Algebra Prelim Solutions, Spring 1980

1. We shall use the fundamental theorem for finitely generated abelian groups.
We may write

n n n
A=Pz/az)", B=P(Z/a2)", C=@P(Z/9iZ)"
i=1 i=1 i=1
where a;, b;, c;,n are nonnegative integers, and the ¢; are distinct prime pow-
ers. Then A® B = A @ C yields

n n
P z/qz) " =P(Z/q:2) "
i=1 i=1
The fundamental theorem now shows that a; + b; = a; + ¢; and hence b; = ¢;
for all i. It follows that B == C as required.

2. Suppose by way of contradiction G is a simple group of order 56. Sylow’s
theorem for the prime 7 shows that the number of Sylow 7-subgroups is con-
gruent to 1 modulo 7 and divides 8, hence the number of Sylow 7-subgroups
is 1 or 8. If there is one Sylow 7-subgroup, x then this subgroup must be
normal in G which contradicts the hypothesis that G is simple, consequently
G has 8 Sylow 7-subgroups.

Let A, B be two distinct Sylow 7-subgroups. Then A N B is a subgroup of A,
so by Lagrange’s theorem |A N B| divides |A|, hence |ANB| =1 or 7. Now A
and B both have order 7, so we cannot have |A N B| = 7. Therefore we must
have |ANB| = 1. Since every nonidentity element of a Sylow 7-subgroup
has order 7, we deduce that G has at least 6 x 8 elements of order 7.

Now every Sylow 2-subgroup has order 8, and every element of a Sylow 2-
subgroup has order a power of 2 by Lagrange’s theorem, so if G has at least
two Sylow 2-subgroups, then G has at least 9 elements of order a power of
2. Since we have already shown that G has at least 48 elements of order 7,
we now have that G has at least 9 +48 = 57 elements, which is not possible
because |G| = 56. Therefore G has exactly one Sylow 2-subgroup, and so
this Sylow subgroup must be normal which contradicts the hypothesis that
G is simple.

3. Since we are working over C, an algebraically closed field, we may use
the Jordan canonical form. Here every matrix has a unique Jordan canon-
ical form, and two canonical forms are in the same equivalence class of T



if and only if they are equal. Since the eigenvalues of a matrix in 7 are
4,4,17,17,17, the Jordan canonical form of such a matrix must look like

4 a 0 0 O
04 0 0 O
0 017 b O
00 0 17 ¢
00 0 0 17

where a,b,c are 1 or 0, and b = 0 if ¢ = 0. Therefore there are @ equiva-
lence classes in T'.

. There are many answers to this problem; perhaps the simplest example of a
UFD which is not a PID is Z[X]. This is a UFD because Z is a UFD, and
a polynomial ring over UFD is again a UFD. We now establish that Z[X] is
not a PID by showing that the ideal (2,X) (the ideal generated by 2 and X)
is not principal.

Suppose on the contrary that (2,X) = f for some f € Z[X]. Then there exist
g,h € Z[X] such that fg =2 and fh = X. The equation fg = 2 shows that f
must have degree 0, in other words f € Z, and then fh = X shows that f =
+1. Thus we must have (2,X) = Z[X]. Now the general element of (2,X)
is 2a + Xb where a,b € Z[X]. The constant term of 2a must be divisible
by 2, and the constant term of Xb must be zero, hence the constant term of
2a+ X b must be divisible by 2. In particular we cannot have 2a +Xb =1,
so 1 ¢ (2,X) and we have the required contradiction.

. Let G denote the Galois group of x> — 10 over Q. By Eisenstein’s criterion
for the prime 2 (or otherwise), we see that x> — 10 is irreducible over Q,
hence G = S5 or A3. Let @ = (—1+iv/3)/2, a primitive cube root of unity.
Then the roots of x> — 10 are v/10, ®+v/10, and @v/10 (® = (—1— i\/g)/2),
hence x> — 10 has one real root and two complex roots, so complex conju-
gation is an element of G. Therefore G has an element of order 2, which
rules out the possibility G =2 A3. Therefore G = §3.

A splitting field of x> — 10 is Q(iv/3,+v/10). The normal subfields of the
splitting field correspond to normal subgroups of G. The normal subfields
corresponding to the subgroups 1 and G are Q(i\/g, \S/E) and Q respec-
tively. G has exactly one other normal subgroup, namely Az, so there is
exactly one other normal subfield. Since subfields of degree two over QQ are
always normal, this other normal subfield must be Q(iv/3).



6. (a) How to prove this depends on how much field theory one is allowed to
assume. Also the result is true without the hypothesis that f is separa-
ble. Here is one way to proceed. Suppose K, K> are fields, 0: K| — K
is an isomorphism, g € K;[X] is an irreducible polynomial, ; is a root
of g in a splitting field L; for g, and o, is a root of the irreducible poly-
nomial Og in a splitting field L, for Og (recall if g =ap+ a1 X +--- +
a,X" with a; € Ky, then 0g = 0ag+0a1 X +- - -+ 0a,X" € K»[X]). Then
6 extends to an isomorphism ¢ : Kj (o) — Ka(o) such that ¢ (o) =
¢ (). Using induction on the degree of g, we deduce that ¢ in turn
extends to an isomorphism of L onto L;. This is what is required.

(b) Note that x* — 2 is indeed irreducible over Q, by Eisenstein’s criterion
for the prime 2. The roots of x* —2 are ++v/2 and +iv/2. Consider the
permutation of the roots V2 = V2, V2 —iv2 — —iv2 — —V/2.
This cannot be induced by an element 6 of the Galois group of x* —2
over Q, because if 8v/2 = v/2, then we must have 9(—(75) = V2.

7. Since Homy (M, k) = 0, we must have M = .# M. Then Nakayama’s lemma
yields the result.
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1. We use the structure theorem for finitely generated modules over a PID. This tells Msishat
a direct sum of modules of the forR/Rt wheret is either zero or a power of an irreducible
element ofR. If this direct sum has more than one factor, then we may Wiite A B for
some nonzero submodulasB of M, and therA B 0. Therefore there is exactly one factor
in the direct sum, and the result follows.

2. (a) Sincethe action is transitive, all the stabilizers are conjugate and we see that the stabilizer
of any element oK has no element of finite order other than 1. Thuk if G has finite
order larger than 1, thehcannot be in the stabilizer of any elementqfand it follows
that f cannot fix any element of.

(b) Suppose now that has prime ordeqg. Then the orbits of f have order dividingg.
Sinceq s prime, these orbits have order 1gprBut if one of the orbits has order 1, then
f fixes the element in that orbit which contradicts the above. Therefore all orbifs of
have orden, and it follows thatg divides X as required.

3. SinceS/(Py --- B s finite, we see tha®/R is finite for alli. Now S/R is an integral
domain becausk is prime, and finite integral domains are fields. Therefgfg is a field
and we deduce th#& is a maximal ideal for all, as required.

4. Suppos« is a nontrivial extension field df with degree which is not a power g Note
that if L is any finite extension field df, then the degree df overF is also not a power of
p, becauselL : F L:K K:F . Since we are in characteristic zero, everything is separable
so by taking a splitting field containinkf, we may assume th#t is a Galois extension of
F. LetG GallK/F and letP be a Sylowp-subgroup ofG. Then KP : F G:P and
K:F G. Since G: P has order prime tg, it follows that KP : F has order prime t@
and we conclude tha® is a nontrivial extension field d¥ with degree prime tq.

