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1. We shall use the fundamental theorem for finitely generated abelian groups.

We may write

A =
n⊕

i=1

(Z/qiZ)ai, B =
n⊕

i=1

(Z/qiZ)bi, C =
n⊕

i=1

(Z/qiZ)ci

where ai,bi,ci,n are nonnegative integers, and the qi are distinct prime pow-
ers. Then A⊕B∼= A⊕C yields

n⊕
i=1

(Z/qiZ)ai+bi ∼=
n⊕

i=1

(Z/qiZ)ai+ci

The fundamental theorem now shows that ai +bi = ai +ci and hence bi = ci
for all i. It follows that B∼= C as required.

2. Suppose by way of contradiction G is a simple group of order 56. Sylow’s
theorem for the prime 7 shows that the number of Sylow 7-subgroups is con-
gruent to 1 modulo 7 and divides 8, hence the number of Sylow 7-subgroups
is 1 or 8. If there is one Sylow 7-subgroup, x then this subgroup must be
normal in G which contradicts the hypothesis that G is simple, consequently
G has 8 Sylow 7-subgroups.

Let A,B be two distinct Sylow 7-subgroups. Then A∩B is a subgroup of A,
so by Lagrange’s theorem |A∩B| divides |A|, hence |A∩B|= 1 or 7. Now A
and B both have order 7, so we cannot have |A∩B|= 7. Therefore we must
have |A∩B| = 1. Since every nonidentity element of a Sylow 7-subgroup
has order 7, we deduce that G has at least 6×8 elements of order 7.

Now every Sylow 2-subgroup has order 8, and every element of a Sylow 2-
subgroup has order a power of 2 by Lagrange’s theorem, so if G has at least
two Sylow 2-subgroups, then G has at least 9 elements of order a power of
2. Since we have already shown that G has at least 48 elements of order 7,
we now have that G has at least 9+48 = 57 elements, which is not possible
because |G| = 56. Therefore G has exactly one Sylow 2-subgroup, and so
this Sylow subgroup must be normal which contradicts the hypothesis that
G is simple.

3. Since we are working over C, an algebraically closed field, we may use
the Jordan canonical form. Here every matrix has a unique Jordan canon-
ical form, and two canonical forms are in the same equivalence class of T



if and only if they are equal. Since the eigenvalues of a matrix in T are
4,4,17,17,17, the Jordan canonical form of such a matrix must look like

4 a 0 0 0
0 4 0 0 0
0 0 17 b 0
0 0 0 17 c
0 0 0 0 17


where a,b,c are 1 or 0, and b = 0 if c = 0. Therefore there are 6 equiva-
lence classes in T .

4. There are many answers to this problem; perhaps the simplest example of a
UFD which is not a PID is Z[X ]. This is a UFD because Z is a UFD, and
a polynomial ring over UFD is again a UFD. We now establish that Z[X ] is
not a PID by showing that the ideal (2,X) (the ideal generated by 2 and X)
is not principal.

Suppose on the contrary that (2,X) = f for some f ∈Z[X ]. Then there exist
g,h ∈ Z[X ] such that f g = 2 and f h = X . The equation f g = 2 shows that f
must have degree 0, in other words f ∈ Z, and then f h = X shows that f =
±1. Thus we must have (2,X) = Z[X ]. Now the general element of (2,X)
is 2a + Xb where a,b ∈ Z[X ]. The constant term of 2a must be divisible
by 2, and the constant term of Xb must be zero, hence the constant term of
2a + Xb must be divisible by 2. In particular we cannot have 2a + Xb = 1,
so 1 /∈ (2,X) and we have the required contradiction.

5. Let G denote the Galois group of x3−10 over Q. By Eisenstein’s criterion
for the prime 2 (or otherwise), we see that x3− 10 is irreducible over Q,
hence G∼= S3 or A3. Let ω = (−1+ i

√
3)/2, a primitive cube root of unity.

Then the roots of x3−10 are 3
√

10, ω
3
√

10, and ω̄
3
√

10 (ω̄ = (−1− i
√

3)/2),
hence x3− 10 has one real root and two complex roots, so complex conju-
gation is an element of G. Therefore G has an element of order 2, which
rules out the possibility G∼= A3. Therefore G∼= S3.

A splitting field of x3− 10 is Q(i
√

3, 3
√

10). The normal subfields of the
splitting field correspond to normal subgroups of G. The normal subfields
corresponding to the subgroups 1 and G are Q(i

√
3, 3
√

10) and Q respec-
tively. G has exactly one other normal subgroup, namely A3, so there is
exactly one other normal subfield. Since subfields of degree two over Q are
always normal, this other normal subfield must be Q(i

√
3).



6. (a) How to prove this depends on how much field theory one is allowed to
assume. Also the result is true without the hypothesis that f is separa-
ble. Here is one way to proceed. Suppose K1, K2 are fields, θ : K1→K2
is an isomorphism, g ∈ K1[X ] is an irreducible polynomial, α1 is a root
of g in a splitting field L1 for g, and α2 is a root of the irreducible poly-
nomial θg in a splitting field L2 for θg (recall if g = a0 + a1X + · · ·+
anXn with ai ∈K1, then θg = θa0 +θa1X + · · ·+θanXn ∈K2[X ]). Then
θ extends to an isomorphism φ : K1(α1)→ K2(α2) such that φ(α1) =
φ(α2). Using induction on the degree of g, we deduce that φ in turn
extends to an isomorphism of L1 onto L2. This is what is required.

(b) Note that x4− 2 is indeed irreducible over Q, by Eisenstein’s criterion
for the prime 2. The roots of x4−2 are ± 4

√
2 and ±i 4

√
2. Consider the

permutation of the roots 4
√

2→ 4
√

2, − 4
√

2→ i 4
√

2→ −i 4
√

2→ − 4
√

2.
This cannot be induced by an element θ of the Galois group of x4− 2
over Q, because if θ

4
√

2 = 4
√

2, then we must have θ(− 4
√

2) =− 4
√

2.

7. Since HomA(M,k) = 0, we must have M = M M. Then Nakayama’s lemma
yields the result.
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1. We use the structure theorem for finitely generated modules over a PID. This tells us thatM is
a direct sum of modules of the formR/Rt wheret is either zero or a power of an irreducible
element ofR. If this direct sum has more than one factor, then we may writeM = A�B for
some nonzero submodulesA,B of M, and thenA\B= 0. Therefore there is exactly one factor
in the direct sum, and the result follows.

2. (a) Since the action is transitive, all the stabilizers are conjugate and we see that the stabilizer
of any element ofX has no element of finite order other than 1. Thus iff 2G has finite
order larger than 1, thenf cannot be in the stabilizer of any element ofX, and it follows
that f cannot fix any element ofX.

(b) Suppose now thatf has prime orderq. Then the orbits ofh f i have order dividingq.
Sinceq is prime, these orbits have order 1 orq. But if one of the orbits has order 1, then
f fixes the element in that orbit which contradicts the above. Therefore all orbits ofh f i
have orderq, and it follows thatq dividesjXj as required.

3. SinceS/(P1\ ·· · \Pt) is finite, we see thatS/Pi is finite for all i. Now S/Pi is an integral
domain becausePi is prime, and finite integral domains are fields. ThereforeS/Pi is a field
and we deduce thatPi is a maximal ideal for alli, as required.

4. SupposeK is a nontrivial extension field ofF with degree which is not a power ofp. Note
that if L is any finite extension field ofK, then the degree ofL overF is also not a power of
p, because[L : F] = [L : K][K : F]. Since we are in characteristic zero, everything is separable
so by taking a splitting field containingK, we may assume thatK is a Galois extension of
F . Let G = Gal(K/F) and letP be a Sylowp-subgroup ofG. Then[KP : F] = [G : P] and
[K : F] = jGj. Since[G : P] has order prime top, it follows that[KP : F] has order prime top
and we conclude thatKP is a nontrivial extension field ofF with degree prime top.

5. This question depends on what we are allowed to assume; some people take the given property
as the definition of projective module. Also the question does not require thatRbe commuta-
tive. Let us use the definition that anRmoduleP is projective if and only if it is a direct sum-
mand of a freeR-module. Suppose first that we have the given property. Choose an epimor-
phism f : F!M whereF is a freeR-module. Since the mapf� : Hom(M,F)!Hom(M,M)
is surjective, there exists anR-module mapg: M! F such thatf g is the identity map onM.
Theng is a monomorphism and soM �= gM. Also F = ker f �gM, which shows thatgM and
hence alsoM are projective.

Conversely supposeM is a direct summand of a free moduleF. First we show thatF satisfies
the given condition. Letf : N! N0 be a surjection ofR-modules and leth: F ! N0 be any
R-map. Letfei j i 2 Ig be anR-basis forF, whereI is some indexing set. Sinceh is surjective,
we may chooseni 2 N such thatf (ni) = h(ei) for all i. Now we can defineg2 HomR(F,N)
by g(ei) = ni for all i, and thenf g(ei) = h(ei) for all i. Thus f g = h, and we have proved the
result in the caseM = F.

For the general case, writeF = M�P as R-modules, and letψ : M ! F be the natural



monomorphism Then we have a commutative diagram

HomR(F,N)
f�−! HomR(F,N0)

ψ� # # ψ�

HomR(M,N)
f�−! HomR(M,N0)

where(ψ�g)(m) = g(ψm) for all m2M andg2 HomR(F,N) or HomR(F,N0). Note that the
right hand (and also the left hand)ψ� is surjective: ifh2 HomR(M,N), we may extendh to
anR-mapF!N by defining it to be 0 onP and thenψ�h = g. By the previous paragraph the
top f� is surjective and we deduce that the bottomf� is surjective as required.

6. The dihedral group has a cyclic subgroupC of index 2. Letχ denote the character of the
regular representation ofC. SinceC is abelian, we may writeχ = α1 + · · ·+ αn for some
integern, where theαi are degree one characters ofC. Let ψ denote the character ofV. Since
χD is the character of the regular representation ofD, we see thathψ,χDi 6= 0. Therefore
hψ,αD

i i 6= 0 for somei. Sinceψ is irreducible, we deduce thatαD
i = ψ+ φ for some character

φ of D. Thereforeψ has degree at most that ofαD
i . But αi has degree 1, consequentlyαD

i has
degree 2 and the result follows.

7. Let G denote the Galois group ofX10− 1 over Q , and letω be a primitive 10th root of 1
(so ω = eπi/5). Then the roots ofX10− 1 areωr , wherer = 0,1, . . . ,9, which shows that
the splitting field forX10− 1 is Q [ω]. SinceX10− 1 = (X5− 1)(X + 1)(X5 + 1)/(X + 1)
and ω does not satisfy(X5− 1)(X + 1), we see thatω is a root of(X5 + 1)/(X + 1). By
making the substitutionY = X +1 and using Eisenstein’s criterion for the prime 5, we see that
(X5 + 1)/(X + 1) is irreducible overQ . This shows that[Q [ω] : Q ] = 4 and we deduce that
jGj= 4. Finally we can defineθ 2G by θ(ω) = ω3, becauseω3 is also a primitive 5th root of
1, and sinceθ2(ω) = ω9 6= ω, we deduce thatθ2 6= 1. We conclude thatG has an element of
order 4 and henceG is cyclic of order 4.
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1. It is clear thatRe is a left R-submodule ofR, so we need to prove it is projective. It will be
sufficient to show thatRe is a direct summand of a freeR-module. SinceR(1− e) is also
a left R-submodule ofR, the result will be proven if we can show thatR = Re�R(1− e).
If re 2 R(1−e), then re = s(1−e) for somes2 R and sore = ree= s(1−e)e = 0. This
shows thatRe\R(1− e) = 0. Finally if r 2 R, then r = r(e+ 1− e) = re+ r(1− e), so
R= Re+ R(1−e).

2. (a) Since we are in characteristic zero, everything is separable so we may use the theorem
of the primitive element. This tells us that there existsα 2 K such thatK = F(α). If p is
the minimal polynomial ofα overF, thenK �= F[X]/(p).

(b) Sincep is the minimal polynomial, it is monic and irreducible inF[X]. Also we are
in characteristic zero, sop is separable. This means that when we writep = p1 . . . pn

in K[X] where thepi are monic irreducible polynomials, thepi are distinct. Now write
c = f [X]+(p) where f 2K[X]. Sincec2 = 0, we see thatf 2 2 (p). Thus f 2 = p1 . . . pnq
for someq2 K[X]. By uniqueness of factorization, we havepi divides f for all i and we
deduce thatf 2 (p). Thereforec = 0 as required.

3. (a) Suppose the action of M2(Q ) has a finite orbit with at least two elements. Using the
formula that the number of elements in an orbit is the index of the stablizer of any
element in that orbit, we see that M2(Q ) has a nontrivial subgroupH of finite index.
Then qM2(Q ) � H for some positive integerq. However if α 2 M2(Q ), then α =
q(α/q), which shows thatqM2(Q ) = M2(Q ). We conclude that M2(Q ) = H and the
result follows.

(b) To check that we have an action, we must show that(gh)�λ = g� (h�λ) for all g,h 2
GL2(Q ). This is true because

(g�h)(λ) = det(gh)λ/jdet(gh)j = det(g)det(h)λ/(jdet(g)jjdet(h)j)
= det(g)(h�λ)/jdet(g)j = g� (h�λ).

Finally we see that all orbits have the formf�λg, and so in particular there are finite
orbits which are not singletons.

4. By Sylow’s theorem a group of order 34 has a normal subgroup of order 17, henceG has
a normal subgroupH of order 17. Again by Sylow’s theorem, this subgroup is the unique
subgroup ofG which has order 17. Since we are in characteristic zero, everything is separable
and soL is a Galois extension ofLG. Therefore there is a one-one correspondence between the
subfields ofL containingLG and the subgroups ofG. This correspondence has the property
that if A is a subgroup ofG, then the dimension ofL over LA is jAj. The result follows by
settingK = LH .

5. SupposeS is not a field. Then it has a nonzero prime idealP. Note thatS/P is an integral
domain. SinceS[X]/P[X] �= (S/P)[X], we see thatS[X]/P[X] is an integral domain which is
not a field. We deduce thatP[X] is a nonzero nonmaximal prime ideal ofS[X]. But nonzero
prime ideals in a PID are maximal and since we are given thatS[X] is a PID, we now have a
contradiction and the result follows.



6. (a) FirstH has an identity, namely the zero homomorphism defined by 0(a) = 0 for all a2A.
If f ,g2 H, then

( f + g)(a+ b) = f (a+ b)+ g(a+ b) = f (a)+ f (b)+ g(a)+ g(b)

= f (a)+ g(a)+ f (b)+ g(b) = ( f + g)(a)+ ( f + g)(b)

which shows thatf + g is a homomorphism, and sof + g2 H. Also if f ,g,h2H, then

(( f + g)+ h)(a) = ( f + g)(a)+ h(a) = f (a)+ g(a)+ h(a)

= f (a)+ (g+ h)(a) = ( f + (g+ h))(a),

so ( f + g) + h = f + (g+ h) which establishes the associative law. Finally forf 2 H,
the inverse off is − f , where(− f )(a) = − f (a). Since(− f )(a+ b) = − f (a+ b) =
− f (a)− f (b) = (− f )(a)+ (− f )(b), we see that− f 2 H, and we have established that
H is a group.

(b) We first show thatH is torsion free. Iff 2 H has ordern 6= 1, then f (a) 6= 0 for some
a2A. But then(n f)(a) = n( f a) 6= 0, a contradiction. Therefore the subgroup generated
by f1, . . . , fm is a finitely generated torsion free abelian group, so by the fundamental
structure theorem for finitely generated abelian groups it is free.

7. (a) A 2 by 2 matrix with entries inZ /pZ will be invertible if and only if its columns are
linearly independent overZ /pZ . So there arep2−1 choices for the first column (we
cannot choose(0,0) for the first column) andp2− p choices for the second column (we
cannot choose the vector in the first column). It follows thatjGj= (p2−1)(p2− p).

(b) Note thatH is a Sylowp-subgroup ofG, so the number of conjugates ofH is congruent
to 1 modulop. Therefore 1 is congruent to 8 modulop, which can only happen ifp = 7.
In the casep = 7, we have by Sylow’s theorem that the number of conjugates ofH in
G is congruent to 1 modulo 7, which is of course congruent to 8 modulo 7. Thus the
answer isp = 7.



a UFD. We now establish thatZ [X] is not a PID by showing that the ideal(2,X) (the ideal
generated by 2 andX) is not principal.

Suppose on the contrary that(2,X) = f for somef 2 Z [X]. Then there existg,h2 Z [X] such
that f g = 2 and f h = X. The equationf g = 2 shows thatf must have degree 0, in other
words f 2 Z , and thenf h = X shows thatf = �1. Thus we must have(2,X) = Z [X]. Now
the general element of(2,X) is 2a+ Xb wherea,b2 Z [X]. The constant term of 2a must be
divisible by 2, and the constant term ofXbmust be zero, hence the constant term of 2a+ Xb
must be divisible by 2. In particular we cannot have 2a+ Xb= 1, so 1/2 (2,X) and we have
the required contradiction.

5. Let G denote the Galois group ofx3− 10 overQ . By Eisenstein’s criterion for the prime
2 (or otherwise), we see thatx3− 10 is irreducible overQ , henceG�= S3 or A3. Let ω =
(−1+ i

p
3)/2, a primitive cube root of unity. Then the roots ofx3− 10 are 3

p
10, ω 3

p
10,

andω̄ 3
p

10 (ω̄ = (−1− i
p

3)/2), hencex3−10 has one real root and two complex roots, so
complex conjugation is an element ofG. ThereforeG has an element of order 2, which rules
out the possibilityG�= A3. ThereforeG�= S3.

A splitting field of x3−10 isQ (i
p

3, 3
p

10). The normal subfields of the splitting field corre-
spond to normal subgroups ofG. The normal subfields corresponding to the subgroups 1 and
G areQ (i

p
3, 3
p

10) andQ respectively.G has exactly one other normal subgroup, namelyA3,
so there is exactly one other normal subfield. Since subfields of degree two overQ are always
normal, this other normal subfield must beQ (i

p
3).

6. (1) How to prove this depends on how much field theory one is allowed to assume. Also the
result is true without the hypothesis thatf is separable. Here is one way to proceed. Suppose
K1, K2 are fields,θ : K1! K2 is an isomorphism,g 2 K1[X] is an irreducible polynomial,
α1 is a root ofg in a splitting fieldL1 for g, andα2 is a root of the irreducible polynomial
θg in a splitting fieldL2 for θg (recall if g = a0 + a1X + · · ·+ anXn with ai 2 K1, thenθg =
θa0 + θa1X + · · ·+ θanXn 2 K2[X]). Thenθ extends to an isomorphismφ : K1(α1)! K2(α2)
such thatφ(α1) = φ(α2). Using induction on the degree ofg, we deduce thatφ in turn extends
to an isomorphism ofL1 ontoL2. This is what is required.

(2) Note thatx4− 2 is indeed irreducible overQ , by Eisenstein’s criterion for the prime 2.
The roots ofx4− 2 are� 4

p
2 and �i 4

p
2. Consider the permutation of the roots4

p
2! 4

p
2,

− 4
p

2! i 4
p

2!−i 4
p

2!− 4
p

2. This cannot be induced by an elementθ of the Galois group
of x4−2 overQ , because ifθ 4

p
2 = 4
p

2, then we must haveθ(− 4
p

2) =− 4
p

2.

7. Since HomA(M,k) = 0, we must haveM = M M. Then Nakayama’s lemma yields the result.
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1. SupposeG is a simple group with exactly three elements of order two. Consider the conjuga-
tion action ofG on the three elements of order two: specifically ifg2 G andx is an element
of order two, then we defineg · x = gxg−1. This action yields a homomorphismθ : G! S3.
Suppose kerθ = G. Thengxg−1 = x for all g2G and for all elementsx of order two. Thus if
x is an element of order two, we see thatx is in the center ofG and henceG is not simple.

On the other hand if kerθ 6= G, then sinceG is simple we must have kerθ = 1 and it follows
that G is isomorphic to a subgroup ofS3. The only subgroup ofS3 which has exactly three
elements of order two isS3 itself. But S3 is not simple (becauseA3 is a nontrivial normal
subgroup), henceG is not simple and the result is proven.

2. Let F denote the free group on generatorsx,y, and define a homomorphismf : F ! S3 by
f (x) = (123)and f (y) = (12). Since f (x6) = (123)6 = e, f (y4) = (12)4 = e, and f (yxy−1) =
(213) =x−1, we see thatf induces a homomorphism fromG to S3. This homomorphism is
onto because its image containsf (x) = (123)and f (y) = (12), and the elements(123), (12)
generateG. ThusG has a homomorphic image isomorphic toS3.

We prove thatG is not isomorphic toS3 by showing it has an element whose order is a multiple
of 4 or ∞, which will establish the result because the orders of elements inS3 are 1,2 and 3.
We shall use bars to denote the image of a number inZ /4Z . Thus0̄ is the identity ofZ /4Z
under the operation of addition. Defineh: F ! Z /4Z by h(x) = 0̄ and h(y) = 1̄. Since
h(x6) = 6� 0̄ = 0̄, h(y4) = 4� 0̄, and

h(yxy−1) = 1̄+ 0̄− 1̄ = 0̄ = h(x−1),

we see thath induces a homomorphism fromG to Z /4Z , which has1̄ in its image. Sincē1
has order 4, it follows thatG has an element whose order is either a multiple of 4 or infinity.
This completes the proof.

3. (i) SinceR is not a field, we may choose 06= s2 R such thats is not a unit, equivalently
sR 6= R. Define f : R! R by f (r) = sr. Then f is anR-module homomorphism which
is injective, becauseR is a PID ands 6= 0, and is not onto becauses is not a unit. This
proves thatR is isomorphic to the proper submodulesRof R.

(ii) Using the fundamental structure theorem for finitely generated modules over a PID, we
may writeM as a direct sum of cyclicR-modules. SinceM is not a torsion module, at
least one of these summands must beR; in other words we may writeM �= R�N for
someR-submoduleN of M. ThenM �= sR�N and sincesR�N is a proper submodule
of R�N, we have proven thatM is isomorphic to a proper submodule of itself.

4. (i) We will write mappings on the left. Letβ : B! B�C, γ : C! B�C denote the natural
injections (soβb = (b,0)), and letπ : B�C! B, ψ : B�C! C denote the natural
epimorphisms (soπ(b,c) = b). Define

θ : HomR(A,B�C)! HomR(A,B)�HomR(A,C)

by θ( f ) = (π f ,ψ f ), and

φ : HomR(A,B)�HomR(A,C)! HomR(A,B�C)



by φ( f ,g) = β f + γg. It is easily checked thatθ andφ areR-module homomorphisms,
so will suffice to prove thatθφ andφθ are the identity maps. We have

θφ( f ,g) = θ(β f + γg) = (π(β f + γg),ψ(β f + γg)) = ( f ,g)

becauseπγ, ψβ are the zero maps, andπβ, ψγ are the identity maps. Thereforeθφ is the
identity map. Also

φθ(h) = φ(πh,ψh) = βπh+ γψh = (βπ + γψ)h = h

becauseβπ + γψ is the identity map. Thusφθ is the identity map and (i) is proven.

