 → A ⊗R S−1 α⊗1→ B ⊗R S−1 is exact as required.

It should be noted that the above remains true even when R is noncommutative, provided
that S is contained in the center of R. To see this, simply let C denote the center of R and
apply ⊗C S−1C instead of ⊗R S−1R.

Exercise The purpose of this exercise is to show that Tor can be computed using flat
resolutions. In detail, let R be a ring, let A be a right R-module, let B be a left R-module,
and let (P, α0) : · · · α2→ P1

α1→ P0
α0→ A → 0 be a flat resolution of A (i.e. (P, α0) is a resolution

and all the Pi are flat).

(i) Using the fact that ⊗R B is right exact, prove that TorR
0 (A,B) ∼= H0(P ⊗R B).

(ii) Apply the long exact sequence for Tor to 0 → P1/ imα2 → P0 → P0/ im α1 → 0 to
deduce that TorR

1 (A,B) ∼= H1(P ⊗R B).
(iii) Use the long exact sequence for Tor to show that TorR

n (A,B) ∼= TorR
1 (im αn−1, B) for

n ≥ 1. Deduce that TorR
n (A,B) ∼= Hn(P ⊗R B) as required.

To make further progress, we need the following easy but important lemma.

Lemma 5 Let R be a ring, let P be a chain complex of right R-modules, and let M be a
flat left R-module. Then Hn(P ⊗R M) ∼= Hn(P ) ⊗R M .
Proof Let the boundary maps of P be αn, let Zn = ker αn, let Bn = im αn+1, and let
ι : Zn → Pn denote the natural inclusion. Since 0 → Zn

ι→ Pn
αn→ Bn−1 → 0 is exact and M

is a flat R-module, we see that ι ⊗ 1 maps Zn ⊗R M isomorphically onto ker(αn ⊗ 1), and
Bn ⊗R M isomorphically onto im(αn+1 ⊗ 1). Using the fact that M is flat again, tensoring
0 → Bn → Zn → Zn/Bn → 0 with M yields the required result.

We can now state the following.

Lemma 6 Let R be a commutative ring, let n ∈ N, let A,B be a R-modules, and let T be
a flat R-module. Then TorR

n (A,B) ⊗R T ∼= TorR
n (A,B ⊗R T ).

Proof Let (P, ε) : · · · → P2 → P1 → P0
ε→ A → 0 be a projective resolution of A. Then

TorR
n (A,B) = Hn(P ⊗R B) and TorR

n (A,B⊗R T ) = Hn(P ⊗R (B⊗R T )). Since (Pn ⊗R B)⊗R

T ∼= Pn ⊗R (B ⊗R T ) (see Example 4 on Tensor Products on the first chapter), the result
follows from Lemma 5.

Lemma 7 Let R, T be a rings, let θ : R → T be a ring homomorphism which makes T into
a flat left R-module, let n ∈ N, let A be a right R-module, and let B be a left T -module.
Then TorR

n (A,B) ∼= TorT
n (A ⊗R T,B).
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Proof Let (P, ε) : · · · → P2 → P1 → P0
ε→ A → 0 be a projective resolution of A. Since T

is flat as a left R-module, it follows that (P ⊗R T, ε ⊗ 1) is a projective resolution of A ⊗R T

as T -modules. Thus TorR
n (A,B) = Hn(P ⊗R B) and TorT

n (A⊗R T,B) = Hn((P ⊗R T )⊗T B).
Since

(Pn ⊗R T ) ⊗T B ∼= Pn ⊗R (T ⊗T B) ∼= Pn ⊗R B

naturally (see (2) and (4) on the section on Tensor Products on the first chapter), the result
follows.

Note that the above result is true even when R is noncommutative. This will be useful when
we do group cohomology: in that situation, T will be the group ring of a group G, and R will
be the group ring of a subgroup of G.

Theorem 8 Let R be a commutative ring, let T be a flat R-algebra, let n ∈ N, and let A,B
be R-modules. Then TorR

n (A,B) ⊗R T ∼= TorT
n (A ⊗R T,B ⊗R T ) as R-modules.

Proof To say that T is an R-algebra means that we are given a ring homomorphism θ : R →
T such that im θ lies in the center of T . This means that T can be considered as an R-bimodule
over the commutative ring R, and the left and right actions are the same. The proof of this
result is immediate from Lemmas 6 and 7.

There are two immediate applications of the above result.

Corollary 9 Let R be a ring, let S be a multiplicatively closed subset in the center of R,
let n ∈ N, and let A,B be R-modules. Then S−1 TorR

n (A,B) ∼= TorS−1R
n (S−1A,S−1B).

Proof This follows from Theorem 8 and the fact that S−1R is a flat R-module.

Corollary 10 Let k ⊆ K be fields, let R be a k-algebra, let n ∈ N, and let A,B be
R-modules. Then TorR

n (A,B) ⊗k K ∼= TorR⊗kK
n (A ⊗k K,B ⊗k K).

Proof This is because R ⊗k K is a flat (even free) K-module.

We can apply Corollary 10 to prove that TorZ

n(A,B) = 0 for all n ∈ P and for all Z-modules
A,B. To see this, let S = Z\0. Then S−1Z ∼= Q as rings. It is easy to prove that Tork

n(A,B) =
0 for all n ∈ P if k is a field (though this requires the fact that every vector space has a basis,
i.e. every k-vector space is a free k-module): thus TorS−1Z

n (S−1A,S−1B) = 0 for all n ∈ P
and for all Z-modules A,B. Now apply Corollary 10 to deduce that S−1 TorZ

n(A,B) = 0, and
then it is easy to prove that TorZ

n(A,B) is a torsion group for all n ∈ P and for all Z-modules
A,B.

Similar results hold for Ext, though some restriction on the rings are required. We will
just state the following result, whose proof is similar to the results on Tor which we have just
been doing. Recall that a ring R is right Noetherian if every right ideal is finitely generated.

Theorem Let R be a right Noetherian ring, let S be a multiplicatively closed subset con-
tained in the center of R, let n ∈ N, and let A,B be R-modules with A finitely generated.
Then
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S−1 Extn
R(A,B) ∼= Extn

S−1R(S−1A,S−1B).

Fourth Homework Due 9:00 a.m., Monday, September 19.

(1) Prove (in detail) Lemma 2.

(2) Prove the two long exact sequences for Tor of the last chapter.

(3) Let k be a field, let R = k[X,Y ]/(X2, Y 2, XY ), and let n ∈ N. Thus dimk R = 3 and
R has a nilpotent ideal of dimension 2. Let X̄, Ȳ denote the images of X, Y in R
respectively, and let k denote the R-module with aX̄ = aȲ = 0 for all a ∈ R. Prove that
Extn

R(k, k) ∼= k(2n) as k-modules.

(4) Let k be a field, let R denote the 2× 2 upper triangular matrices over k, let {eij | 1 ≤ i ≤
j ≤ 2} denote the matrix units of R (i.e. matrices with one entry 1 and 0’s elsewhere).
Thus R is the set of matrices {(aij) | a21 = 0}. Let U denote the irreducible R-module
with e22 acting trivially (i.e. ue22 = 0 and ue11 = u for all u ∈ U), and let V denote the
irreducible R-module with e11 acting trivially. If n ∈ N, prove that Extn

R(U, V ) = 0 if
n 	= 1, and Extn

R(U, V ) ∼= k as k-modules.

(5) The purpose of this problem is to give a proof of the well known fact that Q is an in-
jective Z-module, assuming the result that every subspace of a vector space has a direct
complement. In the following, M denotes a Z-module which is isomorphic to Q.

(i) Let S = Z\0, and suppose that M is a Z-submodule of the torsion free Z-module A.
By considering the natural ring homomorphism from A to S−1A (a �→ a/1), prove
that there exists a Z-submodule B of A which is a direct complement of M in A.

(ii) Prove that M is an injective Z-module.

(6) For this problem, assume the result of the previous problem, namely that Q is an injective
Z-module. Let Cp∞ denote the Z-module which consists of the elements of p-power order
of Q/Z. One can say that Cp∞ is the Sylow p-subgroup of Q/Z (though it will of course
be an infinite group), or one can consider it as

⋃∞
n=1 Z/pnZ.

(i) Prove that Ext1
Z
(Cp∞ , Z) is an infinite torsion free group.

(ii) Show that if R is a commutative ring, S is a multiplicatively closed subset of R, and
A,B are R-modules, then S−1 Ext1R(A,B) ∼= Ext1S−1R(S−1A,S−1B) is not true in
general.

(iii) Using the fact that Q is an injective Z-module, prove that Cp∞ is an injective Z-
module.

(7) Let K be an integral domain (i.e. a commutative ring with no zero divisors) and let
R = K[X]. Prove that TorR

n (A,B) is a torsion K-module for all n ≥ 2 and for all
R-modules A,B.
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Monday, September 19

Chapter 6
Limits

Remarks on last chapter
(1) Let R be a ring, let A be a right R-module and let B be a flat left R-module. Then
TorR

n (A,B) = 0 for all n ∈ P. This is easy to prove directly; it can also be seen from Lemma 5
of chapter 5.

(2) Let R be a ring, let A be a flat right R-module and let B be a left R-module. Then
TorR

n (A,B) = 0 for all n ∈ P. To see this, take a short exact sequence 0 → K → F → B → 0
where F is a free R-module and apply the long exact sequence for Tor in the second variable.
By induction on n and the fact that TorR

n (A,F ) = 0 for all n ∈ P (see (1)), we immediately
reduce to the case n = 1. Now use the fact that 0 → A ⊗R K → A ⊗R F → A ⊗R B → 0 is
exact because A is flat.

(3) All these change of ring isomorphisms are natural. Thus for example if

θA,B : TorR
n (A,B) ⊗R T −→ TorT

n (A ⊗R T,B ⊗R T )

is the isomorphism of Theorem 8 of the fifth (i.e. previous chapter) and β : B → C is an
R-module homomorphism, then there is a commutative diagram

TorR
n (A,B) ⊗R T

βn∗⊗1−→ TorR
n (A,C) ⊗R T

θA,B ↓ ↓ θA,C

TorT
n (A ⊗R T,B ⊗R T )

(β⊗1)n∗−→ TorT
n (A ⊗R T,C ⊗R T ).

(4) Let R, T be rings, and let θ : R → T be a ring homomorphism which makes T into a flat
right R-module, let A be a right T -module and let B be a left R-module. Then there is a
natural isomorphism between TorR

n (A,B) and TorT
n (A, T ⊗R B).

(5) Let R, T be rings, let θ : R → T be a ring homomorphism which makes T into a flat left
R-module, let A be a right R-module and let T be a right T -module. Then there is a natural
isomorphism between Extn

R(A,B) and Extn
T (A ⊗R T,B).

(6) By a similar argument to the exercise of the previous chapter, we can prove that Tor can
be computed by using a flat resolution of the second argument. Specifically, let R be a ring, let
M be a right R-module, and let A be a left R-module. Let (P, α0) : · · · α2→ P1

α1→ P0
α0→ A → 0

be a flat resolution of A with flat left R-modules. Then Hn(M ⊗R P ) ∼= TorR
n (M,A).

(7) We can use (6) to demonstrate the balancing of Tor (Tor(A,B) = Tor(B, A)). Specifically,
let R be a ring, and use the superscript op to denote the opposite ring and the corresponding
opposite modules. Thus if R is ring, then Rop will denote the opposite ring which has the
same underlying set as R and with new multiplication given by r · s = sr for r, s ∈ R. If M is
a right R-module, then Mop will denote the left Rop module which has the same underlying
set as R, and in which rm = mr for m ∈ M and r ∈ R. Then we have
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Theorem Let R be a ring, let A be a right R-module, let B be a left R-module, and let
n ∈ N. Then TorR

n (A,B) ∼= TorRop

n (Bop, Aop) as abelian groups.

Remark In the special case R is commutative, we do not have to bother with opposite
rings. In fact then we have the following result: let R be a commutative ring, let A,B be
R-modules, and let n ∈ N. Then TorR

n (A,B) ∼= TorR
n (B, A) as R-modules.

Proof of Theorem Let (P, α0) : · · · α2→ P1
α1→ P0

α0→ A → 0 be a projective resolution
for A. Then (P op, α0) : · · · α2→ P op

1
α1→ P op

0
α0→ Aop → 0 is a projective resolution for P op,

TorR
n (A,B) ∼= Hn(P ⊗R B) and TorRop

n (Bop, Aop) ∼= Hn(Bop ⊗Rop Aop). However the map
x⊗ b �→ b⊗ x induces a group isomorphism Pn ⊗R B → Bop ⊗Rop P op

n , which in turn induces
an isomorphism Hn(P ⊗R B) → Hn(Bop ⊗Rop Aop), and the result follows.

Direct and Inverse Limits The notions of direct limit and inverse limit are in a certain
sense dual to each other. Let us start off with direct limits, because they are somewhat easier
to understand. They are very useful for dealing with modules which are not finitely generated.
We will prove the result mentioned earlier that Tor commutes with direct limits: this will
reduce the calculation of Tor down to modules which are finitely generated. First let us recall
what a directed set is.
Definition Let I be a partially ordered set. This means that I is a set with a partial order
≤; by definition ≤ is a binary relation with the following properties.

(i) i ≤ i for all i ∈ I.
(ii) If i ≤ j and j ≤ i, then i = j.
(iii) If i ≤ j ≤ k, then i ≤ k.

We say that I is a directed set if for any i, j ∈ I, there exists k ∈ I such that i, j ≤ k. Thus
Z is a directed set where ≤ is as usual. Another example of a directed set is the set of all
finite subsets of a set S, where A ≤ B means A is contained in B.

Let I be a directed set. Then a direct system of sets (indexed by I, or over the set I)
means a family of sets {Mi | i ∈ I} such that for each i ≤ j, there exists a map f j

i : Mi → Mj

satisfying

f i
i = idMi

and fk
j f j

i = fk
i

whenever i ≤ j ≤ k. Similarly if R is a ring, then a direct system of R-modules is a directed
family of sets Mi such that the Mi are R-modules and the maps f j

i above are R-module maps.
Similarly we could define a direct system of groups to mean a directed family of sets Mi such
that the Mi are groups and the f j

i are group homomorphisms. We shall sometimes write (Mi)
or (Mi, f

j
i ) to stand for the direct system of R-modules together with their R-maps f j

i .
Let R be a ring and {Mi | i ∈ I} be a direct system of R-modules with R-maps f j

i : Mi →
Mj . Then the direct limit lim−→Mi of the Mi is an R-module M and R-maps fi : Mi → M for
i ∈ I such that fjf

j
i = fi whenever i ≤ j, and with the following universal property: if N is

an R-module and gi : Mi → N are R-maps such that gjf
j
i = gi, then there exists a unique

R-map θ : M → N such that θfi = gi for all i ∈ I.
As usual it is easy to check that if lim−→Mi exists, then it is unique up to isomorphism;

specifically if M and N are two direct limits with corresponding maps fi : Mi → M and



36

gi : Mi → N , then there is an isomorphism θ : M → N such that θfi = gi for all i ∈ I.
To prove the existence of a direct limit, set D =

⊕
i∈I Mi, and let πi : Mi → D denote the

natural injection. Now define F to be the R-submodule of D generated by all elements of
the form πimi − πjf

j
i mi where mi ∈ Mi, let M = D/F , and let σ : D → M denote the

natural surjection with kernel F . Then it is easily checked that M together with the maps
σπi : Mi → M form a direct limit for the direct system of R-modules Mi; thus direct limits
exist.

Remark In a similar fashion we can also construct the direct limit of a direct system of
abelian groups. Suppose (Mi) is direct system of R-modules with direct limit M . We can
also view (Mi) as a direct system of abelian groups: if N is the direct limit of this system
of abelian groups, then M ∼= N as abelian groups. Another way of phrasing this is that the
abelian group N is naturally an R-module.

Examples
(i) Let R be a ring, let M be an R-module, and let {Mi | i ∈ I} be a family of R-modules
indexed I such that M =

⋃
i∈I Mi. The partial order on I is characterized by the property

that i ≤ j if and only if Mi ⊆ Mj , and the corresponding maps f j
i : Mi → Mj for i ≤ j are

just the inclusions. Then lim−→Mi
∼= M , and the corresponding maps fi : Mi → M are just the

inclusion maps. In this example, one often takes the set {Mi | i ∈ I} to be the set of finitely
generated submodules of M .

(ii) Let R be a ring, let M be an R-module, and let {Mi | i ∈ I} be a family of R-submodules
of M over the set I. The partial order on I is characterized by the property that i ≤ j if and
only if Mi ⊆ Mj (as in (i)) and here the corresponding maps f j

i : M/Mi → M/Mj for i ≤ j
are the natural epimorphisms induced by the identity map from M to M . Let N =

⋃
i∈I Mi.

Then lim−→M/Mi
∼= M/N , and the corresponding maps fi : M/Mi → M/N are just the natural

epimorphisms induced by the identity map M → M .

Exercise
Let R be a ring, let I be a directed set, let {Mi | i ∈ I} be a system of R-modules, and let
M = lim−→Mi. Let f j

i : Mi → Mj and fi : Mi → M be the corresponding R-module maps.
(i) Let m ∈ M . Prove that there exists k ∈ I such that m ∈ im fi for all i ≥ k.
(ii) Let mi ∈ Mi. Prove that mi ∈ ker fi if and only if mi ∈ ker f j

i for some j ≥ i.

We now want to determine what Tor of a direct limit of modules is. To proceed, we will
need to study maps between direct systems of R-modules. We need the following definition.

Definition Let R be a ring, let I be a directed set, and let {Mi | i ∈ I} and {Ni | i ∈ I} be
direct systems of R-modules with corresponding maps f j

i and gj
i . Then a map θ : (Mi) → (Ni)

is a system of R-maps θi : Mi → Ni which commute with the maps f j
i and gj

i , i.e. gj
i θi = θjf

j
i .

Then it is easy to check that θ induces an R-module map (which we will still denote by θ)
θ : lim−→Mi → lim−→Ni.

Specifically, the map θ is defined as follows: let m ∈ M . Then by the above exercise m = fimi

for some i ∈ I and for some mi ∈ Mi, and then we define θm = giθimi. The map θ will have
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the property that giθi = θfi. The following lemma is fundamental to studying direct limits
of modules.

Lemma Let R be a ring and let I be a directed set. Suppose

0 −→ (Li, f
j
i ) θ−→ (Mi, g

j
i )

φ−→ (Ni, h
j
i ) −→ 0

is an exact sequence of direct systems of R-modules. Then the induced sequence 0 → L
θ→

M
φ→ N → 0 is also exact.

Of course the sequence of direct systems of R-modules is exact means that for each i ∈ I, the
sequence 0 → Li

θi→ Mi
φi→ Ni → 0 is also exact.

Proof This all follows from the above exercise. For example, let us prove that kerφ ⊆ im θ,
so suppose m ∈ ker φ. By the exercise, we may write m = gimi where i ∈ I and mi ∈ Mi.
Since φm = 0, we see that hiφimi = φgimi = 0 so by the above exercise hj

iφimi = 0 for some
j ≥ i. Therefore φjg

j
i mi = hj

iφimi = 0, so by exactness of the direct systems, there exists
lj ∈ Lj such that θjlj = gj

i mi. Then θ(fjlj) = gjθjlj = gjg
j
i mi = gimi = m, as required.

Next we show that tensor products commute with direct limits; this together with the
above Lemma will enable us to prove that Tor commutes with direct limits. Let R be a ring, let
A be an R-module, and let (Bi, f

j
i ) be a direct system of R-modules with direct limit B. Then

it is easily checked that (A⊗R Bi, 1⊗f j
i ) is a direct system of abelian groups, so lim−→(A⊗R Bi)

exists: let gi : A⊗RBi → lim−→(A⊗RBi) be the corresponding maps, so gj(1⊗f j
i ) = gi. We also

have maps 1⊗ fi : A⊗R Bi → A⊗R B such that (1⊗ fj)(1⊗ f j
i ) = 1⊗ fi, so by the universal

property of direct limits there is a unique group homomorphism θ : lim−→(A⊗R Bi) → A⊗R B
such that θgi = 1 ⊗ fi.