5. This question depends on what we are allowed to assume; some people take the given property
as the definition of projective module. Also the question does not requirtheicommuta-
tive. Let us use the definition that &moduleP is projective if and only if it is a direct sum-
mand of a freeR-module. Suppose first that we have the given property. Choose an epimor-
phismf: F M whereF is a freeR-module. Since the map : Hom(M, F Hom(M,M
is surjective, there exists &module mam: M F such thatfg is the identity map oM.
Thengis a monomorphism and $4 gM. AlsoF kerf gM, which shows thagM and
hence alsiM are projective.

Conversely suppogd is a direct summand of a free moduie First we show thaF satisfies
the given condition. Lef: N N be a surjection oR-modules and leh: F N be any
R-map. Let g i | be anR-basis for, wherel is some indexing set. Sint¢ds surjective,
we may choose; N such thatf (n h(g for alli. Now we can defing Homg(F,N
byg(e niforalli,and thenfg(e  h(g foralli. Thusfg h, and we have proved the
result in the cas  F.

For the general case, writt M P asR-modules, and letp: M F be the natural



monomorphism Then we have a commutative diagram
Homg(F,N  —  Homg(F,N

U g
Homg(M,N —  Homg(M,N

where(y g (m g(ym forallm M andg Homg(F,N or Hong(F,N . Note that the
right hand (and also the left hand) is surjective: ith  Homgr(M,N , we may extendh to
anR-mapF N by defining it to be 0 o® and thenp h  g. By the previous paragraph the
top f is surjective and we deduce that the bottbnis surjective as required.

. The dihedral group has a cyclic subgrddmf index 2. Letx denote the character of the
regular representation &. SinceC is abelian, we may writ¢. a1 --- dy for some
integern, where then; are degree one characters®fLet Y denote the character uf. Since
xP is the character of the regular representatiorDpive see that,x® 0. Therefore
W,aP 0 for somei. Sincey is irreducible, we deduce theP ¢ @for some character
@of D. Therefored has degree at most that@P. Buta; has degree 1, consequentl§ has
degree 2 and the result follows.

. Let G denote the Galois group ¢f1°— 1 over@Q, and letw be a primitive 10th root of 1
(sow €/5). Then the roots oK% —1 arew’, wherer 0,1,...,9, which shows that
the splitting field forx'°—1isQ w. SinceX®—1 (X>-1(X 1(X®> 1/(X 1
and w does not satisff{X®> -1 (X 1, we see thatois a root of(X®> 1 /(X 1. By
making the substitutior X 1 and using Eisenstein’s criterion for the prime 5, we see that
(X5 1 /(X 1 isirreducible overQ. This shows thatQ w : Q 4 and we deduce that
G 4. Finallywe can defin® Gby8(w ? becauseo® is also a primitive 5th root of

1, and sincé®’(w  «’ w, we deduce tha®®> 1. We conclude thaB has an element of
order 4 and hencé is cyclic of order 4.



1.

2.

3.
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It is clear thaReis a left R-submodule oR, so we need to prove it is projective. It will be
sufficient to show thaReis a direct summand of a frde@module. SinceR(1—e is also
a left R-submodule ofR, the result will be proven if we can show that Re R(1—e.

If re R(1—e,thenre s(1—e forsomes Randsore ree s(l1—ee 0. This
shows thatRe R(1—e 0. Finallyifr R, thenr r(e 1-e re r(l—e, so
R Re R(l1-e.

(a) Since we are in characteristic zero, everything is separable so we may use the theorem
of the primitive element. This tells us that there exists K such thaK F(a . If pis
the minimal polynomial ofx overF, thenK F X /(p .

(b) Sincep is the minimal polynomial, it is monic and irreducible X . Also we are
in characteristic zero, sp is separable. This means that when we wpte p;... pn
in K X where thep; are monic irreducible polynomials, the are distinct. Now write
¢ fX (p wheref KX.Sincec? 0,weseethat? (p.Thusf? p;...pnQ
forsomeq K X . By uniqueness of factorization, we hagedivides f for all i and we
deduce thaf (p . Thereforec 0 as required.

(a) Suppose the action of M2 has a finite orbit with at least two elements. Using the
formula that the number of elements in an orbit is the index of the stablizer of any
element in that orbit, we see that,fQ has a nontrivial subgroupl of finite index.
ThengM2(Q  H for some positive integeq. However ifa  M»(Q , thena
g(a/q , which shows thagM2(Q  M2(Q . We conclude that MQ  H and the
result follows.

(b) To check that we have an action, we must show tght A g (h A forall g,h
GL2(Q . This is true because
(g h(A detlgh A/ det(gh  det(g deth A/( det(g deth
detg(h A /detg g (h A.

Finally we see that all orbits have the form A , and so in particular there are finite
orbits which are not singletons.

4. By Sylow’s theorem a group of order 34 has a normal subgroup of order 17, ehas

a normal subgroupd of order 17. Again by Sylow’s theorem, this subgroup is the unique
subgroup ofc which has order 17. Since we are in characteristic zero, everything is separable
and sd_ is a Galois extension &f®. Therefore there is a one-one correspondence between the
subfields ofL containingL® and the subgroups @. This correspondence has the property
that if A is a subgroup of3, then the dimension df overL” is A. The result follows by
settingk LM,

. Supposesis not a field. Then it has a nonzero prime idPalNote thatS/P is an integral

domain. SincesX /PX  (S/P X, we see thaBX /P X is an integral domain which is
not a field. We deduce th& X is a nonzero nonmaximal prime ideal X . But nonzero
prime ideals in a PID are maximal and since we are given3hétis a PID, we now have a
contradiction and the result follows.



6. (a) FirstH has an identity, namely the zero homomorphism defineday 00 foralla  A.
If f,g H,then

(f g@ b fa b ga b f(a f(b gla gb
f@ g@ f(b gb (f g(@a (f g(b

which shows that gis a homomorphism,and 90 g H. Alsoif f,g,h H, then

f@ (g h(@a (f (@ h (a,

so(f g h f (g h which establishes the associative law. Finally for H,

the inverse off is —f, where(—f (a —f(a. Since(—f (a b —f(a b
—f(a—f(b (—-f(a (—f (b,weseethat-f H,andwe have established that
H is a group.

(b) We first show thaH is torsion free. Iff H has ordem 1, thenf(a O for some
a A Butthen(nf (a n(fa 0, acontradiction. Therefore the subgroup generated
by f1,..., fn is a finitely generated torsion free abelian group, so by the fundamental
structure theorem for finitely generated abelian groups it is free.

7. (a) A 2 by 2 matrix with entries iZ/pZ will be invertible if and only if its columns are
linearly independent ovef./pZ. So there arg? — 1 choices for the first column (we
cannot choos€0,0 for the first column) angh? — p choices for the second column (we
cannot choose the vector in the first column). It follows t@at (p?—1 (p>—p .

(b) Note thatH is a Sylowp-subgroup ofG, so the number of conjugatesidfis congruent
to 1 modulop. Therefore 1 is congruent to 8 modytowhich can only happenp 7.
In the casep 7, we have by Sylow's theorem that the number of conjugatds wf
G is congruent to 1 modulo 7, which is of course congruent to 8 modulo 7. Thus the
answerisp 7.



a UFD. We now establish thad X is not a PID by showing that the ide@,X (the ideal
generated by 2 an¥) is not principal.