(ii) Write HomR(A,A) = X. If HomR(A,A�A)�= Z , then by the first part we would have
X�X �= Z . ThusX 6= 0, and we see thatZ is the direct sum of two nonzero groups. This
is not possible and the result follows.

5. (i) Let I be an ideal ofS−1R. We need to prove thatI is finitely generated. LetJ = fr 2 R j
r/12 S−1Ig (where we viewS−1R as elements of the formr/s wherer 2 R ands2 S).
ThenJ is an ideal ofR and sinceR is Noetherian, there exist elementsx1, . . . ,xn which
generateJ as an ideal, which meansJ = x1R+ · · ·+xnR. We claim thatI is generated by
fx1/1, . . . ,xn/1g. Indeed ifr/s2 I , thenr = r1x1 + · · ·+ rnxn for someri 2R, and hence
r/s= r1/sx1 + · · ·+ rn/sxn. This proves (i).

(ii) Let S be the multiplicative subsetf1,X,X2, . . .g. Then every element ofS is invert-
ible in R[[X,X−1]] and hence the identity mapR[[X]]! R[[X]] extends to a homomor-
phismS−1R[[X]]! R[[X,X−1]]. It is easily checked that this map is an isomorphism.
SinceR[[X]] is Noetherian, it follows from (i) thatS−1R[[X]] is Noetherian and hence
R[[X,X−1]] is Noetherian as required.

6. (i) SetY = X−1. Then

X4 + X3 + X2 + X + 1 = (X5−1)/(X−1) = ((Y + 1)5−1)/Y

= (Y5 + 5Y4 + 10Y3 + 10Y2 + 5Y)/Y

= Y4 + 5Y3 + 10Y2 + 10Y + 5.

Applying Eisenstein’s criterion for the prime 5, we see thatY4 + 5Y3 + 10Y2 + 10Y + 5
is irreducible inQ [Y]. SinceY 7!Y + 1 induces an automorphism ofQ [Y], we deduce
thatX4 + X3 + X2 + X + 1 is irreducible.

(ii) Let c(X) denote the characteristic polynomial ofA, and letm(X) denote the minimum
polynomial ofA. SinceA5 = I , we see thatm(X) divides X5− 1, and since 1 is not
an eigenvalue ofA, we see thatX− 1 does not dividem(X). Thereforem(X) divides
X4 + X3 + X2 + X + 1 and using (i), we deduce that the only irreducible factor ofm(X)
is X4 +X3 +X2 +X +1. It follows that the only irreducible factor ofc(X) is X4 +X3 +
X2 + X + 1, which shows that the degree ofc(X) is a multiple of 4. This completes the
proof, becausen is the degree ofc(X).
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1. (i) By definitionC(x) = fgxg−1 j g2 Gg. Sincex2 HC G, we see thatgxg−1 2 H for all
g2 G and we deduce thatC(x) � H. Let CG(x) denote the centralizer ofx in G. Then
jC(x)j = [G : CG(x)]. This last quantity is a power ofp and it cannot be 1 becausex is
not in the center ofG. We deduce thatjC(x)j is a nontrivial power ofp and (i) follows.

(ii) It follows from (i) that H nZ is a union of conjugacy classes of the formC(x) where
x 2 H nZ. Since different conjugacy classes intersect trivially, we see from (i) thatp
divides jH nZj. Also jHj divides jGj and sojHj is a nontrivial power ofp. We deduce
that p dividesjZ\Hj and (ii) is proven.

(iii) Let H be the centralizer ofA in G. ThenH is a normal subgroup ofG containingA and it
will be sufficient to show thatH = A. Let X/A be the center ofG/A and supposeH > A.
Then we see from (ii) thatX/A\H/A> 1 becauseH/AC G/A, and we deduce that
there is a nontrivial cyclic subgroupY/A contained inX/A\H/A. SinceY/A6 X/A
we see thatY/AC G and we deduce thatYC G. Also A is contained in the center of
Y andY/A is cyclic, henceY is abelian. This contradicts the fact thatA is a maximal
normal abelian subgroup ofG and the result follows

2. (i) The number of Sylow 5-subgroups ofG divides 36 and is congruent to 1 modulo 5,
which means that this number must be 1,6 or 36. It cannot be 1, for thenG would have
a normal Sylow 5-subgroup, which contradicts the fact thatG is simple. Nor canG have
6 Sylow 5-subgroups, for thenG would be isomorphic to a subgroup ofA6 becauseG
is simple. This would mean thatA6 has a subgroup of index 2, and since subgroups of
index 2 are always normal, this would contradict the fact thatA6 is simple. We conclude
thatG has 36 Sylow 5-subgroups.

(ii) Let N be the normalizer of a Sylow 3-subgroup. Then the number of Sylow 3-subgroups
is [G : N]. Also the number of Sylow 3-subgroups divides 20 and is congruent to 1
modulo 3, so this number is 1,4 or 10. It cannot be 1 because that would meanG has a
normal Sylow 3-subgroup, which would contradict the fact thatG is simple. Nor can it
be 4, for thenG would be isomorphic to a subgroup ofA4 becauseG is simple, which is
clearly impossible. Therefore the number of Sylow 3-subgroups is 10. We deduce that
[G : N] = 10 and henceN has order 18.

(iii) A Sylow 3-subgroup of a group of order 18 has order 9. This means the subgroup has
index 2, hence the subgroup is normal because in any group, a subgroup of index 2 is
normal.

(iv) Let C be the centralizer inG of A\B and supposeA\B is not 1. ThenC containsA,B
andA\B is a normal subgroup inC, soC cannot be the whole ofG. Therefore the order
of C is a multiple of 9 and divides 180, and is neither 9 nor 180. Letd be the index of
C in G, sojCj= jGj/d. ThenG is isomorphic to a subgroup ofAd becauseG is simple.
Since the order ofAd is less than 180 ifd � 5, we see thatd � 6 and consequentlyC
has order 18. From part (iii), the Sylow 3-subgroup ofC is normal inC and thereforeC
has exactly one subgroup of order 9. We now have a contradiction becauseC has two
subgroups of order 9, namelyA andB. We conclude thatA\B = 1.

(v) We count the elements inG. Since two Sylow 5-subgroups intersect in 1 and there are
36 Sylow 5-subgroups by (i), we see thatG has 36�4 = 144 elements of order 5. Also



two Sylow 3-subgroups intersect in 1 by (iv) andG has 10 Sylow 3-subgroups by (ii).
ThereforeG has 8�10 = 80 elements of order 3 or 9. We conclude thatG has at least
144+ 80 = 224 elements, which contradicts the fact thatG has only 180 elements. It
follows that no suchG can exist and thus there is no simple group of order 180.

3. SinceM is a cyclicR-module, we know thatM �= R/Rsfor somes2 R. By the uniqueness
part of the fundamental structure theorem for finitely generated modules over a PID, we cannot
write R= A�B whereA,B are nonzeroR-modules. Therefores 6= 0. SincesM = 0, we may
taker = s.

SincerM = 0, we see thatrR� sRand hences dividesr. Suppose there do not exist distinct
primesp,q dividing r. Then the same is true forsbecausesdividesr, and we deduce thats is
a prime power, saype for some primep. From the uniqueness statement in the fundamental
structure theorem for finitely generated modules over a PID, we cannot writeR/Rpe = A�B
whereA,B are nonzeroR-modules and we have a contradiction. This finishes the proof.

4. (i) Choose integersr,s such thatqr + 2s= 1. Then inZ [[X]]/(X−2) we haveqr = 1−sX
mod (X−2). Since 1− sX is invertible inZ [[X]] (with inverse 1+ sX+ s2X2 + · · · ), it
follows thatq is invertible inZ [[X]]/(X−2).

(ii) The general element ofR is ∑aiXi mod(X−2), whereai 2 Z (2) for all i. Now eachai is
of the formp/q wherep,q2 Z andq is odd. Using (i), we may now writeai = bi mod
(X−2) wherebi 2 Z [[X]], and then we may write the general element ofR in the form
∑biXi mod(X−2). This proves thatπθ is surjective. We now determine the kernel of
πθ. Obviously(X− 2) � kerπθ. Conversely supposef 2 kerπθ. Then we may write
f = (X−2)g whereg2 Z (2)[[X]]. We want to show thatg2 Z [[X]]. Write g = ∑giXi

wheregi 2 Z (2). Then the coefficient ofXn in g(X−2) is gn−1−2gn for n> 0, and the
constant coefficient is−2g0. By induction onn we see that 2gn 2 Z and sincegn 2 Z (2),
we conclude thatgn 2 Z for all n. This proves that kerπθ = (X−2) and it now follows
from the fundamental isomorphism theorem thatR�= Z [[X]]/(X−2).

(iii) By considering the homomorphismZ [X]! Z determined by sendingX to 2, we see
that Z [X]/(X−2) �= Z . Since 3 is not invertible inZ , we see that 3 is not invertible in
Z [X]/(X−2). But 3 is invertible inRand the result follows.

5. (i) ObviouslyK(αp)� K(α). Also α is separable overK(αp) and satisfies the polynomial
Xp−αp. Sinceα is the only root ofXp−αp, it follows that α 2 K(αp) and hence
K(α) = K(αp).

Now we consider the minimum polynomial ofβ over K. This has degreep because
[K(β) : K] = p, and must be a polynomial inXp becauseβ is not separable overK. Thus
the minimum polynomial must be of the formXp−b for someb2 K and it follows that
βp = b2 K.

(ii) Since we are in characteristicp, we have(α + β)p = αp + βp. But βp 2 K by (i), hence
αp 2 K(α + β). ThereforeK(αp) � K(α + β) and it now follows from (i) thatK(α) �
K(α + β) as required.

(iii) Since K(α + β) � K(α) by (ii), we have[K(α + β) : K] = [K(α + β) : K(α)][K(α) :
K] and since[K(α) : K] = d, it remains to prove that[K(α + β) : K(α)] = p. Now
(α + β)p = αp + βp 2 K(α) which shows that[K(α + β) : K(α)] = p or 1, because we



are in characteristicp. It remains to prove that[K(α + β) : K(α)] 6= 1, or equivalently
thatβ /2 K(α). But α is separable overK, hence every element ofK(α) is separable over
K which shows thatβ /2 K(α) becauseβ is not separable overK. This completes the
proof.

6. (i) It will be sufficient to prove thatXp− t is irreducible inC [t,X], or equivalently that
t−Xp is irreducible inC [X, t]. Let R = C [X] and letF = C (X), the field of fractions
of R. Thent−Xp is a monic polynomial inR[t] and is irreducible inF [t], hence it is
irreducible inR[t] = C [X, t] and the result follows.

(ii) Let y be one of the roots ofXp− t in L. SinceXp− t is irreducible inK[X], we see that
[K(y) : K] = p. Also the roots ofXp− t aree2nπi/py wheren = 0, . . . , p−1, and since
e2nπi/p 2 C for all n, we deduce that all the roots ofXp− t are inK(y). It follows that
K(y) = L and we conclude that[L : K] = p. Therefore the Galois group ofL overK has
order p (note thatL/K is a separable extension because we are in characteristic zero).
Since groups of orderp are cyclic, we conclude that the Galois group ofL over K is
cyclic of orderp and hence isomorphic toZ /pZ .
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1. Let G be a group of order 1127= 72 � 23. The number of Sylow 23-subgroups divides 49
and is congruent to 1 modulo 23. This means thatG has exactly one Sylow 23-subgroup
and thereforeG has a normal Sylow 23-subgroupA. Also the number of Sylow 7-subgroups
divides 23 and is congruent to 1 modulo 23. Therefore the number of Sylow 7-subgroups is 1
and we deduce thatG has a normal Sylow 7-subgroupB.

SinceG has normal subgroupsA,B such thatA\B = 1 andjGj = jAjjBj, we see thatG�=
A�B. Now groups of prime orderp are isomorphic the cyclic groupZ /pZ , while groups
of order p2 are either isomorphic toZ /p2Z or Z /pZ � Z /pZ . ThereforeG is isomorphic
to eitherZ /49Z � Z /23Z or Z /7Z � Z /7Z � Z /23Z . In particularG is abelian and by the
fundamental structure theorem for finitely generated abelian groups, these last two groups are
not isomorphic. Therefore up to isomorphism there are two groups of order 1127, namely
Z /49Z � Z /23Z andZ /7Z � Z /7Z � Z /23Z .

2. We shall prove the result by induction onjGj, the result being obviously true ifjGj= 1. Also
if G is abelian, then there is nothing to prove, so we may assume thatG is not abelian. Since
G is nilpotent and not 1, its centerZ is not 1. By induction the result is true forG/Z. Note
that if G/Z is cyclic, thenG is abelian which is not the case. ThereforeG/Z is noncyclic. By
induction,G/Z has a normal subgroupH/Z such that(G/Z)/(H/Z) is a noncyclic abelian
group. But(G/Z)/(H/Z)�= G/H and the result follows.

3. Let G be a finitely generated abelian group with the given property. Then by the structure
theorem,G is isomorphic to a direct product of nontrivial groupsA1,A2, . . . ,An of prime power
order. If n> 1, thenA1 * A2 andA2 * A1. Thereforen� 1. This means thatG is cyclic of
prime power order. Conversely ifG is cyclic of prime power order, it has the given property,
because thenG has exactly one subgroup of each order dividingjGj and it follows thatG has
the property as stated in the problem. We conclude that the finitely generated abelian groups
with the property that for all subgroupsA,B, eitherA� B or B� A are the cyclic groups of
prime power order.

4. (a) Letx2R/ radI and supposexn = 0 wheren> 0. Then we may writex = y+ radI where
y 2 R. Sincexn = 0, we see thatyn + radI = radI , which means thatyn 2 radI . By
definition of radI we see that(yn)m = 0. Thereforeymn = 0, hencey 2 radI and we
deduce thatx = 0. This establishes thatR/ radI has no nonzero nilpotent elements.

(b) If x 2 P1\P2\ ·· · \Pn, thenx 2 Pi for all i and hencexn 2 P1P2 · · ·Pn. It follows that
x 2 rad(P1P2 · · ·Pn). Conversely supposex 2 rad(P1P2 · · ·Pn). Thenx 2 radPi for all i.
This means thatxm2 Pi for somem> 0 and sincePi is prime, we deduce thatx2 Pi for
all i as required.

(c) If Pi is contained in everyPj , thenP1\ ·· · \Pn = Pi and henceR/ rad(P1 · · ·Pn) = R/Pi

by (b). We deduce thatR/ rad(P1 · · ·Pn) is an integral domain.

Conversely supposeR/ rad(P1 · · ·Pn) is an integral domain. Then by (b) we see that
R/(P1\ ·· · \Pn) is also an integral domain. Suppose there does not exist ani such that
Pi is contained inPj for all j. Then for eachi, we can choosexi 2 Pi such thatxi /2 Pj for
some j (where j depends oni). Now setyi = xi +P1\·· ·\Pn for i = 1, . . . ,n. Thenyi is



a nonzero element ofR/(P1\ ·· ·\Pn) for all i, yet

y1 · · ·yn = x1 · · ·xn + P1\ ·· ·\Pn = 0

This shows thatR/(P1\ ·· ·\Pn) is not an integral domain and we have a contradiction.
This completes the proof.

5. ObviouslyK(α3)� K(α). Now

8 = [K(α) : K] = [K(α) : K(α3)][K(α3) : K]

which shows that[K(α) : K(α3)] divides 8. Alsoα satisfies the polynomialX3−α3 which
shows that[K(α) : K(α3)] � 3. Therefore[K(α) : K(α3)] = 1 or 2. We need to eliminate the
possibility that[K(α) : K(α3)] = 2. If [K(α) : K(α3)] = 2, then the polynomialX3−α3 could
not be irreducible overK(α3), and it would follow thatX3−α3 has a root inK(α3). But the
roots ofX3−α3 are α,ωα and ω2α and sinceω 2 K, it would follow that all the roots of
X3−α3 are inK. In particularα 2 K(α3). This establishes the result.

6. (a) LetT denote the ideals ofR which have trivial intersection withS. Sincea is not nilpo-
tent, we see that 0/2 S and hence 02 T. ThereforeT is nonempty. MoreoverT is
ordered by inclusion, and the union of a chain inT is still in T. It now follows from
Zorn’s lemma thatT has maximal elements; letP be one of these maximal elements.
ThenP\S= /0. We claim thatP is prime. If P is not a prime ideal, then there exist
idealsA,B strictly containingP such thatAB� P. By maximality ofP we haveai 2 A
andaj 2 B for somei, j and henceai+ j 2 P. This contradicts the fact thatP2 T, and it
follows thatP is a prime ideal not containinga.

(b) Letθ : R! K denote the composition of the natural epimorphismR!R/P followed by
the natural monomorphismR/P! K. If b2 S, thenb /2 P, hence the image ofb in R/P
is nonzero and we deduce thatθb is invertible inK. It follows thatθ extends to a ring
homomorphismφ : S−1R! K.

7. (a) The proper subfields ofF containingK are in a one-one correspondence with the proper
subgroups of Gal(F/K). Therefore we need to show thatS4 has at least 9 proper sub-
groups. There are 6 elements of order 2 and 8 elements of order 3 inS4. Since any two
subgroups of order 2 or 3 intersect in the identity, we see that there are 6 subgroups of
order 2 and 4 subgroups of order 3, and we have shown that Gal(F/K) has at least 10
proper subgroups. This finishes part (a).

(b) The Galois extensionsE of K in F correspond to the normal subgroups of Gal(F/K), so
we need a nontrivial normal subgroup of Gal(F/K). The simplest one is the alternating
subgroupA4 of S4. The corresponding subfieldE of K is the elements ofF fixed byA4.
Also Gal(E/K)�= S4/A4

�= Z /2Z .

8. First we find the Jordan canonical form of the matrix

�
0 −2
1 3

�
The characteristic equation

of this matrix is−x(3−x) + 2 = 0, which has roots 1 and 2. Therefore the Jordan canonical



form of this matrix is

�
1 0
0 2

�
and we deduce that the Jordan canonical form ofA is

241 0 0
0 2 0
0 0 2

35
The matrices which commute with this canonical form are the matrices of the form24p 0 0

0 a b
0 c d

35
wherep,a,b,c,d are arbitrary complex numbers.
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1. The order ofG is 53 ·73. The number of Sylow 5-subgroups ofG divides 73 and is congruent
to 1 modulo 5; the only possibility is 1. ThereforeG has a normal Sylow 5-subgroupA.
The number of Sylow 7-subgroups ofG divides 53 and is congruent to 1 modulo 7; the only
possibility is 1. ThereforeG has a normal Sylow 7-subgroupB.

Since(jAj, jBj) = 1, we see thatA\B = 1. We next show that every element ofA commutes
with every element ofB. Supposea2 A andb2 B. Thenaba−1b−1 = a(ba−1b−1) and since
A�G, we see thatba−1b−1 2 A and consequentlyaba−1b−1 2 A. Similarly aba−1b−1 2 B
and we deduce thataba−1b−1 2 A\B = 1. Thereforeaba−1b−1 = 1 and we conclude that
ab= ba, in other words every element ofA commutes with every element ofB.

Since a group of prime power order has normal subgroups of orderm for all m dividing the
order of the group, we see thatA has a normal subgroupH of order 25. From the previous
paragraph,B centralizesH and so certainly normalizesH. ThusA andB normalizeH, hence
jAj and jBj divide the order of the normalizer ofH in G and we conclude thatH �G. This
completes the solution.

2. First we writeG as a direct product of cyclic groups of prime power order:G�= Z /4Z �
Z /9Z � Z /9Z � Z /5Z . Any subgroup ofG is isomorphic to a product of subgroups, where
one subgroup is taken from each factor. ThusH �= Z /9Z � Z /3Z or Z /3Z � Z /9Z . These
last two groups are isomorphic, so we conclude thatH �= Z /3Z � Z /9Z .

3. (a) SinceD is a conjugacy class inf−1(C), we may writeD = fbdb−1 j b 2 f−1(C)g for
some fixedd 2 D. Then

f (D) = f f (bdb−1) = f (b) f (d) f (b)−1 j b2 f−1(C)g.

Thereforef (D) = fc f(d)c−1 j c2Cg, and (a) follows.

(b) Let D(g) denote the conjugacy class ofg in f−1(C). Since f (g) is centralized byC,
the conjugacy class containingf (g) is preciselyf f (g)g. Since f (D(g)) is by (a) the
conjugacy class containingf (g), we see thatj f (D(g))j = 1. Therefore all elements of
D(g) are in the same coset of kerf and we conclude thatjD(g)j � jker f j as required.

(c) Let K denote the centralizer ofg in f−1(C). Then the order of the centralizer ofg in G
is at leastjKj. Now the order of the conjugacy class ofg in f−1(C) is [ f−1(C) : K], and
by (b) this order is at mostjker f j. Therefore[ f−1(C) : K]� jker f j, consequently

jKj � j f−1(C)/ker f j= jCj

becausef−1(C)/ker f �= C. The result follows.

4. (a) If R has no prime elements, thenR is a field and so certainly a PID. Therefore we may
suppose thatRhas exactly one primep (up to a multiple of a unit), and we need to prove
that R is a PID. LetI be a nonzero ideal ofR. Then each nonzero element ofI can be
written in the formupn for some nonnegative integern and some unitu, becausep is the
only prime (up to a multiple of a unit) ofR. Let N be the smallest nonnegative integer
such thatupN 2 I for some unitu. We now show thatI = pNR; clearly pNR� I . If
x 2 I n 0, then we may writex = vpn for some unitv and some integern� N. Thus
x = pNvpn−N which shows thatx2 pNR, and the result follows.



(b) Suppose every maximal ideal ofR is principal. Then each maximal ideal ofR is of the
form pRwherep is a prime ofR. Suppose by way of contradiction thatI is a nonprincipal
ideal ofR. Clearly 06= I 6= R. Choose a nonzero elementx2 I , and writex = pd1

1 . . . p
dn
n ,

where thepi are nonassociate primes and thedi are positive integers.

For each primep, let e(p) denote the largest integer such thatpe(p)R� I . If p is not an
associate of one of thepi , thene(p) = 0. Sety = pe1

1 . . . p
en
n . We claim thatI = yR.

First we show thatI � yR. If z2 I , then by unique factorization we may writez =
qpf1

1 . . . p
fn
n , where thefi are nonnegative integers andq is a product of primes which are

not associate to any of thepi . Again using unique factorization, we must havefi � ei for
all i and we deduce thatz2 yR.

Finally we show thatyR� I . SetJ = fr 2R j yr 2 Ig (soJ = y−1I ). ClearlyJ is an ideal
of R andyJ = I . If J 6= R, then by Zorn’s lemmaJ is contained in a maximal ideal ofR,
which we may assume is of the formpRwherep is a prime ofR. It would follow that
ypR� I , which contradicts the maximality of thee(p). ThereforeJ = R and we deduce
thatyR� I . ThusI = yRand the proof is complete.

5. Let π : N�X! N denote the projection ontoN, soπ(n,x) = n for all n2 N andx2 X, and
let ι denote the identity map onN. Then(π f )i = πσ = ι. This shows thati has a left inverse,
consequently the sequence

0−! N
i−!M −!M/N−! 0

splits (the mapM ! M/N above is of course the natural epimorphism). This shows that
M �= N�M/N as required.