Now we construct a map going the other way. For each i ∈ I and a ∈ A, we define
a group homomorphism φi(a) : Bi → lim−→A ⊗R Bi by φi(a)b = gi(a ⊗ b) for b ∈ Bi. Then
φi(a) = φj(a)f j

i , so by the universal property of direct limits, the φi(a) induce a unique group
homomorphism φ(a) : B → lim−→A ⊗R Bi satisfying φ(a)fib = gi(a ⊗ b) for all b ∈ B. We now
define a map φ : A × B → lim−→A ⊗R Bi by φ(a, b) = φ(a)b. It is routine to check that φ is an
R-balanced map, so it induces a group homomorphism φ : A ⊗R B → lim−→Bi, and then it is
easily verified that φθ is the identity map on lim−→A ⊗R Bi, and that θφ is the identity map
on A ⊗R B. Thus lim−→A ⊗R Bi

∼= A ⊗R B as required. It is also routine to see that this is a
natural isomorphism.

Thus we have shown that Tor0 commutes with direct limits, and we now need to show
that Torn commutes with direct limits for all n ∈ N (not just n = 0). This is really a
consequence of the following principle (if we knew some category theory, we could just quote
a theorem now; instead I will phrase things in categorical language without defining my terms
precisely). A functor is exact if it maps exact sequences into exact sequences: thus taking
direct limits is an exact functor. Another example of an exact functor is localization: if R is
a commutative ring and S is a multiplicatively closed subset of R, then the map M �→ S−1M
sending R-modules to S−1R-modules is exact, because if A → B → C is an exact sequence
of R-modules, then S−1A → S−1B → S−1C is an exact sequence of S−1R-modules. An
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example of a functor which is not exact is the map M �→ M ⊗R B for a fixed left R-module
B sending right R-modules to abelian groups, though it will be exact if B is a flat left R-
module. Then any exact functor which commutes with the functor A ⊗R will commute
with TorR

n (A, ) for all n ∈ N. Similar remarks apply to the functors TorR
n ( , A), Extn

R( , A),
Extn

R(A, ), or any other functor which has derived functors (Extn
R(A, ) is a derived functor

of the functor Ext0R(A, )). Let us now prove that TorR
n (A, ) commutes with direct limits;

we state precisely the result we are trying to prove.

Theorem Let R be a ring, let A be a right R-module, let (Mi, f
j
i ) be a direct system of

R-modules indexed by the set I, and let n ∈ N. Then (TorR
n (A,Mi), (f

j
i )n∗) is a direct system

of abelian groups, and lim−→TorR
n (A,Mi) ∼= TorR

n (A, lim−→Mi).
Proof First we shall define the map giving the isomorphism. For each i ∈ I we have an
R-map fi : Mi → lim−→Mi, and this induces a map (fi)n∗ : TorR

n (A,Mi) → TorR
n (A, lim−→Mi),

which in turn induces a map g : lim−→TorR
n (A,Mi) → TorR

n (A, lim−→Mi). Now choose an exact
sequence of right R-modules 0 → K → F → A → 0 where F is a free R-module. Then for
n ≥ 1, the long exact sequence for Tor in the first variable together with the naturality of the
maps involved yields a commutative diagram

lim−→TorR
n (F,Mi) −→ lim−→TorR

n (A,Mi) −→ lim−→TorR
n−1(K,Mi) −→ lim−→TorR

n−1(F,Mi)
gn(F ) ↓ gn(A) ↓ ↓ gn−1(K) ↓ gn−1(F )

TorR
n (F, lim−→Mi) −→ TorR

n (A, lim−→Mi) −→ TorR
n−1(K, lim−→Mi) −→ TorR

n−1(F, lim−→Mi)

in which the rows are exact (we have used the exactness of lim−→ for the top row), and gn−1(K)
is an isomorphism by induction. Since TorR

n (F, ) = 0 when F is a free R-module, we see
that gn(F ) = 0 for n ≥ 1, and it has already been proved that g0(F ) is an isomorphism. It
follows that gn(A) is an isomorphism.

Thus we have shown that Tor commutes with direct limits in the second variable, and an
exactly similar argument shows that Tor commutes with direct limits in the first variable (or
we could deduce this from the above by using the balancing of Tor). Specifically the result
we have is

Theorem Let R be a ring, let A be a left R-module, let n ∈ N, and let (Mi) be a direct
system of right R-modules. Then TorR

n (lim−→Mi, A) ∼= lim−→TorR
n (Mi.A).

Application We have already seen in the third chapter that tensor products commute with
direct sums: we now have another way of proving this (assuming the result for finite direct
sums). If M =

⊕
i∈I Mi, then M ∼= lim−→

⊕
i∈J Mi where J runs through all the finite subsets

of I.

Inverse Limits As has already been mentioned, inverse limits are the dual notion of direct
limits: the definition for inverse limit is the same as for direct limit, except we reverse the
arrows everywhere. Also direct limits can be considered as generalizations of direct sums,
whereas inverse limits can be considered as generalizations of cartesian products. In detail,
we have the following definition.
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Definition Let R be a ring and let I be a directed set. Then an inverse system of R-modules
over I is a family of R-modules {Mi | i ∈ I} such that for each i ≤ j, there exists an R-map
f j

i : Mj → Mi satisfying

f i
i = idMi

and f j
i fk

j = fk
i

whenever i ≤ j ≤ k. As with direct limits, we shall write (Mi) or (Mi, f
j
i ) to stand for the

inverse system together with the R-maps f j
i .

If (Mi, f
j
i ) is an inverse system of R-modules, then the inverse limit lim←−Mi of the system

is an R-module M and R-maps fi : M → Mi for i ∈ I such that f j
i fj = fi whenever i ≤ j,

and with the following universal property: if N is an R-module and gi : N → Mi are R-maps
such that f j

i gj = gi, then there exists a unique R-map θ : N → M such that fiθ = gi for all
i ∈ I.

As in the case with direct limits, if lim←−Mi exists, then it is unique up to isomorphism:
specifically if M and N are two inverse limits with corresponding maps fi : M → Mi and
gi : N → Mi, then there is an isomorphism θ : N → M such that fiθ = gi for all i ∈ I.
To prove the existence of an inverse limit, let C =

∏
i∈I Mi, and identify each module Mi

with its canonical image in C. Now define M to be the R-submodule consisting of elements
{(mi) ∈ C | f j

i mj = mi} whenever i ≤ j, and let fi : M → Mi denote the restriction to M
of the natural projection of C onto Mi. Then it is easy to check that M together with the
maps fi form an inverse limit for the inverse system (Mi).

Examples

(i) Let R be a ring, let M be an R-module, and define an inverse system (Ai, f
j
i ) over P by

Ai = M for all i ∈ P and f j
i : Mj → Mi to be the identity whenever i ≤ j. Then the inverse

limit of this system is just the R-module M .

(ii) Let R be a ring and let {Mi | i ∈ I} be a family of R-modules over the directed set I.
For each finite subset J of I, set MJ =

⊕
i∈J Mi. Then if J ⊆ K, we have a projection

πK
J : MK → MJ , and it is easy to verify that (MJ , πK

J ) form an inverse system over the finite
subsets of I. The inverse limit will be

∏
i∈I Mi.

(iii) Let k be a field, and for i ≤ j ∈ P, define f j
i : k[X]/(Xj) → k[X]/(Xi) to be the

natural epimorphism. Then (k[X]/(Xi), f j
i ) form an inverse system, the inverse limit is

the power series ring k[[X]], and the corresponding maps fi : k[[X]] → k[X]/(Xi) are just
the natural epimorphisms (note that the inclusion k[X] ↪→ k[[X]] induces an isomorphism
k[X]/(Xi) ∼= k[[X]]/(Xi) for all i ∈ P).

(iv) Let p ∈ P be a prime number and for i ≤ j ∈ P, let f j
i : Z/pjZ → Z/piZ denote the

natural epimorphism. Then (Z/piZ, f j
i ) form an inverse system: the inverse limit is the p-adic

integers Zp which are an integral domain, are a local ring with unique maximal ideal pZ, and
have uncountable cardinality. They are very important in many branches of Mathematics,
especially number theory.

Maps between inverse systems are defined in exactly the same way as for inverse limits.
Here is the formal definition.
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Definition Let R be a ring, let I be a directed set, and let (Mi, f
j
i ) and (Ni, g

j
i ) be inverse

systems over the directed set I. Then a map θ : (Mi) → (Ni) is a family of R-maps θi : Mi →
Ni which commute with the maps f j

i and gj
i , i.e. gj

i θj = θif
j
i whenever i ≤ j. Then it is easy to

check that θ induces an R-module map (which we will still denote by θ) θ : lim←−Mi → lim←−Ni.

Specifically the map θ is defined as follows: for i ∈ I, define hi : M → Ni by hi = θifi. Then

gj
i hj = gj

i θjfj = θif
j
i fj = θifi = hi,

so by the universal property of inverse limits, there exists a unique map θ : lim←−Mi → lim←−Ni

such that giθ = hi = θifi for all i ∈ I, as required.
We now show that Hom commutes with inverse systems in the second variable. Let R

be a ring, let A be an R-module, and let ((Mi), f
j
i ) be an inverse system of R-modules.

Then it is easily checked that (HomR(A,Mi), f
j
i∗) is an inverse system of abelian groups,

so lim←−HomR(A,Mi) exists: let gi : lim←−HomR(A,Mi) → HomR(A,Mi) be the corresponding
maps. We also have maps fi∗ : HomR(A, lim←−Mi) → HomR(A,Mi) for i ∈ I such that f j

i∗fj∗ =
fi∗, so by the universal property of inverse limits, there exists a unique group homomorphism
θ : HomR(A, lim←−Mi) → lim←−HomR(A,Mi) such that fi∗ = giθ.

We now construct a map φ inverse to θ. For each a ∈ A, define a group homomorphism
φi(a) : lim←−HomR(A,Mi) → Mi by φi(a)x = (gix)a for x ∈ lim←−HomR(A,Mi) and a ∈ A.
Then φi(a) = f j

i φj(a), so by the universal property of inverse limits, the φi(a) induce a group
homomorphism φ(a) : lim←−HomR(A,Mi) → lim←−Mi such that fiφ(a) = φi(a). A routine check
shows that for x ∈ lim←−HomR(A,Mi), a �→ φ(a)(x) defines an element of HomR(A, lim←−Mi),
so we can define a group homomorphism φ : lim←−HomR(A,Mi) → HomR(A, lim←−Mi) satisfying
fi(φ(x)(a)) = (gix)a. Then it is easily verified that θφ is the identity map on lim←−HomR(A,Mi)
and that φθ is the identity map on HomR(A, lim←−Mi) as required.

Now it would seem plausible to proceed as in the case of direct limits, namely to prove
that ExtR(A, ) commutes with direct limits. Since inverse limits are just direct limits with
the arrows reversed, it follows that an exact sequence of inverse systems would induce an
exact sequence of inverse limits. But consider the following example.

We will construct inverse systems indexed by P. Let p, q ∈ P be such that p, q ≥ 2 and
q ≡ 1 mod p. Define Ai = Bi = Z for all i ∈ Z, and Ci = Z/pZ. We make (Ai, α

j
i ) into an

inverse system by defining αj
i : Aj → Ai by αj

i a = qj−ia for i ≤ j; we make (Bi, β
j
i ) into an

inverse system by defining βj
i : Bi → Bj by βj

i b = qj−ib for i ≤ j; and we make (Ci, γ
j
i ) into

an inverse system by defining γj
i c = c for i ≤ j. We now have an exact sequence of inverse

systems 0 → A
θ→ B

φ→ C → 0 by defining θi : Ai → Bi by θia = pa, and φi : Bi → Ci to be
the natural epimorphism. However lim←−Ai = lim←−Bi = 0, and lim←−Ci

∼= Z/pZ, so the righthand
side of the sequence for the inverse limit is not exact.

Fifth Homework Due 9:00 a.m., Monday, September 26.

(1) The purpose of this problem is to show that the Ext groups can be computed by using
injective resolutions in the second variable. Let R be a ring, let M,A be R-modules, and
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let (I, α0) : 0 → A
α0→ I0

α1→ I1
α2→ I2

α3→ · · · be an injective resolution of the R-module A
(i.e. the sequence is exact and all the Ii are injective R-modules).

(i) Use the fact that HomR(M, ) is left exact to prove Ext0R(M,A) ∼= H0(HomR(M, I)),
where HomR(M, I) denotes the complex

0 −→ HomR(M, I0)
α1∗−→ HomR(M, I1)

α2∗−→ HomR(M, I2)
α3∗−→ · · · .

(ii) Apply the long exact sequence for Ext in the second variable to 0 → ker α1 → I0 →
ker α2 → 0 to deduce that Ext1R(M,A) ∼= H1(HomR(M, I)).

(iii) Use the long exact sequence for Ext to show that Extn
R(M,A) ∼= Ext1R(M, ker αn).

Deduce that Extn
R(M,A) ∼= Hn(HomR(M, I)) as required.

(2) Let k be a field, let k[X] and k[X,Y ] denote the polynomial rings in one and two variables
respectively, and let k denote the k[X,Y ]-module with X,Y acting trivially (so aX =
aY = 0 for all a ∈ k).
(i) Prove that Extn

k[X](k, k) ∼= k if n = 0 or 1, and is 0 if n ≥ 2 (where k denotes the
k[X]-module with X acting trivially).

(ii) By using a change of rings theorem, prove that Extn
k[X,Y ](k[X], k) ∼= Extn

k[X](k, k) for
all n ∈ N (where k[X] is the k[X,Y ]-module with Y acting trivially).

(iii) Let θ : k[X] → k[X] denote the k[X,Y ]-map defined by θ1 = X. Prove that the
induced map θ∗ : Extn

k[X,Y ](k[X], k) → Extn
k[X,Y ](k[X], k) is zero.

(iv) By considering the long exact sequence for Ext in the first variable for the exact
sequence of k[X,Y ]-modules 0 → k[X] θ→ k[X] → k → 0, prove that Extn

k[X,Y ](k, k) ∼=
k if n = 0 or 2, is isomorphic to k ⊕ k if n = 1, and is zero if n > 2.

(3) Let R be a Noetherian integral domain with field of fractions K, let M be an R[X]-module,
and let A be a finitely generated R[X]-module. Suppose M is isomorphic to a direct
(possibly infinite) sum of copies of K as an R-module. Prove that Extn

R[X](A,M) = 0 for
all n ≥ 2.

(4) Let R be a ring and let A be a right R-module. Recall that the left R-module M is
finitely presented means that there exists an exact sequence F1 → F0 → M → 0 with
F1 and F0 finitely generated free left R-modules. Thus a finitely presented left R-module
is finitely generated, but not conversely. (However if R is left Noetherian, then finitely
generated left R-modules are finitely presented.) If TorR

1 (A,B) is a torsion group for all
finitely presented left R-modules B, prove that TorR

n (A,B) is a torsion group for all left
R-modules B and for all n ∈ P.

(5) Let R be a ring, let A be a finitely presented right R-module (see problem 4), and let (Mi)
be a direct system of right R-modules. Prove that HomR(A, lim−→Mi) ∼= lim−→HomR(A,Mi)
(you will have to define your isomorphism). Deduce that if R is a right Noetherian ring
and B is a finitely generated right R-module, then Extn

R(B, lim−→Mi) ∼= lim−→Extn
R(B, Mi) for

all n ∈ N. (For the Hom part of the problem, first do the case when A ∼= R: here you will
want to use the natural isomorphism from HomR(R,M) to M defined by f → f(1). Then
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prove the result when A is a finitely generated free R-module, and finally for arbitrary
finitely presented A by choosing an exact sequence F1 → F0 → A → 0 where F1, F0 are
finitely generated free R-modules, and using the left exactness of HomR( , M).)

(6) Let R be an integral domain with field of fractions K, let A be an R-module, and let M
be a K-module. Then we may also view M as an R-module. Using (5) of the chapter 6,
prove that Extn

R(A,M) = 0 for all n ∈ P (taking the case n = 1, this of course means that
M is an injective R-module). Show further that if R is a PID and N is an R-submodule
of M , then M/N is an injective R-module (you will need to use the fact that in a PID,
every submodule of a free module is free).

Monday, September 26

Chapter 7
Limits (continued)

For the rest of this section on inverse limits, we will assume that our inverse system is
indexed by the directed set P with ≤ denoting “less than or equal to” as usual. It is worth
noting that in this case, the f j

i are determined by f i+1
i , because f j

i = f i+1
i f i+2

i+1 · · · f j
j−1. The

technical condition we need to ensure that lim←− is exact is the Mittag-Leffler condition. This
says that if (Mi, f

j
i ) is an inverse system indexed by the directed set (P,≤), then for each

i ∈ P there exists j ≥ i such that im f j
i = im fk

i for all k ≥ j. An important situation when
this is trivially satisfied is when all the f j

i are onto: this applies to examples (i), (iii) and
(iv) near the end of the sixth (i.e. the previous) chapter. It can also be applied to the case
of a Cartesian product of a countable number of R-modules. Indeed suppose M1,M2, . . . are
R-modules. Then for i ∈ P, we set Ni = M1 ⊕ M2 ⊕ · · · ⊕ Mi, and for i ≤ j, we define
f j

i : Nj → Ni to be the natural projection with kernel Ni+1 ⊕ · · · ⊕Nj . Then f j
i is surjective

for all i ≤ j, and lim←−Mi
∼= ∏∞

i=1 Mi. We can now state

Theorem 1 Let 0 → (Ai)
θ→ (Bi)

φ→ (Ci) → 0 be an exact sequence of inverse systems.
If (Ai) satisfies the Mittag-Leffler condition, then the induced sequence of inverse limits 0 →
lim←−Ai → lim←−Bi → lim←−Ci → 0 is also exact.

Actually we will prove something stronger, and in the process define the derived functor of
lim←−, namely lim←−1.

One way to construct lim←−Ai when the index set is P is to define α :
∏∞

i=1 Ai →
∏∞

i=1 Ai

by α(ai) = (ai −f i+1
i ai+1). Then it is easy to verify that kerα ∼= lim←−Ai (use the construction

of inverse limit at the end of the sixth chapter). We now define lim←−1 Ai = coker α and then
we have an exact sequence of chain complexes
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0 0 0
↓ ↓ ↓

0 −→
∞∏

i=1

Ai
θ−→

∞∏
i=1

Bi
φ−→

∞∏
i=1

Ci −→0

α ↓ β ↓ γ ↓

0 −→
∞∏

i=1

Ai
θ−→

∞∏
i=1

Bi
φ−→

∞∏
i=1

Ci −→0

↓ ↓ ↓
0 0 0

The long exact sequence for chain complexes (Lemma 1 of chapter 5) now yields a long exact
sequence

0 −→ lim←−Ai −→ lim←−Bi −→ lim←−Ci −→ lim←−1 Ai −→ lim←−1 Bi −→ lim←−1 Ci −→ 0,

so lim←− will be exact if (but not only if) lim←−1 Ai = 0. Thus we want to prove

Theorem Let R be a ring, and let (Ai, f
j
i ) be an inverse system of R-modules. If (Ai)

satisfies the Mittag-Leffler condition, then lim←−1 Ai = 0.
Proof First let us consider the special case when given i ∈ P, there exists j ≥ i such
that f j

i = 0 (this will, of course, imply that fk
i = 0 for all k ≥ j). As above, define

α :
∏∞

i=1 Ai → ∏∞
i=1 Ai by α(ai) = (ai − f i+1

i ai+1), and let (ai) ∈ ∏∞
i=1 Ai. Define bi =

ai + f i+1
i ai+1 + · · · + f j−1

i aj−1. Then the ith component of α(bi) is

ai + f i+1
i ai+1 + · · ·+ f j−1

i aj−1 − f i+1
i (ai+1 + f i+2

i+1 ai+2 + · · ·+ f j
i+1aj + f j+1

i+1 aj+1 + · · · ) = ai,

which shows that α is onto.
Next we consider the case when all the f j

i are onto. Given elements ai ∈ Ai (i ∈ P), set
b1 = 0 and then choose bi+1 ∈ Ai+1 inductively by the condition f i+1

i bi+1 = bi − ai. This
shows that the map α of above is onto in this case as well, so we have now shown in these
two special cases that lim←−1 Ai = 0.