Suppose on the contrary th@ X  f for somef Z X . Then there exisgg,h Z X such
that fg 2 andfh X. The equationfg 2 shows thatf must have degree 0, in other
wordsf Z, and thenfh X shows thatf 1. Thus we must have2, X Z X . Now
the general element ¢2,X is 2a Xbwherea,b Z X . The constant term of&2must be
divisible by 2, and the constant term X¥b must be zero, hence the constant termaf X b
must be divisible by 2. In particular we cannot hawe 2Xb 1,so01/ (2,X and we have
the required contradiction.

5. Let G denote the Galois group of — 10 overQ. By Eisenstein’s criterion for the prime
2 (or otherwise), we see that — 10 is irreducible overQ, henceG S or As. Let w
(-1 i 3 /2, a primitive cube root of unity. Then the roots xf— 10 are * 10, w* 10,
andw®10 @ (—-1—i 3 /2), henced — 10 has one real root and two complex roots, so
complex conjugation is an element@f ThereforeG has an element of order 2, which rules
out the possibilityG  As. ThereforeG S

A splitting field of X3 —10isQ(i 3, 10 . The normal subfields of the splitting field corre-
spond to normal subgroups @f The normal subfields corresponding to the subgroups 1 and
GareQ(i 3,°10 andQ respectivelyG has exactly one other normal subgroup, nandgly

so there is exactly one other normal subfield. Since subfields of degree twQ averalways
normal, this other normal subfield must Q¢i 3.

6. (1) How to prove this depends on how much field theory one is allowed to assume. Also the
result is true without the hypothesis thfais separable. Here is one way to proceed. Suppose
K1, K> are fields,0: K1  K; is an isomorphismg Kj; X is an irreducible polynomial,

o, is a root ofg in a splitting fieldL; for g, anday is a root of the irreducible polynomial
Bg in a splitting fieldL, for 6g (recall ifg a; aX --- aX"witha Kj, thenfg

Bag ByX - BapX" K; X). ThenB extends to an isomorphisgn K;(aj Ka(az
suchthatp(a;  @(az . Using induction on the degree gfwe deduce thapin turn extends
to an isomorphism df, ontoL,. This is what is required.

(2) Note thatx* — 2 is indeed irreducible ove®, by Eisenstein’s criterion for the prime 2.
The roots ofx* —2 are  *2 and i*2. Consider the permutation of the root2  *2,
—*2 i*2 —i*2 —*2.This cannot be induced by an elem@rif the Galois group
of xX* —2 overQ, because i8*2  *2,then we musthave(— ‘2 —*2.

7. Since Hom(M,k 0, we must havél M M. Then Nakayama’s lemma yields the result.
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Supposé&s is a simple group with exactly three elements of order two. Consider the conjuga-
tion action ofG on the three elements of order two: specificallg if G andx is an element

of order two, then we defing-x gxg L. This action yields a homomorphistn G =~ .
Suppose kB G. Thengxg! xforallg G and for all elements of order two. Thus if

xis an element of order two, we see tlas in the center ofs and hencés is not simple.

On the other hand if k& G, then sinces is simple we must have kér 1 and it follows
that G is isomorphic to a subgroup &. The only subgroup 0§ which has exactly three
elements of order two S itself. But S3 is not simple (becausAs is a nontrivial normal
subgroup), hencé is not simple and the result is proven.

. LetF denote the free group on generatarg, and define a homomorphisin: F S by

f(x (123 andf(y (12.Sincef(x® (123°% e f(y* (124 e andf(yxy?
(213 x71, we see thaf induces a homomorphism frofa to S. This homomorphism is
onto because its image contaifék (123 andf(y (12, and the elementsl23, (12
generates. ThusG has a homomorphic image isomorphicSp

We prove thaG is not isomorphic té&; by showing it has an element whose order is a multiple
of 4 or o, which will establish the result because the orders of elemerfis ame 1,2 and 3.
We shall use bars to denote the image of a numbé&r/4Z. ThusO is the identity ofZ/4Z
under the operation of addition. Defime F  Z/4Z by h(x 0 and Hy 1. Since
hx* 6 0 0,h(y* 4 0,and

hyxy* 1 0-1 0 h(x?!,

we see thah induces a homomorphism fro@ to Z /47, which hasl in its image. Sincd
has order 4, it follows thaB has an element whose order is either a multiple of 4 or infinity.
This completes the proof.

() SinceRis not a field, we may choose 0s R such thatsis not a unit, equivalently
sR R Definef: R Rby f(r sr. Thenf is anR-module homomorphism which
is injective, becaus®is a PID ands 0, and is not onto becausds not a unit. This
proves thaR is isomorphic to the proper submod@Rof R.

(i) Using the fundamental structure theorem for finitely generated modules over a PID, we
may writeM as a direct sum of cycli®modules. Sincé/ is not a torsion module, at
least one of these summands musthen other words we may writtd R N for
someR-submoduleN of M. ThenM sR N and sincesR N is a proper submodule
of R N, we have proven tha¥l is isomorphic to a proper submodule of itself.

(i) We will write mappings onthe left. Lgi: B B C,y:C B C denote the natural
injections (soBb  (b,0), and letm: B C B, y: B C C denote the natural
epimorphisms (soi(b,c  b). Define

0: Homg(A)B C  Homgr(A,B Homg(A,C
bye(f (mf,¢pf ,and
¢@: Homg(A,B  Homg(A,C Homg(A,B C



byo(f,g Bf vyg. Itis easily checked th& and@ areR-module homomorphisms,
so will suffice to prove thag and@d are the identity maps. We have

Oo(f,g O(Bf vg (mBf vo,vBf vg (f.0

becausaty, Y are the zero maps, amgB, Yy are the identity maps. Therefobeis the
identity map. Also

®@h omhyh prh yph (Bt yph h

becaus@dt v is the identity map. Thugb is the identity map and (i) is proven.
(i) Write Homg(A,A  X. If Homgr(A,A A  Z, then by the first part we would have

X X Z.ThusX 0, and we see thd is the direct sum of two nonzero groups. This
is not possible and the result follows.

() Letl be an ideal o6 1R. We need to prove thatis finitely generated. Let r R
r/L S (where we viewS 'R as elements of the formyswherer Rands S).
ThenJ is an ideal ofR and sinceR is Noetherian, there exist elememts. .., X, which

generate) as an ideal, which meads xR --- X R. We claim that is generated by
x1/1,...,%/1 . Indeed ifr/s |,thenr rix3 --- rpxaforsomer; R, and hence
r/s ri/Sx --- In/SX%. This proves (i).

(i) Let Sbe the multiplicative subsetl,X,X?,... . Then every element B is invert-

ible in R X,X~! and hence the identity map X R X extends to a homomor-
phismS1R X R X,X~1 . Itis easily checked that this map is an isomorphism.
SinceR X is Noetherian, it follows from (i) tha5 'R X is Noetherian and hence
R X,X~ 1 is Noetherian as required.

(i) Sety X-—1.Then

Xt x3 x2 x 1 (X°—1/(X—=1 (Y 1°=1)Y
(Y 5y* 10v® 10v2 5Y )Y
Y4 5v3 10v? 10y 5.

Applying Eisenstein’s criterion for the prime 5, we see tat 5Y3 10v2 10y 5
is irreducible inQ Y . SinceY Y 1 induces an automorphism @Y , we deduce
thatx* X3 X2 X 1isirreducible.