6. LetG denote the Galois group ofE overF. SinceE is a Galois extension ofF with [E : F] =
pn, we see thatjGj= pn. SinceG is a p-group, it has a seriesG = G0 � G1 � ·· · � Gn−1�
Gn = 1, with Gi �G andjGi/Gi−1j= p for all i. SetKi = fe2 E j ge= e for all g2Gig. Then
by the Galois correspondence,Ki is normal overF and[Ki : Ki−1] = [Gi : Gi−1] = p for all i,
as required.

7. SupposeK is a finite field which is algebraically closed. Letn be a positive integer which is
prime to the characteristic ofK, and consider the polynomialXn−1. The derivative ofXn−1
is nXn−1 which is prime toXn−1 in K[X], becausen is prime to the characteristic ofK. This
tells us that the roots ofXn− 1 in a splitting field forK are distinct. IfK is algebraically
closed, then all these roots would be inK, and we would deduce thatjKj � n. Sincen can be
arbitrarily large, this would contradict the assumption thatK is finite, and the result is proven.
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1. Sincef is an epimorphism fromG to H, the fundamental isomorphism theorem tells us that
G/ker f �= H, so in particularjG/ker f j= jHj. ThereforejGj/jker f j = jHj, hencejker f j =
jGj/jHj and we deduce thatjker f j = 33 · 112. Using the fundamental theorem for finitely
generated abelian groups, we see that there are up to isomorphism six abelian groups of order
jker f j= 33 ·112, namely

Z /27Z � Z /121Z Z /9Z � Z /3Z � Z /121Z (Z /3Z )3� Z /121Z
Z /27Z � (Z /11Z)2 Z /9Z � Z /3Z � (Z /11Z)2 (Z /3Z )3� (Z /11Z)2

2. (i) SinceA\B is a subgroup ofG whose order dividesjAj = p4 and jBj = q5, we see that
jA\Bj= 1 and henceA\B = 1. Next if a2 A andb2 B, thena−1b−1ab= (a−1b−1a)b2 B,
becauseB�G. Similarly a−1b−1ab2A and we deduce thata−1b−1ab2A\B= 1. Therefore
a−1b−1ab = 1, consequentlyab = ba for all a 2 A and b 2 B. We can now define a map
θ : A�B!G by θ(a,b) = ab. Then

θ
(
(a1,b1)(a2,b2)

)
= θ(a1a2,b1b2) = a1a2b1b2 = (a1b1)(a2b2)

(becausea2 commutes withb1), henceθ
(
(a1,b1)(a2,b2)

)
= θ(a1,b1)θ(a2,b2) and we deduce

that θ is a homomorphism. If(a,b) 2 kerθ, thenab = 1 and so a= b−1. Thusa = b−1 2
A\B = 1 and we deduce thata = b = 1. Therefore kerθ = 1 and soθ is a monomorphism.
SincejGj= jAj� jBj we conclude thatθ is also onto, consequentlyθ is an isomorphism and
the result follows.

(ii) Since A is a p-group, it has a normal subgroupP of order p. Similarly B has a normal
subgroupQ of orderq. SinceP�Q is a normal subgroup ofA�B of order pq, we see that
θ(P�Q) is a normal subgroup ofG of orderpq, and so we may setN = P�Q to satisfy the
requirements of the problem.

3. Let G be a simple group of order 22 · 3 · 112. The number of Sylow 11-subgroups is con-
gruent to 1 modulo 11 and divides 12, so the possibilities are 1 and 12. If there is 1 Sylow
11-subgroup, then it would have to be normal, which is not possible becauseG is simple.
Therefore there are 12 Sylow 11-subgroups. IfN is the normalizer of a Sylow 11-subgroup,
then[G : N] is the number of Sylow 11-subgroups, so[G : N] = 12. By considering the per-
mutation representation ofG on the left cosets ofN in G and using the fact thatG is simple,
we see that there is a monomorphism ofG into A12, the alternating group of degree 12. This
means thatG is isomorphic to a subgroup ofA12. This is not possible because 121 divides
jGj, but 121 does not dividejA12j. We now have a contradiction and we deduce that no such
G exists, as required.

4. Since(
p

2+
p

3)3−9(
p

2+
p

3) = 2
p

2, we see that
p

22 Q [
p

2+
p

3] and we deduce that
Q [
p

2+
p

3] = Q [
p

2,
p

3]. Now [Q [
p

2] : Q ] = 2, and[Q [
p

2,
p

3] : Q [
p

2]] = 1 or 2, becausep
3 satisfiesx2−3, a degree 2 polynomial overQ . Therefore[Q [

p
2+
p

3] : Q ] = 4 or 2,
depending on whether or not

p
32 Q [

p
2].

Suppose
p

32 Q [
p

2]. Then we may write
p

3 = a+ b
p

2 wherea,b2 Q . Clearlya,b 6= 0.
Squaring we obtain 3= a2 +2ab

p
2+2b2 and we deduce that

p
2 is rational, which is not so.



Therefore
p

3 /2 Q [
p

2] and consequentlyQ [
p

2+
p

3] = 4. Note we also have thatf1,
p

2g
is a Q -basis forQ [

p
2], andf1,

p
3g is a Q [

p
2]-basis forQ [

p
2,
p

3]. Recall that ifei is an
F-basis forE overF and f j is anE-basis forK, thenei f j is anF-basis forK. It follows that
f1,
p

2,
p

3,
p

6g is aQ -basis forQ [
p

2,
p

3].

5. Let P be a prime ideal ofD and supposeP was not maximal. Then there would existM�D
such thatM 6= D andM properly containingP. SinceD is a PID, we may writeP = pD and
M = mD for somem, p2 D with p 6= 0. Thenp = mx for somex2 D becauseM containsP.
SinceP is a prime ideal, we must havemor x2P. We cannot havem2P becauseM properly
containsP. Therefore we must havex2P and then we may writex= py for somey2D. This
yields p = mpyand sinceD is a domain, we see that 1= my. This shows thatmD= D, which
contradicts the fact thatM is a proper ideal ofD and the first part of the problem is proven.

Suppose now thatf : D!K is a ring epimorphism onto the integral domainK with ker f 6= 0.
ThenD/ker f �= K, so kerf is a prime ideal becauseD/ker f is an integral domain. Using
the first part of the problem, we see that kerf is a maximal ideal ofD. ThereforeD/ker f is a
field and it follows thatK is a field as required.

For the last part a counterexample isR= Z /6Z . Let P be the prime ideal 2Z/6Z , Q the prime
ideal 3Z /6Z , andS= RnP. Note that the ideals ofR are precisely 0,R, P andQ, and the
prime ideals ofR are preciselyP andQ. ThenS−1P = 0 becauses= 6Z + 32 Sandsp= 0
for all p2 P, andS−1Q = RP becauseQ\S 6= /0. Since all ideals ofRP are of the formS−1I
for someI �R, we see that 0 andRP are the only ideals ofRP and it follows thatRP is a field.
Similarly RQ is a field. SinceR is not an integral domain, we have now established thatR is a
counterexample.

6. SupposeP is a prime ideal ofR and RP has a nonzero nilpotent element. Then we may
assume thatRP has a nonzero elementα such thatα2 = 0. If S= RnP , then we may write the
nilpotent element asr/swherer 2Rands2S. Since(r/s)2 = 0, we see thatr2t = 0 for some
t 2 S, andrt 6= 0 becauser/s 6= 0. Also(rt )2 = r2tt = 0, sort is a nonzero nilpotent element
of R.

Supposer is a nonzero nilpotent element ofR. It remains to prove thatRP has a nonzero
nilpotent element for some prime idealP of R. We may assume thatr2 = 0. Let I = fs2 R j
rs = 0g, an ideal ofRwhich does not contain 1. By Zorn’s lemma, there is a maximal idealP
of RcontainingI ; of courseP will also be a prime ideal. Then the imager/1 in RP is nonzero
becausert 6= 0 for all t 2RnP . Since(r/1)2 = r2/12 = 0/12 = 0, we see thatr/1 is a nonzero
nilpotent element ofRP . This completes the proof.

7. The submodule ofM generated byA andB is A+ B; this is the set fa+ b j a2 A andb2 Bg.
Thus we need to prove thatA�B�= A+B. We define a mapθ : A�B!M by θ(a,b) = a+b.
Clearly this is anR-module homomorphism ofA�B ontoA+B. If (a,b) 2 kerθ, thena+b =
0, consequentlya =−b. This shows thata and−b are both inA\B= 0. Thereforea = b = 0
and hence kerθ = 0. It follows thatθ is an isomorphism and soA�B�= A+ B as required.

8. (i) Since there is a one-one correspondence between the subgroups of Gal(E/F) (the Galois
group ofE overF) and the proper subfields ofE containingF, we need to show thatS6 has at



least 35 proper subgroups. One way to do this is to note thatS6 has 144 5-cycles which gives
36 subgroups of order 5.

(ii) The subfieldL required is Fix(A6), the subset ofE which is fixed pointwise by all elements
of the alternating subgroupA6 of S6. SinceA6 is a normal subgroup ofS6, we see thatL is
a Galois extension ofF, and that Gal(E/L) �= A6. SinceA6 is a simple group, there is no
subfield betweenE andL which is Galois overL.

(iii) The dimension ofL overF is jS6/A6j= 2.
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1. (a) Obviously 02 IJ. Now supposex,y2 IJ andr 2 R. We want to prove thatx+ y, rx 2 IJ.
Write x = ∑n

i=1 aibi andy = ∑m
i=1cidi , whereai ,ci 2 I andbi ,di 2 J. Then

x+ y =
n

∑
i=1

aibi +
m

∑
i=1

cidi

which shows thatx+ y2 IJ. Also rx = ∑n
i=1(rai)bi , and sinceI is an ideal ofR, we see that

rai 2 I for all i. Thereforerx 2 IJ and we have proven thatIJ�R.

(b) SinceI �R, we haveIJ � I. Similarly IJ � J and we deduce thatIJ � I \J.

(c) SinceI + J = R, we may writei + j = 1 wherei 2 I and j 2 J. If x 2 I \ J, thenx =
xi + x j 2 JI + IJ = IJ (becauseR is commutative). Thereforex2 IJ and we have proven that
I \J � IJ. The result now follows from (b).

(d) Let a2 Rn0. We need to prove thata has a multiplicative inverse. UsingIJ = I \J with
I = J = aR, we see thataRaR= aR\aR= aR, hencearas= a for somer,s2 R. Sincea 6= 0
andR is an integral domain, we may cancela to obtainars= 1. We have now shown that all
nonzero elements ofRhave a multiplicative inverse, henceR is a field.

2. (a) SinceF is a finite Galois extension ofK with Galois groupS5, there is a one-one corre-
spondence between the fields strictly betweenF andK, and the proper nontrivial subgroups
of S5. Therefore we need to show thatS5 has more than 40 subgroups other than 1 andS5.
Now S5 has 24 elements of order 5 which gives 6 subgroups of order 5; 20 elements of order
3 which gives 10 subgroups of order 3; 10 2-cycles which gives 10 subgroups of order 2; 15
permutations which are a product of two disjoint 2-cycles which gives 15 more subgroups
of order 2; and now we have 6+ 10+ 10+ 15 subgroups which is already more than 40, as
required.

(b) The subfieldsE of F containingK which are Galois extensions ofK correspond to the
normal subgroups of Gal(F/K). Specifically ifH is a normal subgroup of Gal(F/K), then the
corresponding subfield is Fix(H), the elements ofF which are fixed by all automorphisms of
H. Furthermore we have Gal(Fix(H)/K)�= Gal(F/K)/H and[Fix(H) : K] = [Gal(F/K) : H].
SinceS5 has a unique nontrivial normal subgroup, namely the alternating groupA5, it follows
that the subfieldE required is Fix(A5). Then[E : K] = 2 and Gal(E/K)�= S5/A5

�= Z /2Z .

3. (a) 455= 5 ·7 ·13. We determine the number of Sylow 13-subgroups. This is congruent to
1 modulo 13 and divides 35. The only possibility is 1, which means thatG has a normal
subgroupA of order 13 and soG is not simple.

(b) SinceG/A is a group of order 35, we can apply Sylow’s theorems to see thatG/A has
exactly one subgroup of order 7, which by the subgroup correspondence theorem we may call
H/A. ThenH/A�G/A, soH �G. Now H is a group of orderjAjjH/Aj= 13·7, and we may
apply Sylow’s theorems for the prime 7 to deduce thatH has exactly one subgroup of order
7; we shall call this subgroupB. ThenB�H; in fact we can assert more, namely thatB�G.
To see this, letg 2 G. ThengBg−1 is a subgroup ofgHg−1 = H becauseH �G, and since
jgBg−1j = jBj = 7, we see thatgBg−1 = B which establishes thatB�G. Similarly G has a
normal subgroup of order 5, which we shall callC.



We now have thatG has normal subgroupsA,B,C of orders 13, 7 and 5 respectively. Since
13, 7 and 5 are coprime and their product is 455, we deduce thatG�= A�B�C. Let a2 A
be an element of order 13, letb2 B be an element of order 7, and letc2C be an element of
order 5. We want to show thatabc is an element of order 455. Since the order of an element
divides the order of the group, we certainly have the order ofabc divides 455. Suppose the
order ofabcwas less than 455. Then the order ofabcwould have to divide 455/13, or 455/7,
or 455/5. Suppose the order ofabcdivided 455/13 = 35. Then(abc)35 = 1 and sincea,b,c
commute, we see thata35b35c35 = 1. But b35 = c35 = 1, hencea35 = 1. This is not possible
becausea has order 13. Similarly the order ofabccannot divide 455/7 and 455/5. We deduce
thatabchas order 455, hencehabci = G and the result is proven.

4. We shall use the fundamental theorem for finitely generated modules over a PID. Thus we
may write

A = Ra�
m⊕

i=1

(R/qiR)ai

B = Rb�
m⊕

i=1

(R/qiR)bi

wherea,b,ai ,bi ,m are nonnegative integers and theqi are distinct prime powers. SinceAn�=
Bn, we have

Rna�
m⊕

i=1

(R/qiR)nai �= Rnb�
m⊕

i=1

(R/qiR)nbi .

The fundamental theorem now gives thatna = nb andnai = nbi for all i, hencea = b and
ai = bi for all i and the result follows.

5. SinceP is a projective module, it is a submodule of a free moduleF. The mappingθ : P! F
defined byθp = 2p is a monomorphism, so by using the hypothesis thatP is injective, we
see that it has a left inverseφ : F ! P. Sinceφθ is the identity mapping onP, we see that
p = 2φp for all p 2 P and henceP� 2P. ThereforeP� 2nP and we deduce thatP� 2nF
for all positive integersn. But

⋂
2nF = 0 becauseF is a free module and the result follows.

(Note: the hypothesisP is finitely generated has not been used.)

6. Letα : mB! B denote the natural inclusion, and letβ : B! B/mBdenote the natural surjec-

tion. Then the exact sequencemB
α! B

β! B/mB! 0 yields an exact sequence

A⊗mB
1⊗α−! A⊗B

1⊗β−! A⊗B/mB−! 0

where 1 indicates the identity map. ThereforeA⊗ (B/mB) �= (A⊗B)/ im(1⊗α), where im
denotes the image of a map. Now im(1⊗ α) is the Z -submodule ofA⊗B generated by
fa⊗mbj a2 A andb2 Bg and sincea⊗mb= m(a⊗b), this is the same as theZ -submodule
generated byfm(a⊗ b) j a 2 A andb 2 Bg. This submodule is preciselym(A⊗B), hence
im(1⊗α) = m(A⊗B) and the proof is complete.



7. LetG be the group of order 588 and write 588 as a product of prime powers: 588= 4·3·49.
The number of Sylow 7-subgroups is congruent to 1 modulo 7 and divides 12, hence there is
a unique Sylow 7-subgroupA which must be normal inG. SinceA has order 49, it is abelian
and so certainly solvable. Thus we need only prove thatG/A is solvable, becauseG/A and
A solvable impliesG solvable. SinceG/A has order 12, this means we need to prove that all
groups of order 12 are solvable.

Let H be a group of order 12. The number of Sylow 3-subgroups is 1 or 4. Suppose there is
exactly one Sylow 3-subgroupB. ThenB�H and jH/Bj = 4. Since groups of order 3 and
4 are abelian, we see thatB andH/B are abelian and henceH is solvable. Suppose on the
other hand thatH has 4 Sylow 3-subgroups. IfB1 andB2 are two distinct Sylow 3-subgroups,
thenB1\B2 is a proper subgroup ofB1 whose order divides 3 by Lagrange’s theorem, hence
B1\B2 = 1 and we conclude thatH has (at least) 8 elements of order 3. Now the Sylow 2-
subgroups ofH have order 4, and every element of a Sylow 2-subgroup has order a power of
2. If H had more than one Sylow 2-subgroup, thenH would have at least 5 elements of order
a power of 2, consequentlyH would have at least 5+ 8 = 13 elements, which is not possible
becausejHj= 12. ThereforeH has a unique subgroupC of order 4, which must be normal in
H. SincejH/Cj= 3 and jCj= 4, we see thatH/C andC are abelian, and we conclude thatH
is solvable. This completes the proof.

8. LetL = Q (
p

2,
p

3,
p

5). Then clearlyK � L. Also (
p

2+
p

3)3−9(
p

2+
p

3) = 2
p

2, hencep
22K and we deduce thatL = K. ThusK = Q (

p
2,
p

3,
p

5). It follows thatK is the splitting
field for the polynomial(x2−2)(x2−3)(x2−5) and we deduce thatK is a Galois extension
of Q . In particular the number of fields betweenK andQ equals the number of subgroups of
Gal(K/Q ).

Now any element of Gal(K/Q ) must send
p

2 to �
p

2,
p

3 to �
p

3, and
p

5 to �
p

5. It
follows that every nonidentity element of Gal(K/Q ) has order 2, and that Gal(K/Q ) is ele-
mentary abelian of order 1,2,4 or 8.

We shall use the following result: ifa and b are products of distinct prime numbers and
Q (
p

a) = Q (
p

b), thena = b. To see this, write
p

a = r + s
p

b wherer,s2 Q . Thena =
r2 +2rs

p
b+s2b. Clearlys 6= 0 and rs= 0, consequentlyr = 0 and a= s2b which establishes

the result.

It follows immediately that there are at least 8 subfields betweenQ andK, namelyQ (
p

2c3d5e)
wherec,d,e are 0 or 1. Now ifjGal(K/Q )j � 4, then there would be at most 5 subgroups
of Gal(K/Q ), consequently there would be at most 5 fields betweenK and Q . This is a
contradiction, so we must havejGal(K/Q )j= 8 and therefore Gal(K/Q )�= (Z /2Z )3.
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1. Let α be a root of f in K. Then[F(α) : F] 6= 1 becausef has no roots inF, is less than 6
becausef has degree 6, and divides 21. It follows that[F(α) : F] = 3. Letg be the minimum
polynomial ofα overF. Theng is an irreducible polynomial of degree 3 which dividesf in
F[X], so we may writef = gh in F[X] whereh has degree 3. Sinceh has no root inF , we see
thath is irreducible inF[X], so f = gh is the factorization off into irreducible polynomials
in F [X].

Since f has at most two roots inK, we see thatg andh have at most one root inK. It follows
that we may writeg = g1g2 andh = h1h2 whereg1,g2,h1,h2 are irreducible inK[X], g1 and
h1 have degree 1, andg2 andh2 have degree 2. Thenf = g1g2h1h2 is the factorization off
into irreducible polynomials inK[X].

2. The number of Sylow 59-subgroups divides 33 and is congruent to 1 modulo 59. Therefore
there is only one Sylow 59-subgroup which means thatG has a normal subgroupH of order
59.

NowG/H is a group of order 33 and so the number of Sylow 3-subgroups ofG/H is congruent
to 1 modulo 3 and divides 11. ThereforeG/H has a normal Sylow 3-subgroup, which we may
write asA/H whereA is a normal subgroup ofG. ThenA is a group of order 3*59 and the
number of Sylow 3-subgroups ofA is congruent to 1 modulo 3 and divides 59. ThereforeA
has a normal subgroupK of order 3. Observe that ifg2G, thengKg−1 is a subgroup of order
3 contained ingAg−1. SinceA is normal,gAg−1 = A, sogKg−1 is a subgroup of order 3 in
A and hencegKg−1 = K, becauseA has exactly one subgroup of order 3. ThereforeK is a
normal subgroup of order 3 inG.

Using exactly the same argument as above with the primes 3 and 11 interchanged, we see that
G has a normal subgroupL of order 11. We have now proved that all the Sylow subgroups
of G are normal, soG is isomorphic to a direct product of its Sylow subgroups. Also each
nontrivial Sylow subgroup has prime order and is therefore cyclic. It follows thatG abelian,
and then by using the structure theorem for finitely generated abelian groups, we conclude
thatG is cyclic.

3. SinceG is a nontrivialp-group, its center is nontrivial and therefore it has a central subgroup
Z of orderp. ThenG/Z is a group of orderpn−1 and sincen� 2, we see thatG/Z is nontrivial
p-group and hence it has a central subgroup of orderp. We may write this subgroup asA/Z
whereA is a normal subgroup ofG. ThenA has orderp2 and since groups of orderp2 are
abelian, it follows thatA is a normal abelian subgroup of orderp2 as required.

4. The roots ofX3−2 are 3
p

2, 3
p

2ω and 3
p

2ω2 and it follows easily thatK is the splitting field
for X3−2. ThereforeK/Q is a Galois extension ofQ . Also [Q ( 3

p
2) : Q ] = 3 and Q( 3

p
2) 6= K.

Since the splitting field of a polynomial of degree 3 has degree dividing 6 and the Galois group
is isomorphic to a subgroup ofS3, we conclude that[K : Q ] = 6 and the Galois group ofK
overQ is isomorphic toS3.

5. (a) Obviously 02 A\R. Let a,b2 A\R. Thena−b2 A anda−b2 R, soa−b2 A\R.
Finally let r 2 R. Thenar 2 A becauseA is an ideal ofS, andar 2 R. Thusar 2 A\R
and we have proved thatA\R is an ideal ofR.



(b) Let x 2 A. SinceF is the field of fractions of the PIDR, we may writex = ab−1 with
a,b2Rand(a,b) = 1. Then there existp,q2Rsuch thatap+bq= 1, sopx+q = b−1.
Sincep,q,x 2 S, we see thatb−1 2 S. Now A is an ideal ofS, soxb= a2 A\R= Rd,
so there existsr 2 R such thatxb = rd. Then we havex = b−1rd 2 Sd and the result
follows.

6. (a) We have[G/M : PM/M] = [G : PM] and[G : P] = [G : PM][PM : P], so[G/M : PM/M]
divides [G : P]. SinceP is a Sylowp-subgroup ofG, we see that[G : P] is prime top
and hence[G/M : PM/M] is prime top. This shows thatPM/M is a Sylowp-subgroup
of G.

(b) Letn2N. ThennPn−1 = P andnMn−1 = M, hencenPMn−1 = PM. This shows thatMn
is in the normalizer ofPM/M in G/M and we conclude thatn2 H. The result follows.