Now consider the general case, and let (Bi, g
j
i ) be the inverse system with Bi =

⋂∞
j=i f j

i Aj

and gj
i the restriction of f j

i to Bj . Since (Ai) satisfies the Mittag-Leffler condition, we see
that Bi = f j

i Aj for some j ≥ i (where j depends on i). Let (Ai/Bi, h
j
i ) be the inverse system

with hj
i the map induced by f j

i . It is easy to see that (Bi) and (Ai/Bi) form inverse systems,
and then we have an exact sequence of inverse systems 0 → (Bi) → (Ai) → (Ai/Bi) → 0. By
the first part, lim←−1(Ai/Bi) = 0; furthermore all the maps gj

i are onto and it follows also from
the first part that lim←−1 Bi = 0. From the exact sequence of inverse systems
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0 −→ (Bi) −→ (Ai) −→ (Ai/Bi) −→ 0,

we obtain exact sequence · · · → lim←−1 Bi → lim←−1 Ai → lim←−1(Ai/Bi) → 0, and the result
follows.

This completes the proof of Theorem 1.
Exercise Let 0 → (Ai) → (Bi) → (Ci)

γ→ (Di) → 0 be an exact sequence of inverse
systems indexed by P. If ker γi : Ci → Di is finite for all i ∈ P, prove that the induced map
γ : lim←−Ci → lim←−Di is onto.

In general the results involving lim←− are not as easy as the results involving lim−→. We state
without proof the following.

Theorem Let R be a ring, let n ∈ N, let A,B be R-modules, and suppose A =
⋃∞

i=1 Ai

where the Ai are R-submodules of A and Ai ⊆ Ai+1 for all i ∈ P. Then there is an exact
sequence of abelian groups

0 −→ lim←−1 Extn−1
R (Ai, B) −→ Extn

R(A,B) −→ lim←−Extn
R(Ai, B) −→ 0

(for n = 0, we interpret Extn−1
R (Ai, B) to be 0). Though direct limits can be just considered

as a generalization of union, this theorem is not true if the union is replaced by an arbitrary
direct limit.

Tensor Product of Chain Complexes We will need this for the Künneth Formula. Given
two chain complexes, we want to take their tensor product (in a way to be defined) so that
the result is also a chain complex. When dealing with group cohomology, it will enable us to
construct a k[G × H]-resolution from kG and kH-resolutions. It is not immediately obvious
how we should construct the tensor product of two chain complexes, so here is the definition.

Definition Let R be a ring, and let

A : · · · α2−→ A2
α1−→ A1

α0−→ A0 −→ 0

B : · · · β2−→ B2
β1−→ B1

β0−→ B0 −→ 0

be chain complexes of R-modules. Then A⊗R B is the chain complex of abelian groups with

(A ⊗R B)n =
⊕

r+s=n

Ar ⊗ Bs,

and boundary map ∂n defined by

∂n(a ⊗ b) = αra ⊗ b + (−1)ra ⊗ βsb for a ∈ Ar, b ∈ Bs.

Similarly if
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A : 0 α0−→ A0
α1−→ A1

α2−→ A2 −→ · · ·
and B : 0

β0−→ B0
β1−→ B1

β2−→ B2 −→ · · ·

are cochain complexes, then A ⊗R B is a cochain complex with

δn(a ⊗ b) = αr+1a ⊗ b + (−1)ra ⊗ βs+1b for a ∈ Ar, b ∈ Bs.

Sixth Homework Due 9:00 a.m., Monday, October 3.

(1) Let R be a ring, let M be an R-module, let I be a directed set, and let {Mi | i ∈ I}
be a family of R-submodules of M . Assume that the partial order on I satisfies i ≤ j
if and only if Mi ⊇ Mj . This means that we have an inverse system (Mi, f

j
i ), where

f j
i : Mj → Mi denotes the natural inclusion.

(i) Prove that lim←−Mi
∼=

⋂
i∈I

Mi.

(ii) Assume that R = Z. Give an example where all the Mi are uncountable, yet lim←−Mi
∼=

Z.

(2) Let R be a ring, let M be an R-module, and let (Ai) be a direct system of R-modules
(indexed by an arbitrary directed set). Prove that HomR(lim−→Ai, M) ∼= lim←−HomR(Ai,M).

(3) Let R be a ring, and let (Ai) be an inverse system of R-modules indexed by the set P.

(i) If R = Z and all the Ai are finite abelian groups, prove that lim←−1 Ai = 0.
(ii) If R is a field and all the Ai are finite dimensional vector spaces over R, prove that

lim←−1 Ai = 0.

(4) Let p be a prime, and let Zp denote the p-adic integers.

(i) Let (piZ, f j
i ) denote the inverse system of abelian groups indexed by P, where for

i ≤ j, f j
i : pjZ → piZ denotes the inclusion map. Prove that lim←−1 piZ ∼= Zp/Z.

(ii) Let (piZp, f
j
i ) denote the inverse system of abelian groups (or Zp-modules) indexed

by P, where for i ≤ j, f j
i : pjZp → piZp denotes the inclusion map. Prove that

lim←−1 piZp = 0.

(5) Let p be a prime.

(i) Prove that Ext1
Z
(Z[1/p], Z) ∼= Zp/Z.

(ii) Prove that Ext1
Z
(Q/Z, Z) ∼= ∏

q Zq (where the Cartesian product is over all primes
q).

(iii) Prove that Ext1
Z
(Q, Z) ∼= (

∏
q Zq)/Z.

(6) Let R be an integral domain with field of fractions K.
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(i) Prove that K is a direct limit of free R-modules.
(ii) Give an example of a direct system of R-modules (Mi) such that Mi is torsion free

but not free for all i, yet lim−→Mi is free.
(The two parts are not related.)

(7) Let (Ri) be a direct system of rings, let R = lim−→Ri, let A be a right R-module, let B be
a left R-module, and let n ∈ N.
(i) Prove that lim−→A ⊗Ri

B ∼= A ⊗R B.
(ii) Suppose Rj is a flat left Ri-module whenever i ≤ j. Prove that lim−→TorRi

n (A,B) ∼=
TorR

n (A,B) for all n ∈ N.

Monday, October 3

Chapter 8
The Künneth Formula

We start by stating the Künneth Formula.

Theorem (Künneth Formula) Let k be a commutative hereditary ring, let A be a chain
complex of projective k-modules, let B be a chain complex of k-modules, and let n ∈ N.
Define

π :
⊕

r+s=n

Hr(A) ⊗k Hs(B) −→ Hn(A ⊗k B)

as follows. If u ∈ Hr(A) and v ∈ Hs(B) are represented by a ∈ Ar and b ∈ Bs respectively,
then π(u⊗v) is represented by a⊗b ∈ (A⊗k B)n. Then there is a natural short exact sequence
of k-modules

0 −→
⊕

r+s=n

Hr(A) ⊗k Hs(B) π−→ Hn(A ⊗k B) −→
⊕

r+s=n−1

Tork
1(Hr(A), Hs(B)) −→ 0

which splits, but not naturally.

Recall that an arbitrary ring R is right hereditary means that every right ideal of R
is projective (as a right R-module). It is a well known fact (not difficult to prove) that
this is equivalent to the property that every R-submodule of a projective right R-module is
projective. Of course a left hereditary ring is one in which every left ideal is projective, and
there exist rings which are right hereditary but not left hereditary. For commutative rings
though, it is clear that the properties of being left and right hereditary are equivalent. A
hereditary integral domain is called a Dedekind domain (so the Künneth formula applies if
k is a Dedekind domain). Important examples of Dedekind domains to keep in mind when
applying the Künneth formula are PID’s and the ring of integers in an algebraic number field.

Remarks and Consequences of the Künneth formula
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(i) If k is a field, then Tork
1(Hr(A), Hs(B)) = 0 and so the Künneth formula becomes

Hn(A ⊗k B) ∼=
⊕

r+s=n

Hr(A) ⊗k Hs(B)

for n ∈ N.

(ii) Suppose (A,α0) and (B, β0) are projective resolutions for the projective k-modules U and
V respectively. Then Hn(A) = Hn(B) = 0 for all n ∈ P, H0(A) ∼= U and H0(B) ∼= V . In
particular Hr(A) and Hs(B) are projective k-modules for all r, s ∈ N, so Tork

1(Hr(A), Hs(B)) =
0 for all r, s ∈ N. The Künneth formula now shows that (A ⊗k B, α0 ⊗ β0) is a projective
resolution for U ⊗k V . For group rings, this will show that if (P, α0) is a projective resolution
for k as kG-modules and (Q, β0) is projective resolution for k as kH-modules, then (P ⊗k

Q,α0 ⊗ β0) is a projective resolution for k as k[G × H]-modules.

(iii) Consider the special case Bs = 0 for all s ∈ P. Write M = B0 and let n ∈ N. Since
Hs(B) = 0 for all s ∈ P and H0(B) ∼= M , the Künneth formula now yields a natural exact
sequence which splits (but not naturally)

0 −→ Hn(A) ⊗k M −→ Hn(A ⊗k M) −→ Tork
1(Hn−1(A), M) −→ 0.

(So for the above exact sequence M can be arbitrary, but A needs to be a complex consisting
of projective k-modules). This sequence is usually referred to as the “Universal Coefficient
Theorem”.

(iv) There is a Künneth formula for cochain complexes. Let k be a commutative hereditary
ring, let A be a cochain complex of projective k-modules, let B be a cochain complex of
k-modules and let n ∈ N. Then there is a natural short exact sequence of k-modules which
splits (but not naturally)

0 −→
⊕

r+s=n

Hr(A) ⊗k Hs(B) −→ Hn(A ⊗k B) −→
⊕

r+s=n+1

Tork
1(Hr(A), Hs(B)) −→ 0.

(v) If k is not necessarily commutative but is left and right hereditary, then the exact sequence
and the splitting of the exact sequence in the Künneth formula is still valid, but it is no longer
a sequence of k-modules: it will be an exact sequence of abelian groups and it will split as
abelian groups.

Proof of the Künneth formula Let αr and βs denote the boundary maps of A and B
respectively. We begin by considering a special case. Suppose A is a chain complex with
trivial boundary (so αr = 0 and Ar

∼= Hr(A) for all r ∈ N). Then A ⊗k B is the chain
complex with

(A ⊗k B)n =
⊕

r+s=n

Ar ⊗k Bs
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and boundary
⊕

r+s=n(−1)rιr ⊗βs, where ιr is the identity map on Ar. Thus Hn(A⊗k B) ∼=⊕
r+s=n Hs(Ar ⊗k B) and since Hs(Ar ⊗k B) ∼= Ar ⊗k Hs(B) by the Lemma 5 of chapter 5

(Ar is projective, so certainly flat), we deduce that

π :
⊕

r+s=n

Hr(A) ⊗k Hs(B) −→ Hn(A ⊗k B)

is an isomorphism. In general (i.e. when the boundary is not trivial), write Cn = ker αn : An →
An−1 and Dn = im αn : An → An−1. Note that Cn and Dn are projective k-modules (because
k is hereditary). Regard C and D as chain complexes with trivial boundary. Then 0 → C →
A → D → 0 is an exact sequence of chain complexes and hence so is 0 → C⊗k B → A⊗k B →
D ⊗k B → 0 because D is projective. Now apply Lemma 1 of chapter 5 to obtain an exact
sequence

· · · −→ Hn+1(D ⊗k B)
∂n+1−→ Hn(C ⊗k B) −→ Hn(A ⊗k B)

φn−→ Hn(D ⊗k B) −→ · · · .

We also have an exact sequence 0 → Dr+1 → Cr → Hr(A) → 0 for all r ∈ N, and so applying
the long exact sequence for Tor in the first argument yields an exact sequence

0 −→ Tork
1(Hr(A), Hs(B)) −→ Dr+1 ⊗k Hs(B) −→ Cr ⊗k Hs(B) −→ Hr(A) ⊗k Hs(B) −→ 0.

Therefore we have a commutative diagram with exact rows

0 −→
⊕

r+s=n

Tork
1(Hr(A), Hs(B)) −→

⊕
r+s=n

Dr+1 ⊗k Hs(B) −→
⊕

r+s=n

Cr ⊗k Hs(B)

δ ↓ γ ↓
Hn+1(A ⊗k B)

φn+1−→ Hn+1(D ⊗k B)
∂n+1−→ Hn(C ⊗k B)

−→
⊕

r+s=n

Hr(A) ⊗k Hs(B) −→ 0

π ↓
−→ Hn(A ⊗k B)

φn−→ · · · ,

where δ and γ are isomorphisms by the special case when A has trivial boundary. A routine
piece of diagram chasing shows that kerπ = 0, im π = ker φn and

ker ∂n+1
∼=

⊕
r+s=n

Tork
1(Hr(A), Hs(B)).

But we have an exact sequence 0 → ker φn → Hn(A ⊗k B) → ker ∂n → 0, and the required
natural exact sequence follows easily.

It remains to show that the sequence splits. First consider the case when B (as well as
A) is projective. Write En = kerβn : Bn → Bn−1. Since k is hereditary, imαn and im βn

are projective, so we may write An = Cn ⊕ C ′
n and Bn = En ⊕ E′

n for some k-submodules
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C ′
n and E′

n, but not naturally. It follows that the natural epimorphisms Cn → Hn(A) and
En → Hn(B) can be extended to epimorphisms γn : An → Hn(A) and δn : Bn → Hn(B)
respectively, and hence to an epimorphism

(γ ⊗ δ)n : (A ⊗k B)n −→
⊕

r+s=n

Hr(A) ⊗k Hs(B).

If a ∈ Ar and b ∈ Bs, then (γ⊗δ)(αra⊗b+(−1)ra⊗βsb) = 0, because γr−1αra = 0 = δs−1βsb.
Therefore (γ⊗δ)n induces a homomorphism

(γ ⊗ δ)∗ : Hn(A ⊗k B) −→
⊕

r+s=n

Hr(A) ⊗k Hs(B).

Now elements of
⊕

r+s=n Hr(A)⊗k Hs(B) can be represented by sums of elements of the form
c⊗e where c ∈ Cn and e ∈ En, and then (γ⊗δ)∗π is just induced by the map sending c⊗e to
c⊗ e. This means that (γ⊗ δ)∗π is the identity on

⊕
r+s=n Hr(A)⊗k Hs(B), i.e. the sequence

splits.

Seventh Homework Due 9:00 a.m., Monday, October 10.

(1) Let p be a prime, and let Zp denote the p-adic integers.

(i) By considering Zp as a subgroup of
∏∞

i=1 Z/piZ, prove that every element of Zp has
a unique representation of the form a0 + pa1 + · · · + pnan + · · · where ai ∈ N and
0 ≤ ai ≤ p− 1 for all i ∈ P. (We may consider Z/piZ as {0, 1, . . . , pi−1}, and then for
b ∈ Z/piZ, we may write b = b0 + b1p + · · · + bi−1p

i−1 where 0 ≤ bj ≤ p − 1.)
(ii) Prove that Zp is uncountable (you may use standard facts concerning uncountable

numbers, like the fact that the set of all sequences of 0’s and 1’s is uncountable).
(iii) If A is a countable free abelian group, prove that A is isomorphic to a subgroup of

Zp.
(iv) Let A be a countable free abelian group. Prove that there exists a descending chain

of subgroups B1 ⊃ B2 ⊃ B3 ⊃ · · · of A such that A/Bi
∼= Z/piZ for all i ∈ P, and⋂∞

i=1 Bi = 0.

(You may assume that Zp is an integral domain of characteristic zero and that
⋂∞

i=1 piZp =
0.)

(2) For any group K, we let K̂ = lim←−K/Ki where (K/Ki, f
j
i ) is the inverse system with

indexing set I, {Ki | i ∈ I} is the set of normal subgroups of finite index in K, and f j
i

is the natural epimorphism whenever i ≤ j. Now let G be a group which has a finitely
generated free abelian normal subgroup of finite index, and let H � G.

(i) Prove that there exists a family of normal subgroups of finite index in G {Gi | i ∈ P}
such that Gi ⊃ Gi+1 for all i ∈ P, and such that any subgroup of finite index in G
contains one of the Gi.

(ii) Prove that Ĥ ∼= lim←−H/Gi ∩ H, Ĝ ∼= lim←−G/Gi, and Ĝ/H ∼= lim←−G/GiH.
(iii) Prove that Ĝ/H ∼= Ĝ/Ĥ.
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(You may assume that if J is a cofinal subset of the directed set K, and (Mi) is an inverse
system indexed by K, then lim←−(Mi) is naturally isomorphic to the inverse limit obtained
by using the directed set J as indexing set instead of K.)

(3) Let p be a prime, and let K be the subfield of C generated by all pth power roots of unity.
Prove that Gal(K/Q) ∼= Zp × Z/(p − 1)Z.

(4) Let k be a field, let k[[X]] denote the power series ring in X, let k[X,X−1] denote the
Laurent polynomial ring in X, and let k[[X,X−1]] denote the Laurent series ring in X.
(i) Prove that lim←−1 Xik[X] ∼= k[[X]]/k[X] and that lim←−1 Xik[[X]] = 0.
(ii) Prove that

Ext1k[X](k[X,X−1], k[X]) ∼= k[[X]]/k[X] and that Ext1k[[X]](k[[X,X−1]], k[[X]]) = 0.

(5) Let k be an integral domain with field of fractions K, let U be a k[X]-module, let V be a
K[X]-module, let (A,α0) be a flat resolution of U with k[X]-modules, and let (B, β0) be
a projective resolution of V with K[X]-modules. Prove that (A⊗k[X] B, α0 ⊗ β0) is a flat
resolution of U ⊗k[X] V with k[X]-modules.

(6) Let p be a prime.
(i) Prove that p is a nonzero divisor in Zp.
(ii) If q ∈ Z and (p, q) = 1, prove that q is invertible in Zp.
(iii) Let R be a commutative ring and let S be a multiplicatively closed subset of R. Give

an example to show that S−1 does not commute with inverse limits in general.
(iv) Let R be a ring and let A be an R-module. Give an example to show that HomR(A, )

does not commute with lim←−1 in general.

Monday, October 10

Chapter 9
The Künneth Formula (continued)

Exercise (cf. prob. 1 of previous homework.) Let p be a prime and let A 	= 1 be a free
abelian group. Prove that A has a descending chain of subgroups B1 ⊃ B2 ⊃ · · · such that
A/Bi

∼= Z/piZ for all i and
⋂∞

i=1 Bi = 1 if and only if |A| ≤ |R|.

Continuing the proof of the Künneth Formula, we need to show that the sequence splits
in the case when B is not a projective k-module. We will need the following result.

Lemma 1 Let k be a right hereditary ring and let B be a chain complex of k-modules.
Then there exists a free chain complex C and a chain map θ : C → B such that the induced
maps θi∗ : Hi(C) → Hi(D) are isomorphisms.

Let βi and γi denote the boundary maps of B and C respectively. Then θ is a chain map
means that we have a sequence of k-module maps θi : Ci → Bi which commute with the
boundary maps, i.e. θiγi+1 = βi+1θi+1.
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It is clear that Lemma 1 will follow from Lemmas 2 and 3 below.

Lemma 2 Let k be a ring and let B be a chain complex of k-modules. Then there exists a
chain complex C of free k-modules such that Hn(C) ∼= Hn(B) for all n ∈ N.