(i) Let c(X denote the characteristic polynomial &f and letm(X denote the minimum
polynomial of A. SinceA® |, we see tham(X divides X®—1, and since 1 is not
an eigenvalue oA\, we see thaX — 1 does not dividen(X . Thereforem(X divides
X4 X3 X2 X 1andusing (i), we deduce that the only irreducible factamtX
isX4 X3 X2 X 1. Itfollows that the only irreducible factor efX is X4 X3
X? X 1, which shows that the degreeafiX is a multiple of 4. This completes the
proof, because is the degree of(X .
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1. (i) Bydefiniton¢(x  gxg' g G . Sincex H <G, we seethagxgt H for all
g Gand we deduce tha(x H. LetCg(x denote the centralizer ofin G. Then
¢(x G :Cgs(x . This last quantity is a power gf and it cannot be 1 becaugés
not in the center o6. We deduce that’(x is a nontrivial power op and (i) follows.

(i) It follows from (i) that H Z is a union of conjugacy classes of the fod{x where
x H Z. Since different conjugacy classes intersect trivially, we see from (i) ghat
divides H Z. Also H divides G and soH is a nontrivial power ofp. We deduce
thatp divides Z H and (ii) is proven.

(iii) Let H be the centralizer ohin G. ThenH is a normal subgroup @ containingA and it
will be sufficient to show thatl ~ A. Let X /A be the center o&/A and supposél  A.
Then we see from (i) thak/A H/A 1 becauséd /A< G/A, and we deduce that
there is a nontrivial cyclic subgroug/A contained inX/A H/A. SinceY /A < X/A
we see tha¥ /A< G and we deduce that << G. Also A is contained in the center of
Y andY /A s cyclic, henceY is abelian. This contradicts the fact thais a maximal
normal abelian subgroup & and the result follows

2. (i) The number of Sylow 5-subgroups &f divides 36 and is congruent to 1 modulo 5,
which means that this number must be 1,6 or 36. It cannot be 1, foiGheould have
a normal Sylow 5-subgroup, which contradicts the fact & simple. Nor carG have
6 Sylow 5-subgroups, for the@ would be isomorphic to a subgroup A§ becauses
is simple. This would mean thd has a subgroup of index 2, and since subgroups of
index 2 are always normal, this would contradict the fact fgis simple. We conclude
thatG has 36 Sylow 5-subgroups.

(ii) Let N be the normalizer of a Sylow 3-subgroup. Then the number of Sylow 3-subgroups
is G:N. Also the number of Sylow 3-subgroups divides 20 and is congruent to 1
modulo 3, so this number is 1,4 or 10. It cannot be 1 because that wouldGleas a
normal Sylow 3-subgroup, which would contradict the fact 8as simple. Nor can it
be 4, for therG would be isomorphic to a subgroup Af becausés is simple, which is
clearly impossible. Therefore the number of Sylow 3-subgroups is 10. We deduce that
G:N 10and hencé&l has order 18.

(iif) A Sylow 3-subgroup of a group of order 18 has order 9. This means the subgroup has
index 2, hence the subgroup is normal because in any group, a subgroup of index 2 is
normal.

(iv) LetC be the centralizer it of A B and supposé& B is not 1. TherC containsA,B
andA Bis anormal subgroup i@, soC cannot be the whole @. Therefore the order
of C is a multiple of 9 and divides 180, and is neither 9 nor 180. d_be the index of
CinG,soC G /d. ThenG is isomorphic to a subgroup é§ becauses is simple.
Since the order ofy is less than 180 il 5, we see thatl 6 and consequenti¢
has order 18. From patrt (iii), the Sylow 3-subgroupCdas normal inC and thereforeC
has exactly one subgroup of order 9. We now have a contradiction beCéhese two
subgroups of order 9, namedyandB. We conclude tha& B 1.

(v) We count the elements i@. Since two Sylow 5-subgroups intersect in 1 and there are
36 Sylow 5-subgroups by (i), we see tliahas 36 4 144 elements of order 5. Also



two Sylow 3-subgroups intersect in 1 by (iv) a@dhas 10 Sylow 3-subgroups by (ii).
ThereforeG has 8 10 80 elements of order 3 or 9. We conclude t@&ahas at least
144 80 224 elements, which contradicts the fact tliahas only 180 elements. It
follows that no sucl& can exist and thus there is no simple group of order 180.

3. SinceM is a cyclicR-module, we know thaM R/Rsfor somes R. By the uniqueness
part of the fundamental structure theorem for finitely generated modules over a PID, we cannot
write R A BwhereA, B are nonzerd&-modules. Therefore 0. SincesM 0, we may
taker s

SincerM 0, we see thatR sRand hences dividesr. Suppose there do not exist distinct
primesp, g dividing r. Then the same is true febecauses dividesr, and we deduce thatis

a prime power, say® for some primep. From the uniqueness statement in the fundamental
structure theorem for finitely generated modules over a PID, we cannotRyiRg® A B
whereA B are nonzerdr-modules and we have a contradiction. This finishes the proof.

4. (i) Choose integemsssuchthagr 2s 1. TheninZ X /(X—2 we haveqr 1-sX
mod (X — 2 . Since 1-sXis invertible inZ X (withinverse 1 sX s°X? ...),it
follows thatq is invertible inZ X /(X—-2.

(i) The general element &tis ¥ &X' mod (X —2 , whereg Z foralli. Now eachg is
of the formp/qwherep,q Z andqis odd. Using (i), we may now write; b mod
(X—2 whereb; Z X , and then we may write the general elemenRaf the form
zbixi mod (X — 2 . This proves that® is surjective. We now determine the kernel of
0. Obviously(X —2  kerr. Conversely supposé kerr®. Then we may write
f (X—2gwhereg Z; X . Wewanttoshowthay Z X . Writeg zgixi
whereg;  Z, . Then the coefficient K" in g(X —2 isgn-1—2gnforn 0, and the
constant coefficient is-2go. By induction onnwe see thatg, Zand since, Z,
we conclude thaty, Z for all n. This proves thatka®® (X —2 and it now follows
from the fundamental isomorphism theoremtRat Z X /(X —2.

(iif) By considering the homomorphisrd X 7 determined by sendiniX to 2, we see
thatZ X /(X—2  Z. Since 3 is not invertible iZ, we see that 3 is not invertible in
Z X /(X—2 . But 3isinvertible inR and the result follows.

5. (i) ObviouslyK(aP  K(a . Alsoa is separable ove (aP and satisfies the polynomial
XP—aP. Sincea is the only root ofXP —aP, it follows thata K(aP and hence
Ka K(aP.

Now we consider the minimum polynomial @fover K. This has degre@ because
K(B :K p, and must be a polynomial )P because is not separable ové¢. Thus
the minimum polynomial must be of the forkP — b for someb K and it follows that
BP b K.

(i) Since we are in characteristig we have(a B P aP BP. ButpP Kby (i), hence
af K(a B . ThereforeK(a? K(a p and it now follows from (i) thaK(a
K(a B asrequired.

(i) SinceK(a B  K(a by (i), we have K(a B : K Ka B :K(a K(a :
K and sinceK(a : K d, it remains to prove thatk(a f : K(a p. Now
(a BP aP BP K(a which shows thatk(a B :K(a p or 1, because we



are in characteristip. It remains to prove thaK(a B : K(a 1, or equivalently
thatp / K(a . Buta is separable ovef, hence every element &f(a is separable over
K which shows thafl / K(a because is not separable ovef. This completes the
proof.

(i) 1t will be sufficient to prove thaXP —t is irreducible in t,X, or equivalently that
t —XPisirreducible in X;t. LetR X and letF (X, the field of fractions
of R. Thent — XP is a monic polynomial irRt and is irreducible irF t , hence it is
irreducible inRt X,t and the result follows.