(c) The number of Sylowp-subgroups ofG/M is [G/M : H/M] = [G : H], and the number
of Sylow p-subgroups ofG is [G : N]. SinceN � H, we see that[G : H] divides[G : N]
and the result follows.

7. (a) A5� Z /59Z .

(b) Z /2Z � Z /2Z � Z /885Z.

8. We shall use the structure theorem for finitely generated abelian groups. We may write

G�= Z a�
n⊕

i=1

Z /pai
i Z

H �= Z b�
n⊕

i=1

Z /pbi
i Z

for certain integersa,b,ai ,bi ,n, and thepi are distinct primes. SinceG�G�= H�H, we see
that

Z 2a�
n⊕

i=1

Z /p2ai
i Z �= Z 2b�

n⊕
i=1

Z /p2bi
i Z

Using the uniqueness statement in the structure theorem for finitely generated abelian groups,
we see that 2a = 2b and 2ai = 2bi for all i. Thereforea = b andai = bi for all i, which proves
thatG�= H.
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1. Let 0 6= a 2 R. We must prove thata is invertible, so suppose to the contrary thata is not
invertible. Thena2R is an ideal ofR and sincea is not invertible, we see thataR 6= R and
consequentlya2R 6= R. By hypothesisa2R is a prime ideal ofR and sincea2 2 a2R, we
deduce thata2 a2R. Thereforea = a2r for somer 2 R. Since 0 is a prime ideal ofR, we see
that R is an integral domain and we deduce that 1= ar. Thusa is invertible and we have a
contradiction. This completes the proof.

2. By hypothesisG has a normal subgroup ofK of order p3. ThenG/K is a group of orderq3.
A nontrivial q-group (whereq is a prime) has a normal subgroup of orderq, soG/K has a
normal subgroupH/K of orderq. ThenH is a normal subgroup of orderp3q, as required.

3. SupposeR has an elementa which is neither a zero divisor nor a unit. ThenaR is a proper
submodule ofR, becausea is not a unit. Also the mapr 7! ar is anR-map fromR onto aR
which has kernel 0, becausea is a nonzero divisor. This shows thatR is isomorphic to the
properR-submoduleaR.

Conversely supposeR is isomorphic to the properR-sumoduleM. Then there is anR-
isomorphismθ : R! M. Seta = θ1. ThenaR= (θ1)R = θ(1R) = θR = M, so aR 6= R
and we see thata is not a unit. Finally ifar = 0, thenθr = θ(1r) = (θ1)r = ar = 0 and we
deduce thatr = 0, becauseθ is an isomorphism. Thereforer is a nonzero divisor and the result
follows.

4. Sinceα satisfiesX2−α2 2 K(α2)[X], we see that[K(α) : K(α2)] = 1 or 2. Also[K(α) : K] =
[K(α) : K(α2)][K(α2) : K]. Since[K(α) : K] is odd, we deduce that[K(α) : K(α2)] = 1 and
the result follows.

5. By the fundamental structure theorem for finitely generated abelian groups, we know that
G is a direct product of nontrivial cyclicp-groups. Sincefx 2 G j xp = 1g has orderp2,
we see thatG is a direct product of exactly two nontrivial cyclicp-groups. It now follows
thatG�= Z /p5Z � Z /pZ or Z /p4Z � Z /p2Z or Z /p3Z � Z /p3Z (so there are three possible
groups up to isomorphism).

6. SinceK is a splitting overk, it can be written ask(a1, . . . ,an) wherea1, . . . ,an are all the roots
of some polynomialf 2 k[X]. If σ 2 Gal(L/k), thenσai also satisfiesf , becauseσ fixes all
the coefficients off , and soσ permutes theai . It follows thatσK = k(σa1, . . . ,σan) = K.

7. Let G be a simple group of order 280. The number of Sylow 7-subgroups is congruent to 1
modulo 7 and divides 40, so there are 1 or 8 Sylow 7-subgroups. There cannot be 1 Sylow
7-subgroup, because then the Sylow 7-subgroup would be normal which contradicts the hy-
pothesis thatG is simple. Therefore there are 8 Sylow 7-subgroups. Since two distinct Sylow
7-subgroups must have trivial intersection, we see that there are at least 8�6 = 48 elements
of order 7. The number of Sylow 5-subgroups is congruent to 1 modulo 5 and divides 56.
There cannot be 1 Sylow 5-subgroup, for then it would be normal which would contradict the
hypothesis thatG is simple. Therefore there are 56 Sylow 5-subgroups. Since two distinct
Sylow 5-subgroups must intersect in the identity, we see that there are at least 56�4 = 224



elements of order 5. Finally since the Sylow 2-subgroup is not normal, there must be at least
9 elements whose order is a power of 2. We now count elements: we find thatG has at
least 48+ 224+ 9 = 281 elements, which is impossible becauseG has only 280 elements.
Therefore no suchG can exist and we deduce that there is no simple group of order 280.

8. LetK be a splitting field overF which containsE, let G = Gal(K/F), and letH = Gal(K/E).
Since we are in characteristic zero, everything is separable and henceK is a Galois extension
of F. Therefore by the fundamental theorem of Galois theory, we see that the number of fields
betweenF andE is equal to the number of subgroups betweenG andH. Also [G : H] = n. By
considering the permutation representation ofG on the left cosets ofH in G, we see that there
is a normal subgroupN of G contained inH such thatjG/Nj � n!. The number of subgroups
betweenG andH is at most the number of subgroups betweenG andN, which is at most the
number of subsets ofG/N. Since the number of subsets ofG/N is 2jG/Nj, we deduce that the
number of subfields betweenF andE is at most 2n! , as required.
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1. We first factor 480 as 32� 3� 5. Note that sinceG is simple, it cannot have a nontrivial subgroup of
index� 7, because that would mean thatG is isomorphic to a subgroup ofA7, which is not possible by
Lagrange’s theorem.

(a) LetA= P\Q and supposeA> 1. SinceP,Q6CG(A), we see thatP<CG(A). Using Lagrange’s
theorem, we deduce thatjCG(A)j = 96, 160 or 480. We cannot have 480 because thenA would
be a central and hence a normal subgroup ofG, which would contradict the hypothesis thatG
is simple. Also we cannot havejCG(A)j = 96 or 160, because that would mean thatG has a
subgroup of index 5 or 3. We now have a contradiction, and we conclude thatA = 1.

(b) The number of Sylow 2-subgroups is congruent to 1 modulo 2 and divides 15. It cannot be 1
because that would mean thatG has a normal Sylow 2-subgroup. Nor can it be 3 or 5, because
thenG would have a subgroup of index 3 or 5. ThereforeG has 15 Sylow 2-subgroups. Next the
number of Sylow 3-subgroups is congruent to 1 modulo 3 and divides 96. This number cannot be
1, because that would mean that the Sylow 3-subgroup is normal. Nor can it be 4, because that
would yield a subgroup of index 4. ThereforeG has at least 10 Sylow 3-subgroups. Finally the
number of Sylow 7-subgroups is congruent to 1 modulo 7 and divides 160. This number cannot
be 1, because that would mean that the Sylow 7-subgroup is normal. ThereforeG has at least 8
Sylow 7-subgroups.
We now count elements. Since by (a) any two Sylow 2-subgroups intersect trivially, there are
15*31 nontrivial elements whose order is a power of 2. Next any two Sylow 3-subgroups intersect
trivially, because a Sylow 3-subgroup has prime order 3, and we see that there are at least 10*2
elements of order 3. Finally any two Sylow 5-subgroups intersect trivially, because a Sylow 5-
subgroup has prime order 5, and we deduce thatG has at least 6*4 elements of order 5. We now
count elements: we find thatG has at least 15� 31+ 10� 2+ 6� 4 = 509 nontrivial elements.
SinceG has only 480 elements altogether, we have now arrived at a contradiction. We conclude
that there is no such groupG.

2. SinceR is a domain and 0/2 S, we see thatS−1R is a domain. Also fora,b2 R ands,t 2 S, we have
a/s= b/t if and only if at = bs. Supposep/1 divides(a/s)(b/t) in S−1R. This means that there exists
c/u2 S−1Rsuch that(p/1)(c/u) = (a/s)(b/t), which means thatpstc= abu. Sincep is prime, we see
that p divides at least one ofa,b,u. If p dividesu, thenp/1 is a unit inS−1R becauseu/1 is a unit in
S−1R. Therefore we may assume thatp does not divideu; without loss of generality, we may assume
thatp dividesa, saypq= a. Then(p/1)(q/s) = a/sand we see thatp/1 dividesa/s. Therefore ifp/1
is not a unit, it is prime and the result follows.

3. LetP be a finitely generated projectivek[X]/(X3 + X)-module. Then there is ak[X]/(X3 + X)-module
Q and an integeresuch thatP�Q�= (k[X]/(X3 +X))e. Note thatX3 +X = X(X +1)2 andk[X]/(X3+
X) �= k[X]/(X)� k[X]/(X + 1)2, so P�Q�= (k[X]/(X))e� (k[X]/(X + 1)2)e. We may view this as
an isomorphism of finitely generatedk[X]-modules. We use repeatedly without comment that a map
betweenk[X]/(X3 + X)-modules is an isomorphism ask[X]/(X3 + X)-modules if and only if it is an
isomorphism ask[X]-modules. Sincek is a field,k[X] is a PID, so the structure theorem for finitely
generated modules over a PID tells us that

P�=
⊕

i

k[X]/( fi) and Q�=
⊕

i

k[X]/(gi)

where thefi ,gi are either 0 or positive powers of monic irreducible polynomials. Then we have⊕
i

k[X]/( fi)�
⊕

i

k[X]/(gi)�= (k[X]/(X))e� (k[X]/(X + 1)2)e.



The uniqueness part of the structure theorem for finitely generated modules over a PID now tells us that
fi = X or (X + 1)2 for all i. It follows that a finitely generatedk[X]/(X3 + X)-module is isomorphic to
a finite direct sum of modules of the formk[X]/(X) or k[X]/(X2 + 1).

4. Suppose there is a positive integern such thatMJn = MJn+1 6= 0. ThenMJn is finitely generated
becauseM is Noetherian, and(MJn)J = MJn+1 = MJn. By Nakayama’s lemma we deduce thatMJn =
0, as required.

5. SinceR is a right Artinian ring with no nonzero nilpotent ideals, the Wedderburn structure theorem tells
us thatR�= R1�·· ·�Rn, wheren is a positive integer, and theRi are matrix rings over division rings.
If n> 1, then(1,0, . . . ,0) is a nontrivial idempotent, son = 1 which means thatR is a matrix ring over
a division ring. If this matrix ring has degree> 1, then the matrix with 1 in the(1,1) position and zeros
elsewhere is a nontrivial idempotent. ThereforeR is isomorphic to a matrix ring over a division ring,
and the result follows.

6. The character table forS4 is given below; the irreducible characters areχ1, . . . ,χ5. χ1 is the principal
character,χ2 is the character coming from the sign of the permutation,ρ is the permutation character
(not irreducible),χ4 = ρ−χ1, andχ5 = χ2χ4. The remaining row, the character ofχ3, can easily be
filled in using the orthogonality relations.

Class Size 1 6 8 6 3
Class Rep (1) (12) (123) (1234) (12)(34)
χ1 1 1 1 1 1
χ2 1 −1 1 −1 1
χ3 2 0 −1 0 2
χ4 3 −1 0 1 −1
χ5 3 1 0 −1 −1
ρ 4 2 1 0 0

7. Since splitting fields are determined up to isomorphism, we may as well assume thatK � C . Since
the roots ofX4−2 are� 4

p
2,�i 4

p
2, we see thatK = Q ([ 4

p
2], i). Now X4−2 is irreducible overQ by

Eisenstein’s criterion for the prime 2, so[Q ( 4
p

2) : Q ] = 4. Also i /2 Q ( 4
p

2) andi satisfiesX2 + 1 = 0,
consequently[K : Q ( 4

p
2)] = 2. We deduce that[K : Q ] = 8 and thereforejGal(K/Q )j= 8. Now a group

of order 8 has a normal subgroup of order 2 (ap-group has normal subgroups of any order dividing the
order of the group); letH be a normal subgroup of order 2 inG, and letL be the fixed field ofH. Then
H has index 4 inG, so by the fundamental theorem of Galois theory, we see thatL is a normal extension
of degree 4 overQ , as required.



Algebra Prelim Solutions, Summer 2002

1. (a) H acts on the set of conjugates of Q according to the formula gQg−1 �→
hgQg−1h−1 for h ∈ H and g ∈ G. Note that gQg−1 ≤ G for all g, so OQ

is a set of subgroups. Let S = {h ∈ H | hQh−1 = Q}, the stabilizer of Q
in H. Then |OQ||S|= |H|. Now h ∈ S if and only if h ∈ H ∩NG(Q) = 1,
hence |S| = 1 and the result follows.

(b) Let P be a Sylow p-subgroup of G. We apply the above with H = P.
Since P∩NG(Q) = P∩Q = 1, we see that OQ has |P| = pm subgroups.
Furthermore all the subgroups of OQ have prime order q, so any two of
them must intersect in 1. Now each nonidentity element of a subgroup
in OQ has order q, consequently each subgroup of OQ yields q−1 ele-
ments of order q and we deduce that G has at least (q−1)pm elements
of order q. Therefore G has at most pqm − (q−1)pm = pm elements of
order a power of p. Since |P| = pm and every element of a Sylow p-
subgroup has order a power of p, we conclude that P is the only Sylow
p-subgroup of G. Therefore P is normal in G and we are finished.

2. Let F = Q(
√

2,
√

3) and N = Gal(K/F). Then F ⊆ K and is the splitting
field over Q for (x2 − 2)(x2 − 3). Therefore N is a normal subgroup in
Gal(K/Q) of index [F : Q]. Now

√
2 satisfies x2−2 and

√
2 /∈Q. Therefore

[Q(
√

2) : Q] = 2.

Next we show that
√

3 /∈ Q(
√

2). Suppose
√

3 ∈ Q(
√

2). Then we could
write

√
3 = a + b

√
2 with a,b ∈ Q, because every element of Q(

√
2) can

be written in this form. Squaring, we obtain 3 = a2 + 2b2 + 2ab
√

2. Since√
2 /∈Q, we deduce that a or b = 0. But a = 0 yields

√
3/2∈Q, while b = 0

yields
√

3 ∈ Q, neither of which is true. We conclude that
√

3 /∈ Q(
√

2).
Since

√
3 satisfies x2 −3, we deduce that [F : Q(

√
2)] = 2. Therefore

[F : Q] = [Q(
√

2,
√

3) : Q(
√

2)][Q(
√

2) : Q] = 2∗2 = 4.

Thus N is a normal subgroup of index 4 in Gal(K/Q).

Suppose 8
√

2 ∈ K. Since 8
√

2 satisfies x8 − 2 and x8 − 2 is irreducible over
Q by Eisenstein’s criterion for the prime 2, we see that 8 divides [K : Q],
consequently 8 divides |Gal(K/Q)|. But |Gal(K/Q)| = 4|N|, so this is not
possible if |N| is odd.



3. (a) If X and Y are right R-modules and θ: X →Y is an R-module homomor-
phism, then there is a unique group homomorphism θ⊗ 1: X ⊗R C →
Y ⊗R C such that θ(x⊗ c) = (θx)⊗ c for all x ∈ X and c ∈C.

First we apply this to the maps

(a,b) �→ a : A⊕B −→ A

(a,b) �→ b : A⊕B −→ B.

We obtain a group homomorphism

θ: (A⊕B)⊗R C −→ A⊗R C⊕B⊗R C

such that θ((a,b)⊗ c) = (a⊗ c,b⊗ c). Next we apply it to the maps

a �→ (a,0)⊗ c : A⊗R C −→ (A⊕B)⊗R C

a �→ (0,b)⊗ c : B⊗R C −→ (A⊕B)⊗R C.

We obtain a group homomorphism

φ: (A⊗R C)⊕ (B⊗R C) −→ (A⊕B)⊗R C

such that φ(a⊗ c,b⊗d) = (a,0)⊗ c+(0,b)⊗d.

Finally we show that φθ is the identity on (A⊕B)⊗R C, and that θφ is
the identity on (A⊗R C)⊕ (B⊗R C). We have

φθ(a,b)⊗ c = φ(a⊗ c,b⊗ c) = (a,b)⊗ c.

Since (A⊕B)⊗R C is generated as an abelian group by elements of the
form (a,b)⊗ c, we see that φθ is the identity. Also

θφ(a⊗ c,b⊗d) = θ(a,0)⊗ c+θ(0,b)⊗d = (a⊗ c,b⊗d).

Since (A⊗C)⊕(B⊗C) is generated as an abelian group by elements of
the form (a⊗c,b⊗d), we deduce that θφis the identity. It now follows
that (A⊕B)⊗R C ∼= (A⊗R C)⊕ (B⊗R C).

(b) Since M is a finitely generated Z-module, we may express it as a finite
direct sum of cyclic Z-modules, say M =

⊕
i Z/aiZ, where we may

assume that ai �= ±1 for all i. Then by the first part, we see that

M⊗Z M ∼=
⊕
i, j

Z/aiZ⊗Z Z/a jZ.



Therefore it will be sufficient to prove Z/aiZ⊗Z Z/aiZ �= 0 for all i (of
course even for just one i will be sufficient). However we can define a
bilinear map

θ: Z/aiZ×Z/aiZ → Z/aiZ

by θ(x,y) = xy. This induces a Z-module homomorphism Z/aiZ⊗Z

Z/aiZ → Z/aiZ, which is obviously onto. We conclude that Z/aiZ⊗Z

Z/aiZ �= 0, as required.

4. Note that Ann(m) is an ideal of R. Since R is Noetherian, we may choose
w ∈ M such that Ann(w) is maximal (that is Ann(w) is as large as possible,
but not R). Suppose Ann(w) is not prime. Then there exists a,b ∈ R \
Ann(w) such that ab ∈ Ann(w), i.e. abw = 0. But then a ∈ Ann(bw) and
Ann(w) ⊆ Ann(bw). Furthermore Ann(bw) �= R because bw �= 0, so the
maximality of Ann(w) has been contradicted and the result follows.

5. Suppose R is a field. Then an R-module is the same thing as an R-vector
space, and since every vector space has a basis this means that every R-
module is free; in particular every R-module is projective.

Conversely suppose every R-module is projective. Since R is an integral
domain, to prove R is a field we only need show that every nonzero element
of R is invertible. Suppose to the contrary that x is a nonzero element of
R which is not invertible. Then R/Rx is a nonzero R-module, so it has a
nonzero element u. Note that xu = 0. Consider the exact sequence

0 −→ Rx −→ R −→ R/xR −→ 0.

Since R/xR is projective, the sequence splits, in particular R/xR is isomor-
phic to a submodule of R. Now R is an integral domain, so xv �= 0 for all
nonzero v ∈ R and we deduce that xu �= 0. We now have a contradiction and
the result follows.

6. Since ZN = ZN+1, we see that Z(G/ZN) = 1. Therefore K ⊆ ZN .

Now suppose L is a normal subgroup of G such that Z(G/L) = 1 and L does
not contain ZN . Then there is a nonnegative integer n such that

Zn ⊆ L, Zn+1 � L.

Choose x∈Zn+1\L. Then xL �= 1 in G/L. Also xgx−1g−1 ∈Zn+1 for all g∈
G, because xZn+1 ∈ Z(G/Zn+1). Therefore xgx−1g−1 ∈ L and we deduce
that xL ∈ Z(G/L). This is a contradiction, and so the result is proven.



7. Let I be the set of matrices in M2(Q[x]/(x2 −1)) of the form

(
a(x+1)+(x2 −1) 0
b(x+1)+(x2 −1) 0

)
.

with a,b ∈ Q. Note that if f ∈ Q[x], then (x−1) divides f (x)− f (1), con-
sequently f (x)(x+1)+(x2 −1) = f (1)(x+1)+(x2 −1) in Q[x]/(x2 −1).

Now we verify that I is a left ideal of Q[x]/(x2 −1). Clearly I is an abelian
group under addition. Since

(
f (x)+(x2 −1) g(x)+(x2 −1)
h(x)+(x2 −1) k(x)+(x2 −1)

)(
a(x+1)+(x2 −1) 0
b(x+1)+(x2 −1) 0

)

=
(

a f (1)(x+1)+(x2 −1) 0
bh(1)(x+1)+(x2 −1) 0

)

we see that I is closed under left multiplication by elements of Q[x]/(x2−1),
and it now follows that I is a left ideal.

Finally we need to show that I is a minimal ideal. Obviously I �= 0 (note
x+1 /∈ (x2 −1)). Suppose J is a nonzero left ideal contained in I. We need
to show that J = I. By multiplying on the left by the matrix

(
0 1+(x2 −1)

1+(x2 −1) 0

)

if necessary, we may assume that I contains a matrix of the form
(

a(x+1)+(x2 −1) 0
b(x+1)+(x2 −1) 0

)

with a �= 0. Then by multiplying on the left by
(

c/a+(x2 −1) 0
d/a+(x2 −1) 0

)

we see that J must be the whole of I and the result follows.



Algebra Prelim Solutions, Winter 2003

1. We have f (x) = (x+ 1)(x4 + 3); since −1 ∈ Q, the splitting field for x4 +
3 is also K. Let ω = (1+ i)/

√
2, a primitive 8th root of 1. Then ω4 =

−1 and we see that the four roots of x4 + 3 are ωr 4
√

3 for r = 1,3,5,7.
Therefore K = Q(ω 4

√
3,ω3 4

√
3,ω5 4

√
3,ω7 4

√
3). Since x4 + 3 is irreducible

by Eisenstein for the prime 3, we see that [Q(ω 4
√

3) : Q] = 4. Let γ denote
complex conjugation. Since x4+3 is a polynomial with real coefficients, we
see that γ ∈ Gal(K/Q). Thus 4

√
12 ∈ K, because 4

√
12 = ω

4
√

3+ γ(ω 4
√

3).
Now 4

√
12 satisfies x4−12, which is irreducible by Eisenstein for the prime

3. Therefore [Q( 4
√

12) : Q] = 4. Note that Q( 4
√

12) 6= Q(ω 4
√

3), because
the former is contained in R while the latter is not. We deduce that K 6=
Q(ω 4
√

3). Also i=ω3 4
√

3/ω
4
√

3, which shows that i∈K. Since ω2r+1 4
√

3=
irω 4
√

3, we conclude that K =Q(i,ω 4
√

3). Therefore [K : Q(ω 4
√

3)] = 2 and
hence [K : Q] = 8.

Of course a consequence of this is that x4+3 remains irreducible over Q(i).
Let θ ∈ Gal(K/Q(i)) satisfy θ(ω 4

√
3) = ω3 4

√
3. Then θ(ω3 4

√
3) = ω5 4

√
3,

θ(ω5 4
√

3) = ω7 4
√

3 and θ(ω7 4
√

3) = ω
4
√

3, in particular θ has order 4. Fur-
thermore γθγ(i) = i and γθγ(ω 4

√
3) =ω7 4

√
3, which shows that γθγ = θ−1.