Proof We construct the complex C by induction on n. First we write H0(B) ∼= C0/D where
C0 is a free k-module, and then we choose a free k-module D1 and a k-map δ1 : D1 → C0

such that im γ1 = D. Define γ0 to be the zero map on C0. Now suppose we have constructed
free k-modules C0, . . . , Cn, D1, . . . , Dn+1, and R-maps γi : Ci → Ci−1 such that γi−1γi = 0,
ker γi−1/ im γi

∼= Hi−1(B) (1 ≤ i ≤ n), and a map δn+1 : Dn+1 → Cn such that γnδn+1 = 0
and ker γn/ im δn+1

∼= Hn(B). Write Hn+1(B) ∼= C ′
n+1/D′

n+1 and then define Cn+1 = C ′
n+1⊕

Dn+1 and γn+1 = 0 ⊕ δn+1 : Cn+1 → Cn. Finally choose a free k-module Dn+2 and a k-
epimorphism δn+2 : Dn+2 → Cn+1 such that im δn+2 = D′

n+1⊕ker δn+1. Then it is easy to see
that γnγn+1 = 0, ker γn/ im γn+1

∼= Hn(B), γn+1δn+2 = 0, and ker γn+1/ im δn+2
∼= Hn+1(B),

and the induction step is complete.

Lemma 3 Let k be a right hereditary ring, let B be a chain complex of k-modules, let C be
a chain complex of projective k-modules, and let θn : Hn(C) → Hn(B) be a k-map for each
n ∈ N. Then there exists a chain map φ : C → B such that φn∗ = θn for all n ∈ N.

Proof We prove the result by induction on n. First set φ−1 to be the zero map on 0, and let
βr and γr denote the boundary maps of B and C respectively. For n ∈ N, having constructed
φr : Cr → Br such that φr∗ = θr, βrφr = φr−1γr, φr ker γr ⊆ ker βr, φr im γr+1 ⊆ βr+1 for
0 ≤ r ≤ n − 1, we construct φn : Cn → Bn having the same properties (thus φr will then
satisfy the above properties for 0 ≤ r ≤ n). We have a commutative diagram

· · · γn+1−→ Cn
γn−→ Cn−1

γn−1−→ Cn−2
γn−2−→ · · ·

φn−1 ↓ ↓ φn−2

· · · βn+1−→ Bn
βn−→ Bn−1

βn−1−→ Bn−2
βn−2−→ · · ·

Now θn is a homomorphism ker γn/ im γn+1 → kerβn/ im βn+1. Since ker γn is a projective
k-module (k is hereditary and ker γn is a submodule of the projective k-module Cn), θn lifts
to a homomorphism ψ : ker γn → kerβn (which maps im γn+1 into im βn+1). Also im γn is
a projective k-module, so we may write Cn = ker γn ⊕ D for some k-submodule D ∼= im γn

of Cn. Since φn−1γn maps D into imβn, there is a homomorphism δ : D → Bn such that
βnδd = φn−1γnd for all d ∈ D. We may now set φn = ψ ⊕ δ : ker γn ⊕D = Cn → Bn and the
induction step is complete.

We now show that the sequence in the Künneth formula splits when B is an arbitrary
chain complex. By Lemma 1 we may choose a chain complex C of free k-modules and a chain
map θ : C → B such that the induced map θi is an isomorphism. We now have a commutative
diagram with exact rows in which the top row splits and the two outside vertical maps are
isomorphisms.
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0 −→
⊕

r+s=n

Hr(A) ⊗k Hs(C) −→ Hn(A ⊗k C) −→
⊕

r+s=n−1

Tork
1(Hr(A), Hs(C)) −→ 0

↓ 1∗ ⊗ θ∗ ↓ (1 ⊗ θ)∗ ↓
⊕

r+s=n−1

θs∗

0 −→
⊕

r+s=n

Hr(A) ⊗k Hs(B) −→ Hn(A ⊗k B) −→
⊕

r+s=n−1

Tork
1(Hr(A), Hs(B)) −→ 0

The Five Lemma shows that the middle vertical map is an isomorphism and a routine diagram
chase now shows that the bottom row splits, as required.

Group Rings To define the cohomology of a group G, we need to know what the group
ring of G is.

Definition Let G be a group and let k be a commutative ring. Then the group ring of
G over k is the associative k-algebra which is a free k-module with basis {g | g ∈ G} and
multiplication defined distributively using the group multiplication in G.

Thus we can consider kG as consisting of all formal sums
∑

g∈G agg where ag ∈ k and ag = 0
for all but finitely many g ∈ G. If α =

∑
g∈G agg and β =

∑
g∈G bgg (ag, bg ∈ k), then the

multiplication is defined according to the formula

αβ =
∑

g,h∈G

agbh gh =
∑
g∈G

(∑
h∈H

agh−1bh

)
g.

There is no reason why we cannot make the same definition with k noncommutative, and
there are further generalizations of the concept of a group ring such as a crossed product;
however for group cohomology it seems best to restrict to the case k is commutative. We will
be especially interested in the cases when k is a field or the integers Z.

Remarks

(i) We identify G with the subset {1g | g ∈ G} of kG: thus G can be thought of as a subgroup
of the group of units of kG.
(ii) We identify k with the subset {a11 | a1 ∈ k} of kG: thus k can be thought of as a subring
(or k-subalgebra) of kG. Then we have kG = k if and only if G = 1.
(iii) We have an isomorphism of rings (= Z-algebras) kG⊗Z k ∼= k, and this means that often
problems involving kG can be reduced to problems involving ZG.
(iv) kG is commutative if and only if G is abelian.
(v) Suppose G is a finitely generated free abelian group with free generators {x1, x2, . . . , xn}.
Then kG is isomorphic (as a k-algebra) to the Laurent polynomial ring

k[X1, X
−1
1 , X2, X

−1
2 , . . . , Xn, X−1

n ]

in n indeterminants.
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(vi) kG is finitely generated as a k-module if and only if G is finite.

A useful property of kG is that it can be defined using the following universal property
which we shall quote without proof (this can be especially useful when constructing homo-
morphisms from kG to another ring).

Proposition Let G be a group, let k be a commutative ring, let R be a k-algebra, let U
denote the units of R, and let θ : G → U be a group homomorphism. Then there exists a
unique k-algebra homomorphism φ : kG → R such that φg = θg for all g ∈ G. Moreover if S
is a k-algebra and H is a subgroup of the group of units of S isomorphic to G with the above
universal property (i.e. if θ : H → U is a group homomorphism, then there exists a unique
k-algebra homomorphism φ : S → R such that φh = θh for all h ∈ H), then there exists a
unique k-algebra isomorphism ψ : kG → S such that ψg = αg for all g ∈ G, where α : G → H
is a group isomorphism.

Exercise Let k be a commutative ring and let n ∈ P. Prove that kG ∼= k[X]/(Xn − 1) (as
k-algebras).

Using the above proposition we can define a k-algebra homomorphism ε : kG → k be εg = 1
for all g ∈ G. The map ε is called the augmentation map and ker ε is called the augmentation
ideal of kG, or the augmentation ideal of G over k.

Exercise Let kG be the group ring of the group G over the commutative ring k, and
let I denote the augmentation ideal of kG. Prove that I is a free k-module with k-basis
{g − 1 ∈ G | g ∈ G\1}.

The augmentation ideal of ZG will be denoted by the small German letter corresponding
to the capital Latin letter used to name the group. Thus by the above exercise, g is a free
Z-module with Z-basis {g − 1 | g ∈ G\}.

Theorem Let G be a group, let k be a commutative ring, and let I denote the augmentation
ideal of kG.

(i) I ∼= g ⊗Z k as kG-modules.
(ii) g/g2 ∼= G/G′ as Z-modules. (G′ denotes the commutator subgroup of G.)
(iii) I/I2 ∼= G/G′ ⊗Z k as k-modules.

Proof (i) For α ∈ g and x ∈ k, define θ : g ⊗Z k → I by θα ⊗ x = xα. Then θ is a
k-map which commutes with the action of G (here G acts by right multiplication on g and
trivially on k). Therefore θ is a kG-module homomorphism. Since g is free as a k-module on
{g − 1 | g ∈ G\1} (see previous exercise) we may well define a k-module map φ : I → g ⊗ k
by φ(g − 1) = g ⊗ 1. Then it is easily checked that θ and φ are inverse to each other, hence θ
(and φ) is a kG-isomorphism and the result is proven.

(ii) Since g is free as a Z-module on {g − 1 | g ∈ G\1}, we can well define a group homomor-
phism φ : g → G/G′ by φ(g − 1) = G′g (g ∈ G\1). Now g2 is generated as a Z-module by
{(g − 1)(h − 1) | g, h ∈ G}, and
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φ(g − 1)(h − 1) = φ
(
(gh − 1) − (g − 1) − (h − 1)

)
= G′ghg−1h−1 = 1,

so φ induces a group homomorphism φ̄ : g/g2 → G/G′. We now define a ψ : G → g/g2 by
ψg = g2 +(g−1). Then it is easily checked that ψ is a group homomorphism and so it induces
a group homomorphism ψ̄ : G/G′ → g/g2 such that ψ̄G′g = g2 + (g − 1). Moreover φ̄ and ψ̄
are inverses to each other, and the result follows.

(iii) From (ii) we have an exact sequence g2 → g → G/G′ → 0. Applying ⊗Zk to this
sequence, we obtain an exact sequence

g2 ⊗Z k
α−→ g ⊗Z k −→ G/G′ ⊗Z k → 0.

If we identify g ⊗Z k with I via the isomorphism θ of (i), then imα becomes identified with
I2. Thus I/I2 ∼= g/ im α and the result follows.

Eighth Homework Due 9:00 a.m., Monday, October 17.

(1) Let 2 ≤ p, q ∈ Z with (p, q) = 1. Define an inverse system of abelian groups (= Z-modules)
by Mi = Z for all i ∈ P and f i+1

i : Mi+1 → Mi to be multiplication by q.

(i) Prove that Extn
Z
(Z/pZ,Mi) is finite for all i ∈ P.

(ii) Prove that Ext1
Z
(Z/pZ, lim←−Mi) = 0.

(iii) Prove that lim←−Ext1
Z
(Z/pZ,Mi) ∼= Z/qZ.

(2) Let R be a ring, let F be a free R-module, and let (Mi) be an inverse system of R-modules
indexed by P. Suppose 0 → K → F → A → 0 is an exact sequence of R-modules such
that HomR(K,Mi) is finite for all i ∈ P. Prove that Extn

R(A, lim←−Mi) ∼= lim←−Extn
R(A,Mi)

for n = 0, 1.

(3) Let R be a commutative hereditary ring, and let A,B,C be R-modules. Prove that
Tor1R(A, Tor1R(B,C)) ∼= Tor1R(Tor1R(A,B), C). (Consider H2(P ⊗R Q ⊗R T ).)

(4) Let R be a ring and let A be a cochain complex. Prove that there exists an injective
cochain complex of R-modules with the same cohomology as A.

(5) Let k be a right hereditary ring, let A be a projective chain complex of right k-modules,
and let B,C be chain complexes of left k-modules. Suppose θ : B → C is a chain map
such that the induced map θ∗ : Hn(B) → Hn(C) is an isomorphism for all n ∈ N. Prove
that (1 ⊗ θ)∗ : Hn(A ⊗k B) → Hn(A ⊗k C) is an isomorphism for all n ∈ N.

(6) Let k be a commutative ring and let G,H be groups. Prove that k[G × H] ∼= kG ⊗k kH
as k-algebras. (Recall that if k is a commutative ring and A,B are k-algebras, then we
can make A ⊗k B into a k-algebra by defining multiplication according to the formula
(α1 ⊗ β1)(α2 ⊗ β2) = α1α2 ⊗ β1β2 (α1, α2 ∈ A, β1, β2 ∈ B). Since elements of the form
α⊗β generate A⊗k B as a k-module, this uniquely defines the multiplication on A⊗k B.)
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(7) Let A be an abelian group such that for each n ∈ P, A has only finitely many elements of
order n.
(i) Let p be a prime and let Bi = Z/piZ. If (Bi, f

j
i ) is the direct system indexed by P,

where the f j
i are the natural inclusions for i ≤ j, prove that lim←−1 Ext0

Z
(Bi, A) = 0.

(ii) Use the quoted theorem at the end of chapter 7 to prove that

Ext1
Z
(Q/Z, A) ∼=

∏
q

lim←−A/(Aqi),

where the Cartesian product is over all primes q.

Monday, October 17

Chapter 10
Group Cohomology

Let G be a group, let k be a commutative ring, and let M be a kG-module. Then to say
that G acts trivially on M means that mg = m for all g ∈ G. We can always regard k as a
kG-module with G acting trivially, and then if I is the augmentation ideal of kG, we have
k ∼= kG/I as kG-modules. If N is any kG-module, then N can be considered as a ZG-module
and N ⊗kG k ∼= N/Ng as kG-modules (use HW1 prob. 1).

We can now define the homology and cohomology groups of G with coefficients in a ZG-
module M .

Definition Let G be a group and let n ∈ N.
(i) If M is a left ZG-module, then the nth homology group of G with coefficients in M is

Hn(G,M) = TorZG
n (Z,M).

(ii) If N is a right ZG-module, then the nth cohomology group of G with coefficients in
N is Hn(G,N) = Extn

ZG(Z, N).

In both (i) and (ii), Z is regarded as a right ZG-module with G acting trivially, and Hn(G, Z) is
often termed the nth homology group of G, and Hn(G, Z) is often termed the nth cohomology
group of G. The reason for using right coefficient modules for cohomology but left coefficient
modules for homology, is that then we can use one and the same projective resolution of right
ZG-modules for Z to calculate the relevant Ext and Tor groups.

Remarks and Examples Let us calculate Hn(G,M) and Hn(G,N) in some special cases.

(1) If G = 1, then H0(G,M) ∼= M as Z-modules, and Hn(G,M) = TorZG
n (Z,M) = 0 if

n 	= 0.
(2) If G = 1, then H0(G,N) ∼= N as Z-modules, and Hn(G,N) = Extn

ZG(Z, N) = 0 if n 	= 0.
(3) H0(G,M) ∼= M/gM .

(4) H0(G,N) ∼= NG. (Here NG = {x ∈ N | xg = x for all g ∈ G}.)
(5) Hn(G,M) = 0 for all n ∈ P if M is a flat ZG-module.
(6) Hn(G,N) = 0 for all n ∈ P if N is an injective ZG-module.
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(7) Let k be a commutative ring. We could consider homology and cohomology groups
“over k”, but we would not get anything new. For example we could define Hn(G,M) =
TorkG

n (k,M) for any left kG-module M . However TorkG
n (k,M) ∼= TorZG

n (Z,M) because if
(P, α0) is a projective resolution of Z with ZG-modules, then (P ⊗Z k, α0 ⊗ 1) is a projective
resolution of k with kG-modules, and we have

P ⊗Z k ⊗kG M ∼= P ⊗Z Z ⊗ZG M ∼= P ⊗ZG M.

A similar comment applies to cohomology using ExtkG(k,N) ∼= ExtZG(Z, N) for any right
kG-module N (remark 5 of chapter 6).

(8) We have H1(G, Z) = TorZG
1 (Z, Z) ∼= TorZG

1 (ZG/g, ZG/g). Applying HW3 prob. 7(iii), we
see that

H1(G, Z) ∼= g/g2 ∼= G/G′

by the Theorem of chapter 9.
(9) We have H1(G, Z) = Ext1

ZG(Z, Z), so application of the long exact sequence for Ext in the
first variable to the exact sequence 0 → g

α→ ZG → Z → 0 (where α is the natural inclusion)
yields an exact sequence

0 → HomZG(Z, Z) → HomZG(ZG, Z) α∗
→ HomZG(g, Z) → H1(G, Z) → 0,

because Ext1
ZG(ZG, Z) = 0. Now if f ∈ HomZG(ZG, Z), then f(g − 1) = f(1)(g − 1) = 0 for

all g ∈ G, so f(g) = 0. Therefore α∗f = 0 and it follows that H1(G, Z) ∼= HomZG(g, Z). If
f ∈ HomZG(g, Z), then f

(
(g − 1)(h − 1)

)
=

(
f(g − 1)

)
(h − 1) = 0 for all g, h ∈ G, hence

f(g2) = 0 and we deduce that H1(G, Z) ∼= HomZG(g/g2, Z). The Theorem of chapter 9 shows
that g/g2 ∼= G/G′ and we conclude that H1(G, Z) ∼= HomZ(G/G′, Z).

Long Exact Sequences Let G be a group, and let 0 → A → B → C → 0 be an exact
sequence of left kG-modules. Then the long exact sequence for TorZG(Z, ) yields a long exact
sequence

· · · −→Hn(G,A) −→ Hn(G,B) −→ Hn(G,C) −→ Hn−1(G,A) −→ · · ·
· · · −→ H0(G,A) −→ H0(G,B) −→ H0(G,C) −→ 0.

This sequence is often termed the long exact homology sequence. Similarly an exact sequence
of right kG-modules yields a long exact sequence

0 −→H0(G,A) −→ H0(G,B) −→ H0(G,C) −→ · · ·
· · · −→ Hn(G,A) −→ Hn(G,B) −→ Hn(G,C) −→ Hn+1(G,A) −→ · · · .

Inflation and Restriction Let G and H be groups, let M be a ZH-module, and let
θ : G → H be a group homomorphism. Then θ extends to a ring homomorphism θ : ZG → ZH,
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so by HW3 prob. 6, θ induces well defined group homomorphisms θ∗n : Extn
ZH(Z,M) →

Extn
ZG(Z,M) for all n ∈ N. In other words, θ induces well defined group homomorphisms

θ∗n : Hn(H,M) → Hn(G,M) for all n ∈ N. On identifying H1(H, Z) with HomZ(H/H ′, Z),
this is just the homomorphism you would expect; namely given f ∈ HomZ(H/H ′, Z) and
g ∈ G, then θ∗nf(G′g) = f(H ′θg). In the special case when H = G/K for some K � G and
θ : G → H is the natural epimorphism, then θ∗n is called the inflation map; and in the special
case when G � H and θ is the inclusion, then θ∗n is called the restriction map.

Shapiro’s Lemma This is the cohomological version of Frobenius reciprocity in character
theory of finite groups: in fact some mathematicians think that Shapiro’s lemma should be
called Frobenius reciprocity. In any case it is an important tool when performing calculations.
First we need the following easy but fundamental result.

Proposition Let H � G be groups, and let R be a commutative ring. Then RG is free
both as a left RH-module and as a right RH-module.

Proof Let T be a right transversal for H in G. Then it is easy to see that T is a free basis
for RG as a left RH-module. Similarly by taking a left transversal S for H in G, we see that
RG is free as a right RH-module, with basis S as required.

The above proposition shows in particular that if P is a projective RG-module, then P is also
a projective RH-module. Thus we can now apply Lemma 7 of chapter 5 to deduce that

Theorem (Shapiro’s lemma) Let H � G be groups, let R be a commutative ring, let M be
a left RH-module, and let n ∈ N. Then Hn(G, ZG ⊗ZH M) ∼= Hn(H,M).

There is a similar result for cohomology: we just state it, leaving the proof to a future
homework exercise (homework 11, prob. 1).

Theorem (Shapiro’s lemma) Let H � G be groups, let R be a commutative ring, let N be
an RH-module, and let n ∈ N. Then Hn(G, HomZH(ZG,N)) ∼= Hn(H,N).

Diagonal Action Let G,H be groups, let k be a commutative ring, let M be a kG-module
and let N be a kH-module. Then we can make M ⊗k N into a k[G×H]-module by defining
m⊗ n (g, h) = mg ⊗ nh. If M and N are free, then it is easy to see that M ⊗k N is also free.
It follows that if M and N are projective, then M ⊗k N is also projective.

Now suppose M and N are both kG-modules. Then we can make M⊗kN into a kG-module
by defining m ⊗ n g = mg ⊗ ng. Similarly we can make Homk(M,N) into a kG-module by
defining (fg)m = f(mg−1)g for all f ∈ Homk(M,N), g ∈ G, m ∈ M . These actions are often
called the diagonal actions of G on M ⊗k N and Homk(M,N). They are of great importance
when dealing with group cohomology, partly because of the following fundamental result.

Theorem Let G be a group, let k be a commutative ring, let P be a projective kG-module,
and let M be a kG-module which is projective as a k-module. Then P ⊗k M is a projective
kG-module.
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Proof Let N be any kG-module. By HW1 prob. 2, there is an isomorphism of k-modules
between Homk(P ⊗k M,N) and Homk(P, Homk(M,N)) which is manifestly natural, hence it
induces an isomorphism

HomkG(P ⊗k M,N) ∼= HomkG(P, Homk(M,N)).