(i) Lety be one of the roots okP —t in L. SinceXP —t is irreducible inK X , we see that
K(y :K p. Also the roots ofXP —t aree?™/Py wheren 0,...,p—1, and since
g2nmi/p for all n, we deduce that all the roots ¥ —t are inK(y . It follows that
K(y Landwe conclude that : K p. Therefore the Galois group &foverK has
order p (note thatL /K is a separable extension because we are in characteristic zero).
Since groups of ordep are cyclic, we conclude that the Galois groupLobverK is
cyclic of orderp and hence isomorphic @/ pZ.



1.

4.
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Let G be a group of order 1127 7° 23. The number of Sylow 23-subgroups divides 49
and is congruent to 1 modulo 23. This means tBabas exactly one Sylow 23-subgroup
and therefores has a normal Sylow 23-subgrodp Also the number of Sylow 7-subgroups
divides 23 and is congruent to 1 modulo 23. Therefore the number of Sylow 7-subgroups is 1
and we deduce th& has a normal Sylow 7-subgro

SinceG has normal subgroup&,B suchthatA B 1 and G A B, we see thaG

A B. Now groups of prime ordep are isomorphic the cyclic groud/pZ, while groups

of order p? are either isomorphic t@/p°Z or Z/pZ 7/pZ. ThereforeG is isomorphic

to eitherZ /497 7./23Zor Z)7Z 7Z/77Z 7/23Z. In particularG is abelian and by the
fundamental structure theorem for finitely generated abelian groups, these last two groups are
not isomorphic. Therefore up to isomorphism there are two groups of order 1127, namely
7./497. 7./23ZandZ/77 )77 7./237.

. We shall prove the result by induction @&, the result being obviously true i 1. Also

if Gis abelian, then there is nothing to prove, so we may assumé&tisatot abelian. Since
G is nilpotent and not 1, its cent@ is not 1. By induction the result is true f@&/Z. Note
that if G/Z is cyclic, thenG is abelian which is not the case. Theref@g¢Z is noncyclic. By
induction, G/Z has a normal subgrougd /Z such that{G/Z /(H/Z is a noncyclic abelian
group. But(G/Z /(H/Z  G/H and the result follows.

Let G be a finitely generated abelian group with the given property. Then by the structure
theoremG is isomorphic to a direct product of nontrivial groufss Ao, .. ., A, of prime power

order. Ifn 1,thenA; Az andA; A;. Thereforen 1. This means thab is cyclic of

prime power order. Conversely @ is cyclic of prime power order, it has the given property,
because the has exactly one subgroup of each order dividiBgand it follows thatG has

the property as stated in the problem. We conclude that the finitely generated abelian groups
with the property that for all subgroupgs B, eitherA B orB A are the cyclic groups of
prime power order.

(a) Letx R/radl and suppos&" Owheren 0. Thenwe maywrita y radl where
y R Sincex” 0, we see thay"” radl radl, which means thay" radl. By
definition of rad we see thafy" ™ 0. Thereforey™ 0, hencey radl and we
deduce thax 0. This establishes th&/radl has no nonzero nilpotent elements.

(b) fx P P, --- B, thenx P foralliandhence" PP,---P,. It follows that
X radPiP---P, . Conversely suppose radPiP,---P, . Thenx radPR for alli.
This means that™ P, for somem 0 and since? is prime, we deduce that P for
all i as required.

(c) If R is contained in every;, thenP, --- B, P and henc&/radP;---P, R/R
by (b). We deduce tha&/rad(P;--- P, is an integral domain.
Conversely supposB/radP;---P, is an integral domain. Then by (b) we see that
R/(P. --- P, isalso an integral domain. Suppose there does not exissach that
R, is contained irP; for all j. Then for each, we can choosg P such that; / P; for
somej (wherej depends om). Nowsety; X P --- Pyfori 1,...,n. Theny;is



5.

6.

7.

8.

anonzero element&®/(P. --- P, foralli, yet

Vi--:Yn  Xic-Xn P - P, O

This shows thaR/(P1  --- Py is not an integral domain and we have a contradiction.
This completes the proof.

ObviouslyK(a®  K(a . Now

8 K(a :K K(a :K(a® K(a® :K

which shows thatK(a : K(a® divides 8. Alsoa satisfies the polynomiaX® — a® which

shows thatK (o :K(a® 3. ThereforeK(a :K(a3 1 or 2. We need to eliminate the
possibility thatK (o : K(a® 2. 1f K(a :K(a® 2, then the polynomiaX®— a3 could
not be irreducible oveK (a2 , and it would follow thatX® — a3 has a root irk (a® . But the
roots of X3 — a3 area,wa andw?a and sincew K, it would follow that all the roots of
X3 — a2 are inK. In particulara K (a® . This establishes the result.

(a) LetT denote the ideals d® which have trivial intersection witB. Sincea is not nilpo-
tent, we see that § Sand hence O T. ThereforeT is nonempty. Moreovel is
ordered by inclusion, and the union of a chainTiris still in T. It now follows from
Zorn's lemma thafl has maximal elements; I€& be one of these maximal elements.
ThenP S 0. We claim thatP is prime. If P is not a prime ideal, then there exist
idealsA, B strictly containingP such thatAB  P. By maximality of P we havea A
andal Bfor somei, j and henc& | P. This contradicts the fact th& T, and it
follows thatP is a prime ideal not containing

(b) Letd: R K denote the composition of the natural epimorphRm R/P followed by
the natural monomorphisiR/P K. If b S thenb / P, hence the image dfin R/P
is nonzero and we deduce ttei is invertible inK. It follows that® extends to a ring
homomorphismp: S 1R K.

(a) The proper subfields &f containingK are in a one-one correspondence with the proper
subgroups of G&F /K . Therefore we need to show th&f has at least 9 proper sub-
groups. There are 6 elements of order 2 and 8 elements of orde®;,3 8ince any two
subgroups of order 2 or 3 intersect in the identity, we see that there are 6 subgroups of
order 2 and 4 subgroups of order 3, and we have shown th@F@al has at least 10
proper subgroups. This finishes part (a).

(b) The Galois extensiors of K in F correspond to the normal subgroups of GaK , so
we need a nontrivial normal subgroup of GalK . The simplest one is the alternating
subgroupA4 of S;. The corresponding subfiel of K is the elements df fixed by A4.
Also GalE/K S /A Z/27Z.

First we find the Jordan canonical form of the matr% _32 The characteristic equation

of this matrix is—x(3—x 2 0, which has roots 1 and 2. Therefore the Jordan canonical



form of this matrix is

CZ) and we deduce that the Jordan canonical form if

1
0

O O
oON O
N OO

The matrices which commute with this canonical form are the matrices of the form

p 0 O
0 ab
0 cd

wherep, a, b, c,d are arbitrary complex numbers.
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1. The order of is 5°- 73. The number of Sylow 5-subgroups @fdivides 7 and is congruent
to 1 modulo 5; the only possibility is 1. Therefo@ has a normal Sylow 5-subgrouf
The number of Sylow 7-subgroups Gfdivides 5 and is congruent to 1 modulo 7; the only
possibility is 1. Therefor& has a normal Sylow 7-subgrou

Since( A, B 1, we seethafh B 1. We next show that every elementAtommutes
with every element oB. Suppose A andb B. Thenaba 'b~! a(ba tb~! and since
A< G, we see thaba b~ A and consequentlgba b1 A. Similarly aba b=t B
and we deduce thatba b~ A B 1. Thereforeaba b~ 1 and we conclude that
ab ba, in other words every element Afcommutes with every element Bf

Since a group of prime power order has normal subgroups of onder all m dividing the
order of the group, we see thathas a normal subgroug of order 25. From the previous
paragraphB centralizesH and so certainly normalizdd. ThusA andB normalizeH, hence
A and B divide the order of the normalizer &1 in G and we conclude thdi < G. This
completes the solution.