We now see that Gal(K/Q) = {θ rγs | r = 0,1,2,3, s = 0,1} and is isomor-
phic to the dihedral group of order 8.

2. This is false. Consider the group Z4⊕Z2, where Zn denotes the integers
modulo n. Then (2,0) and (0,1) both have order 2 (when we write (2,0),
the 2 means 2 modulo 4). Suppose θ is an automorphism such that θ(2,0)=
(0,1). Then 2(θ(1,0)) = θ(2,0) = (0,1). On the other hand 2(θ(1,0)) is
of the form 2(a,b) = (2a,0), and so cannot be equal to (0,1). Thus we have
a contradiction and we conclude that there is no such θ .

3. Let n denote the number of Sylow 2-subgroups. Since 2002 = 2 ∗ 1001,
we see that a Sylow 2-subgroup has order 2 and n

∣∣ 1001. Therefore each
Sylow 2-subgroup has exactly one element of order 2 and n is odd. Also
any element of order 2 is in exactly one Sylow 2-subgroup, consequently
the number of elements of order 2 is n. Since the number of elements in the
set {h ∈ H | h2 = e} is n+ 1 (the “+1” for the identity), we conclude that
this number is even.

However a better proof is to pair each h ∈ H with h−1. If h2 6= e, then
{h,h−1} has order 2, otherwise {h,h−1} has order 1. It follows that the



number of elements h ∈ H such that h2 6= e has even order and since |H| is
even, it follows that the number of elements h ∈ H such that h2 = e is even,
as required.

4. Suppose G is nonabelian, so there exist a,b ∈ G such that ab 6= ba. Set
g = aba−1b−1, so g 6= 1. By hypothesis there exists K�G such that G/K is
abelian and g /∈ K. But KaKb(Ka)−1(Kb)−1 = Kg 6= 1, which shows that
KaKb 6= KbKa and hence G/K is nonabelian, which is a contradiction. The
result follows.

5. Certainly if A and B are commutative rings, then A×B is also a commutative
ring. We need to show that if A and B are in addition Noetherian, then so
is A×B. Suppose I1, I2, . . . is an ascending chain of ideals in A×B. Then
(0×B)∩ I1,(0×B)∩ I2, . . . is an ascending chain of ideals in 0×B. But
0×B∼= B and B is Noetherian, hence there exists a positive integer M such
that 0×B∩ In = 0×B∩ IM for all n ≥ M. Also (A×B)/(0×B) ∼= A as
rings, so (A×B)/(0×B) is Noetherian. Therefore the ascending chain of
ideals (0×B)+ I1,(0×B)+ I2, . . . of (A×B)/(0×B) becomes stationary,
that is there is a positive integer N such that (0×B)+ In = (0×B)+ IN for
all n ≥ N. Let P be the maximum of M and N. We claim that In = IP for
all n ≥ P. Obviously In ⊇ IP for all n ≥ P, so we need to show the reverse
inclusion. Let x ∈ In. Since (0×B)+ In = (0×B)+ IP, we may write x =
b+ i where b ∈ 0×B and i ∈ IP. Since x, i ∈ In, we see that b ∈ (0×B)∩ In
and hence b ∈ (0×B)∩ IP, because (0×B)∩ In = (0×B)∩ IP. This shows
that x ∈ IP and hence In = IP for n≥ P.

6. Obviously P/IP is an R/I-module; we need to prove that it is projective.
Suppose we are given an R/I-epimorphism µ : M � N of R/I-modules and
an R/I-map θ : P/IP→ N. We need an R/I-map β : P/IP→M such that
θ = µβ . Let π : P→ P/IP denote the natural epimorphism. We can also
view M and N as R-modules, and then µ is also an R-map. Since P is a
projective R-module, certainly there exists an R-map α : P→ M such that
µα = θπ . If i ∈ I and p ∈ P, then α(ip) = iα p ∈ IM = 0. Therefore IP⊆
kerα and we deduce that α induces an R/I-map β : P/IP→M satisfying
βπ = α . Then µβπ = µα = θπ and since π is onto, we conclude that
µβ = θ .

Sketch of alternate proof. Since P is projective, we may write P⊕Q∼= F for
some R-modules Q,F with F free. Then P/IP⊕Q/IQ ∼= F/IF and since
F/IF is a free R/IR-module, we see that P/IP is a projective R/IR-module.



7. (a) Certainly k+ I is a subgroup of k[x] under addition; we need to show
that it is closed under multiplication. However if a,b ∈ k and i, j ∈ I,
then (a+ i)(b+ j) = ab+(a j+ ib+ i j)∈ k+ I, because a j, ib, i j ∈ I by
using I � k[x].

(b) Let R = k + I. We first prove that k[x] is finitely generated as an R-
module. We may write I = ( f ) where f is a monic polynomial in k[x].
Let d denote the degree of f and set M = R+Rx+ · · ·+Rxd , an R-
submodule of k[x]. We prove by induction on n that xn ∈M for all n≥ 0.
This is obviously true if n = 0, because 1 ∈ R. It is also obviously true
for d = 0 because then R = k[x]. Now suppose d,n > 0. Then by the
division algorithm xn = q f + r, where q,r ∈ k[x] and degr < n. Then
we must have degq < n. Therefore by induction q,r ∈M, and it follows
that xn ∈M as required.
Now k[x]⊗R k[x]/I is an R-module and also an R/I-module. Since k[x] is
a finitely generated R-module, we see that k[x]/I is also a finitely gener-
ated R-module, and we deduce that k[x]⊗R k[x]/I is a finitely generated
R/I-module. Since R/I = (k+ I)/I ∼= k/k∩ I = k/0 ∼= k, we conclude
that k[x]⊗R k[x]/I is a finitely generated k-module and the result fol-
lows.



Algebra Prelim Solutions, Fall 2005

1. Let G be a group of order 18. The number of Sylow 3-subgroups is con-
gruent to 1 mod 3 and divides 18/9 = 2. Therefore G has a unique Sylow
3-subgroup H of order 9, and H � G. Also G has an element x of order
2. Then G ∼= H � 〈x〉. Since groups of order p2 are prime, H is an abelian
group. For a positive integer n, let Cn denote the cyclic group of order n.
We have three cases to consider.

(a) The conjugation action of x on H is trivial, that is xhx−1 = h for all
h ∈ H and we have G ∼= H ×〈x〉. There are two isomorphism classes
for H, namely C9 and C3×C3. It follows that there are two isomorphism
classes for G in this case.

(b) The conjugation action of x on H is nontrivial and H ∼= C9. There is
exactly one automorphism of H of order two, namely h �→ h−1 for h ∈
H. It follows that there is exactly one isomorphism class for G in this
case.

(c) The conjugation action of x on H is nontrivial and H ∼= C3 ×C3. Either
x acts by inversion on H and this gives us one isomorphism class for
G. Otherwise we may write H = A×B where A,B ∼= C3, x centralizes
A and x acts by inversion on B. This yields a second isomorphism class
for G.

We conclude that there are 2 + 1 + 2 = 5 isomorphism classes for a group
of order 18.

2. First suppose that A is Noetherian. Then A[X ,Y ] is Noetherian by Hilbert’s
basis theorem. Since factor rings of Noetherian rings are Noetherian, we
see that A[X ,Y ]/(X2 −Y 2) is also Noetherian.

Conversely suppose A[X ,Y ]/(X2−Y 2) is Noetherian. Since (X ,Y )⊃ (X2−
Y 2), we see that A[X ,Y ]/(X ,Y ) is also Noetherian. But A[X ,Y ]/(X ,Y )∼= A,
because the homomorphism

X �→ 0, Y �→ 0: A[X ,Y ] → A

is surjective with kernel (X ,Y ), and the result follows.

3. Let 0 	= u∈F2 and let S denote the stabilizer in GLn(F) of the one-dimensional
subspace Fu. We need to prove that S is not simple. Set D = {diag( f , f ) |



0 	= f ∈ F}, where diag( f , f ) indicates the invertible matrix in GL2(F)
which has f ’s on the main diagonal and zeros elsewhere. Then D is a cen-
tral subgroup of S and since |F| ≥ 3, it is not 1. Let v be an element of F2

which is not in Fu. Then {u,v} is a basis of F2 and so we can define a
linear isomorphism of F2 by u �→ u, v �→ u + v. This yields an element of
S \D. Thus D is a normal subgroup of S which is neither 1 nor D, and we
conclude that S is not simple.

4. Clearly M cannot be free of rank 0. Nor can M be free of rank at least 2,
because if a,b ∈ M were part of a free R-basis for M, we would have 0 	=
ab ∈ aR∩ bR, which would mean that {a,b} was not linearly independent
over R. Therefore the only possibility of M being free is that it is free of
rank 1. This means we can write 2R+XR = cR for some c ∈ R. There are
several methods to show that this is not possible; we present one of them.

Since 2 ∈ cR, we see that c is a polynomial of degree zero and thus c = ±1
or ±2. Without loss of generality, we may assume that c = 1 or 2. Since X ∈
cR, we may write X = c f for some polynomial f ∈ Z[X ]. By considering
the leading coefficient (degree 1) of f , we see that c = 1 and we deduce that
there exist g,h ∈ R such that 2g+Xh = 1. This is not possible because the
left hand side has constant coefficient ∈ 2Z and in particular cannot be 1. It
follows that M is not a free R-module.

5. Since σa− a ∈ F for all σ ∈ G, we see that (∑σ∈G σa)− |G|a ∈ F . Now
τ∑σ∈G σa = ∑σ∈G σa for all τ ∈ G. Since K/F is a Galois extension with
Galois group G, it follows that ∑σ∈G σa ∈ F and we deduce that |G|a ∈ F .
We conclude that a ∈ F because F has characteristic zero.

6. Set m =
√

n. A finite dimensional simple algebra over an algebraically
closed field is isomorphic to a full matrix ring over the field. In this situ-
ation, this means S is isomorphic to Mm(C), the m×m matrices over C.
Let ei j (1 ≤ i, j ≤ m) denote the matrix units of Mm(C), so ei j has 1 in the
(i, j)th position and zeros elsewhere. Then Seii is the ith column of S and
we see that S = Se11 ⊕ Se22 ⊕·· ·⊕ Semm. All that remains to prove is that
Seii is irreducible for all i. Without loss of generality, we may assume that
i = 1. Suppose M is a nonzero R-submodule of Se11. The general element
α of Se11 is of the form ∑i aiei1. If this is a nonzero element of M, then
ai 	= 0 for some i, 1 ≤ i ≤ m, and we deduce that e11 = a−1

i e1iα ∈ M. Thus
M = Se11 and the result follows.



7. The map f �→ f ⊗ 1: F → F ⊗F L is an algebra monomorphism with im-
age F ⊗ 1. Furthermore, if {λ1, . . . ,λn} is a basis for L over F , then {1⊗
λ1, . . . ,1⊗λn} is a basis for F ⊗F L over F ⊗1. It follows that F ⊗F L is a
field extension of degree n over F and since F is algebraically closed, we
deduce that n = 1. Therefore L = F as required.



Algebra Prelim Solutions, Fall 2007

1. Let G be a simple group of order 168. The number of Sylow 7-subgroups
of G is congruent to 1 mod 7 and divides 168/7 = 24. This number cannot
be 1 because that would mean that G has exactly one Sylow 7-subgroup,
consequently G would have a normal Sylow 7-subgroup and we would de-
duce that G is not simple, contrary to the hypothesis. It follows that G has
exactly 8 Sylow 7-subgroups. Also by Lagrange’s theorem, two distinct Sy-
low 7-subgroups must intersect in the identity. Since any element of order
7 is contained in a Sylow 7-subgroup and there are 6 elements of order 7
in each Sylow 7-subgroup, we deduce that there are 8∗6 = 48 elements of
order 7 in G.

2. Note that ρ = i. The following are easy to check: Q(
√

2) �= Q
√

3. Thus
Q(

√
2,
√

3) is a Galois extension of degree 4 over Q. Let K be the splitting
field of x4 −2 over Q and let L be the splitting field of x2 −3 over Q. The
roots of x4 −2 are ± 4

√
2, ±i 4

√
2, hence K is a Galois extension of degree 8

over Q, and has maximal real subfield of degree 4 over Q, namely Q( 4
√

2).
Since this subfield is not normal over Q, we deduce that Q(

√
2,
√

3) is not
contained in K. Therefore K ∩L = Q, and we deduce that K ∩L(i) = Q(i).
The Galois group of L/Q has order two and is therefore isomorphic Z/2Z.
Also the Galois group of K/Q is a group of order 8 and not every sub-
group is normal, because Q( 4

√
2) is not normal over Q. and we deduce

that this group is isomorphic to the dihedral group D8 of order 8. Finally
Gal(K/Q(i))∼= Z/4Z, being generated by the automorphism determined by
4
√

2 �→ i 4
√

2.

(a) The Galois group of (x4−2)(x2−3) over Q is Gal(K/Q)×Gal(L/Q)∼=
D8 ×Z/2Z. The Galois group of (x4 −2)(x2 −3) over Q(i) is
Gal(K/Q(i))×Gal(L(i)/Q(i)) ∼= Z/4Z×Z/2Z.

(b) Q(i) is Galois over Q because it is the splitting field of x2 +1 over Q.

(c) Yes, because Gal(LK/Q(i)) has nontrivial normal subgroups.

3. Since 0 → A
f→ B

g→ C → 0 is split exact, there exists h : B → A such that
h f = 1A, the identity map on A. Then (1D ⊗h)(1D ⊗ f ) = 1D ⊗h f = 1D ⊗
1A = 1. Thus if x∈D⊗R A and (1D⊗ f )(x) = 0, then (1D⊗ f )(1D⊗h)(x) =
0, consequently 1(x) = 0 and we conclude that x = 0, as required.



4. Certainly S−1R is an integral domain, since it is a subring of the field of
fractions of R, so we need to prove that every ideal of S−1R is principal. Let
I �S−1R and let J = I∩R. Then J �R, so J = xR for some x∈ R. Obviously
xS−1R ⊆ I, so it remains to prove that xS−1R ⊇ I. However if y ∈ I, then
sy ∈ I∩R = J where s ∈ S and hence we may write sy = xr for some r ∈ R.
Therefore y = s−1(sy) = xs−1r ∈ xS−1R and the result is proven.

5. Let G be a group of order 24 · 112. The number of Sylow 11-subgroups is
congruent to 1 mod 11 and divides 16, consequently there is exactly one
Sylow 11-subgroup; call this Sylow 11-subgroup H. Then H � G. Now
G/H and H are p-groups for p = 2 and 11 respectively, and p-groups are
solvable (even nilpotent). However the property of being solvable is closed
under extensions, that is H and G/H solvable implies G is solvable, which
is the required result.

6. (a) Apply Eisenstein’s criterion for the prime 3.

(b) We know that f is irreducible (from (a)) and that g is irreducible (use
Eisenstein for the prime 2). Since Q[x] is a PID, we see that ( f ) and (g)
are maximal ideals of Q[x]. Furthermore ( f ) �= (g), because f and g
are not scalar multiples of each other. It now follows from the Chinese
remainder theorem that Q[x]/( f g)∼= Q[x]/( f )×Q[x]/(g), a product of
two fields. The dimension over Q of these two fields are the degrees of
the polynomials f and g, that is 4 and 2 respectively.

7. (a) Since 1 ·0 = 0, we see that 0∈ t(X). Next suppose that x,y∈ t(X). Then
there exist r,s ∈ R\0 such that rx = 0 = sy and we have (rs)(x+y) = 0.
Since rs �= 0 because R is an integral domain, we conclude that x+ y ∈
t(X). Finally suppose that x∈ t(X) and r ∈R. Then there exists s∈R\0
such that sx = 0 and consequently s(rx) = 0. This shows that rx ∈ t(X)
and we have established that t(X) is an R-submodule of X .

(b) Write T = t(X) and let x ∈ t(T ); we want to prove that x ∈ T . Since
x ∈ t(T ), there exists s ∈ R \ 0 such that sx ∈ T , and then there exists
t ∈ R \ 0 such that t(sx) = 0. It follows that (st)x = 0 and since st �= 0
because R is an integral domain, we conclude that x ∈ T as required.

(c) Because t(X/t(X)) is cyclic, t(X/t(X)) ∼= R/I for some I � R. But
t(X/t(X)) = 0 by (b), hence I = 0 and we deduce that X/t(X) ∼= R.
Since R is a projective R-module, 0 → t(X) → X → X/t(X) → 0 splits,
in particular X ∼= t(X)⊕R, as required.



Algebra Prelim Solutions, December 2007

1. (a) By using the elementary divisor decomposition, up to isomorphism,
there are three abelian groups of order p3q, namely Zp3 ×Zq, Zp2 ×
Zp ×Zq, and Zp ×Zp ×Zp ×Zq.

(b) The first group above is generated by one element, while the third re-
quires 3 elements. Therefore G ∼= Zp2 ×Zp×Zq

∼= Zp2 ×Zpq, because
Zp ×Zq

∼= Zpq, as required.

2. We have [k(α) : k] = deg f and [K : k(α)][k(α);k] = [K : k]. Thus deg f | [K :
k] and the result follows.

3. By Gauss’s lemma, f is irreducible in Q[x]. Since Q[x] is a PID, this tells us
that f Q[x] is a maximal ideal of Q[x]. The result follows.

4. A4 is a normal subgroups of S4 and V := {(1),(12)(34),(13)(24),(14)(23)}
is a normal subgroup of A4 (even normal in S4). Since |S4/A4|= 2, |A4|/V =
3, |V |= 4, the groups S4/A4, A4/V and V are all abelian, because groups of
order 2,3 or 4 are abelian. This proves that S4 is solvable.

5. We have a short exact sequence 0→ ker f → P
f→Q→ 0. Since Q is projec-

tive, the sequence splits, so P ∼= Q⊕ ker f . This proves the result, because
direct summands of projective modules are projective.

6. First observe that Q⊗R Q ∼= Q as Q-modules. To do this, define f : Q×
Q → Q by f (p,q) = pq. Clearly this is R-bilinear, so induces an R-map
g : Q⊗R Q → Q satisfying g(p⊗ q) = pq. Also we can define a Q-map
h : Q→Q⊗R Q by h(q) = q⊗1. Since gh(q) = g(q⊗1) = q, we see that gh
is the identity on Q. Now consider hg(p⊗q) = pq⊗1. Write q = a/b where
a,b∈ R with b �= 0. Then pq⊗1 = pa/b⊗1 = p/b⊗ab/b = pb/b⊗a/b =
p⊗q and it follows that hg is the identity on P⊗Q, because we only need
to check that hg is the identity on the “simple tensors”. Thus h is one-to-one
and onto, and our observation is established.

Now observe that Q⊗Q V ∼= V . Indeed we can define a Q-bilinear map
θ : Q×V → V by θ(q,v) = qv, and this induces a Q-map φ : Q⊗Q V → V
satisfying φ(q⊗ v) = qv. Also we can define a Q-map ψ : V → Q⊗Q V
by ψ(v) = 1⊗ v. Then φψ(v) = φ(1⊗ v) = v, so φψ is the identity on V .
Since ψφ(q⊗v) = ψ(qv) = 1⊗qv = q⊗v and ψφ is the identity on Q⊗QV



provided it is the identity on the simple tensors, we see that ψφ is the identity
on Q⊗Q V , and the result follows.

Note that this proof does not use the hypothesis that V is finite dimensional.

7. Let G denote the Galois group of F over K. Since G is a p-group for the
prime p = 11, it has a sequence of normal subgroups 1 = G4 �G3 �G2 �

G1 �G0 = G, such that Gi �G and |Gi+1/Gi| = 11 for all i. Now let Ki be
the fixed subfield of Gi in K, for i = 0,1, . . . ,4. Then Ki is a Galois extension
of F for all i, because Gi �G. Since [Ki : Ki−1] = |Gi−1/Gi|= 11, the result
is proven.

8. Suppose R/I is a projective R-module. Then we may write R = I ⊕ J for
some R-submodule J of R. Of course R-submodules of R are the same as
ideals, so J is an ideal of R. Since M is the unique maximal ideal of R and
I ⊆ M, we must have J = R. But then J ⊇ I and thus I + J is not a direct
sum. We now have a contradiction and the result follows.



Algebra Prelim Solutions, August 2009

1. Let s ∈ S and let H denote the stabilizer of s in G. Since G acts transitively
on S, we have |G| = pn|H|, hence pn

∣∣ |G|/|P∩H| and we deduce that
pn

∣∣ |P|/|P∩H, because p - |G|/|P|. Therefore pn divides the size of the
orbit of s under P, because P∩H is the stabilizer of s in P. Thus we must
have the orbit of s under P is the whole of S and the result is proven.

2. Let G be a simple group of order 448. The number of Sylow 2-subgroups
of G is congruent to 1 mod 2 and divides 7, and cannot be 1 because G is
not simple. Therefore G has exactly 7 Sylow 2-subgroups and because G
is simple, we deduce that G is isomorphic to a subgroup of A7. This is not
possible because 448 does not divide |A7|, so the result is proven.

3. (a) If x2 +1 was not irreducible, then it would have a root in Z/3Z. This is
not the case, because x2 = 0 or 1 mod 3.

(b) We have an epimorphism Z/3Z[x] � Z[i]/3Z[i] determined by x 7→ i
whose kernel contains x2 +1. Thus from part (a), we see that Z[i]/3Z[i]
is a field and hence 3 is a prime in Z[i]. We can now apply Eisenstein’s
criterion for the prime 3. Since 3 divides 3 and −9, but 32 does not
divide 12 in Z[i], the result is proven.

4. By the structure theorem for finitely generated modules over a PID, there is
an R-submodule K of M containing N such that M/K is a torsion module
and K/N is a free module, so there exists 0 6= r ∈ R such that Mr ⊆ K.
Since K/N is free, there exists a submodule L of K such that L+N = K and
L∩N = 0. The result follows.

5. Let b ∈ B. Since f is onto, there exists a ∈ A such that f (a) = b. Now set
k(b) = g(a). If we had instead chosen a′ ∈ A such that f (a′) = b, then

jg(a′) = h f (a′) = h(b) = h f (a) = jg(a)

and we deduce that g(a′) = g(a) because j is one-to-one; in other words, the
definition of k does not depend on the choice of a. Next we need to show that
k is an R-module homomorphism. Suppose b,b′ ∈ B and choose a,a′ ∈ A
such that f (a) = b and f (a′) = b′. Then f (a+a′) = b+b′. Thus k(b+b′) =
g(a + a′) = g(a) + g(a′) = k(b) + k(b′). Also if r ∈ R, then f (ar) = br,
consequently k(br) = g(ar) = g(a)r = k(b)r and we have shown that k is



an R-module homomorphism. Clearly k f = g. Furthermore jk f = jg = h f
and since f is onto, we deduce that jk = h. Finally k is unique because j is
one-to-one.

6. Solving x4− 2x2 + 9 = 0, we find that x2 = 1± 2
√

2i and we deduce that
the roots of x4− 2x2 + 9 are ±

√
2± i. It follows that the splitting field

is Q[i,
√

2]. Since this has degree 4 over Q, we see that the Galois group
has order 4. The automorphisms induced by i 7→ −i,

√
2 7→
√

2 and i 7→ i,√
2 7→ −

√
2 both have order 2 and we conclude that the Galois group is

isomorphic to Z/2Z×Z/2Z.