Since M is projective as a k-module, Homk(M, ) is exact, and since P is a projective kG-
module, HomkG(P, ) is also exact. It follows that HomkG(P ⊗k M, ) is exact, which means
that P ⊗k M is a projective kG-module.

Ninth Homework Due 9:00 a.m., Monday, October 24.

(1) Let R = Z[X1, X2, . . . ] be a polynomial ring in any number of variables, let A be a right
R-module, let B be left R-module, and let n, p ∈ N. Suppose B is free as a Z-module.
(i) If P is a projective R-module, prove that P ⊗R B is a projective Z-module.
(ii) Prove that TorR

n (A,B/pB) ∼= TorR
n (A,B) ⊗Z Z/pZ ⊕ TorZ

1 (TorR
n−1(A,B), Z/pZ) as

abelian groups.
(If n = 0 in the above, then we interpret Torn−1 to be 0.)

(2) Let k be a field, let U be a k[X]-module, and let V be a k[Y ]-module.
(i) Prove that U ⊗k V can be made into a k[X,Y ]-module according to the rule u⊗v X =

uX ⊗ v, u ⊗ v Y = u ⊗ (vY ) for u ∈ U , v ∈ V . Prove further that if U and V are
projective, then U ⊗k V is a projective k[X,Y ]-module.

(ii) Let n ∈ N. Use the Künneth Theorem to prove that

Tork[X,Y ]
n (U ⊗k V, k) ∼=

⊕
r+s=n

Tork[X]
r (U, k) ⊗k Tork[Y ]

s (V, k)

as k[X,Y ]-modules. (Of course k denotes the module with X and Y acting trivially;
that is aX = aY = 0 for all a ∈ k).

(3) Let R be a ring, let A be a chain complex of right R-modules, let B be a chain complex
of left R-modules, and let αn : An → An−1 denote the boundary maps of A. Suppose An

and im αn+1 are flat R-modules for all n ∈ N.
(i) Prove that kerαn is a flat R-module for all n ∈ N.
(ii) Prove that there is a natural short exact sequence of abelian groups

0 −→
⊕

r+s=n

Hr(A) ⊗R Hs(B) π−→ Hn(A ⊗R B) −→
⊕

r+s=n−1

TorR
1 (Hr(A), Hs(B)) −→ 0.

(4) Let A � G be groups with G/A finite.
(i) If ZA is a Noetherian ring, prove that ZG is a Noetherian ring.
(ii) Suppose A is a finitely generated free abelian group. Prove that ZA is a Noetherian

ring. Deduce that ZG is also a Noetherian ring.
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(By a Noetherian ring, we mean a ring which is both left and right Noetherian.)

(5) Let A � G be groups such that A is finitely generated abelian and G/A is finite, let (Mi) be
a direct system of ZG-modules, and let n ∈ N. Prove that Hn(G, lim−→Mi) ∼= lim−→Hn(G,Mi).

(6) Let (Gi) be a direct system of groups, and let n ∈ N.
(i) Prove that Z[lim−→Gi] ∼= lim−→ZGi.
(ii) In the case that the direct limit is a union (i.e. all the corresponding maps f j

i are
inclusions), prove that Hn(lim−→Gi, Z) ∼= lim−→Hn(Gi, Z). (Use HW6, prob. 7 and the
Proposition in Shapiro’s lemma.)

(iii) Prove that H1(lim−→Gi, Z) ∼= lim←−H1(Gi, Z).

Monday, October 24

Chapter 11
Group Cohomology, basic results

To get some examples, we shall calculate the cohomology of a finite cyclic group. Let k
be a commutative ring, let n ∈ P, and let G = 〈g〉 be a finite cyclic group of order n. We
are going to determine Hr(G, k) (where G is acting trivially on k.) The cases r = 0 (answer
k) and r = 1 (answer Hom(G, k)) were covered at the beginning of chapter 10. Let us write
kn = {a ∈ k | na = 0}. Then H1(G, k) ∼= kn. We can obtain the other cohomology groups by
dimension shifting. We have an exact sequence

0 −→ kg −→ kG
ε−→ k −→ 0, (1)

where ε is the augmentation map and kg denotes the augmentation ideal of kG. We can also
define a kG-epimorphism α : kG → kg by α1 = g − 1. If ν =

∑n−1
i=0 gi, then it is not difficult

to see that ker α = kν and that kν ∼= k as kG-modules. Thus we also have an exact sequence

0 −→ k −→ kG
α−→ kg −→ 0. (2)

Applying the long exact sequence for ExtkG in the first variable to the exact sequences (1)
and (2), we see that Hr(G, k) ∼= Hr+2(G, k) for all r ≥ 1, H2(G, k) ∼= Ext1kG(g, k), and there
is an exact sequence

0 −→ Ext0kG(g, k)
α∗

0−→ Ext0kG(kG, k)
ρ−→ Ext0kG(k, k) −→ Ext1kG(g, k)

α∗
1−→ Ext0kG(kG, k),

where ρ is the restriction map from HomkG(kG, k) → HomkG(kν, k). Therefore Ext1kG(g, k) ∼=
HomkG(k, k)/ im ρ. If f ∈ HomkG(kG, k), then f(x) = f(1) for all x ∈ G, and we see that
f(ν) = nf(1). It follows that im ρ = nk and hence Ext1kG(g, k) ∼= k/nk. Summing up,

Hr(G, k) ∼=

⎧⎪⎨⎪⎩
k if r = 0,

kn if r is odd,

k/nk if 0 < r is even.
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Let us apply the diagonal action to the direct product of two groups. Let k be a commu-
tative hereditary ring, let G,H be groups, let (P, α0) be a projective resolution of k as kG-
modules, and let (Q, β0) be a projective resolution of k as kH-modules. Then the Künneth
formula shows that (P ⊗k Q,α0⊗β0) is a projective resolution of k⊗k k as k[G×H]-modules.
Obviously G × H acts trivially on k ⊗k k, so k ⊗k k ∼= k. Thus we can calculate the groups
Hn(G × H, k) using the projective resolution (P ⊗k Q, α0 ⊗ β0). We require the following
lemma.

Lemma Let G,H be groups, let k be a commutative ring, let P and Q be chain complexes
of kG and kH-modules respectively, and let U and V be kG and kH-modules respectively.
Then there is a natural homomorphism of chain complexes

θ : HomkG(P,U) ⊗k HomkH(Q, V ) −→ Homk[G×H](P ⊗k Q, U ⊗k V )

defined by (θf ⊗ g)(u ⊗ v) = fu ⊗ vg for f ∈ HomkG(Pr, U), g ∈ HomkH(Qs, k), u ∈ Pr,
v ∈ Qs.

The proof is routine with the necessary maps set up. Even though there is an awkward sign
(−1)r involved in the definition of the tensor product of chain complexes, no sign is needed
in the definition of θ.

Exercise Show that θ need not always be an isomorphism.

There are several hypotheses which will make θ an isomorphism. The most convenient seems
to be the following.

Theorem In the above Lemma, assume that P is a finitely generated projective kG-module
and that U = k (where as usual, G is acting trivially on k). Then θ is an isomorphism.
Proof Because HomkG( , k) commutes with finite direct sums, it follows easily that we need
only consider the case P = kG. But then we have an inverse map defined by φf = ε ⊗ h for
f ∈ Homk[G×H](P ⊗k Q, k ⊗k V ), where ε : kG → k is the augmentation map (so εg = 1 for
all g ∈ G), and h : Q → V is defined by hq = f(1 ⊗ q) for all q ∈ Q.

We now want to apply the Künneth formula to the cochain complexes HomkG(P, k) and
HomkH(Q, k), but some words of caution are necessary here. To apply the Künneth formula,
we need the HomkG(Pr, k) to be projective as k-modules for all r ∈ N. If Pr

∼= kG, then
this is certainly so because HomkG(kG, k) ∼= k as k-modules. It follows that this is also the
case if Pr is a finitely generated projective kG-module. However this is not so if Pr is not
finitely generated: if Pr

∼= ⊕∞
i=1 kG, then HomkG(Pr, k) ∼= ∏∞

i=1 k, (see exercise 6(i) on the
first chapter), which is not projective in general (though it certainly will be if k is a field).

Exercise Show that
∏∞

i=1 Z is not a free abelian group. (Write A =
∏∞

i=1 Z. We think of
A as all infinite sequences (ai) with ai ∈ Z. Let B = {(ai) | for each n ∈ P, ai ∈ 2nZ for all
but finitely many i}. Show that B is an uncountable subgroup of A, and B/2B is countable.
Now if A is free, then so is B (we use the theorem that subgroups of free abelian groups are
free) and now we have a contradiction.)
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We need the following definition.

Definition Let G be a group and let k be a commutative ring. Then we say that G is
of type FP∞ over k if the trivial kG-module k admits a projective resolution with finitely
generated kG-modules. We say that G is of type FP∞ to mean that G is of type FP∞ over
Z.

Exercise If kG is Noetherian, prove that G is of type FP∞ over k. Deduce that if G has a
finitely generated abelian subgroup of finite index, then G is of type FP∞.

Thus the above exercise shows that there are plenty of groups of type FP∞, in particular all
finite groups. If G is of type FP∞ over Z, then Z has a projective resolution (P, α0) in which
all the modules are finitely generated. Since (P ⊗Z k, α0 ⊗ 1) is a projective resolution of k
with finitely generated kG-modules, it follows that G is of type FP∞ over k. It is an open
problem at the moment to as whether the reverse is true: namely that if G is of type FP∞
over k, then G is of type FP∞ over Z.

We now assume that G is of type FP∞ over k, so we assume that the chain complex
P consists of finitely generated projective kG-modules, and the chain complex Q consists of
projective kH-modules (not necessarily finitely generated) and apply the Künneth formula
for cochain complexes to obtain a natural exact sequence of kG-modules which splits:

0 −→
⊕

r+s=n

Hr(HomkG(P, k)) ⊗k Hs(HomkH(Q, k)) −→ Hn(HomkG(P, k) ⊗k HomkH(Q, k))

−→
⊕

r+s=n+1

Tork
1(Hr(HomkG(P, k)), Hs(HomkH(Q, k))) −→ 0.

Combining the above Theorem with Hr(HomkG(P, k)) ∼= Hr(G, k) and Hs(HomkH(Q, k)) ∼=
Hs(H, k), we obtain an exact sequence of k-modules which splits (remember that the two
hypotheses we need are that G is of type FP∞ and that k is commutative hereditary):

0 −→
⊕

r+s=n

Hr(G, k)⊗kHs(H, k) −→ Hn(G×H, k) −→
⊕

r+s=n+1

Tork
1(Hr(G, k), Hs(H, k)) −→ 0.

Thus once Hn(G, k) has been calculated for G cyclic, it can be calculated when G is any finitely
generated abelian group (since ZG is Noetherian when G is finitely generated abelian).

Remark In view of this stronger result (as compared with the original version which re-
quired that H be of type FP∞), the hypotheses for problem 9 of the eleventh homework can
be weakened, but I will let the original problem stand.

Example H4(Z/6Z×Z/3Z, Z). Since Z is a commutative hereditary ring, we can apply the
sequence of above to obtain a split exact sequence
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0 −→
⊕

r+s=4

Hr(Z/6Z, Z) ⊗Z Hs(Z/3Z, Z) −→ H4(Z/6Z × Z/3Z, Z)

−→
⊕

r+s=5

TorZ

1 (Hr(Z/6Z, Z), Hs(Z/3Z, Z)) −→ 0.

Using the calculation for the cohomology of a finite cyclic group, we have H0(Z/6Z, Z) =
Z = H0(Z/3Z, Z), Hr(Z/6Z, Z) = 0 = Hr(Z/3Z, Z) if r is odd, Hr(Z/6Z, Z) ∼= Z/6Z and
Hr(Z/3Z, Z) ∼= Z/3Z if 0 < r is even. It follows easily that H4(Z/6Z × Z/3Z, Z) ∼= Z/3Z ⊕
Z/3Z ⊕ Z/6Z.

Universal Coefficient Theorem We can also apply the Universal Coefficient Theorem to
group cohomology. Let G be a group of type FP∞ and let (P, α0) be a projective resolution of
the trivial ZG-module Z with finitely generated ZG-modules. Let n ∈ N and let M be a ZG-
module which is free as a Z-module. Since HomZG(ZG,M) ∼= M , we see that HomZG(ZG,M)
is free as a Z-module and it follows that HomZG(Q, M) is free as a Z-module for any finitely
generated projective ZG-module Q. Therefore HomZG(P, M) is a chain complex of projective
Z-modules, so we can apply the Universal Coefficient Theorem to obtain a split exact sequence
(of k-modules)

0 −→ Hn(HomZG(P,M)) ⊗Z k −→ Hn(HomZG(P, M) ⊗Z k) −→ TorZ

1 (Hn+1(G,M), k) −→ 0.

Now HomZG(P,M)⊗Zk is naturally isomorphic to HomkG(P⊗kk,M⊗kk) (map f⊗x for x ∈ k
to the homomorphism f⊗x̂, where x̂ denotes that map multiplication by x on k; that this map
is an isomorphism depends on P consisting of finitely generated projective ZG-modules: it is
easy to see that it is an isomorphism in the case P = ZG, hence it is an isomorphism for any
finitely generated projective ZG-module) and (P ⊗k k, α0 ⊗ 1) is a projective resolution of k
by the Theorem at the end of the last chapter. By remark (7) of chapter 10, Hn(HomkG(P ⊗k

k,M ⊗k k)) ∼= Hn(G,M ⊗k k) and we deduce that Hn(HomZG(P, M) ⊗Z k) ∼= Hn(G,M).
Therefore

Hn(G,M ⊗Z k) ∼= Hn(G,M) ⊗Z k ⊕ TorZ

1 (Hn+1(G,M), k).

Dual Universal Coefficient Theorem for group homology Using similar techniques
as for the Künneth formula and Universal Coefficient Theorems, one can obtain formulae
which involve both Hn and Hn. Here is one typical formula.

Theorem Let G be a group and let k be a commutative ring. Then there is a natural exact
sequence of k-modules which splits

0 −→ Ext1
Z
(Hn−1(G, Z), k) −→ Hn(G, k) −→ HomZ(Hn(G, Z), k) −→ 0,

for all n ∈ N (where we interpret Hn−1(G, Z) = 0 if n = 0).
It may be asked why one considers the groups Hn(G,M) instead of the apparently more

general Extn
kG(A,B): surely we are losing something. The next result shows that we lose
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very little. Furthermore when we come to the Lyndon-Hochschild-Serre spectral sequence of
a group extension, we will want to work with Hn rather than Extn.

Theorem Let k be a commutative ring, let n ∈ N, let G be a group, and let A,B be
kG-modules. If A is projective as a k-module, then Extn

kG(A,B) ∼= Hn(G, Homk(A,B)).

Of course, Homk(A,B) has the diagonal action as described at the end of the last chapter.
Proof Let (P, α0) be a resolution of the kG-module k with projective kG-modules. Then
(P ⊗k A,α0 ⊗ 1) is a resolution (because A is projective and hence flat as a k-module) of the
kG-module k ⊗k A ∼= A and by the Theorem at the end of the last chapter, this resolution is
projective as kG-modules. Therefore

Extn
kG(A,B) ∼= Hn(HomkG(P ⊗k A,B)) ∼= Hn(HomkG(P, Homk(A,B)))

∼= Extn
kG(k,Homk(A,B)) ∼= Hn(G, Homk(A,B))

by Remark (7) of chapter 10.

Thus the only thing we have lost is that we need to assume that A is projective as a k-module.
However one has long exact sequences and the Universal Coefficient Theorem available to
deduce the more general results. In any case the hypothesis that A is projective as a k-
module is vacuous if k is a field (and this is an important case).

There is a similar result for Torn and Hn which we now state; the proof is left to a future
homework exercise (homework 12, prob. 7).

Theorem Let k be a commutative ring, let A be a right kG-module, let B be a left kG-
module, and let n ∈ N. If A is flat as a k-module, then TorkG

n (A,B) ∼= Hn(G,A ⊗k B).

Transfer map If H � G are groups, then the restriction map gives us a homomorphism
Hr(G,M) → Hr(H,M); we would like to have a map going the other way, but this is not
always available. However in the case [G : H] < ∞, we do have a map Hr(H,M) → Hr(G,M)
which is called the transfer: it is often also called the corestriction. We define it as follows.
Let {x1, . . . , xn} be a right transversal for H in G, and let (P, α0) be a projective resolution
of Z with ZG-modules. Then for each r ∈ N, we can define a map θr : HomZH(Pr, M) →
HomZG(Pr,M) by θrf =

∑n
i=1 xifx−1

i , or more explicitly

(θrf)u =
n∑

i=1

f(ux−1
i )xi for u ∈ Pr.

Then the θr commute with the coboundary maps αr∗ and hence they induce homomorphisms
θr∗ : Hr(H,M) → Hr(G,M), usually denoted trH,G and called the transfer homomorphism.
The following Lemma is extremely important (resG,H denotes the restriction map from G to
H).

Lemma Let H � G be groups with n = [G : H] < ∞, let r ∈ N, let M be a ZH-module,
and let σ ∈ Hr(G,M). Then trH,G resG,H σ = nσ.
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Proof Let {x1, . . . , xn} be a right transversal for H in G, and let (P, α0) be a projective
resolution of Z. If f ∈ HomZG(Pr,M) is represented by σ, then

∑n
i=1 xifx−1

i is represented
by trH,G resG,H σ. Since f ∈ HomZG(Pr,M), xifx−1

i = f and hence
∑n

i=1 xifx−1
i = nf .

Therefore trH,G resG,H σ is represented by nf and the result follows.

Tenth Homework Due 9:00 a.m., Monday, October 31.

(1) Let (Gi) be a direct system of groups with lim−→Gi = G, let U be a ZG-module, and let
n ∈ P. Prove that lim−→TorZGi

n (U, ZG) = 0. (Roughly speaking the argument goes as
follows: an element in lim−→TorZGi

n (U, ZG) is the image of an element x ∈ TorZGi
n (U, ZGj)

for some j ≥ i, and then the image of x ∈ TorZGj
n (U, ZGj) is zero.)

(2) Let H,G be groups, let n ∈ N, let A be a right ZG-module, and let B be a left ZG-module.
Sketch a proof that a group homomorphism θ : H → G induces a natural map of abelian
groups θn∗ : TorZH

n (A,B) → TorZG
n (A,B). What does the map θ1∗ : H1(H, Z) → H1(G, Z)

correspond to group theoretically (i.e. in terms of the groups G,H not using H1)?

(3) Let (Gi) be a direct system of groups with lim−→Gi = G and let U be a right ZG-module.

(i) Prove that if P is a projective left ZG-module and n ∈ P, then lim−→TorZGi
n (U, P ) = 0.

(ii) Prove that if M is any left ZG-module, then lim−→TorZGi
1 (U, M) ∼= TorZG

1 (U, M).
(iii) Prove that if M is any left ZG-module, then lim−→TorZGi

n (U, M) ∼= TorZG
n (U, M) for all

n ∈ N.

(4) Let G be a finite group. Prove that H1(G, Z) = 0. Deduce that H2(G, g) = 0.

(5) Let H � G be groups, and let T be a right transversal for H in G.
(i) If I �r ZH, prove that IZG =

⊕
t∈T It.

(ii) If g is a finitely generated right ideal of ZG, prove that G is a finitely generated
group.

(iii) If ZG is right Noetherian, prove that G has the maximum condition on subgroups
(i.e. there does not exist a strictly ascending chain of subgroups H1 < H2 < H3 <
· · · � G).

(6) Let G be a group. Prove that G is a finitely generated group if and only if g is a finitely
generated ZG-module. (If G = 〈g1, g2, . . . 〉, prove that g = (g1−1)ZG+(g2−1)ZG+· · · .)