2. First we writeG as a direct product of cyclic groups of prime power ordér: 7Z/47
7)97 7./97 7/5Z. Any subgroup ofG is isomorphic to a product of subgroups, where
one subgroup is taken from each factor. Thus Z/9Z 7Z/3Z orZ/3Z 7/9Z. These
last two groups are isomorphic, so we conclude bhat Z /37 7Z./97Z.

3. (a) SinceD is a conjugacy class ifi-}(C , we may writeD  bdb! b f~}C for
some fixedd D. Then

f(O  f(bdb? f(bfdf(bt b f1C

Thereforef(D  cf(dc ! ¢ C,and (a) follows.

(b) LetD(g denote the conjugacy class @fin f~1(C . Sincef(g is centralized byC,
the conjugacy class containingg is precisely f(g . Sincef(D(g is by (a) the
conjugacy class containinf(g , we see thatf(D(g 1. Therefore all elements of
D(g are in the same coset of kkand we conclude thab(g kerf as required.

(c) LetK denote the centralizer gfin f~1(C . Then the order of the centralizer gin G
is at leastK . Now the order of the conjugacy classgin f~1(C is f~1(C : K, and
by (b) this order is at mosker f . Therefore f~%(C : K kerf , consequently

K f4C/kerf C
because ~1(C /kerf C. The result follows.

4. (a) IfRhas no prime elements, th&is a field and so certainly a PID. Therefore we may
suppose thaR has exactly one primp (up to a multiple of a unit), and we need to prove
thatRis a PID. Letl be a nonzero ideal @ Then each nonzero elementlofan be
written in the formup” for some nonnegative integeiand some unitl, because is the
only prime (up to a multiple of a unit) dR. Let N be the smallest nonnegative integer
such thatupN | for some unitu. We now show that  pVR; clearly pNR 1. If
x 1 0, then we may writex vp" for some unitv and some integen N. Thus
x  pNvp™~N which shows thak  pNR, and the result follows.



(b) Suppose every maximal ideal Bfis principal. Then each maximal ideal Bfis of the
form pRwherepis a prime ofR. Suppose by way of contradiction tHds a nonprincipal
ideal ofR. Clearly 0 | R Choose a nonzero element |, and writex p‘ljl... ﬂ",

where thep; are nonassociate primes and thare positive integers.

For each primep, lete(p denote the largest integer such tp&P R I. If pis not an
associate of one of tha, thene(p 0. Sety  p§*...p%. We claimthal  yR

First we show that yR If z 1, then by unique factorization we may wrize
qp{1 .. p:,”, where thef; are nonnegative integers aqds a product of primes which are
not associate to any of thg. Again using unique factorization, we must hdye ¢ for
all i and we deduce that yR

Finally we showthayR 1.Set3 r R yr | (soJ vy 1). ClearlyJis anideal
of RandyJ |I.IfJ R, then by Zorn’s lemmad is contained in a maximal ideal &,
which we may assume is of the forpRwherep is a prime ofR. It would follow that
ypR |, which contradicts the maximality of thegp . ThereforeJ Rand we deduce
thatyR |. Thusl yRand the proof is complete.

5. Lett N X N denote the projection onfd, som(n,x nforalln Nandx X, and

let 1 denote the identity map dd. Then(rtf i 10 1. This shows that has a left inverse,
consequently the sequence

0— N-' M- M/N— 0

splits (the mapM  M/N above is of course the natural epimorphism). This shows that
M N M/N as required.

. LetG denote the Galois group & overF. SinceE is a Galois extension df with E : F

p", we see thatG  p". SinceGis ap-group, ithasaserie6 Gy G; --- Gp1
Gn 1,withGi<Gand Gj/Gj_; pforalli. SetK; e E ge eforallg Gj.Then
by the Galois correspondends, is normal ovel and K; : Kj_; Gi:G_.1 pforalli,
as required.

. Suppos« is a finite field which is algebraically closed. Lebe a positive integer which is
prime to the characteristic &, and consider the polynomixl" — 1. The derivative oX" — 1
is nX"~1 which is prime toX" — 1 in K X , because is prime to the characteristic &f. This
tells us that the roots k" — 1 in a splitting field forK are distinct. IfK is algebraically
closed, then all these roots would bekinand we would deduce th&€ n. Sincen can be
arbitrarily large, this would contradict the assumption tas finite, and the result is proven.
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1. Sincef is an epimorphism fron® to H, the fundamental isomorphism theorem tells us that
G/kerf H,soin particularG/kerf  H . ThereforeG / kerf ~ H, hence kerf
G /H and we deduce thakerf  33.11%. Using the fundamental theorem for finitely
generated abelian groups, we see that there are up to isomorphism six abelian groups of order
kerf  3%.112 namely

7)277 7)1217Z | Z/9Z ZJ3Z 7J1217 | (Z/3Z 3 7/121Z
7)2717 (/1172 | 7/92 7Z/3Z (Z/11Z° | (Z/3Z° (Z/11Z°?

2. (i) SinceA B is a subgroup ofz whose order dividesA p*and B @°, we see that
A B 1landhencA B 1.Nextifa Aandb B, thenab~tab (a'blab B,
becaus® < G. Similarlya—tb~lab Aandwe deduce thatb—'ab A B 1. Therefore
alblab 1, consequenthab baforalla Aandb B. We can now define a map
6:A B Gby6B(a,b ab. Then

0((a1,b1 (ag,by ) O(azaz,biby  ajabiby  (azby (azb:

(because, commutes wittb;), hencee((al,bl (ag, b ) B(az,b; B(ap,b, and we deduce
that 8 is a homomorphism. Ifa,b  ker6, thenab 1landsoa b~% Thusa b™!

A B landwededucetha b 1. Therefore keB 1 and s is a monomorphism.
SinceG A B we conclude tha is also onto, consequentfyis an isomorphism and
the result follows.

(ii) Since A is a p-group, it has a normal subgroupof order p. Similarly B has a normal
subgroupQ of orderg. SinceP  Q is a normal subgroup o& B of order pqg, we see that
B(P Q is anormal subgroup @b of orderpg, and so we may s&¢ P Q to satisfy the
requirements of the problem.

3. Let G be a simple group of order’23-112. The number of Sylow 11-subgroups is con-
gruent to 1 modulo 11 and divides 12, so the possibilities are 1 and 12. If there is 1 Sylow
11-subgroup, then it would have to be normal, which is not possible beissimple.
Therefore there are 12 Sylow 11-subgroupsN lis the normalizer of a Sylow 11-subgroup,
then G: N is the number of Sylow 11-subgroups, $0: N  12. By considering the per-
mutation representation @ on the left cosets ol in G and using the fact thas is simple,
we see that there is a monomorphism@into A1, the alternating group of degree 12. This
means that is isomorphic to a subgroup @i,. This is not possible because 121 divides
G, but 121 does not divided;2 . We now have a contradiction and we deduce that no such
G exists, as required.