7. We can define an R-bilinear map R/I×R/J→ R/(I +J) by (r+ I,s+J) 7→
rs. This induces an R-module map θ : R/I⊗R R/J→ R/(I + J) satisfying
θ((r+ I)⊗(s+J)) = rs+ I +J. Now define φ : R→ R/I⊗R R/J by φ(r) =
(r+ I)⊗R (1+J). Then φ is an R-module map and clearly I ⊆ kerφ . Also if
j∈ J, then φ( j) = ( j+I)⊗(1+J) = (1+I)⊗( j+J) = 0. It follows that I+
J ⊆ kerφ and we deduce that φ induces an R-module map ψ : R/(I + J)→
R/I⊗R R/J such that ψ(r + I + J) = (r + I)⊗ (1 + J). Note that θψ(r +
I + J) = θ((r + I)⊗ (1+ J)) = r + I + J so θψ is the identity map. Finally
ψθ(r + I)⊗ (s+ J) = ψ(rs+ I + J) = (rs+ I)⊗ (1+ J) = (r + I)⊗ (s+ J)
and we conclude that ψθ is also the identity map. This shows that θ and ψ

are isomorphisms, and the result is proven.



Algebra Prelim Solutions, August 2011

1. First we write 380 as a product of prime powers, namely 22∗5∗19. Suppose
by way of contradiction G is a simple group of order 380. The number of
Sylow 19-subgroups is congruent to 1 mod 19 and divides 20, hence is 1
or 20. But 1 is ruled out because then G would have a normal subgroup of
order 19, which would contradict the hypothesis that G is simple. Therefore
G has 20 Sylow 19-subgroups. Next we consider the Sylow 5-subgroups.
The number is congruent to 1 mod 5 and divides 4∗19. Thus there are 1 or
76 Sylow 5-subgroups.

Now we count elements. If P and Q are distinct Sylow 19-subgroups, then
P∩Q 6= P and P∩Q 6 P. Since |P∩Q| divides |P| = 19 by Lagrange’s
theorem, we deduce that P∩Q = 1. It follows that G has at least 20 ∗
18 = 360 elements of order 19. Similarly two distinct Sylow 5-subgroups
intersect trivially and we deduce that G has at least 76∗4 = 304 elements of
order 5. We conclude that G has at least 360 +304 = 664 > 380 elements,
which is a contradiction. Therefore there is no simple group of order 380.

2. Let ω = 2̄ ∈ F7, so ω 6= 1 = ω3. We have ( f − g)( f −ωg)( f −ω2) = h3.
Since f ,g are coprime, we see that f − g, f −ωg, f −ω2g are pairwise
coprime. Now use the fact that k[x1, . . . ,xn] is a UFD; remember that the
units of k[x1, . . . ,xn] are precisely the nonzero elements of k. Write h =
upr1

1 . . . prm
m where 0 6= u ∈ k, m is a nonnegative integer, pi is prime for all

i, and ri is a positive integer for all i. Since f − g, f −ωg, f −ω2g are
pairwise coprime, we see that if pi divides one of these three polynomials,
then pi doesn’t divide the other two polynomials, and it follows that p3ri

i
is the precise power of pi which divides this polynomial. We deduce that
each of f −g, f −ωg, f −ω2g is of the form uq3 for some unit u and some
polynomial q, and the result follows.

3. We use the structure theorem for finitely generated modules over a PID,
elementary divisor form. We may write M =

⊕
i∈I(R/piR)ei ⊕

⊕
iCi, where

ei ∈ N, I is a finite subset of N, and the Ci are modules of the form R or
R/qhR, where h ∈ N and q is a prime which is not associate to p. This
expresses M in a unique way as a direct sum of indecomposable R-modules.
The hypothesis that pm = 0 6= m implies Rm is not a direct summand of M
tells us that 1 /∈ I. Similarly we may write N =

⊕
i∈J(R/piR) fi ⊕

⊕
i Di,

where fi ∈ N, J is a finite subset of N not containing 1, and the Di are



modules of the form R or R/q f R, where f ∈ N and q is a prime which
is not associate to p. Note that pCi ∼= Ci and pDi ∼= Di for all i. Also
p(R/piR) ∼= R/pi−1R 6= 0 for i ≥ 2. Thus pM ∼=

⊕
i∈I R/pi−1R⊕

⊕
iCi

and pN ∼=
⊕

i∈J R/pi−1⊕R
⊕

i Di, and these expressions are direct sums of
indecomposable modules. Since pM ∼= pN, the uniqueness statement in the
structure theorem for modules over a PID yields I = J and after renumbering
if necessary, Ci ∼= Di for all i. The result follows.

4. Let G denote the Galois group of K over Q. Then |G| = 27 and there is
a one-to-one correspondence between subfields of K and subgroups of G
which is reverse including. Also [Q(α) : Q] = 9 because f is irreducible
with degree 9. Therefore Q(α) corresponds to a subgroup H of order 3.
To find a subfield of Q(α) which has degree 3 over Q, we need to find a
subgroup of order 9 which contains H. Since G is a nontrivial finite 3-group,
it contains a central subgroup Z of order 3. If Z is not contained in H, then
H ∩Z = 1, hence

|HZ|/3 = |HZ|/|Z|= |HZ/Z|= |H/H ∩Z|= |H|= 3

and we see that HZ is a subgroup of order 9 containing H. On the other hand
if Z ⊆ H, then H = Z and hence H � G. Thus G/H is a group of order 9,
and hence has a subgroup of order 3, which by the subgroup correspondence
theorem we may write as K/H, where K is a subgroup of G containing H.
The order of K is 3|H|= 9, which finishes the proof.

5. We note that given a,b ∈ A, there exists n ∈ N and c ∈ A such that pna = 0
and pnc = b. This shows that for a,b ∈ A,

a⊗b = a⊗ pnc = pna⊗ c = 0⊗ c = 0.

Since A⊗A is generated as an abelian group by “simple tensors” a⊗b, we
deduce that every element of A⊗Z A is zero, in other words A⊗Z A = 0.

6. The minimal polynomial divides the characteristic polynomial, so is x, x2

or x3. Also since the minimal polynomial factors into linear factors over k,
the Jordan canonical form for A is defined over k.

If the minimal polynomial is x, then A = 0, so we could take B = 0, since
then B2 = 0 = A.



If the minimal polynomial is x2, then the invariant factors of A are x,x2.
Consider the matrix

C :=

0 0 1
0 0 0
0 0 0

 .

Then C 6= 0 and C2 = 0, so the invariant factors of C are x,x2 and therefore C
is similar to A. Thus it will be sufficient to find a matrix B such that B2 = C;
here we could take B to be 0 1 0

0 0 1
0 0 0

 .

Then B2 = C as required.

Finally suppose A has one invariant factor, which will necessarily be x3.
Then the Jordan canonical form of A is0 1 0

0 0 1
0 0 0

 .

Suppose there is a matrix B such that B2 = A. Then B6 = A3 = 0. Therefore
the minimal polynomial of B divides x6 and since B is a 3 by 3 matrix, we
deduce that the minimal polynomial of B divides x3. Therefore B3 = 0 and
we conclude that A2 = B4 = 0. But

A2 =

0 0 1
0 0 0
0 0 0

 .

which is nonzero, and the result follows.

7. Let K denote the field of fractions of R and let I denote the ideal of K[x1, . . . ,xn]
generated by S. Then Z(S) = {(r1, . . . ,rn) ∈ Rn | f (r1, . . . ,rn) = 0} for all
f ∈ I. By Hilbert’s basis theorem, there is a finite subset T of S which
generates the ideal I. Then Z(S) = Z(T ).



Algebra Prelim Solutions, January 2012

1. Let n = |G|. Then G has an element x of order n. However if H is any
proper subgroup of G, then every element of H has order strictly less than
n. Thus x cannot be in any proper subgroup of G and the result follows.

2. Suppose G be a simple group of order 6435. Then the number of Sylow
5-subgroups is congruent to 1 mod 5 and divides 9 · 11 · 13. Furthermore
this number is not 1 because G is not simple. Therefore this number must
be 11 and it follows that G has a subgroup of index 11. Since G is simple,
we deduce that G is isomorphic to a subgroup of S11 (even A11). This is
not possible because 13, and hence 6435, does not divide 11! = |S11|. We
conclude that there is no simple group of order 6435 as required.

3. Define θ : M2(Q)×M2(Q)→M2(Q) by θ(A,B) = AB. It is easily checked
that θ is an M2(Z)-balanced map. Therefore θ induces a group homomor-
phism

φ : M2(Q)⊗M2(Z) M2(Q)→M2(Q).

It is easy to see that this map is a (M2(Q),M2(Q))-bimodule map. It re-
mains to prove that φ is bijective, and we do this by producing the inverse
map. Define ψ : M2(Q)→M2(Q)⊗M2(Z) M2(Q) by ψ(A) = A⊗ 1. It is
clear that φψ is the identity, so it remains to prove that φψ is the iden-
tity. Since φ and ψ are both group homomorphisms, it will be sufficient to
show that ψφ is the identity on simple tensors, that is ψφ(A⊗B) = A⊗B.
Therefore we need to prove that AB⊗1 = A⊗B.

Choose a positive integer n such that Bn ∈M2(Z). Then

AB⊗1 =
A
n
(Bn)⊗1 =

A
n
⊗Bn =

A
n

n⊗B = A⊗B,

and the result is proven.

4. By the structure theorem for finitely generated modules over a PID, M is
a direct sum of modules of the form R and R/pn where p is a prime in R
and n is a positive integer. If M is nonzero, then it must contain a summand
which is either isomorphic to R or R/pnR, where p is a prime in R. Since
M is injective and R is a domain, rM = M for all r ∈ R \ 0, in particular
pM = M for primes p in R. Thus M cannot contain a summand isomorphic
to R/pnR. On the other hand if M contains a summand isomorphic to R, let



p be a prime in R, which exists because R is not a field. Since pR 6= R, we
see that pM 6= M, a contradiction and the result follows.

5. (a) Obviously Q(ζp)⊆Q(ζ2p), because ζ 2
2p = ζp. On the other hand ζ2p =

−ζp, hence Q(ζ2p)⊆Q(ζp) and the result follows.

(b) Set f (x) = 1 + x2 + · · ·+ x2p−2. Since f (x)(1− x2) = 1− x2p and
ζp,ζ2p 6= ±1, we see that ζp and ζ2p both satisfy f (x). Thus the min-
imal polynomial of both these divides f (x). Now ζp satisfies g(x) :=
1 + x + · · ·+ xp−1. By making the substitution y = x + 1, we see that
g(x) is irreducible in Z[x] by Eisenstein for the prime p. Since deg(g) =
p−1≥ 1, it is also irreducible in Q[x]. It follows that g(x) is the mini-
mal polynomial of ζp over Q. Also by considering the automorphism of
Q[x] induced by x 7→ −x, we see that g(−x) is the minimal polynomial
of ζ2p over Q, so g(−x) divides f (x). It follows that f (x) = g(x)g(−x),
the product of two irreducible polynomials.

6. Set f (x) = x5− 5x− 1. Then f ′(x) = 5x4− 5 = 5(x2 + 1)(x− 1)(x + 1).
Thus f (x) has a maximum at −1, a minimum at 1. Since f (1) > 0 and
f (−1) < 0, we find that f has exactly 3 real roots and 2 complex roots. We
want to prove that f is irreducible (as a polynomial in Q[x]). By Gauss’s
lemma, if f is not irreducible, then we may write f = gh where g,h ∈ Z[x],
degg,degh≥ 1, and g,h are monic. Neither of g,h has degree one, because
±1 is not a root of f . Therefore we may without loss of generality assume
that degg = 3 and degh = 2, say g = x3 + ax2 + bx + c and h = dx + e,
where a,b,c,d,e ∈ Z. By equating coefficients, we find that a + d = 0,
ad + bc + e = 0, ae + bd + c = 0, be + cd = 1, ce = 1. Thus c,e = 1 or
c,e =−1, and we find that a2±a+1 = 0. This last equation has no root in
Z and we conclude that f is irreducible.

Let G denote the Galois group of f over Q. We consider G as a subgroup
of S5 (by permuting the 5 roots of f ). Since f is irreducible and 5 is prime,
we see that G contains a 5-cycle. Also G contains a transposition, namely
complex conjugation. Since S5 is generated by a 5-cycle and a transposition,
we deduce that G∼= S5.

7. (a) We may write the general element of Q[x,y] as f0 + f1y + f2y2 + · · ·+
fnyn, where n is a positive integer and fi ∈Q[x] for all i. Then modulo
the ideal (x3− y2), we may replace y2 with x3 everywhere and we see



that every element of Q[x,y] can be written in the form f + gy +(x3−
y2)h, where f ,g ∈Q[x] and h ∈Q[x,y]. The result follows.

(b) Define a ring homomorphism θ : Q[x,y]→Q[t] by θ(x) = t2, θ(y) = t3

and θ(q) = q for q ∈Q. Then imθ = Q[t2, t3]. Also if h ∈ kerθ , write
h = k + f + yg, where k ∈ (x3− y2), and f ,g ∈ Q[x]. Then θ(h) =
f (t2)+ t3g(t2). Since f (t2) is a polynomial involving only even powers
of t and t3g(t2) is a polynomial involving only odd powers of t, we see
that θ(h) can only be zero if f ,g = 0. It follows that kerθ = (x3−
y2) and the result now follows from the fundamental homomorphism
theorem. Note that we have also proven that if h(x2,x3) = 0, then h ∈
(x3− y2).

(c) Note that t2 and t3 are irreducible in Q[t2, t3] (use unique factorization
in Q[t]). Since t6 = (t2)3 = (t3)2, two different ways of factoring t6, we
see that Q[t2, t3] is not a UFD.

(d) Note that Z (x3− y2) = {(t2, t3) | t ∈ Q}. Indeed (t2, t3) ∈ Z (x3,y2),
because (t2)3− (t3)2 = 0. On the other hand if (p,q) ∈ Z (x3− y2),
write t = q/p (t = 0 if p = 0). Since p3 = q2, we see that p = t2 and q =
t3. Now suppose f is a polynomial vanishing on V . Then f (t2, t3) = 0
for all t ∈Q. Since Q is infinite, we see that f (x2,x3) = 0 and it follows
from (b) that f ∈ (x3− y2). It follows that the coordinate ring Q[V ] of
V is Q[x,y]/(x3− y2)∼= Q[x2,x3] by (b).

(e) Since Q is an infinite field, A1 has coordinate ring Q[x], a UFD. But
Q[V ] is not a UFD by (c), in particular Q[A1] is not isomorphic to
Q[V ]. Since isomorphic affine algebraic sets have isomorphic coordi-
nate rings, we deduce that V is not isomorphic to A1.
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1. We use without further comment the property that a p-subgroup of a group

is a Sylow p-subgroup if and only if it has index in the group prime to p.

First suppose P is a Sylow p-subgroup of G. Then P∩H is a subgroup of
P, so P∩H is a p-subgroup of H. Also P/P∩H ∼= PH/H, hence |H|/|P∩
H|= |PH|/|P|. Furthermore |G|/|P|= |G|/|PH| · |PH|/|P| and we deduce
that |H|/|P∩H| divides |G|/|P|. Since |G|/|P| is prime to p, it follows
that |H|/|P∩H| is also prime to p, which proves that P∩H is a Sylow
p-subgroup of H.

Next, PH/H ∼= P/P∩H, so PH/H is a p-subgroup of G/H. Furthermore
|G|/|P| = |G|/|PH| · |PH|/|P|, and we see that |G|/|PH| is prime to p.
Therefore |G/H|/|PH/H| is also prime to p and it follows that PH/H is
a Sylow p-subgroup of G/H.

Now suppose P∩H and PH/H are Sylow p-subgroups. Since P/P∩H ∼=
PH/H and |P| = |P/P∩H| · |P∩H|, we see that P is a p-group. Finally if
|H|= pax and |G/H|= pby, where x and y are prime to p, then |G|= pa+bxy
and xy is prime to p. This means that a Sylow p-subgroup of G has order
pa+b. But since |P∩H|= pa and |PH/H|= pb, we see that |P|= pa+b and
hence P is a Sylow p-subgroup of G, as required.

2. Suppose G is simple group of order 576. The number of Sylow 2-subgroups
is congruent to 1 mod 2 and divides 9, so has to be 1, 3 or 9. It cannot be
1, because then G would have a normal Sylow 2-subgroup. Nor can it be 3,
otherwise G would be isomorphic to a subgroup of A3. Finally suppose it
is 9. Then G is isomorphic to a subgroup of A9; unfortunately at first sight
this seems possible, because 576 divides |A9|. However the isomorphism
is induced by the representation of G on the 9 left cosets of a Sylow 2-
subgroup P in G. Thus g ∈ G gives the permutation xP 7→ gxP. Then g
stabilizes some xP if and only if g is in some Sylow 2-subgroup. So if g has
order 6, it can be considered as an element of A9 which fixes no points; a
quick check shows that this is not possible and therefore G has no element
of order 6.

Now consider the Sylow 3-subgroups. If P and Q are distinct Sylow 3-
subgroups and 1 6= x ∈ P∩Q, then CG(x) contains P and Q and hence
contains an element of order 2. It follows that G has an element of or-
der 6, which is not possible by the previous paragraph, so distinct Sylow
3-subgroups intersect trivially.



Next the number of Sylow 3-subgroups is 16 or 64. If it is 16, we consider
the representation of G on the left cosets of a Sylow 3-subgroup P. If Q is
another Sylow 3-subgroup, then there is an orbit under Q which has order 3,
which shows that there exists 1 6= q ∈ Q such that q ∈ P∩Q, contradicting
the previous paragraph. Finally if there are 64 Sylow 3-subgroups, then
since two distinct Sylow 3-subgroups intersect in the identity, we can count
elements to show that G has a normal Sylow 2-subgroup.

3. Consider pm + qn. If this is not a unit, then there exists some prime which
divides it, which without loss of generality we may assume is p. Thus p
divides pm +qn, hence p divides qn, which is not possible.

Now let I�R. We want to prove I is a principal ideal, and since 0 is clearly
a principal ideal, we may assume that I 6= 0. Each nonzero element of I
has a factorization upiq j, where u is a unit and i, j are nonnegative integers.
Choose 0 6= x ∈ I such that x = piq j, with i as small as possible, and then
choose 0 6= y ∈ I such that y = pkql , with l as small as possible. We will
show that I = (piql). Clearly I ⊆ (piql). On the other hand pk−i +q j−l is a
unit by the above, hence piql is an associate of y+x and we see that piql ∈ I.
This proves that I = (piql).

4. Note that k[x] is a PID. By the structure theorem for finitely generated mod-
ules over a PID, we may write M∼= k[x]d⊕k[x]/( f1)⊕·· ·⊕k[x]/( fn), where
the fi are monic polynomials, say of degree ai, and fi | fi+1 for all i. Sup-
pose d = 0. Then dimk M = ∑

n
i=1 ai, and then it is clear that if N is a proper

k[x]-submodule of M, then N � M, because dimk N < dimk M. Therefore
d > 0, in particular there is an epimorphism M � k[x]. Since C is a cyclic
k[x]-module, there exists an epimorphism k[x] � C. By composing these
two epimorphisms, we obtain a k[x]-module epimorphism M �C.

5. Let p denote the characteristic of K. Then we may write |K| = pn where
n∈N. Set M =K+⊗ZL×. Then |K+|M = 0 and |L×|M = 0, so if (|K|, |L|−
1) = 1, we see that |M|= 0. Now suppose (|K|, |L|−1) 6= 1. Then p divides
|L|−1. Also K+ ∼= (Z/pZ)n and L× ∼= Z/(|L|−1)Z.

Now we have well defined homomorphisms θ : Z/pZ⊗ZZ/(|L|−1)Z and
φ : Z/pZ→Z/pZ⊗ZZ/(|L|−1)Z determined by θ(x̄⊗ ȳ)= xy and φ(x̄)=
x̄⊗ 1̄, and θφ and φθ are the identity maps. This shows that Z/pZ⊗Z
Z/(|L| − 1)Z ∼= Z/pZ and we deduce that M ∼= (Z/pZ)n. Therefore if
(|K|, |L|−1) 6= 1, it follows that |M|= |K|.



6. Write K ∩L = Q(α1, . . . ,αn), let fi denote the minimum polynomial of αi
over Q, and set f = f1 . . . fn. Let F denote the splitting field of f over Q,
a subfield of C. Since K and L are Galois extensions of Q, all the roots of
all fi lie in both K and L and hence the splitting field of f is contained in
K∩L. Therefore K∩L is the splitting field of f and it follows that K∩L is
a Galois extension of Q.

7. We can split up the given exact sequence into two short exact sequences,
namely 0→ Z→ P→ Y → 0 and 0→ Y → Q→ Z→ 0. Then using the
long exact sequence for Ext in the first variable, we obtain

H1(G,X) = Ext1ZG(Z,X)∼= Ext2ZG(Y,X)∼= Ext3ZG(Z,X) = H3(G,X),

as required.
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1. (a) If x ∈ X , then o(g) is a power of p, and since o(g) = o(xgx−1), we see
that o(g · x) ∈ X . Also g · (h · x) = g · (hxh−1) = ghxh−1g−1 = (gh) · x
for g,h ∈ P. Finally 1 · x = x, and so we have an action.

(b) {z} is an orbit of size 1 if and only if g · z = z for all g ∈ P, if and only
if z is in the center of P.

(c) The size of the orbits divide |P| and therefore are powers of p. Let Z
denote the center of G. By (b), the number of orbits of size 1 is |Z|.
Since p | |G|, we see that p | |P| and hence p | |Z|, because the center of
a nontrivial p-group is nontrivial. The result follows.

2. We prove the result by induction on |G|. We may assume that G 6= 1, be-
cause if G is the trivial group, then G has no maximal subgroups. Let Z de-
note the center of G and first suppose H ⊇ Z. By subgroup correspondence
theorem, H/Z is a maximal subgroup of G/Z. By induction, H/Z �G/Z
and |G/Z

H/Z |= p. Therefore H �G and |G/H|= p.

Now assume that H + Z. Since HZ ≤G and HZ 6= H, we see that HZ = G.
Since the normalizer of H in G contains H and Z, we see that H �G. Since
G/H is a nontrivial p-group, its center Y/H is nontrivial and we see that
Y = G, by maximality of H. Therefore G/H is abelian. But then G/H has
a subgroup K/H of order p, and we must have K = G, again by maximality
of H, and the result is proven.

3. Let I �R. Since R is noetherian, there exist x1, . . . ,xn ∈ R such that I =
(x1, . . . ,xn). Let g denote the greatest common divisor of {x1, . . . ,xn}. Since
g | xi for all i, there exist ri ∈ R such that xi = gri and we see that I ⊆
(g). Also xi/g ∈ R for all i and no prime divides all the xi. Therefore
(x1/g, . . . ,xn/g) = R, in particular there exist si ∈ R such that x1s1/g+ · · ·+
xnsn/g = 1 and hence g = x1s1 + . . .xnsn. Therefore g ∈ I, consequently
I = (g) and it follows that R is a PID, as required.