(7) Let G = A � H be the split extension (i.e. semi-direct product) of the group A with the
group H. Thus A � G, G = AH and A ∩ H = 1. Let M be a ZG-module with G acting
trivially and let n ∈ N. Prove that Hn(H,M) is naturally isomorphic to a subgroup of
Hn(G,M), but show by example that Hn(A,M) need not be isomorphic to a subgroup of
Hn(G,M).

(8) Let G be a group. Prove that H0(G, ZG) ∼= Z if G is finite, and that H0(G, ZG) = 0 if G
is infinite.
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(9) Let G ∼= Z be the infinite cyclic group and let M be a ZG-module.

(i) Prove that ZG ∼= g as ZG-modules. (Let G = 〈g〉 and map 1 to g − 1.)
(ii) Prove that Hn(G,M) = 0 for all n ≥ 2.
(iii) Prove that G acting by right multiplication on ZG induces the identity action on

H1(G, ZG).
(iv) Prove that H1(G, ZG) is a quotient of Z.
(v) Prove that H1(G, ZG) ∼= Z.

Monday, October 31

Chapter 12
Group Cohomology, further results

As a quick application of the transfer map at the end of the last chapter, we have the
following.

Proposition Let G be a finite group, let M be a ZG-module, let n = |G|, and let r ∈ P.
Then n Hr(G,M) = 0 (thus if G is a finite group, all the cohomology groups Hr(G,M) are
torsion groups for all r > 0).

Proof Let σ ∈ Hr(G,M) and let 1 denote the identity group. Then resG,1 σ = 0 because
Hr(1,M) = 0 for all r ∈ P. Therefore by the Lemma at the end of the last chapter, nσ = 0.

There is also a transfer map Hr(G,M) → Hr(H,M) when H � G: this will be covered in
a future homework exercise (homework 13, prob. 4). In the case H is the Sylow p-subgroup of
the finite group G and r = 1, this is an important tool in the theory of finite groups, especially
in the theory of finite simple groups.

The Trace Map Let H � G be groups. Since ZG is a free Z-module with basis {g | g ∈ G},
we can define a map trH : ZG → ZH by trH g = 0 if g ∈ G\H, and trH g = g if g ∈ H (tr
stands for “trace”, and hopefully it will not be confused with the transfer map defined at the
end of the last chapter); it is easy to verify that trH is both a right and left ZH-map (though
it will not be a ZG-map). This map has many applications, one of which is the following
result.

Theorem Let H � G be groups and let M be a right ZH-module. If [G : H] is finite, then
HomZH(ZG,M) ∼= M ⊗ZH ZG as right ZG-modules.

Proof Define θ : M ⊗ZH ZG → HomZH(ZG,M) by (θm ⊗ α)β = m trH αβ for m ∈ M and
α, β ∈ ZG. Then it is easy to see that θ is a well defined ZG-map. This map does not depend
on [G : H] being finite. To define a map the other way, first let T be a right transversal for
H in G. Then for f ∈ HomZH(ZG,M), set φf =

∑
t∈T f(t−1) ⊗ t ∈ M ⊗ZH ZG (this does

depend on [G : H] < ∞); we note that this does not depend on the choice of transversal
T because f((ht)−1) ⊗ ht = f(t−1) ⊗ t. This is obviously a Z-map: in fact it is a ZG-map
because for f ∈ HomZH(ZG,M) and g ∈ G,



66

(φf)g =
∑
t∈T

(f(t−1) ⊗ t)g

=
∑
t∈T

f(gt−1) ⊗ t

by replacing t with tg in the summation and noting that {tg | t ∈ T} is still a right transversal
for H in G,

=
∑
t∈T

(fg)t−1 ⊗ t

= φ(fg).

Then for α =
∑

t∈T αtt ∈ ZG (αt ∈ ZH) and m ∈ M , φθ(m ⊗ α) =
∑

t∈T m(trH αt−1) ⊗ t =∑
t∈T mαt ⊗ t =

∑
t∈T m ⊗ αtt = m ⊗ α. Therefore φθ is the identity map. Also for

f ∈ HomZH(ZG,M), (θφf)1 = θ(
∑

t∈T f(t−1) ⊗ t)1 =
∑

t∈T f(t−1) trH t = f(1), hence θφ is
also the identity. This establishes the required isomorphism.

Combining this Theorem with the first homework problem in the case H = 1, we obtain
the following result which was mentioned earlier.

Theorem Let G be a finite group and let n ∈ P. Then Hn(G, ZG) = 0.

Eleventh Homework Due 9:00 a.m., Monday, November 7.

(1) Let H � G be groups, let M be a ZH-module, let n ∈ N, and let (P, α0) be a projective
resolution of Z with ZG-modules.
(i) Prove that Hn(H,M) ∼= Hn(HomZG(P, HomZH(ZG,M))) (use HW1 prob. 2(iii)).
(ii) Prove that Hn(G, HomZH(ZG,M)) ∼= Hn(H,M).

(2) This and the next problem are for those students who know a little about Lie algebras. Let
k be a field, let g be a Lie algebra over k, let Ug denote the universal enveloping algebra
of g, and let Ig denote the augmentation ideal of Ug. Thus if we view g as a subspace of
Ug, then Ig is the ideal of Ug generated by g.
(i) Prove that the natural injection ι : g → Ug maps [g, g] into (Ig)2. Deduce that ι

induces a map g/[g, g] → Ig/(Ig)2.
(ii) Prove that there is a k-module map τ : Ig → g/[g, g] which maps (Ig)2 to 0. Deduce

that τ induces a k-module map Ig/(Ig)2 → g/[g, g].
(iii) Prove that Ig/(Ig)2 ∼= g/[g, g]. (Same proof as for augmentation ideals of group

rings).

(3) Let g be a Lie algebra over a commutative ring k, and let M be a g-module. Then
we may view M as a Ug-module, and we define Hn(g, M) = Extn

Ug(k,M), where Ig is
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acting trivially on k. If M is a trivial g-module (i.e. M Ig = 0), prove that H1(g, M) ∼=
Homk(g/[g, g],M).

(4) Prove that H4(Z/6Z × Z/3Z × Z/3Z, Z) ∼= (Z/3Z)6 ⊕ Z/6Z.

(5) Let G,H be any groups, and let k be a commutative hereditary ring. Prove that there is
a short exact sequence of k-modules

0 −→
⊕

r+s=n

Hr(G, k)⊗kHs(H, k) −→ Hn(G×H, k) −→
⊕

r+s=n−1

Tork
1(Hr(G, k), Hs(H, k)) −→ 0

which splits. (Of course this sequence is natural, but don’t verify this.)

(6) Let k be a commutative ring, let G be a group, and let M be a ZG-module which is free
as a Z-module. Prove that

Hn(G,M ⊗Z k) ∼= Hn(G,M) ⊗Z k ⊕ TorZ

1 (Hn−1(G,M), k)

as k-modules (if n = 0, interpret Hn−1(G,M) = 0).

(7) Let n, r ∈ N, and let G = Zn. Prove that Hr(G, Z) ∼= Z(n
r) where

(
n
r

)
denotes the binomial

coefficient
n!

r! (n − r)!
(interpret Z(n

r) = 0 for n < r. First do the case n = 1 using HW10

prob. 9(i)). Deduce that Hr(G, k) ∼= k(n
r) as k-modules for any commutative ring k.

(8) Let G be a finitely generated free abelian group, let H be a finite group, and let n ∈ N.
Prove that Hn(G × H, Z) ∼= ⊕

r+s=n Hr(G, Z) ⊗Z Hs(H, Z).

(9) Let G be a group, let k be a commutative ring, let A be a flat right kG-module, and let
B be a left kG-module.
(i) If P is a right kG-module, prove that (P ⊗k A) ⊗kG B is naturally isomorphic to

P ⊗kG (A ⊗k B). (Just establish the isomorphism: it is not necessary to verify that
it is natural.) Of course G is acting diagonally on A ⊗k B and P ⊗k A.

(ii) If P is a flat right kG-module, prove that P ⊗k A is also a flat right kG-module.
(iii) Prove that TorkG

n (A,B) ∼= Hn(G,A ⊗k B) for all n ∈ N.

Monday, November 7

Chapter 13
Graded Algebras

Notation Let G be a group, let k be a commutative ring, and let M be a kG-module. Then
it is standard to define H∗(G,M) =

⊕
r∈N

Hr(G,M). Similarly if N is a left kG-module, then
one defines H∗(G,N) =

⊕
r∈N

Hr(G,N).

Group cohomology (H∗(G,M)) is studied much more than group homology (H∗(G,N)),
and the reason seems to be that if k is a commutative ring, then H∗(G, k) can be made into
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a ring, in fact a k-algebra, whereas there does not appear to be a corresponding construction
for group homology. In general one cannot make ExtR(M,N) into a ring. The fact that one
can make H∗(G, k) into a ring depends crucially on the diagonal action of G on the tensor
product of two kG-modules. Actually one can make this construction using bialgebras (Hopf
algebras without an antipode), rather than just for group rings as we are going to do here.

So let G be a group, let k be a commutative ring, and let M be a kG-module. We
are going to make H∗(G, k) into an anticommutative graded k-algebra, and H∗(G,M) into a
graded H∗(G, k)-module. Let us recall what is meant by an anticommutative graded algebra,
and what is meant by a graded module.

Definition Let k be a commutative ring, and let A be a k-algebra (not necessarily commu-
tative). Suppose we can write A =

⊕
r∈N

Ar (as a k-module) such that ArAs ⊆ Ar+s for all
r, s ∈ N. Then we say that A is a graded k-algebra. The elements Ar are called the homoge-
neous elements of degree r. To say that a ∈ A has degree r will mean that a is homogeneous
of degree r; i.e. a ∈ Ar.

Examples
(i) Any algebra A can be trivially graded by setting A0 = A and Ar = 0 for all r ∈ P.
(ii) Any polynomial ring k[X1, X2, . . . ] is a graded algebra, by letting Ar be the homogeneous
polynomials of total degree r. Thus for k[X,Y ], we let A0 = k, A1 = kX + kY , A2 = kX2 +
kXY +kY 2, A3 = kX3+kX2Y +kXY 2+kY 3, and in general Ar = kXr+kXr−1Y +· · ·+kY r.

Exercise Let k be a commutative ring, and let A =
⊕

r∈N
Ar be a graded k-algebra. Prove

that A0 is a subring of A, and that
⊕

r≥n Ar is a two-sided ideal of A for all n ∈ N.

If A is a graded k-algebra, then is should be obvious what the definition of a graded
A-module is.

Definition Let k be a commutative ring, let A be a graded k-algebra, and let M be an
A-module. Then M is a graded A-module means that we can write M =

⊕
r∈N

Mr (as
k-modules) such that MrAs ⊆ Mr+s for all r, s ∈ N. The elements of Mr are called the
homogeneous elements of degree r of M

Examples
(i) If A is a graded k-algebra, then A is itself a graded A-module.
(ii) Let A = k[X1, X2, . . . ] be a polynomial ring, graded by total degree as above, and let k
denote the A-module with all the Xi acting trivially (so bXi = 0 for all b ∈ k and for all i).
Then M = k is a graded A-module with M0 = k and Mr = 0 for all r ∈ P.

Exercise Let k be a commutative ring and let A be a graded k-algebra. Prove that
⊕∞

r=n Ar

is a graded A-module for all n ∈ N.

It is obvious what is meant by a commutative graded k-algebra: it is a graded k-algebra
which is commutative. However the algebra H∗(G, k) turns out not to be commutative, but
anticommutative. This means that if A =

⊕
r∈N

Ar is an anticommutative graded k-algebra,
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then aras = (−1)rsasar for all ar ∈ Ar and for all as ∈ As (r, s ∈ N). The reason for H∗(G, k)
being anticommutative rather than commutative is the sign involved when defining the tensor
product of two chain complexes, as we shall see later.

Examples

(i) If A is a commutative graded k-algebra, then
⊕

r∈N
A2r is an anticommutative graded

subalgebra of A. Also if A has no elements of odd degree, then the concepts of commutative
and anticommutative coincide.

(ii) If k is a field of characteristic 2, then the concepts of commutative and anticommutative
coincide.

(iii) Let k be a commutative ring, let A be the free k-module of rank 4 with basis {1, a, b, c},
and we make A into a k-algebra by defining a multiplication as follows. 1 will be the identity,
thus 11 = 1, 1a = a = a1, 1b = b = b1 and 1c = c = c1. Also a2 = b2 = c2 = ac = ca = bc =
cb = 0, and ab = −ba = c. We grade A so that k1 are the homogeneous elements of degree 0,
ka + kb are the homogeneous elements of degree 1, and kab are the homogeneous elements of
degree 2. Then A is an anticommutative graded k-algebra.

Exercise Verify the above statement, that indeed A is an anticommutative graded k-algebra
(you need to check the associative law).

In fact there is an easy construction of A as follows. Let B be the k-algebra with basis {1, x},
where the multiplication is defined by 11 = 1, 1x = x = x1, and x2 = 0. It is easy to check
that this yields a k-algebra structure on B (associative law is easy to check in this case). In
fact B ∼= k[X]/(X2) as k-algebras. We can make B into an anticommutative graded k-algebra
by letting k1 be the homogeneous elements of degree 0, and kx be the homogeneous elements
of degree 1. Then A ∼= B ⊗k B as anticommutative k-algebras, where the tensor product of
anticommutative graded k-algebras is as defined in the next paragraph.

If A,B are anticommutative graded k-algebras, then their tensor product becomes an
anticommutative graded k-algebra with product

(a ⊗ b)(a′ ⊗ b′) = (−1)deg b deg a′
aa′ ⊗ bb′,

where b, a′ are homogeneous elements of B and A respectively. It is then routine to check
that A⊗k B is indeed an anticommutative graded k-algebra. Perhaps the only thing which is
not immediately obvious is the associative law. First we verify it for homogeneous elements:
suppose a, a′, a′′ ∈ A and b, b′, b′′ ∈ B are homogeneous of degrees r, r′, r′′ and s, s′, s′′ respec-
tively. Then a computation shows that

(
(a ⊗ b)(a′ ⊗ b′)

)
(a′′ ⊗ b′′) = (−1)r′s+r′′s+r′′s′

aa′a′′ ⊗ bb′b′′ = (a ⊗ b)
(
(a′ ⊗ b′)(a′′ ⊗ b′′)

)
.

The case for general (not necessarily homogeneous elements) now follows from the k-bilinearity
of the tensor product. It is a general technique that when one is trying to prove something
about graded algebras, often one needs only check that the required equalities hold for the
homogeneous elements.
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Exercise Let k be a commutative ring, and let A, B be graded anticommutative k-algebras.
Prove that the map τ : A ⊗k B → B ⊗k A defined by τa ⊗ b = (−1)deg a deg bb ⊗ a (a, b
homogeneous) is an isomorphism of graded k-algebras.

Cup Products After the digression into graded algebras, we can now return to cup prod-
ucts. Let

(P, ε) : · · · ∂2−→ P1
∂1−→ P0

ε−→ Z −→ 0

be a projective resolution of Z with ZG-modules. Then by the Künneth formula and the
Theorem at the end of the tenth chapter, (P⊗ZP, ε⊗ε) is a projective resolution of Z⊗ZZ with
projective ZG-modules, where G is acting diagonally. We also have a natural isomorphism of
ZG-modules μ : Z ⊗Z Z → Z defined by μa ⊗ b = ab for a, b ∈ Z. Thus if π = μ(ε ⊗ ε), then
(P ⊗Z P, π) is a projective resolution of Z with ZG-modules. By Lemma 1 of chapter 2, there
exists a chain map

θ : P → P ⊗Z P (1)

extending the identity map on Z.

Twelfth Homework Due 9:00 a.m., Monday, November 14.

(1) Let G be a finite cyclic group, and suppose 0 → A
α→ B → C → 0 is an exact sequence of

ZG-modules.
(i) Prove that there is an isomorphism θ : H1(G,A) → H3(G,A) such that θ(kerα1∗) =

ker α3∗. (αi∗ is the map Hi(G,A) → Hi(G,B).)
(ii) Prove that there is an exact hexagon of groups

H1(G,A) −→H1(G,B)
↗ ↘

H2(G,C) H1(G,C)
↖ ↙

H2(G,B) ←−H2(G,A)

(2) Let G be a finite cyclic group. Then an important tool in number theory is the Herbrand
quotient h(A), defined as follows. Let A be a ZG-module such that the cohomology groups
H1(G,A) and H2(G,A) are both finite. Then we set h(A) = |H2(G,A)|/|H1(G,A)| (so
h(A) is some rational number).
(i) Prove that if 0 → A → B → C → 0 is an exact sequence of abelian groups, then

|B| = |A||C| (assume for simplicity that A,B,C are all finite, though the result is still
true without this hypothesis if correctly interpreted).

(ii) Let 0 → A → B → C → 0 be an exact sequence of ZG-modules, and suppose that
Hi(G,A), Hi(G,B) and Hi(G,C) are finite for i = 1, 2. By splitting the exact hexagon
of the previous problem up into short exact sequences, prove that h(B) = h(A)h(C).
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(3) Let G be a finite group.

(i) By considering the exact sequence of ZG-modules 0 → Z → Q → Q/Z → 0 (where G
acts trivially on each term), prove that H2(G, Z) ∼= Hom(G, Q/Z).

(ii) If n ∈ P, prove that H2(Z/nZ, Z) ∼= Z/nZ (using (i), but not the formula I gave in
class for the cohomology of a cyclic group).

(iii) Using the Universal Coefficient Theorem for group cohomology, deduce from (ii) that
H2(Z/nZ, k) ∼= k/nk as k-modules. (Again, don’t use the formula I gave in class for
the cohomology of a cyclic group, but you may assume that H3(Z/nZ, Z) = 0.)

(4) Let G be a finite group. Using the techniques and results of the previous problem, prove

(i) H2(G, Z) ∼= G/G′.
(ii) Prove that Hr(G, Q/Z) ∼= Hr+1(G, Z) for all r ∈ P.
(iii) Prove that Hr+1(G, Z) ∼= lim−→Hr(G, Z/nZ) for all r ∈ P. Here (Z/mZ, fn

m) is the
direct system of cyclic groups where there is a map fn

m : Z/mZ → Z/nZ if and only
if m|n, and all the fn

m are monomorphisms.

(5) Let k be a commutative ring and let M be a right kG-module.

(i) Prove that M ⊗k kG ∼= M ⊗k kG as kG-modules, where on the left G is acting
diagonally, and on the right M is viewed as a k-module. On both sides, kG is a right
kG-module via right multiplication by kG. (Map m ⊗ g to mg−1 ⊗ g.)

(ii) Prove that if M is free as a k-module and F is a free kG-module, then M ⊗k F (where
G is acting diagonally) is a free kG-module.

(iii) Prove that if M is projective as a k-module, and P is a projective kG-module, then
M ⊗k P is a projective kG-module (where G is acting diagonally).

(6) Let p be a prime, let k be a field of characteristic p, and let G = H � P be the split
extension of the normal subgroup H with the subgroup P . If P is the Sylow p-subgroup
of G, prove that Hn(G, k) ∼= Hn(P, k) as k-modules for all n ∈ N.

(7) Let p be a prime, let k be a field of characteristic p, let G be a finite p-group, let M be
a ZG-module which is projective as a Z-module, and let n ∈ N. If Hn(G,M ⊗Z k) = 0,
prove that Hn+1(G,M) = 0.

(8) Let 1 ≤ p ∈ R. One defines Lp-cohomology groups H̄n(G,M) in the same way as the
ordinary cohomology groups except that one requires M to be a Banach space such that
the action of G on M is continuous, that maps are continuous with respect to the Lp-norm,
and that one replaces the image with the closure of the image.

It turns out that H̄0(G,M) is MG (just as in the ordinary cohomology case, and the proof is
the same). Let Lp(G) denote the Banach space {∑g∈G agg | ag ∈ C and

∑
g∈G |ag|p < ∞}.

Then G acts (continuously) by right multiplication on Lp(G):
(∑

g∈G agg
)
x =

∑
g∈G aggx

for x ∈ G, and in this way CG is a CG-submodule of Lp(G) (in fact, Lp(G) is the closure
of CG in the Lp-norm).