4.Since( 2 3%-9( 2 3 2 2,weseethat2 Q 2 3 and we deduce that
Q 2 3 Q 2, 3.NowQ 2:Q 2,andQ 2, 3:Q 2 1lor2, because

3 satisfies” — 3, a degree 2 polynomial ovép. ThereforeQ 2 3:Q 4or2,
depending on whetherornot3 Q 2.

Suppose 3 Q 2. Thenwemaywrite 3 a b 2whereab Q. Clearlya,b 0.
Squaring we obtain 3 a> 2ab 2 2b? and we deduce that2 is rational, which is not so.



Therefore 3 /Q 2 andconsequentl 2 3 4. Note we also have thatl, 2
isaQ-basisforQ 2,and 1, 3 isaQ 2-basisforQ 2, 3. Recall thatifg is an
F-basis forE overF and f; is anE-basis forK, theng f; is anF-basis forK. It follows that
1, 2, 3, 6 isaQ-basisforQ 2, 3.

. LetP be a prime ideal ob and suppos® was not maximal. Then there would exidt< D
such thatM D andM properly containing®. SinceD is a PID, we may writd®> pD and
M  mDforsomem,p Dwithp 0. Thenp mxforsomex D becauséV containsP.
SinceP is a prime ideal, we must haveorx P. We cannot haven P becauséV properly
containsP. Therefore we must have P and then we may write pyfor somey D. This
yieldsp mpyand sinceD is a domain, we see that 1my. This shows thainD D, which
contradicts the fact tha¥l is a proper ideal oD and the first part of the problem is proven.

Suppose nowthdt: D K is a ring epimorphism onto the integral doméimwith kerf 0.
ThenD/kerf K, so kerf is a prime ideal becaud®/kerf is an integral domain. Using
the first part of the problem, we see that kés a maximal ideal oD. ThereforeD/kerf is a
field and it follows thaK is a field as required.

For the last part a counterexampleRs Z/6Z. LetP be the prime ideal 2767, Q the prime
ideal 32./6Z, andS R P. Note that the ideals dR are precisely OR, P andQ, and the
prime ideals oR are preciselyP andQ. ThenS'P 0 becauss 6Z 3 Sandsp O
forallp P,andS'Q Rpbecaus&® S 0. Since all ideals oRp are of the formS™I
for somel <R, we see that 0 an@p are the only ideals dRp and it follows thatRs is a field.
Similarly Rq is a field. SinceRis not an integral domain, we have now established Riata
counterexample.

. SupposeP is a prime ideal ofR and Rp has a nonzero nilpotent element. Then we may
assume thaRp has a nonzero elemeatsuch that? 0.1fS R P, thenwe may write the
nilpotent element as/swherer Rands S Since(r/s? 0, we see that’t 0 for some

t Sandrt Obecause/s 0. Also(rt 2 r2tt 0, sort is a nonzero nilpotent element
of R.

Suppose is a nonzero nilpotent element 8 It remains to prove tha® has a nonzero
nilpotent element for some prime idd&lof R. We may assume that 0. Let| s R

rs 0 ,anideal oRwhich does not contain 1. By Zorn's lemma, there is a maximal iBeal
of Rcontainingl; of courseP will also be a prime ideal. Then the imagél in Rp is nonzero
becauset Oforallt R P.Since(r/12 r?/12 0/1?> 0, we see that/1is a nonzero
nilpotent element oRp. This completes the proof.

. The submodule dfl generated bpAandBisA B;thisistheseta b a Aandb B .
Thuswe needtoprovethat B A B.Wedefineamap: A B Mby6(ab a b
Clearly this is arR-module homomorphism & BontoA B.If (a,b kerf, thena b
0, consequentla  —hb. This shows thahand—b are bothinA B 0. Thereforea b 0
and hence k&b 0. It follows that6 is an isomorphismand & B A Bas required.

. (i) Since there is a one-one correspondence between the subgroupsEffsathe Galois
group ofE overF) and the proper subfields &f containingF, we need to show th&; has at



least 35 proper subgroups. One way to do this is to noteShlaas 144 5-cycles which gives
36 subgroups of order 5.

(i) The subfieldL required is FixAs , the subset of which is fixed pointwise by all elements
of the alternating subgroups of . SinceAg is a normal subgroup d&, we see that is

a Galois extension of, and that GAE/L ~ As. SinceAg is a simple group, there is no
subfield betweeie andL which is Galois ovet..

(iii) The dimension ofL overF is S/As 2.
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1. (a) Obviously 0 1J. Now suppose,y [J andr R. We wantto prove that y,rx IJ.
Writex S ;abjandy S";cdi, wherea,c | andb,d; J. Then

n m
Xy izlaibi izlcidi

which shows thak 'y 1J. Alsorx 3] 1(ra; bi, and sincd is an ideal ofR, we see that
ra; | foralli. Thereforerx 1J and we have proven thal < R.

(b) Sincel <R, we haveld I. Similarly |3 Jand we deduce thal | J.

(c) Sincel J R, wemaywritei j 1wherei landj J. Ifx 1 J, thenx
xi xj JI 13 13 (becausd&is commutative). Therefone 1J and we have proven that
I J 1J. The result now follows from (b).

(d) Leta R 0. We need to prove thathas a multiplicative inverse. Usirld | Jwith

I J aR weseethahRaR aR aR aR hencearas aforsomer,s R Sincea 0
andR s an integral domain, we may canceto obtainars 1. We have now shown that all
nonzero elements & have a multiplicative inverse, henégis a field.

2. (a) SinceF is a finite Galois extension df with Galois groupSs, there is a one-one corre-
spondence between the fields strictly betwEeandK, and the proper nontrivial subgroups
of S. Therefore we need to show thgg has more than 40 subgroups other than 1 &nd
Now S has 24 elements of order 5 which gives 6 subgroups of order 5; 20 elements of order
3 which gives 10 subgroups of order 3; 10 2-cycles which gives 10 subgroups of order 2; 15
permutations which are a product of two disjoint 2-cycles which gives 15 more subgroups
of order 2; and now we have 610 10 15 subgroups which is already more than 40, as
required.

(b) The subfield€ of F containingK which are Galois extensions &f correspond to the
normal subgroups of Gd /K . Specifically ifH is a normal subgroup of Ga@ /K , then the
corresponding subfield is KiM , the elements df which are fixed by all automorphisms of
H. Furthermore we have G&lix(H /K GallF/K /Hand Fix(H :K  GallF/K :H.
SinceS has a unique nontrivial normal subgroup, namely the alternating gkgupfollows
that the subfieldE required is FiXAs . ThenE:K 2and GalE/K S/As Z/2Z.

3. (@) 455 5-7-13. We determine the number of Sylow 13-subgroups. This is congruent to
1 modulo 13 and divides 35. The only possibility is 1, which means @haias a normal
subgroupA of order 13 and s is not simple.

(b) SinceG/A is a group of order 35, we can apply Sylow’s theorems to seeGlathas
exactly one subgroup of order 7, which by the subgroup correspondence theorem we may call
H/A. ThenH /A< G/A, soH <G. NowH is a group of orderA H/A  13-7, and we may

apply Sylow’s theorems for the prime 7 to deduce tHalhas exactly one subgroup of order

7; we shall call this subgroup. ThenB < H; in fact we can assert more, namely tBat1 G.