4. Since M is an injective Z-module over the PID I and q 6= 0, we see that
qM = M. Now let m⊗z be a simple tensor in M⊗ZZ. Since qM = M, there
exists n ∈M such that qn = m and the

m⊗ z = qn⊗ z = n⊗qz = n⊗0 = 0.



Since every tensor is a sum of simple tensors, it follows that M⊗ZZ/qZ=
0.

5. Since M is a finitely generated module over the PID C[x], we may write
M = F⊕T , where F is a free C[x]-module of finite rank and T is a finitely
generated torsion module. Furthermore we may write F =

⊕n
i=1C[x]/(x−

ai)
bi for some integers n,bi and ai ∈ C. First suppose F = 0. Note that

dimCT < ∞, so dimCM < ∞, in particular no such N can exist (dimCM =
dimCN⇒M ∼= N as C-modules).

Therefore we may assume that F 6= 0. Now choose any c∈C with c 6= ai for
all i. By the Chinese remainder theorem (x− c)T = T . Also (x− c)F ∼= F
and hence (x−c)M ∼= M. Finally F =C[x]m for some m ∈N, consequently
(x− c)F = (x− c)C[x]m and we deduce that (x− c)F 6= F . Therefore (x−
c)M 6= M and the result follows (in fact there exist infinitely many such c).

6. (a) A polynomial has a degree 1 factor if and only if it has a root. Therefore
a degree 2 polynomial f ∈ F2[x] is irreducible if and only if f (0) =
f (1) = 1. There are only 4 degree 2 polynomials, and it is easy to see
that only x2 + x+1 satisfies this criterion.

(b) If g := x5 + x3 + 1 is not irreducible, it has a factor of degree 1 or 2.
But g(0) = g(1) = 1 and x2 + x+ 1 does not divide g. Therefore g is
irreducible and it follows that [F2(α) : F] = 5. If h := x4 + x + 1 is
not irreducible, it has a factor of degree 1 or 2. But h(0) = h(1) = 1
and x2 + x+ 1 does not divide h. Therefore h is also irreducible and it
follows that [F2(β ) : F2] = 4. Since 4 and 5 are coprime, we deduce
that [F2(α,β ) : F2] = 4 ·5 = 20.

(c) Since all field extensions involving finite fields are Galois extensions,
K = F2(α,β ). Also we know that the Galois group is cyclic with order
the degree of the extension. Therefore Gal(K/F2)∼= Z/20Z.

7. First we compute the character table for S3. There are three conjugacy
classes in S3, and representatives are 1, (1 2) and (1 2 3). There is the trivial
representation with character χ1 defined by χ1(x) = 1 for all x ∈ S3. Then
there is the character χ2 which is defined by the sign of a permutation, so
χ2(1) = χ2(1 2 3) = 1 and χ2(1 2) =−1. The number of irreducible char-
acters equals the number of conjugacy classes, so there are exactly three
irreducible characters. The final character χ3 can be determined by the or-
thogonality relations. We have χ3(1) = 2. Since χ an irreducible character



if and only if χ (complex conjugate) is an irreducible character, we see that
χ3(1 2) and χ3(1 2 3) are real numbers. Taking the inner product of the
first two columns of the character table, we obtain χ3(1 2) = 0, and then it
follows easily that χ3(1 2 3) =−1. Thus the character table of S3 is

Class Size 1 3 2
Class Rep 1 (1 2) (1 2 3)
χ1 1 1 1
χ2 1 −1 1
χ3 1 0 −1

Since Z/3Z is an abelian group, all its irreducible characters are of degree
one and correspond to homomorphisms into the cube roots of 1 in C, be-
cause |Z/3Z| = 3. Let ω = e2πi/3, a primitive cube root of 1. Let 0, 1, 2
represent the conjugacy classes 0̄, 1̄, 2̄ respectively. Then the character table
for Z/3Z is

Class Size 1 1 1
Class Rep 0 1 2
ψ1 1 1 1
ψ2 1 ω ω2

ψ3 1 ω2 ω

Now for a finite group of the form G×H, the conjugacy classes of G×H
is C×D, where C is the set of conjugacy classes of G and D is the set of
conjugacy classes of D, and then the irreducible characters are of the form
χiψ j := χi(c)ψ j(d), in particular there are |C| · |D| irreducible characters.
Therefore the character table of S3×Z/3Z is

Class Size 1 1 1 3 3 3 2 2 2
Class Rep (1,0) (1,1) (1,2) ((1 2),0) ((1 2),1) ((1 2),2) ((1 2 3),0) ((1 2 3),1) ((1 2 3),2)
χ1ψ1 1 1 1 1 1 1 1 1 1
χ1ψ2 1 ω ω2 1 ω ω2 1 ω ω2

χ1ψ3 1 ω2 ω 1 ω2 ω 1 ω2 ω

χ2ψ1 1 1 1 -1 -1 -1 1 1 1
χ2ψ2 1 ω ω2 -1 −ω −ω2 1 ω ω2

χ2ψ3 1 ω2 ω -1 −ω2 −ω 1 ω2 ω

χ3ψ1 2 2 2 0 0 0 -1 -1 -1
χ3ψ2 2 2ω 2ω2 0 0 0 -1 −ω −ω2

χ3ψ3 2 2ω2 2ω 0 0 0 -1 −ω2 −ω
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1. (a) Let U denote the upper unitriangular matrices of G and let D denote the
diagonal matrices of G. Then it is easily checked that U �G, |U |= 53,
and that |D|= 43. Therefore G has a normal Sylow 5-subgroup, which
means it is unique and so P5 =U .

(b) Let

Z = {

1 0 z
0 1 0
0 0 1

 | z ∈ F5} and let N = {

1 a 0
0 1 b
0 0 1

 | a,b ∈ F5}.

Then N,Z �G (in fact Z is the center of G) and 1� Z �N �G is a
composition series (in fact a chief series) for G, with corresponding
quotients isomorphic to Z/5Z.

(c) Set P2 = D (note that P2 is a Sylow 2-subgroup of G, however it is
not normal and thus there are other choices for a Sylow 2-subgroup of
G). Then P2 ∩P5 = 1, and since |P2| · |P5| = |G|, it follows that G is
isomorphic to the semidirect product P2 nP5.

2. (a) Let 0 6= u ∈U . Then ud 6= 0 (dth entry of u) for some d, where 1≤ d ≤
n. Let Ei j denote the matrix unit that has 1 in the (i, j)th position and
zeros elsewhere. Then Eidu = udvi, where vi is the column vector that
has 1 in the ith position and zeros elsewhere. It follows easily that U
contains Fn and hence U is simple as required.

(b) Note that S is a direct sum of n copies of V as an S-module. Thus V is
a projective S-module, because it is a direct summand of S. Also if I is
a left ideal of S, then it has a composition series as an S-module such
that each composition factor is isomorphic to V . Since V is projective,
it follows that S is a direct sum (of a finite number) of copies of S and
the result follows.

3. Let ω = −1±i
√

3
2 , a primitive cube root of 1. Then the roots of x12− 1 are

iaωb, where 0≤ a≤ 3 and 0≤ b≤ 2. Also the roots of x2−2x+2 are 1± i.
It follows easily that a splitting field K for f (x) over Q is Q(i,

√
2). Now

Q(i) and Q(
√

3) are Galois extensions of Q of degree 2. Thus [K : Q]≤ 4.
Also i /∈

√
3 and it follows that [K : Q] = 4. We conclude that Gal(K/Q)∼=

Z/2Z×Z/2Z. Let α,β ∈ Gal(K/Q) be defined by αi = −i, α
√

3 =
√

3,
β i = i, β

√
3 =−

√
3. Then α,β have order 2 and Gal(K/Q) = 〈α〉×〈β 〉.



4. Let A be a 5× 5 matrix of order 3. Then its minimal polynomial divides
x3−1 and is not x−1.

(a) We use the rational canonical form to determine the conjugacy classes
in GL5(Q) (assume this is what the question means). Here the minimal
polynomial must be (x− 1)(x2 + x+ 1) and there are two possibilities
for the invariant factors, namely {x− 1,x− 1,x3− 1} and {x2 + x +
1,x3−1}. It follows that there are two conjugacy classes of matrices of
order 3. The corresponding matrices are

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

 and


0 −1 0 0 0
1 −1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0


(b) We use the Jordan canonical form to determine the conjugacy classes

in GL5(C) (again, assume this is what the question means). Since A
has finite order, its Jordan canonical form will be a diagonal matrix
and hence the conjugacy classes will be determined by the eigenvalues
of A (including multiplicities). Let ω = e2πi/3, a primitive cube root
of 1. Now the eigenvalues are the cube roots of 1, there must be 5
eigenvalues, and not all the eigenvalues can be 1 because A is not the
identity. It follows that a set of representatives for the conjugacy classes
over Q are {diag(1, . . . ,ω, . . . ,ω2)}, where there is at most four 1’s, and
otherwise arbitrary.
If one wants to find out precisely how many conjugacy classes, note that
the number without the restriction that there are at most four ones is the
coefficient of x5 in

(1+ x+ x2 + · · ·)3 = (1− x)−3,

that is 7!/(2! · 5!) = 21. Therefore the number of conjugacy classes is
20.

5. (a) Clearly if M = 0, the MP = 0 for all prime ideals P. Conversely suppose
MP = 0 for all prime ideals P and let 0 6= m ∈M; we need to show that
no such m exists. Define I = {r ∈ R | rm = 0}. Then I is a proper ideal
of R and therefore it is contained in a maximal ideal P. Since maximal



ideals are prime, P is a prime ideal. Now MP = 0 tells us that sm = 0
for some s ∈ R\P, and we now have a contradiction as required.

(b) It is obvious that if f : M→ N is surjective then fP : MP→ NP is sur-
jective, so we need to prove the converse. Now localization is an exact
functor, in particular MP→NP→ (M/N)P→ 0 is exact. Therefore if fP
is surjective for all prime ideals P, we see that (M/N)P = 0 for all prime
ideals P, and then we deduce from (a) that M/N = 0. This completes
the proof.

6. Note that a Sylow p-subgroup has order p, in particular a Sylow p-subgroup
is a nontrivial proper subgroup of G. We’ll consider the cases a = 1,2,3
separately. First suppose a = 1. Then the number of Sylow p-groups is
congruent to 1 mod p and divides 2 and we see that there is exactly one
Sylow p-subgroup. Thus the Sylow p-subgroup is normal and we see that
G is not simple.

Next suppose that a = 2. Then the number of Sylow p-groups is congruent
to 1 mod p and divides 4 and we see that there is exactly one Sylow p-
subgroup unless p = 3 and we conclude that G is not simple. On the other
hand if p = 3 and G is simple, then G is isomorphic to a subgroup of A3
because G has a subgroup of index 3, namely a Sylow 2-subgroup. This is
clearly not possible because |G| = 12 and |A3| = 3. We deduce that in all
cases, G is not simple.

Finally suppose that a = 3. Then the number of Sylow p-groups is congru-
ent to 1 mod p and divides 8 and we see that there is exactly one Sylow
p-subgroup unless p = 3 or 7. If p = 3, then the Sylow 2-subgroup has
index 3 in G, so if G is simple, we see that G is isomorphic to a subgroup
of A3. This is not possible because |G| = 24 and |A3| = 3. Now suppose
that p = 7. Then the number of Sylow 7-subgroups is congruent to 1 mod 7
and divides 8. If there is 1, then the Sylow 7-subgroup is normal, so if G is
simple, then there are 8 Sylow 7-subgroups. Since two distinct subgroups
of order 7 intersect in the identity, we see that there are 48 elements of order
7 in G. Also if the Sylow 2-subgroup is not normal, there are at least 9 ele-
ments of order a power of 2, so G has at least 48+9 = 57 elements, which
is not possible. We conclude that in all cases, G is not simple.

7. It is obvious that each statement implies the next, because at each stage
given a solution, we use the images of that solution for the next stage.



(c) implies (b). Write n = pe1
1 pe2

2 . . . ped
d , where the pi are distinct primes,

and d,ei ∈ N. Suppose we have solutions (a1,i, . . .am,i) in Z/pei
i Z for all i.

By the Chinese remainder theorem, we may choose a1, . . . ,am ∈Z/nZ such
that ai ≡ ai j mod Z/pei

i Z for all i. Then (a1, . . . ,am) is a solution in Z/nZ.

(c) doesn’t imply (a). Consider the polynomial f (x) = (x2 + x+ 1)(x3−
7)(x5− 2). Clearly f has no root in Z. We need to show that f has a root
in Z/pnZ, for all primes p and n ∈ N. Recall that the multiplicative group
U(pn) of nonzero elements of Z/pnZ has order pn−1(p− 1). If 3 | p− 1,
then U(pn) has an element α of order 3. If α ≡ 1 mod p, then α pn

= 1
which is not the case. It follows that α−1 is a unit Z/pnZ and since (α−
1)(α2+α +1) = 0, we deduce that α is a root of x2+x+1 and hence also a
root of f . On the other hand if 3 | p−2, then (3, |U(pn)|)= 1 and 7∈U(pn),
and therefore there exists β ∈U(pn) such that β 3 = 7. It again follows that
f has root in Z/pnZ. If p = 3, then 2 ∈ U(3n) and (|U(3n),5) = 1 and
therefore there exists γ ∈U(3n) such that γ5 = 2. We have now shown that
f (x) has a root in Z/pnZ for all primes p and all n ∈ N.

(d) doesn’t imply (c). Consider the polynomial f (x) = (x2 +x+1)(x3−2).
We first show that f has a root in Z/pZ for all primes p. If 3 | p− 1, then
U(p) has an element of order 3 and we see that x2 + x+ 1 and hence also
f (x) has a root. On the other hand if 3 | p−2 and p 6= 2, then (|U(p)|,3) = 1
and since 2 ∈ U(p), we find that x3− 2 and hence also f (x) has a root.
Finally f (0) = 0 in Z/2Z and f (1) = 0 in Z/3Z, and we have now shown
that f has a root in Z/pZ for all primes p. However f (x) 6= 0 for all x ∈
Z/4Z (just plug in x = 0,1,2,3).
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1. (a) The number of Sylow 5-subgroups is congruent to 1 mod 5 and divides
48, so the possibilities are 1, 6 and 16. However G is simple, so 1 is not
possible, nor is 6 because then G would be isomorphic to a subgroup of
A6 which has order 360, but |G| does not divide 360. Therefore G has
exactly 16 Sylow 5-subgroups, which means that G has a subgroup of
order 240/16= 15. Let H be a group of order 15. The number of Sylow
3-subgroups is congruent to 1 mod 3 and divides 5, so there is a unique
Sylow 3-subgroup A which must be normal. Similarly the number of
Sylow 5-subgroups is congruent to 1 mod 5 and divides 3, so there is
a unique Sylow 5-subgroup B which must be normal. Since A∩B = 1
and AB = H, it follows that H ∼= A×B, so H is an abelian group of
order 15 and it follows from the structure theorem for finitely generated
abelian groups that H is cyclic.

(b) From (a), we see that the normalizer of a Sylow 3-subgroup has a sub-
group of order 15, and we deduce that the number of Sylow 3-subgroups
divides 240/15 = 16. Therefore number of Sylow 3-subgroups is con-
gruent to 1 mod 3 and divides 16, so the possibilities are 1, 4 and 16.
However 1 and 4 are not possible because G is simple. Therefore G has
exactly 16 Sylow 3-subgroups. Since two distinct Sylow 3-subgroups
intersect in the identity, we conclude that G has exactly 32 elements of
order 3.

2. (a) Since each Ii is principal, there exist ai ∈ Ii such that Ii = (ai) for all
i ∈ N. Write a1 = up1 . . . pd where u is a unit and the pi are primes.
Since (ai)⊆ (ai+1), we see that ai+1 divides ai for all i. But R is a UFD,
so either ai and ai+1 are associates in which case (ai) = (ai+1), or ai+1
is divisible by at least one fewer prime of the primes in {p1, . . . , pd}
than ai. The result follows.

(b) Note that if I is an ideal generated by finitely many elements a1, . . . ,ad
where d ≥ 2, then (ad−1,ad) is principal, so is equal to (b) for some
b ∈ R and then I = (a1, . . . ,ad−2,b). Thus I can be generated by d−
1 elements and it follows by induction on d that I is principal. Now
let I be an arbitrary ideal. If I is not finitely generated, then we can
find an infinite sequence a1,a2, · · · ∈ I such that an+1 /∈ (an). Set In =
(a1, . . . ,an). Then In is a principal ideal for all n because it is finitely
generated. This contradicts (a).



3. (a) This is true. Since P is projective, we may write P⊕Q = F , where F is
a free S-module. Then

(R⊗S P)⊕ (R⊗S Q)∼= R⊗S (P⊕Q)∼= R⊗S F.

Now R⊗S S∼= R as left R-modules (via the map induced by r⊗ s 7→ rs,
which has inverse r 7→ r⊗1). If F is free on X , then R⊗S F is free on
1⊗x, so R⊗S P is a direct summand of the free R-module R⊗S F . This
proves that R⊗S P is a projective R-module.

(b) Let F be a field (e.g. Q), let S = F and let R = F [x]. Then S is an injec-
tive S-module (over a field all modules are both injective and projective;
this is just a consequence of the fact that every subspace has a direct
complement). On the other hand R⊗S S ∼= R (see above). This is not
injective; consider the F [x]-submodule xF [x] of F [x]. The map f 7→ x f
show that F [x] ∼= xF [x], so if xF [x] was injective, then xF [x] would be
also and we would conclude that xF [x] is a direct summand of F [x],
say F [x] = xF [x]⊕K, where K is an ideal of F [x]. Since xF [x] 6= F [x]
(because xF [x] consists of polynomials of degree at least 1), we see that
K 6= 0. Let 0 6= k ∈ K. Then 0 6= xk ∈ xF [x]∩K, which contradicts the
direct sum property. Therefore F [x] is not an injective F [x]-module, as
required.

4. We use the structure theorem for finitely generated modules over a PID,
elementary divisor form. We may write

M ∼= Rd⊕
⊕

i

(R/Rqi)
di

N ∼= Re⊕
⊕

i

(R/Rqi)
ei

where d,e,di,ei ≥ 0, the qi are distinct prime powers in R, and uniquely so
apart from the possibility that some of the d,e,di,ei = 0. Since M3 ∼= N2,
we deduce from uniqueness that 3d = 2e and 3di = 2ei for all i. Therefore
d and all di are divisible by 2 and we may set P = Rd/2⊕

i(R/Rqi)
di .

5. (a) Since A is similar to A2, there exists an invertible matrix X such that
XAX−1 = A2 and we see that XAmX−1 = A2m for all m ∈ N. Then for
n ∈ N, we have

XnAx−n = Xn−1A2X−n+1 = Xn−2A4X2−n = · · ·= A2n,

which proves that A is similar to A2n.



(b) We show that the Jordan canonical form J for A is a diagonal matrix,
which will prove the result because J is similar to A. Since A is similar
to A2, we see that J is similar to J2 and by part (a), we deduce that J
is similar to J2n

for all n ∈ N. Choose n greater than the size of the
matrix A and set e = 2n. We show that Je is a diagonal matrix. Let
K = J(d,a) be a Jordan block of A, that is a d× d matrix with a’s on
the main diagonal and 1’s on the superdiagonal. Then we may write
K = aI+N where I is the identity matrix. Note that aI and N commute,
because everything commutes with the identity matrix, and Nd−1 = 0,
in particular Ne = 0. By Freshman’s dream, we get K2 = a2I+N2, and
repeating this n times, we obtain Ke = aeI, a diagonal matrix, and the
result follows.

6. Let ω = e2πi/7, a primitive 7th root of 1. Then Q(ω) is a Galois extension
of Q with degree 6 and abelian Galois group G of degree 6. Complex con-
jugation γ is an element of order 2 of G, and its fixed field F will be a Galois
extension of Q of degree 3 (Galois because all subgroups of G are normal).
Since ω + γ(ω) ∈ F −Q, we see that Q(ω + γ(ω)) is a Galois extension
of degree 3 over Q. We conclude that Q(cos(2π/7)) is a Galois extension
of Q. If K is any such field, then K is the splitting field of some polyno-
mial f ∈ Q[x]. Then K(

√
2) is the splitting field for (x2− 2) f and we see

that K(
√

2) is a Galois extension of Q. We cannot have
√

2 ∈ K, because
[Q(
√

2) : Q] = 2 and [K : Q] = 3. Therefore K(
√

2) is a Galois extension
of degree 6 over Q; let G denote the Galois group. Since K is a Galois ex-
tension of degree 3 over Q, we see that G has a normal subgroup of index
3, i.e. of order 2. Also Q(

√
2) is a Galois extension of degree 2 over Q, so

G also has a normal subgroup of index 2, i.e. of order 3. It follows that G is
abelian and hence isomorphic to Z/6Z.

7. Write ψ = IndG
H(χ). For h ∈ H, we have

|H|ψ(h) = ∑
g∈G

χ(ghg−1) = |G|χ(h)

because ghg−1 = h for all g ∈ G. Therefore ψ|H = |G/H|χ . By Frobenius
reciprocity, we now see that

(ψ,ψ)G = (χ,ψ|H)H = |G/H|(χ,χ)H ,

which proves that ψ is not irreducible when |G/H|> 1.
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1. The number of Sylow 5-subgroups is congruent to 1 mod 5 and divides
99, so if G does not have a normal Sylow 5-subgroup, it has 11 Sylow
5-subgroups and hence 44 elements of order 5. The number of Sylow 11-
subgroups is congruent to 1 mod 11 and divides 45, so if G does not have a
normal subgroup of order 11, it has 45 subgroups of order 11 and hence 450
elements of order 11. If G does not have a normal Sylow 3-subgroup, then
there are at least 10 elements of order a power of 3. We now see that G has
at least 44+450+10 = 504 > 495, too many elements, and it now follows
that G has normal Sylow p-subgroup for p = 3, or 5, or 11, as required.

If G does not have a normal Sylow 3-subgroup, then it has either a normal
Sylow 5-subgroup or a normal Sylow 11-subgroup. Suppose G has a normal
Sylow 5-subgroup A. Then G/A is a group of order 99, and therefore G/A
has a normal subgroup B/A of order 9, because the number of Sylow 3-
subgroups in a group of order 99 is 1. Since |B|= 45, the number of Sylow
3-subgroups of B is 1 and we deduce that B has a characteristic subgroup
C of order 9. We conclude that C�G as required. On the other hand if G
has a normal Sylow 11-subgroup D, then G/D is a group of order 45 which
has a normal subgroup E/D of order 9. Then E is a group of order 99 and
the number of Sylow 3-subgroups is 1, consequently E has a characteristic
subgroup F of order 9. It follows that G has a normal subgroup F of order
9 as required and the proof is complete.

2. Let f ∈ Z[x] be a monic polynomial of degree n. We will show that I = ( f ).
If this is not the case, then we may choose g ∈ I \ ( f ) with smallest possible
degree. Clearly g 6= 0 and therefore deg(g)≥ n, so we may write g= amxm+
am−1xm−1 + · · ·+a0 where m = deg(g) and am 6= 0. Then g−am f ∈ I and
has degree strictly less than m, so we have a contradiction and the result is
proven.