Prove that H̄0(G, Lp(G)) = 0 if and only if G is infinite.
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(9) Let H � G be groups such that H ∼= Z, and let M be a ZG-module. Suppose [G : H] =
n < ∞.

(i) Prove that Hr(H,M) = 0 for all r > 1 (use HW10 prob. 9(i)).
(ii) Prove that n Hr(G,M) = 0 for all r > 1.

Monday, November 14

Chapter 14
Cup Products

Let M be a ZG-module and let k be a commutative ring (one possibility that we shall be
examining presently is the case M = k; when considering k as a ZG-module or kG-module,
unless otherwise stated, we shall always assume that the action of G on k is trivial: i.e. ag = a
for all a ∈ A and g ∈ G). We shall calculate H∗(G,M) and H∗(G, k) using the projective
resolution P of Z at the end of the last chapter. Suppose u ∈ Hr(G,M) and x ∈ Hs(G, k).
We want to define the product ux: this will make H∗(G, k) into a ring in the case M = k, and
H∗(G,M) into a right H∗(G, k)-module. Choose f ∈ HomZG(Pr, M) and g ∈ HomZG(Ps, k)
representing u and x respectively (thus we assume that α∗

r+1f = 0 = β∗
s+1g). Then f ⊗ g ∈

HomZG(Pr ⊗Z Ps,M), where (f ⊗g)(a⊗b) = f(a) g(b) for a ∈ Pr and b ∈ Ps. Let us calculate
the boundary of f ⊗ g: it is

α∗
r+1f ⊗ g + (−1)rf ⊗ β∗

s+1g = 0.

Therefore f⊗g represents an element u′x′ of Hr+s(HomZG(P⊗ZP, M)). It is not difficult to see
that this element depends only on u and x, and not on the choice of f and g. Using Lemma 2
of chapter 2, it follows that θ∗(u′x′) is a well defined element of Hr+s(HomZG(P, M)), which
does not depend on the choice of θ. Therefore (f ⊗ g)θ represents a well defined element of
Hr+s(G,M), which we shall denote by ux.

We make the following two notes.

(i) ux does not depend on the choice of f , g, and θ: it only depends on u and x.
(ii) It is important to compute ux using the same resolution of Z as used for u and x.

If v is an arbitrary element of H∗(G,M), then we shall use the notation vi to denote the
ith component of v: thus vi ∈ Hi(G,M) and v =

∑
i∈N

vi. We can now define the cup product
vy of arbitrary elements in H∗(G,M) and H∗(G, k) respectively by

(vy)r =
∑

i+j=r

viyj .

There is an obvious way to give H∗(G,M) a grading: namely we let the homogeneous
elements of degree n be the elements of Hn(G,M). We now have the following theorem.

Theorem Let G be a group, let k be a commutative ring, let M be a right kG-module,
and let π : Z → k be the unique ring homomorphism (so πa = a1 for all a ∈ Z). Then
H∗(G, k) is a graded anticommutative k-algebra with a 1, and H∗(G,M) is a graded right
H∗(G, k)-module. If (P, α0) is a projective resolution for Z with ZG-modules and e ∈ H0(G, k)
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represents πα0 ∈ HomZG(P0, k), then ue = u for all u ∈ H∗(G,M). (Thus H∗(G, k) has a 1
and H∗(G,M) is a unital H∗(G, k)-module.)
Proof We shall leave the proof of the properties of e as an exercise. Everything else is now
clear except the anticommutativity: we must prove that if x ∈ Hr(G, k) and y ∈ Hs(G, k),
then xy = (−1)rsyx.

Let (P, α0) be a projective resolution for Z with ZG-modules, let f ∈ HomZG(Pr, k)
represent x, let g ∈ HomZG(Ps, k) represent y, and let μ : Z⊗Z Z → Z denote the ZG-module
map defined by μ(a⊗ b) = ab. Then (P ⊗Z P, μ(α0 ⊗ α0)) is also a projective resolution of Z
with ZG-modules, so there exists a chain map θ : P → P ⊗Z P extending the identity map on
Z. By definition, (f ⊗ g)θ and (g ⊗ f)θ ∈ HomZG(Pr+s, k) represent xy and yx ∈ Hr+s(G, k)
respectively, and application of Lemma 2 of chapter 2 shows that

θ∗ : Hr+s(HomZG(P ⊗Z P, k)) −→ Hr+s(HomZG(P, k))

is an isomorphism. Therefore we want to show that f ⊗ g and (−1)rsg⊗f represent the same
element in Hr+s(HomZG(P ⊗Z P, , k)).

Define a chain map τ : P ⊗Z P → P ⊗Z P by τ(a ⊗ b) = (−1)rs(b ⊗ a) for a ∈ Pr and
b ∈ Ps (we need the (−1)rs to ensure that τ commutes with the boundary maps). Then
(f ⊗ g)τ = (−1)rs(g ⊗ f), and the induced map

τ∗ : Hr+s(HomZG(P ⊗Z P )) −→ Hr+s(HomZG(P ⊗Z P ))

is the identity by Lemma 2 of chapter 2. This proves the result.

Exercise Prove that ue = u for all u ∈ H∗(G,M) in the above Theorem. Here is an outline
of what to do.

(i) By dimension shifting, we may assume that u ∈ H0(G,M) (you will need to use the
fact that every module can be embedded in an injective module).

(ii) Prove that ue = u for all u ∈ H0(G,M) in the case P0 = ZG and θ0g = g ⊗ g for all
g ∈ G.

(iii) Prove that ue = u for all u ∈ H0(G,M) for arbitrary P0.

Various group maps between the various Hn(G,M) are in fact ring and/or module maps,
and a large number of results can now be read off. For example

Theorem (Künneth theorem) Let G, H be groups, and let k be a commutative hereditary
ring. Suppose G is of type FP∞ over k. Then there is a natural monomorphism of anticom-
mutative graded k-algebras π : H∗(G, k) ⊗k H∗(H, k) → H∗(G × H, k). If k is a field, then π
is an epimorphism.

Remarks

(i) A homomorphism of graded k-algebras will normally mean an algebra homomorphism
which respects the grading. In this case it is obvious that π respects the grading.
(ii) When k is a field, it follows from the above Theorem that once we have calculated the
ring structure of H∗(G, k) for G cyclic, then we have calculated the ring structure of H∗(G, k)
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for any finitely generated abelian group (since any finitely generated abelian group is a direct
product of cyclic groups).

(iii) Unfortunately there does not appear to be any useful ring structure on the Tor term
in the Künneth formula, so if k is a commutative hereditary ring which is not a field (and
the important case here is when k = Z), it is not clear how to calculate the ring structure of
H∗(G × H, k) from that of H∗(G, k) and H∗(H, k). In fact when k is a field, in general the
cohomology rings with coefficients in Z are far more complicated than the cohomology rings
with coefficients in k.

Proof of Theorem This is just the result at the bottom of the first lemma of chapter 11; all
that we need to do is to verify that the map π respects multiplication (i.e. the cup product).
Since π respects addition (because it is a group homomorphism), it will be sufficient to check
this on homogeneous elements.

Let (P, α0) be a projective resolution of Z with ZG-modules, and let (Q, β0) be a projective
resolution of Z with ZH-modules. Define μ : Z ⊗Z Z → Z by μ(a ⊗ b) = ab for a, b ∈ Z. then
(P⊗ZP, μ(α0⊗α0)) is a projective resolution of Z with ZG-modules, and (Q⊗ZQ, μ(β0⊗Zβ0))
is a projective resolution of Z with ZH-modules. Let θ : P → P ⊗Z P and φ : Q → Q ⊗Z Q
be chain maps extending the identity on Z.

Let r, s ∈ N, let u ∈ Hr(G, k) be represented by f ∈ HomZG(Pr, k), let u′ ∈ Hr′
(G, k) be

represented by f ′ ∈ HomZG(Pr′ , k), let v ∈ Hs(G, k) be represented by g ∈ HomZG(Ps, k), and
let v′ ∈ Hs′

(G, k) be represented by g′ ∈ HomZG(Ps′ , k). We need to show that π
(
(u⊗v)(u′⊗

v′)
)

= π(u⊗v)π(u′⊗v′). By definition, π(u⊗v) is represented by f⊗g ∈ HomZG((Pr⊗ZQs), k)
and π(u′ ⊗ v′) is represented by f ′ ⊗ g′ ∈ HomZG((Pr′ ⊗Z Qs′), k). Define a chain map

τ : P ⊗Z P ⊗Z Q ⊗Z Q −→ P ⊗Z Q ⊗Z P ⊗Z Q

by τ(p ⊗ p′ ⊗ q ⊗ q′) = (−1)deg p deg q′
p ⊗ q ⊗ p′ ⊗ q′, where p, p′ and q, q′ are homogeneous

elements of P and Q respectively (we need the (−1)deg p deg q to ensure that τ commutes with
the boundary maps). Then by definition of the cup product, (u ⊗ v)(u′ ⊗ v′) is represented
by

(f ⊗ g ⊗ f ′ ⊗ g′)τ(θ ⊗ φ) ∈ HomZ[G×H](Pr+r′ ⊗Z Qs+s′ , k).

Also uu′ is represented by (f ⊗ f ′)θ ∈ HomZG(Pr+r′ , k), and vv′ is represented by (g⊗ g′)φ ∈
HomZH(Qs+s′ , k). Therefore π(uu′ ⊗ vv′) is represented by

(f ⊗ f ′ ⊗ g ⊗ g′)(θ ⊗ φ) ∈ HomZ[G×H](Pr+r′ ⊗Z Qs+s′ , k).

But (f ⊗ g ⊗ f ′ ⊗ g′)τ = (−1)r′s(f ⊗ f ′ ⊗ g ⊗ g′) and (u ⊗ v)(u′ ⊗ v′) = (−1)r′suu′ ⊗ vv′,
and the result follows.

We list some further properties of the cup product.

Theorem Let G,H be a groups, let k be a commutative ring, let L, M, N be kG-modules,
let u ∈ H∗(G,M), and let x ∈ H∗(G, k).

(i) If θ : H → G is a homomorphism, then θ∗(ux) = θ∗(u)θ∗(x).
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(ii) If φ : M → N is a kG-map, then φ∗(ux) = φ∗(u)x.
(iii) If 0 → L → M → N → 0 is exact and δ : H∗(G,N) → H∗(G,L) is the map induced

by this sequence, then δ(vx) = (δv)x for v ∈ H∗(G,N).
(iv) If H � G and [G : H] < ∞, then trH,G((resG,H u)y) = u trH,G y for y ∈ H∗(H, k).

The Bockstein Map This is an important map in group cohomology. Among other things,
it can facilitate the calculation of the cohomology of a cyclic group, especially its ring structure.
There are several versions of the Bockstein, the most useful seems to be the following.

Definition of the Bockstein Map Let p be a prime, let k be the field Z/pZ, and let G
be a group. Then we have a short exact sequence of ZG-modules 0 → k → Z/p2Z → k → 0
(where G acts trivially on each term), hence the long exact sequence for cohomology yields
an exact sequence

· · · −→ Hn(G, k)
βn−→ Hn+1(G, k) −→ · · · ,

and we call βn the Bockstein map. We can extend βn to be defined on Hn(G,K) for an
arbitrary field K of characteristic p by using a variant of the Universal Coefficient Theorem
for group cohomology of chapter 11.

Exercise Let k ⊆ K be fields, let G be a group of type FP∞ over k, and let M be a
kG-module. Prove that Hr(G,M ⊗k K) ∼= Hr(G,M) ⊗k K for all r ∈ N.

Thus for an arbitrary field K of characteristic p, we define the Bockstein (still denoted βn)
from Hn(G,K) to Hn+1(G,K) to be βn ⊗ 1, though we need in this case to assume that G is
of type FP∞ over k.

How is βn defined at the cochain level? Let

(P, α0) : · · · α2−→ P1
α1−→ P0

α0−→ Z −→ 0

be a projective resolution of Z with ZG-modules, and let u ∈ Hn(G, k) be represented by
f ∈ HomZG(Pn, k) (so we assume that fαn+1 = 0). Since P is projective, we may lift f

to a map f̂ ∈ HomZG(Pn, Z/p2Z). Then (see chapter 5) f̂αn+1 : Pn+1 → Z/p2Z has image
contained in pZ/p2Z = k, because fαn+1 = 0. Then f̂αn+1 ∈ HomZG(Pn+1, k) represents
βnu. We now have the following properties of the Bockstein map.

Theorem Let G be a group, let p be a prime, and let K be a field of characteristic p.
Assume that G is of type of FP∞ in the case K 	= Z/pZ.

(i) βn+1βn = 0 (because αn+1αn+2 = 0).
(ii) β0 = 0.
(iii) Suppose r ∈ N, x ∈ Hr(G,K) and y ∈ H∗(G,K). Then β(xy) = (βx)y + (−1)rxβy.

Proof We shall leave the proofs of (i) and (ii) as exercises, and just prove (iii).
We may assume that K = k = Z/pZ and that y is homogeneous of degree s for some

s ∈ N. Let

(P, α0) : · · · α2−→ P1
α1−→ P0

α0−→ Z −→ 0
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be a projective resolution of Z with ZG-modules, let f ∈ HomZG(Pr, k) and g ∈ HomZG(Ps, k)
represent x and y respectively, and let μ : Z ⊗Z Z → Z be the map defined by μ(a ⊗ b) = ab.
Then (P ⊗Z P, μ(α0 ⊗ α0)) is also a projective resolution of Z, so there exists a chain map
θ : P → P ⊗Z P extending the identity map on Z. Then xy is represented by (f ⊗ g)θ ∈
HomZG(Pr+s, k).

Lift f and g to elements f̂ and ĝ of HomZG(Pr, Z/p2Z) and HomZG(Ps, Z/p2Z) respectively.
Then (f̂ ⊗ ĝ)θ ∈ HomZG(Pr+s, Z/p2Z) lifts (f ⊗ g)θ and so βr+s(xy) is represented by (f̂ ⊗
ĝ)θr+sαr+s+1 ∈ HomZG(Pr+s+1, k). Let ∂ denote the boundary map on P⊗ZP ; thus ∂r+s(u⊗
v) = αru ⊗ v + (−1)ru ⊗ αsv for u ∈ Pr and v ∈ Ps. Then βr+s(xy) is represented by

(f̂ ⊗ ĝ)∂r+s+1θ = (f̂αr+1 ⊗ ĝ + (−1)rf̂ ⊗ ĝαs+1)θ.

I claim that (under the appropriate identifications), f̂αr+1 ⊗ ĝ = f̂αr+1 ⊗ g and f̂ ⊗ ĝαs+1 =
f ⊗ ĝαs+1. Once this is established, then the result follows because f̂αr+1 represents βx, g
represents y, f represents x, and ĝαs+1 represents βy.

We prove the claim; without loss of generality, we need only prove f̂αr+1⊗ ĝ = f̂αr+1⊗g.
If u ∈ Pr+1, v ∈ Qs, then f̂αr+1 ⊗ ĝ (u ⊗ v) = (f̂αr+1u)(ĝv). Let π : Z/p2Z → Z/pZ be the
natural epimorphism, and let ψ : Z/pZ → Z/p2Z be the natural injection. Now f̂αr+1u ∈
pZ/p2Z (by construction of the Bockstein map), so we may write f̂αr+1u = ψx0 for some
x0 ∈ Z/pZ. Using the Lemma below (f̂αr+1u)(ĝv) = ψ(x0πĝv). By definition, πĝ = g, so
(f̂αr+1u)(ĝv) = ψ(x0gv) = (ψx0)gv. Therefore

(f̂αr+1u)(ĝv) = (f̂αr+1u)(gv)

for all u, v, hence f̂αr+1 ⊗ ĝ = f̂αr+1 ⊗ g and the claim is established.

Lemma Let p be a prime, let x, y ∈ Z/p2Z, let π : Z/p2Z → Z/pZ be the natural epimor-
phism, and let ψ : Z/pZ → Z/p2Z be the natural injection. Suppose x ∈ pZ/p2Z and x = ψx0

where x0 ∈ Z/pZ. Then xy = ψ(x0πy).

Thirteenth Homework Due 9:00 a.m., Monday, November 28.

(1) Let G = 〈g〉 be a cyclic group, and let M be a ZG-module.
(i) Prove that multiplication by 1− g on M (i.e. the map m �→ m(1− g) for all m ∈ M)

induces the zero map on Hr(G,M) for all r ∈ N.
(ii) Prove that if M is finite and MG = 0, then multiplication by 1 − g on M is a

ZG-automorphism.
(iii) Prove that if M is finite and MG = 0, then Hr(G,M) = 0 for all r ∈ N.

(2) Let G be a finite group and let M be a finitely generated ZG-module. Prove that Hr(G,M)
is a finitely generated abelian group for all r ∈ N. Deduce that Hr(G,M) is a finite group
for all r ∈ P.

(3) Let H � G be groups and let M be a ZH-module. Prove that M ⊗ZH ZG is isomorphic
to ZG-submodule of HomZH(ZG,M).
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(4) Let H � G be groups such that [G : H] = n is finite, let {x1, . . . , xn} be a right transversal
for H in G, and let M be a left ZH-module. Let (P, α0) be a projective resolution of Z with
ZG-modules. For r ∈ N, define θ : Pr⊗ZM → Pr⊗ZH M by θ(p⊗m) =

∑n
i=1 px−1

i ⊗xim.
(i) Prove that θ is a well defined map that does not depend on the choice of transversal

{x1, . . . , xn}.
(ii) Prove that θ induces a well defined map θ̂ : Pr ⊗ZG M → Pr ⊗ZH M .
(iii) Prove that θ̂ induces a well defined map θ∗r : Hr(G,M) → Hr(H,M) for all r ∈ N.

(5) Let k be a field, and let A be a finitely generated anticommutative graded k-algebra: this
means that there exists a finite subset X of A such that every element of A can be written
as a (finite) k-linear sum of products of elements of X. Let B denote the subalgebra of A
consisting of sums of elements of even degree.
(i) Prove that there exists a finite subset Y of A consisting of homogeneous elements of A

such that every element of A can be written as a k-linear sum of products of elements
of Y .

(ii) Prove that there exists a finite subset Z of B consisting of homogeneous elements of B
such that every element of B can be written as a k-linear sum of products of elements
of Z. Deduce that B is a Noetherian ring.

(6) (Continuation of the previous problem.) Let k be a field, let A be a finitely generated
anticommutative graded k-algebra, let B be the subalgebra of A consisting of sums of
elements of even degree, and let M be the subset of A consisting of sums of elements of
odd degree.
(i) Prove that M is a finitely generated B-submodule of A. Deduce that M is a Noetherian

B-module.
(ii) Prove that A is a (right and left) Noetherian ring.

(7) Let k be a field with characteristic not equal to two, let A be an anticommutative graded
k-algebra, let B be the subalgebra of A consisting of sums of elements of even degree, and
let M be the subset of A consisting of sums of elements of odd degree.
(i) Prove that the B is a central subalgebra of A.
(ii) Prove that if x ∈ A is homogeneous of odd degree, then x2 = 0.
(iii) Let X be a finite subset of order n consisting of homogeneous elements of M . Prove

that any product a1a2 . . . of elements of A, with at least n + 1 of the ai ∈ X, is 0.
(iv) If N is an ideal of A which is generated by a finite number of elements of M (so N is

finitely generated as a right A-module), prove that N is a nilpotent ideal (i.e. there
exists t ∈ P such that N t = 0).

(8) Let G be a group, let 1 ≤ p ∈ R, let α ∈ Lp(G) (see HW 12, prob. 8), and let θ : CG →
Lp(G) denote the inclusion map.
(i) Suppose g ∈ G has infinite order. If αg − α ∈ CG, prove that α ∈ CG. Deduce that

θ1∗ : H1(G, CG) → H1(G, Lp(G)) is injective.
(ii) Suppose G is infinite and we can write G =

⋃∞
i=1 Gi, where the Gi are finite subgroups

of G and G1 ⊆ G2 ⊆ · · · . Prove that there exists α ∈ Lp(G)\CG such that αg−α ∈ CG
for all g ∈ G. Deduce that θ1∗ : H1(G, CG) → H1(G, Lp(G)) is not injective.



78

Monday, November 28

Chapter 15
Cohomology Rings

We have already introduced the notation for
⊕∞

i=0 Hi(G,M): this is standard. We shall
also use the less standard though often seen

Hev(G,M) =
∞⊕

i=0

H2i(G,M) and Hodd(G,M) =
∞⊕

i=0

H2i+1(G,M).

Exterior Algebra The anticommutative graded k-algebra B of Example (iii) of chapter 13
is often called the exterior algebra on the one generator x. The exterior algebra on the d-
generators {x1, . . . , xd} is the algebra B⊗k · · ·⊗k B (where B appears d-times in the foregoing
tensor product), and is denoted Ek[x1, . . . , xd] (of course when we are taking tensor products,
we are doing it as anticommutative k-algebras, so that what results is an anticommutative
k-algebra). Thus Ek[x1, . . . , xd] ∼= Ek[x1] ⊗k · · · ⊗k Ek[xd], as a k-module is free of rank 2d,
and the xi satisfy x2

i = 0 and xixj = −xjxi for i 	= j.

The Cohomology Ring of a Cyclic Group Let k be a commutative ring and let G
be a finite cyclic group. We shall calculate the ring structure on H∗(G, k); we have already
calculated the additive structure (see chapter 11). Let us recall some of the proof. We have
an exact sequence

0 −→ kg −→ kG
ε−→ k −→ 0, (1)

where ε is the augmentation map and kg denotes the augmentation ideal of kG. We also have
a kG-epimorphism α : kG → kg defined by α1 = g − 1, and then we have an exact sequence

0 −→ k −→ kG
α−→ kg −→ 0. (2)

Applying the long exact sequence for ExtkG in the second variable to (1) and (2) respectively
and using Hr(G, kG) = 0 for all r ∈ P (because G is finite, see chapter 12), we obtain
isomorphisms γr : Hr(G, k) → Hr+1(G, kg) and δr : Hr(G, kg) → Hr+1(G, k) for all r ∈ P.
Thus if we set θr = δr+1γr : Hr(G, k) → Hr+2(G, k), then θr is an isomorphism for all r ∈ P.
Let us consider two important cases.

Case 1 k = Z/pZ. Let p be a prime and let k = Z/pZ. We shall assume that p||G| (if p � |G|,
then as we have seen earlier Hr(G, k) = 0 for all r ∈ P, and then we have H∗(G, k) ∼= k).
The long exact cohomology sequence in the second variable applied to (1) yields an exact
sequence

· · · −→ H0(G, k)
γ0−→ H1(G, kg) −→ 0,

because H1(G, kG) = 0 (G is finite). We claim that γ0 is an isomorphism: this is not hard
to do by direct calculation, but we shall show this using previous results. Because δ1 is an
isomorphism, we see that H1(G, kg) ∼= H2(G, k). From the results on the cohomology of a
cyclic group from chapter 11, we see that H2(G, k) ∼= k and we deduce that H1(G, kg) ∼= k.
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Since H0(G, k) ∼= k, it follows that γ0 is an isomorphism as claimed. We now see that α0 is
an isomorphism and hence αr is an isomorphism for all r ∈ N.

Set x = θ01 ∈ H2(G, k). Using part (iii) of the third theorem of the previous chapter
twice, we see that θr+s(uv) = (θru)v for all u ∈ Hr(G, k) and v ∈ Hs(G, k), so applying this
with u = 1 and v = y, we deduce that θry = xy for all y ∈ Hr(G, k). Thus

multiplication by x is an isomorphism Hr(G, k) → Hr+2(G, k) for all r ∈ N. (3)

Define a ring homomorphism φ from the polynomial ring k[X] → Hev(G, k) by φX = x.
Then (1) above shows that φ is an isomorphism, hence Hev(G, k) ∼= k[X]. We now have a
further subdivision of cases, namely p is odd and p is even.

Case 1a p is odd. Let y be any nonzero element of H1(G, k). Because k is a field of
characteristic not equal to two, HW 13, prob. 7(ii) shows that y2 = 0. Using (3), it now
follows that H∗(G, k) is the k-algebra with k-basis {xiyj | i ∈ Z and j = 0 or 1}, and
multiplication is determined by the rules y2 = 0 and xy = −yx. Another way of saying this is
that Hr(G, k) ∼= k[X] ⊗k Ek[y]. Alternatively we can write H∗(G, k) ∼= k[x, y]/(x2, xy − yx),
the free k-algebra on generators {x, y} factored out by the two-sided ideal generated by y2

and xy − yx.

Case 1b p = 2. Here we need a further subdivision of cases, depending on whether 4||G|.
We will just do the case |G| = 2 and leave the others as exercises, so assume now that |G| = 2.
Let g ∈ G\1 (so G = {1, g}). Since (g − 1)g = g2 − g = 1 − g = g − 1 in kG (where we have
used the fact that −1 = 1 in characteristic 2) and kg = (g−1)kG, it follows that σg = σ for all
σ ∈ g and hence g ∼= k as kG-modules. Since it was proved earlier that γr is an isomorphism
for all r ∈ N, we have now established that γr : Hr(G, k) → Hr+1(G, k) is an isomorphism
for all r ∈ N. Set w = γ01 ∈ H1(G, k). Using part (iii) of the third theorem of the previous
chapter, we see that γr+s(uv) = (γru)v for all u ∈ Hr(G, k) and v ∈ Hs(G, k), so applying
this with u = 1 and v = y, we deduce that γry = wy for all y ∈ Hr(G, k). Thus

multiplication by w is an isomorphism Hr(G, k) → Hr+1(G, k) for all r ∈ N. (4)

Define a ring homomorphism from the polynomial ring k[X] → H∗(G, k) by ψX = w.
Then (4) above shows that ψ is an isomorphism and hence H∗(G, k) ∼= k[X].

Exercise Compute the cohomology ring for the finite cyclic group G with coefficients Z/2Z
when |G| 	= 2.

Summing up, we have the following theorem.

Theorem Let p be a prime, and let G = Z/nZ where n ∈ P and p|n.

(i) If p is odd or 4|n, then H∗(G, k) ∼= k[x, y]/(x2, xy−yx), where deg x = 2 and deg y = 1.
(ii) If p = 2 and 4 � n, then H∗(G, k) ∼= k[X] where deg X = 1.

Exercise Using the Universal Coefficient theorem, show that the above result remains true
if k is replaced by any field of characteristic p.

Case 2 k = Z. Let n = |G|. The computation of the cohomology of a finite cyclic group from
chapter 11 shows that H0(G, Z) ∼= Z, Hr(G, Z) ∼= Z/nZ if r ∈ P is even, and Hr(G, Z) = 0
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if r ∈ P is odd. Thus we need only worry about Hev(G, k). As before we have θr is an
isomorphism for all r ∈ P; however we can only assert that γ0 is onto and hence we only
have that θ0 is onto. Let x = θ01 ∈ H2(G, Z). Using the third theorem of the previous
chapter again, we see that θry = xy for all y ∈ Hr(G, Z). Therefore multiplication by x is an
isomorphism Hr(G, Z) → Hr+2(G, Z) for all r ∈ P, and is an epimorphism for r = 0. Define a
ring homomorphism φ from the polynomial ring Z[X] → H∗(G, Z) by φX = x. Then φ is an
epimorphism with kernel (nX). We conclude that H∗(G, Z) ∼= Z[X]/(nX), where deg X = 2.

The Bockstein Let us compute the Bockstein map in the case G = Z/pZ where p is a
prime. The exact sequence 0 → Z/pZ → Z/p2Z → Z/pZ → 0 yields an exact sequence

0 −→H0(G, Z/pZ) −→ H0(G, Z/pZ2) −→ H0(G, Z/pZ)
β0−→ H1(G, Z/pZ) −→ · · ·

· · · −→ Hr(G, Z/pZ) −→ Hr(G, Z/pZ2) −→ Hr(G, Z/pZ)
βr−→ Hr+1(G, Z/pZ) −→ · · ·

Now Hr(G, Z/pZ) ∼= Z/pZ for all r ∈ N, Hr(G, Z/p2Z) ∼= Z/pZ for all r ∈ P, (use the results
on the cohomology of a cyclic group from chapter 11) and H0(G, Z/p2Z) ∼= Z/p2Z. Therefore
β0 = 0 and maps in the above sequence after that are alternately an isomorphism and zero.
It follows that β2r = 0 and β2r+1 is an isomorphism for all r ∈ N; in particular β1 is onto.
Using this and the theorem for the cohomology ring of a finite cyclic group, when p is an odd
prime and k = Z/pZ, we may now write

H∗(G, k) ∼= k[u] ⊗k Ek[u]

where u is any nonzero element of H1(G, k). There is a natural isomorphism between H1(G, k)
and Hom(G, k) = Hom(Z/pZ, Z/pZ), and Hom(Z/pZ, Z/pZ) has a canonical nonzero element,
namely the identity map ι, so it is conventional to choose u to correspond to ι. Doing this
can be helpful in making certain diagrams commutative.

Elementary Abelian p-groups Let p be a prime, let k be the field Z/pZ, and let G be
an elementary abelian p-group. Then we may write G = G1 × · · · × Gd where d ∈ P and
the Gi are groups of order p. Using the Künneth theorem (see previous chapter) we have
H∗(G, k) ∼= H∗(G1, k) ⊗k · · · ⊗k H∗(Gd, k). For i = 1, . . . , d, choose ui ∈ H1(Gi, k)\0. We can
now state

Theorem Let β : H1(Gi, k) → H2(Gi, k) denote the relevant Bockstein map.

(i) If p is odd, then H∗(G, k) ∼= k[βu1, . . . , βud] ⊗k E[u1, . . . , ud].
(ii) If p = 2, then H∗(G, k) ∼= k[u1, . . . , ud].

Fourteenth Homework Due 9:00 a.m., Monday, December 5.

(1) Let G be a finite cyclic group and let M be a finite (i.e. |M | < ∞) ZG-module.

(i) If M = MG, prove that the Herbrand quotient h(M) (see HW 12, prob. 2) is 1.
(ii) If MG = 0, prove that h(M) = 1 (use HW 13, prob. 1).
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(2) (Continuation of the previous problem.) Let G be a finite cyclic group and let M be a
finite ZG-module.
(i) Prove that h(M) = 1 when M is finite.
(ii) Suppose B is a ZG-submodule of the ZG-module A. Assume that Hi(G,A), Hi(G,B)

and Hi(G,A/B) are finite for i = 1, 2. If A/B is finite, prove that h(A) = h(B).

(3) Let k be a commutative hereditary ring. Determine the ring structure of H∗(Z, k). Hence
determine the ring structure of H∗(Z×Z, k). (The same result is still true if the hypothesis
that k is hereditary is dropped.)

(4) Let G = Z × Z let p be a prime, and let k = Z/pZ. Prove that βr : Hr(G, Z/pZ) →
Hr+1(G, Z/pZ) (where βr is the Bockstein map) is the zero map for all r ∈ N.

(5) Let H � G be groups such that [G : H] < ∞, let k be a field of characteristic p,
and assume that p � [G : H]. Let R = resG,H H∗(G, k) and let T = ker trH,G, where
trH,G : H∗(H, k) → H∗(G, k) denotes the transfer map.
(i) Prove that H∗(H, k) = R ⊕ T (as k-modules).
(ii) Prove that RR ⊆ R.
(iii) Prove that RT = TR ⊆ T .

(6) (Continuation of the previous problem.) Let H � G be groups such that [G : H] < ∞,
let k be a field of characteristic p, and assume that p � [G : H]. If I, J �r H∗(G, k) and(
resG,H I

)
H∗(H, k) =

(
resG,H J

)
H∗(H, k), prove that I = J . Deduce that if H∗(H, k) is

right Noetherian, then so is H∗(G, k).

(7) Let G = Z/2Z = 〈g〉 (the cyclic group of order two generated by the element g), and let
T denote the ZG-module Z with G-action defined by tg = −t for all t ∈ T .
(i) Prove that T ∼= g as ZG-modules. Deduce that there is an exact sequence 0 → T →

ZG → Z → 0.
(ii) Prove that (g+1)g = g+1 in ZG. Deduce that (g+1)ZG ∼= Z as ZG-modules (where

as usual, we assume that the action on Z is given by ag = a for all a ∈ Z).
(iii) Define a ZG-map θ : ZG → T by θ1 = 1. Prove that ker θ = (1 + g)ZG. Deduce that

there is an exact sequence of ZG-modules 0 → Z → ZG → T → 0.

(8) (Continuation of the previous problem.) Let G = Z/2Z = 〈g〉, and let T denote the
ZG-module Z with G-action defined by tg = −t for all t ∈ T .
(i) Let r ∈ N. Using the exact sequences of the previous problem and the results for the

cohomology of a cyclic group from chapter 11, prove that Hr(G,T ) = 0 if r is even,
and Hr(G,T ) ∼= Z/2Z if r is odd.

(ii) Let K = Z/4Z be the ZG-module with G-action defined by ag = −a for all a ∈ K.
Prove that Hr(G,K) ∼= Z/2Z for all r ∈ N.

(9) (Continuation of the previous problem.) Let G = Z/2Z = 〈g〉, let K = Z/4Z be the
ZG-module with G-action defined by ag = −a for all a ∈ K, and let r ∈ N. Then
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(prove this) we have an exact sequence of ZG-modules 0 → Z/2Z → K → Z/2Z → 0,
where G acts trivially on Z/2Z. Therefore we can define a “twisted Bockstein” map
β′

r : Hr(G, Z/2Z) → Hr+1(G, Z/2Z) to be the map associated to the long exact cohomology
sequence for 0 → Z/2Z → K → Z/2Z → 0. Prove that β′

r is an isomorphism if r is even,
and β′

r is zero if r is odd.

Monday, December 5

Chapter 16
Cohomology Rings (continued)

The Bockstein again We give another way to describe the Bockstein map, which will be
of use when calculating the cohomology ring of an abelian group with coefficients in Z. Let p

be a prime. Then we have an exact sequence of Z-modules 0 → Z
μ→ Z

π→ Z/pZ → 0, where
μ is multiplication by p and π is the natural epimorphism. We can make this into an exact
sequence of ZG-modules by letting G act trivially on each term (i.e. mg = m for all m and
for all g ∈ G). The long exact cohomology sequence applied to this yields an exact sequence

0 −→ H0(G, Z)
μ0∗−→ H0(G, Z) π0∗−→ H0(G, Z/pZ) ∂0−→ H1(G, Z)

μ1∗−→ · · ·
· · · πn∗−→ Hn(G, Z/pZ) ∂n−→ Hn+1(G, Z)

μn+1∗−→ Hn+1(G, Z)
πn+1∗−→ · · · (1)

I claim that π(n+1)∗ ∂n : Hn(G, Z/pZ) → Hn+1(G, Z/pZ) is in fact the Bockstein map. In the
construction of the Bockstein map from chapter 12, we have an exact sequence of ZG-modules

0 → Z/pZ
μ′
→ Z/p2Z

π′
→ Z/pZ → 0, also with G acting trivially on each term, where μ′ is

multiplication by p and π′ is the natural epimorphism. Putting this together with the exact
sequence from above, we obtain the following commutative diagram with exact rows.

0 −→ Z
μ−→ Z

π−→ Z/pZ −→ 0
π ↓ ψ ↓ ι ↓

0 −→ Z/pZ
μ′
−→ Z/p2Z

π′
−→ Z/pZ −→ 0

where ψ is the natural epimorphisms and ι is the identity map. Applying the long exact
cohomology sequence and using the fact that it is natural, we obtain a commutative diagram

Hn(G, Z/pZ) ∂n−→ Hn+1(G, Z)
ιn∗ ↓ ↓ π(n+1)∗

Hn(G, Z/pZ)
βn−→ Hn+1(G, Z/pZ)

where βn is the Bockstein map. Since ιn∗ is the identity map, it follows that βn = π(n+1)∗ ∂n

as claimed.

Cohomology rings with coefficients in Z We first need the following lemma, which does
not depend on the cup product structure of the cohomology ring.
Theorem Let G be an elementary abelian p-group and let n ∈ P. Then p Hn(G, Z) = 0.
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Proof By the results on the cohomology of a cyclic group from chapter 11, the result is
certainly true if |G| = p. In general if |G| > p, write G = H × J where |H|, |J | < |G|. By
the Künneth formula (applicable since G has type FP∞ and Z is a commutative hereditary
ring), we have a split exact sequence

0 −→
⊕

r+s=n

Hr(G, Z)⊗ZHs(H, Z) −→ Hn(G×H, Z) −→
⊕

r+s=n+1

TorZ

1 (Hr(G, Z), Hs(G, Z)) −→ 0.

If A and B are Z-modules and pA = pB = 0, then p(A ⊗Z B) = 0 = p TorZ(A,B). Thus the
result follows by induction on |G|.

Let G be an elementary abelian p-group, let k = Z/pZ, and let us return to the exact
sequence (1). The above result shows that in this case μn∗ = 0 for all n ∈ P, hence we obtain
an exact sequence

0 −→ Hn(G, Z) πn∗−→ Hn(G, k) ∂n−→ Hn+1(G, Z) −→ 0

for all n ∈ P. Thus for n ∈ N,

ker ∂n = kerπn+1∗∂n = ker βn.

Define {
H̃

n
(G, Z) = Hn(G, Z) if n > 0,

H̃
0
(G, Z) = k,

so H̃
∗
(G, Z) ∼= H∗(G, Z)/(p) as anticommutative graded k-algebras. Now π0∗ induces an

isomorphism H̃
0
(G, Z) → H0(G, k) because p H0(G, k) = 0, hence π∗ induces a k-algebra

monomorphism H̃
∗
(G, Z) → H∗(G, k) with image im π∗ = ker ∂∗. It follows that H̃

∗
(G, Z) ∼=

ker β∗ (this is a ring isomorphism, even though β∗ is not ring homomorphism). Thus to
calculate H̃

∗
(G, Z) (and hence also H∗(G, Z)), it will be sufficient to determine the kernel of

the Bockstein map.

Example Let G be an odd prime, let G = Z/pZ × Z/pZ, and let {u, v} be a k-basis for
H1(G, k). Then H̃

∗
(G, Z) ∼= k[βu, βv] ⊗k Ek[uβv − vβu].

Remarks Since H1(G, k) ∼= Hom(G, k), it follows that H1(G, k) ∼= k ⊕ k, hence H1(G, k)
has a k-basis consisting of two elements. Also when evaluating the tensor product above, it
should be born in mind that βu, βv have degree two and that uβv − vβu has degree three;
thus Ek[uβv − vβu] has no elements in degrees one and two.

Proof Set x = βu and y = βv. From the theorem at the end of the previous chapter,
H∗(G, k) ∼= k[x, y] ⊗k Ek[u, v]. Thus we may write the general element of H∗(G, k) uniquely
in the form f1 + f2u + f3v + f4uv where fi ∈ k[x, y] for i = 1, 2, 3, 4. We want to calculate
ker β. Note that βfi = 0 for all i; this is because β(xiyj) = (βx)xi−1yj + xβ(xi−1yj) and
βx = βy = 0, so we can prove this by induction on i + j.
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β(f1 + f2u + f3v + f4uv) = 0 ⇐⇒ f2x + f3y = 0 = f4(xv − yu)
⇐⇒ f4 = 0 and f2 = yf, f3 = −xf

for some f ∈ k[x, y]. Thus if w ∈ H̃
∗
(G, k), then βw = 0 if and only if w can be written in

the form f1 + f(yu − xv) for some f, f1 ∈ k[x, y], and the result follows.

Exercise Let G = Z/2Z × Z/2Z, and let {x, y} be a k-basis for H1(G, k). Prove that
H̃

∗
(G, Z) ∼= k[x2, y2, x2y +xy2] (i.e. the subring of the polynomial ring over k in the variables

x, y generated by x2, y2, x2y + xy2.)

Copies of handwritten solutions to all the homework problems are available on request.
Peter A. Linnell, January 9, 1995
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