3. To show that Q/Z⊗ I = 0, it will be sufficient to show that ever simple
tensor x⊗ y = 0. Choose n ∈ N such that nx = 0. Since I is injective, we
know that nI = I, so there exists z ∈ I such that nz = y. Then

x⊗ y = x⊗nz = nx⊗ z = 0

as required.



4. By the structure theorem for finitely generated modules over a PID, invari-
ant factor form, we may write

M = Rd⊕R/Rt1⊕·· ·⊕R/Rtn

where t1|t2| . . . |tn 6= 0. Here T := R/Rt1⊕·· ·⊕R/Rtn is the torsion submod-
ule of M. First suppose C ∼= R. Then M is not a torsion module, so d ≥ 1
and we may write M = R⊕ S, where S = Rd−1⊕T . Then M/S ∼= R and it
follows that we have an epimorphism M �C.

Now suppose C � R. Then C is a torsion module, so C ⊆ T . Since tnT = 0,
we see that tnC = 0 and we deduce that C ∼= R/sR where s|tn. Since there
exists an R-epimorphism R/tnR � R/sR and R/tnR is a direct summand of
M, we deduce that there exists an R-epimorphism M �C, which completes
the proof.

5. (a) Let G = Gal(K/Q). Note that G has a subgroup H of order 10, for
example the normalizer of a Sylow 5-subgroup, because the number
of Sylow 5-subgroups is 6. Let F denote the fixed field of H. Then
[F : Q] = 6 and by the primitive element theorem, F = Q(p) for some
p ∈ F . Let f denote the minimal polynomial of p over Q. Then f is
irreducible, deg f = 6, and the splitting field for f is a Galois extension
of Q contained in K. Since A5 is simple, the only Galois extensions of
Q contained in K are Q and K, and we deduce that K is the splitting
field of f .

(b) Complex conjugation is an element γ of G, because K is a Galois ex-
tension of Q. The order of γ is 2, because K is not contained in the real
numbers, and the fixed field of γ is R. Therefore [K : R] = 2 and we
deduce that [R :Q] = 30.

(c) By considering its action on the roots of f , we get an embedding of G
into S6. If γ is an odd permutation, then the even permutations yield a
subgroup of index 2 in G, which is not possible because G is simple. It
follows that γ is an even permutation of order 2, so it must be a product
of two 2-cycles. We deduce that f has exactly two real roots.

(d) From (c), let a,b be the two real roots of f . Then Q(a,b) ⊆ R. Since
6|[Q(a,b) :Q] and [R :Q] = 30, we see that either [Q(a,b) :Q] = 6 or
[Q(a,b) :Q] = 30. If the latter is true, then we must have R=Q(a,b) as
required. On the other hand if [Q(a,b) :Q] = 6, then the corresponding



subgroup for Q(a,b) has order 10 in G and therefore must contain a 5-
cycle σ . But then σ can only fix one root and we have a contradiction.

6. Let A be the given matrix. The characteristic polynomial f of A must be
x3 + x2 + ax+ 1, where a = 0 or 1. First suppose a = 0. Then f (x) 6= 0
for x = 0 or 1 and we see that f has no linear factor. It follows that f is
irreducible and it we deduce that the rational canonical form for A is the

companion matrix for x3 + x2 +1, that is

0 0 1
1 0 0
0 1 1

.

Now suppose a = 1. Then f (x) = (x+ 1)3 and we see that there are three
possibilities for the invariant factors, namely {(x+1)3}, {(x+1)2,(x+1)}
and {x+1,x+1,x+1}. The corresponding rational canonical forms are0 0 1

1 0 1
0 1 1

 ,

0 1 0
1 0 0
0 0 1

 and

1 0 0
0 1 0
0 0 1

 .

Thus there are four possible rational canonical forms, as described above.

7. Representatives for the conjugacy classes for A4 are (1), (1 2 3), (1 3 2) and
(1 2)(3 4). The sizes of the conjugacy classes are 1, 4, 4 and 3 respectively.
Let V denote the Sylow 2-subgroup of A4, a normal subgroup of order 4
consisting of 1 and the fourth conjugacy class above. Then A4/V is a group
of order 3, so it has 3 one-dimensional representations, and hence A4 has 3
one-dimensional representations. Since A4 has 4 conjugacy classes, it has
4 irreducible representations. Thus A4 has one more irreducible representa-
tion, which will have degree 3, because the sum of the squares of the degrees
of the irreducible representations of A4 is |A4|= 12. Let ι denote the trivial
character, let α,β denote the two other degree 1 characters, and let χ denote
the irreducible degree 3 character. Let ω = e2πi/3 = (−1+ i

√
3)/2 denote

a primitive cube root of 1. Then the character table is

Class Size 1 4 4 3
Class Rep 1 (1 2 3) (1 3 2) (1 2)(3 4)
ι 1 1 1 1
α 1 ω ω2 1
β 1 ω2 ω 1
χ 3 0 0 −1



The character χ is derived from the rest of the character table and the or-
thogonality relations.
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1. Let G be a group of order 992. The number of Sylow 31-subgroups is
congruent to 1 mod 31 and divides 32 and is therefore 1 or 32. First suppose
G has 1 Sylow 31-subgroup N. Then N �G and G/N is a group of order
32. Since a nontrivial p-group has nontrivial center, we see that G/N has a
central element of order 2 and therefore it has a normal subgroup M/N of
order 2, where M �G, by the subgroup correspondence theorem. Then M
is a normal subgroup of order 62.

Now suppose that the number of Sylow 31-subgroups is 32. Then the num-
ber of elements of order 31 is 32 · 30 = 960. It follows that G has at most
32 elements that are a power of 2. Let H be a Sylow 2-subgroup of G. Then
H has 32 elements that are a power of 2. If K is another Sylow 2-subgroup,
then there exists k ∈ K \H, and since k has order a power of 2, we have that
G has a least 33 elements that have order a power of 2. This means that G
has at least 960+ 33 = 993 > 992 elements, a contradiction. Therefore G
has only one Sylow 2-subgroup and it follows that H �G. This completes
the proof.

2. Let A denote the set of prime ideals of R. Since R 6= 0, it has maximal
ideals. Furthermore every maximal ideal is a prime ideal, consequently
A 6= /0. Partially order the prime ideals of A by reverse inclusion; that is
P ≤ Q means Q ⊆ P. Suppose {Pj | j ∈ J} is a chain in A (where J is
an indexing set). Let Q =

⋂
j Pj. Then Q is certainly an ideal of R (the

intersection of ideals is always an ideal), so we need to check that it is
prime. Suppose a,b∈ R\Q. Then a /∈ Pj and b /∈ Pk for some j,k ∈ J. Since
{Pj} is a chain, without loss of generality we may assume that Pj ⊆ Pk.
Then a,b /∈ Pj and since Pj is a prime ideal, we deduce that ab /∈ Pj and
hence ab /∈ Q. Therefore Q ∈ A and is an upper bound for the chain. We
conclude by Zorn’s lemma that A has maximal elements. This means that R
has minimal prime ideals with respect to inclusion.

3. Suppose R is not a field. Then R has a nonzero maximal ideal M. Since R/M
is irreducible, it is free a free R-module by hypothesis. Choose m ∈M \ 0
and x ∈ R\M. Since R/M is free, we see that m(x+M) 6= 0 in R/M. On the
other hand m(x+M) = mx+M = 0 because M is an ideal, a contradiction,
and the result follows.



4. Suppose first that dimk M < ∞. If N is a proper submodule of N, then
dimk N < dimk M and we cannot have N ∼= M. This proves the “only if”
part of the statement.

Now suppose dimk M = ∞. We use the structure theorem for finitely gener-
ated modules over the PID k[x] to write M ∼= k[x]n

⊕d
i=1 k[x]/( fi), where the

fi are monic polynomials with positive degree, and n and d are nonnegative
integers. Since dimk k[x]/( fi)< ∞, this implies that n > 0 and therefore we
may write M ∼= k[x]⊕ L for some k[x]-module L. Since xk[x] is a proper
k[x]-submodule of k[x] and xk[x] ∼= k[x], we see that xk[x]⊕ L is a proper
submodule of k[x]⊕L and xk[x]⊕L∼= k[x]⊕L. The result follows.

5. Let G denote the automorphism group of Q(α) over Q. Since α and β

are roots of the same irreducible polynomial f , there is an isomorphism
θ : Q(α)→ Q(β ). Thus θ ∈ G and therefore G 6= 1. Since [Q(α) : Q] =
deg f , because f is irreducible, we see that [Q(α) : Q] = p, a prime, and it
follows that the fixed field of G is Q. We conclude that Q(α) is a Galois
extension of Q.

6. (a) Let a,b ∈ K and c ∈ k. Then θ(a+b) = θa+θb by Freshman’s dream,
and θ(ca) = θcθa = cθa because θc = c. This proves that θ is a k-
linear map.

(b) Let ι : K → K denote the identity map. Note that θ n(a) = apn
. Since

apn
= a for all a∈K, we see that θ n = ι and we deduce that the minimal

polynomial of θ divides Xn−1.

(c) Since n
∣∣ p−1, we see that the roots of Xn−1 are a subset of the roots of

X p−1−1 (including multiplicities). However the roots of X p−1−1 are
precisely the p− 1 nonzero elements of k. Therefore minimal polyno-
mial has distinct roots, all lying in k. It follows that θ is diagonalizable
over k.

7. S3 has 3 conjugacy classes with representatives (1), (1 2) and (1 2 3). It
has two one-dimensional characters, namely the trivial character, which we
shall denote by χ1, and the sign of a permutation, which we shall denote
by χ2. Since there are 3 conjugacy classes, there are three irreducible char-
acters; we’ll call the third irreducible character χ3. This character can be
derived from the orthogonality relations. Therefore character table for S3 is



Class Size 1 3 2
Class Rep 1 (1 2) (1 2 3)
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

The character table for Z/2Z is

Class Size 1 1
Class Rep 0 1
ψ1 1 1
ψ2 1 −1

The conjugacy classes for S3×Z/2Z are of the form S ×T , where S is a
conjugacy class for S3 and T is a conjugacy class for Z/2Z. Thus in partic-
ular S3×Z/2Z has 3∗2 = 6 conjugacy classes. We get the six irreducible
representations from taking the tensor product of irreducible representations
of S3 and Z/4Z, namely the representations χi⊗ψ j, which have characters
χiψ j.

Class Size 1 1 3 3 2 2
Class Rep ((1), 0) ((1), 1) ((1 2), 0) ((1 2), 1) ((1 2 3), 0) ((1 2 3), 1)
χ1⊗ψ1 1 1 1 1 1 1
χ1⊗ψ2 1 −1 1 −1 1 −1
χ2⊗ψ1 1 1 −1 −1 1 1
χ2⊗ψ2 1 −1 −1 1 1 −1
χ3⊗ψ1 2 2 0 0 −1 −1
χ3⊗ψ2 2 −2 0 0 −1 1
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1. Let G be a simple group of order 4860. The number of Sylow 3-subgroups
is congruent to 1 mod 3 and divides 20, so if G does not have a normal
Sylow 3-subgroup, it has 4 or 10 Sylow 3-subgroups. If there are 4 Sylow
3-subgroups, then G will be isomorphic to a subgroup of A4 which has order
12, which is clearly not possible because 12< 4860. Therefore G must have
10 Sylow 3-subgroups and then G will be isomorphic to a subgroup of A10.
This is not possible because 35

∣∣ 4860, but the largest power of 3 dividing
|A10|= 10!/2 is 4. Therefore there is no such G, as required.

2. Let f (x) = 2x3 +19x2−54x+3. If f is not irreducible, then it must have a
degree one factor, which we may assume is of the form ax+b where a,b∈Z
and (a,b) = 1, a primitive polynomial in Z[x]. Write f (x) = (ax+ b)g(x)
where g ∈ Q[x]. Then by Gauss’s lemma, g(x) ∈ Z[x]. Write g(x) = cx2 +
dx+ e where c,d,e ∈ Z. We now equate coefficients. We have ac = 1, so
either a =±1 or a =±2, and be = 3. Suppose a =±1. Then ±1 or ±3 is a
root of f , which by inspection is not the case. On the other hand if a =±2,
then±1/2 or±3/2 is a root of f , which again by inspection is not the case.
This proves that f is irreducible in Q[x].

3. Define θ : S×S→ S by θ(s, t) = st. Note that for s1,s2, t1, t2 ∈ S and r ∈ R,

θ(s1 + s2, t1) = (s1 + s2)t1 = s1t1 + s2t1 = θ(s1, t1)+θ(s2, t1),
θ(s1, t1 + t2) = s1(t1 + t2) = s1t1 + s1t2 = θ(s1, t1)+θ(s1, t2),

θ(s1r, t1) = s1rt1 = θ(s1,rt1).

This shows that θ is an R-balanced map. Therefore θ induces a group ho-
momorphism φ : S⊗R S→ S such that φ(s1, t1) = s1t1, in particular φ(1⊗
1) = 1 6= 0. It follows that S⊗R S 6= 0.

4. By the structure theorem for finitely generated modules over a PID, we may
write I = T ⊕F where T is the torsion submodule of I and F is a free R-
module. First suppose F 6= 0. Then we may write F = E ⊕R where E is
a free module, so I = T ⊕E ⊕R. Since R is not a field, we may choose
r ∈ R\0 which is not a unit in R. Also I is an injective R-module, so sI = I
and hence sR = R and we have a contradiction. Therefore F = 0 and hence
I is a torsion module. It follows there exists s ∈ R\0 such that sI = 0. But
sI = I because I is injective and we conclude that I = 0 as required.



5. Let A ∈ GL8(Q) be an element of order 7. Then A7 = I, which means
that the minimal polynomial of A divides x7−1. Now x7−1 = f (x)(x−1)
where f (x)= x6+x5+x4+x3+x2+x+1, and f (x) is irreducible. Since the
minimal polynomial of A is not x−1, we see that the minimal polynomial of
A is either f (x) or x7−1. Since the characteristic polynomial has degree 8, it
must be f (x)(x−1)2. It follows that there is one conjugacy class of matrices
in GL8(Q) which consists of elements of order 7, namely the matrices with
invariant factors {x7−1,x−1}.

6. Write G = Gal(K/Q) and F = Q(e2πi/p). Since G ∼= S5, we know that
[K : Q] = |S5|= 120.

(a) If f is not irreducible, then we may write f = f1 f2 where deg f1,deg f2≥
1 and deg f1 +deg f2 = deg f = 5. We then have

[K : Q]≤ (deg f1)!(deg f2)! < 5! = 120

and we have a contradiction. Therefore f is irreducible. Since an irre-
ducible polynomial over a field of zero characteristic has distinct roots,
it follows that f has 5 distinct roots.

(b) If a is a root of f , then so is γa and it follows that γ permutes the roots
of f . Also F is a cyclic extension of Q of degree p−1. The subgroup
corresponding to this extension in G will be a normal subgroup of index
p−1 in G with cyclic quotient. The only normal subgroups of G which
have this property have index 1 or 2 and it follows that p = 3.

(c) Since K * R, we see that f must have at least one complex root. Since
complex roots appear in pairs, this means that f has either 2 complex
roots or 4 complex roots. Since A5 is the unique subgroup of index 2 in
G, we see that F is the fixed field of A5. Now if f has 4 complex roots,
then γ ∈ A5 and hence γ fixes F , which is not the case. It follows that f
has 2 complex roots and therefore fixes 3 of the roots of f .

7. Write ψ = IndG
H χ . By Frobenius reciprocity, (ψ,ψ)G = (ψ|H ,χ)H . Since

{1,x,x2} is a transversal for H in G, we see that for h ∈ H,

ψ(h) = χ(h)+χ(xhx−1)+χ(x2hx−2) = 3χ(h)

and we deduce that (ψ|H ,χ)H = 3. Therefore if we write ψ = a1χ1 + · · ·+
anχn where ai ∈N and χi is an irreducible character for all i, then a2

1+ · · ·+
a2

n = 3 and we must have ai = 1 for all i and n = 3. This proves the result.
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1. Let G be a group of order 63 = 32 ·7. The number n7 of Sylow 7-subgroups
of G divides 9 and is congruent to 1 mod 7. Hence n7 = 1 and G has a
normal Sylow 7-subgroup Q ∼= Z7. We have G ∼= PnQ for any Sylow 3-
subgroup P < G.

The group Aut(Q)∼= Z×7 is cyclic of order 6. Fix a generator b of Q and let
σ ∈Aut(Q) be the element of order 3 such that σ(b) = b2. Since P∼= Z9 or
P∼= Z3×Z3, any homomorphism P→ Aut(Q) has image in 〈σ〉.
We deduce that there exist exactly 4 non-isomorphic groups of order 63: the
abelian groups Z9×Z7 and Z3×Z3×Z7, and two non-abelian semi-direct
products Z9nZ7 and (Z3×Z3)nZ7. The various possibilities for the latter
are seen to be isomorphic by suitably changing generators. (For example,
if Z9 nZ7 is generated by a,b such that a9 = b7 = e and aba−1 = b2 =
σ(b), then in terms of the generators a2,b we have a2ba−2 = b4 = σ2(b),
corresponding to the other non-trivial homomorphism P→ Aut(Q) in the
case P∼= Z9.)

2. We know that A is similar to matrix in Jordan canonical form, with nonzero
eigenvalues (since A is invertible). Without loss of generality, we may as-
sume that A is an n×n Jordan block matrix with eigenvalue µ 6= 0.

Consider a single n×n Jordan block J with eigenvalue λ 6= 0 on the diagonal
and 1 on the superdiagonal. Its square J2 has λ 2 on the diagonal, 2λ on the
superdiagonal, 1 on the next diagonal, and all other entries 0. In particular,
one has (J2− λ 2I)n = 0 and no smaller power of x− λ 2 annihilates J2.
Thus the Jordan canonical form of J2 also consists of a single block, i.e., J2

is similar to a n×n Jordan block with eigenvalue λ 2.

Now pick λ ∈ C so that λ 2 = µ . By the previous paragraph, we have
PJ2P−1 = A for some invertible matrix P. Then A = B2 for B = PJP−1.

3. If A and B are both free, then so is A⊗R B. If either A or B is 0, then A⊗R B
is also 0 and hence free.

Suppose A and B are both nonzero, but not both free. Without loss of gen-
erality, we may assume that A has an elementary divisor pi. If the free
part of B is nonzero, then A⊗R B contains a (torsion) submodule isomor-
phic to R/(pi)⊗R R ∼= R/(pi) and therefore cannot be free. Thus, in order



for A⊗R B to be free, B must be a torsion module. But then, for the same
reason, A must also be a torsion module.

Assuming A and B are nonzero torsion modules, the elementary divisors of
A⊗R B are determined from those of A and B by using the bilinearity of the
tensor product and the isomorphism R/I⊗R R/J ∼= R/(I + J) (or by direct
arguments), which gives

R/(pi)⊗R R/(p j)∼= R/(pmin{i, j})

R/(pi)⊗R R/(q j) = 0

for distinct primes p,q ∈ R and positive integers i, j. Thus, in order for
A⊗R B to be free, A and B cannot have elementary divisors for a common
prime.

By the classification theorem, we conclude that A⊗R B is free if and only if
one of the following holds:

• one of A,B is 0

• both A and B are free

• both A and B are nonzero torsion modules and they do not having
elementary divisors for a common prime

4. The classification of finite abelian groups gives that the Sylow p-subgroup
of A is A(p) = {a ∈ A : pna = 0}. A homomorphism f : Z/pnZ→ A is
uniquely determined by f (1), which must belong to A(p). Moreover, for
each a ∈ A(p), since pna = 0, there exists unique such f with f (1) = a,
by the First Isomorphism Theorem. In other words, the map sending f ∈
Hom(Z/pnZ,A) to f (1) ∈ A(p) is a bijection. This map is a group isomor-
phism, since f1 + f2 7→ ( f1 + f2)(1) = f1(1)+ f2(1).

5. (a) Let α = 3
√

4 ∈ R, β = αω , γ = αω2 be the roots of x3− 4, where
ω = e2πi/3 is a primitive 3rd root of unity. We have E =Q(α,ω).
We claim that E/Q has degree 6. We know that [E : Q] ≤ 3! = 6. The
polynomial x3− 4 is irreducible over Q, since it has degree 3 and no
rational roots (since±1,±2,±4 are not roots). The minimal polynomial
of ω is x2+x+1. Since E contains α and ω , its degree [E : Q] must be
divisible by 2 and 3, hence by 6. Therefore [E : Q] = 6.
The action of G = Gal(E/Q) on α,β ,γ gives an injective homomor-
phism G→ S3. Since |G|= 6, it must be an isomorphism G∼= S3.



By the Galois correspondence, E/Q has one intermediate field for each
subgroup of S3, of which there are 6. Thus

Q,Q(ω),Q(α),Q(β ),Q(γ),E

are all intermediate fields of E/Q. (These are the fixed fields of the sub-
groups S3,〈(123)〉,〈(12)〉,〈(13)〉,〈(23)〉,〈e〉, respectively, where we iden-
tify α with 1, β with 2, and γ with 3.)

(b) It suffices to find θ ∈ E whose stabilizer in G is trivial. One checks that
θ = α +ω has this property:

α +ω
(12)7−→ β +ω

−1 = αω−ω−1

α +ω
(13)7−→ γ +β/γ = αω

2 +ω
−1 = α(−ω−1)−ω−1

α +ω
(23)7−→ α + γ/α = α−ω−1

α +ω
(123)7−→ β +ω = αω +ω

α +ω
(132)7−→ γ +ω = αω

2 +ω

Here we use that {1,α,α2,ω,αω,α2ω} is a Q-basis of E to see that
none of these images are equal to α +ω .

6. (a) We know S is not empty, because the zero ideal belongs to S . Let
I1 ⊂ I2 ⊂ ·· · be a chain in S . The union I =

⋃
∞
n=0 In is an ideal of R

and ak /∈ I for all k ≥ 0. Hence I belongs to S and is an upper bound
for the chain. We have verified the conditions of Zorn’s lemma.

(b) Let P be a maximal element of S . Then a /∈ P. We will show that P
is a prime ideal of R. Suppose xy ∈ P for some x,y ∈ R, but x,y /∈ P.
Then the ideals (x)+P and (y)+P strictly contain P, and therefore do
not belong to S . Hence ak ∈ (x)+P and al ∈ (y)+P for some k, l ≥ 0.
But then ak+l ∈ (xy)+P = P, which is a contradiction, since P ∈S .

7. (a) We apply the orbit-stabilizer theorem. We have hxk−1 = x if and only
if h = xkx−1 ∈ H ∩ xKx−1. Hence the stabilizer of x has |H ∩ xKx−1|
elements, and the orbit of x has |H×K|/|H ∩ xKx−1| elements.

(b) The orbit through the identity is HeH = H, which has |H| = q(q−

1)2 elements. Taking any s /∈ H, e.g., s =
(

0 1
1 0

)
, we find that |H ∩



sHs−1|= (q−1)2 and hence, by (a), the orbit through s has size q2(q−
1)4/(q−1)2 = q2(q−1)2. Since (q2+q)(q−1)2 = q(q+1)(q−1)2 =
|G| we are done.
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