To see this, ley G. ThengBg? is a subgroup o§Hg* H becauséH < G, and since

gBg! B 7, weseethayBgl B which establishes th@ < G. Similarly G has a
normal subgroup of order 5, which we shall call



We now have thaG has normal subgroup&, B,C of orders 13, 7 and 5 respectively. Since
13, 7 and 5 are coprime and their product is 455, we deducezhadn B C. Leta A

be an element of order 13, It B be an element of order 7, and et C be an element of
order 5. We want to show thabcis an element of order 455. Since the order of an element
divides the order of the group, we certainly have the ordeabafdivides 455. Suppose the
order ofabcwas less than 455. Then the orderbic would have to divide 455/13, or 455/7,
or 455/5. Suppose the orderatfc divided 45513 35. Then(abc3® 1 and sincea,b,c
commute, we see thaf®b®>c® 1. Butb® ¢ 1, hencea®® 1. This is not possible
becausea has order 13. Similarly the order abccannot divide 455/7 and 455/5. We deduce
thatabchas order 455, hencabc G and the result is proven.

. We shall use the fundamental theorem for finitely generated modules over a PID. Thus we
may write

m
A R PR/gR?
i1
m
B R PR/MaR"
i1
wherea, b, a;, b, m are nonnegative integers and tijeare distinct prime powers. Siné¢
B", we have

m m

R? PR/GR™ R® PR/GR™.

i1 i1

The fundamental theorem now gives tit nbandng nly for all i, hencea b and
a; bj for all i and the result follows.

. SinceP is a projective module, it is a submodule of a free moduldhe mappindg: P F
defined byBp 2p is a monomorphism, so by using the hypothesis Bhé injective, we
see that it has a left inversg F P. Since@B is the identity mapping o, we see that
p 2¢pforallp Pandhencd? 2P. ThereforeP 2"P and we deduce th&® 2"F
for all positive integers. But(N2"F 0 becausé- is a free module and the result follows.
(Note: the hypothesiB is finitely generated has not been used.)

. Leta: mB B denote the natural inclusion, and fztB  B/mBdenote the natural surjec-
tion. Then the exact sequence °B P B/mB 0 yields an exact sequence

A mBL%A BXPA B/mMB- O

where 1 indicates the identity map. Therefédre (B/mB (A B /im(1 o , where im
denotes the image of a map. Now(in a is the Z-submodule ofA B generated by
a mba Aandb B andsince mb m(@ b, thisisthe same as tt#&submodule
generated bym(a b a Aandb B . This submodule is preciselp(A B, hence
im(1 a m(A B and the proof is complete.



7. LetG be the group of order 588 and write 588 as a product of prime powers: B3 - 49.
The number of Sylow 7-subgroups is congruent to 1 modulo 7 and divides 12, hence there is
a unigue Sylow 7-subgroufa which must be normal . SinceA has order 49, it is abelian
and so certainly solvable. Thus we need only prove @& is solvable, becausg/A and
A solvable impliesG solvable. Sinc&/A has order 12, this means we need to prove that all
groups of order 12 are solvable.

LetH be a group of order 12. The number of Sylow 3-subgroups is 1 or 4. Suppose there is
exactly one Sylow 3-subgroup. ThenB<H and H/B 4. Since groups of order 3 and

4 are abelian, we see thBtandH /B are abelian and hend# is solvable. Suppose on the
other hand thaltl has 4 Sylow 3-subgroups. B; andB, are two distinct Sylow 3-subgroups,
thenB; B is a proper subgroup @&; whose order divides 3 by Lagrange’s theorem, hence
B; By 1 and we conclude that has (at least) 8 elements of order 3. Now the Sylow 2-
subgroups oH have order 4, and every element of a Sylow 2-subgroup has order a power of
2. If H had more than one Sylow 2-subgroup, thémvould have at least 5 elements of order

a power of 2, consequenthlt would have at least 58 13 elements, which is not possible
becauseH 12. ThereforeH has a unique subgroupof order 4, which must be normal in
H.SinceH/C 3andC 4, we see thatl /C andC are abelian, and we conclude tliht

is solvable. This completes the proof.

8. LetL Q( 2, 3, 5.Thenclearhyk L.Also( 2 33-9( 2 3 2 2 hence
2 Kandwededucethat K.Thusk Q( 2, 3, 5. ltfollows thatK is the splitting

field for the polynomial(x®> —2 (x> —3 (x* =5 and we deduce that is a Galois extension
of Q. In particular the number of fields betwelnandQ equals the number of subgroups of
GalK/Q .
Now any element of G&K/Q mustsend 2to 2, 3to 3,and 5to 5. It
follows that every nonidentity element of GEI/Q has order 2, and that G&/Q is ele-
mentary abelian of order 1,2,4 or 8.

We shall use the following result: & and b are products of distinct prime numbers and
Q( a Q( b,thena b. Tosee this, write a r s bwherer,s Q. Thena

r2 2rs b &b.Clearlys Oandrs O, consequently Oanda s?bwhich establishes
the result.

It follows immediately that there are at least 8 subfields betwi@andK, namelyQ( 2¢3d5¢
wherec,d,e are 0 or 1. Now if GalK/Q 4, then there would be at most 5 subgroups
of Gal(K/Q , consequently there would be at most 5 fields betw€éesnd Q. This is a
contradiction, so we must hav&al(K/Q 8 and therefore G&K/Q  (Z/27Z 3.
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Leta be a root off in K. Then F(a : F 1 becausd has no roots irfF, is less than 6
becausef has degree 6, and divides 21. It follows thata : F 3. Letg be the minimum
polynomial ofa overF. Theng is an irreducible polynomial of degree 3 which divide
F X, sowe may writef  ghin F X whereh has degree 3. Sindehas no root irF, we see
thath is irreducible inF X , sof ghis the factorization off into irreducible polynomials
inF X.

Sincef has at most two roots i, we see thagj andh have at most one root iK. It follows
that we may writeg g102, andh  hihy, wheregs, gz, hy, h, are irreducible irk X , g; and
h; have degree 1, amgh andh, have degree 2. Theh gig-hih; is the factorization off
into irreducible polynomials itk X .

. The number of Sylow 59-subgroups divides 33 and is congruent to 1 modulo 59. Therefore

there is only one Sylow 59-subgroup which means @Gétas a normal subgroug of order
59.

Now G/H is a group of order 33 and so the number of Sylow 3-subgrouf@g dfis congruent

to 1 modulo 3 and divides 11. Therefd®H has a normal Sylow 3-subgroup, which we may
write asA/H whereA is a normal subgroup db. ThenA is a group of order 3*59 and the
number of Sylow 3-subgroups @éfis congruent to 1 modulo 3 and divides 59. Therefare
has a normal subgroug of order 3. Observe that§ G, thengKg! is a subgroup of order
3 contained irgAg 1. SinceAis normal,gAgl A, sogKg ! is a subgroup of order 3 in
A and hencggKg™! K, becauseh has exactly one subgroup of order 3. Therefiéres a
normal subgroup of order 3 i@.

Using exactly the same argument as above with the primes 3 and 11 interchanged, we see that
G has a normal subgroup of order 11. We have now proved that all the Sylow subgroups

of G are normal, s@ is isomorphic to a direct product of its Sylow subgroups. Also each
nontrivial Sylow subgroup has prime order and is therefore cyclic. It follows@halbelian,

and then by using the structure theorem for finitely generated abelian groups, we conclude
thatG is cyclic.

. SinceG is a nontrivial p-group, its center is nontrivial and therefore it has a central subgroup

Z of orderp. ThenG/Z is a group of ordep"~* and sincen 2, we see thaB/Z is nontrivial
p-group and hence it has a central subgroup of opléNe may write this subgroup as/Z
whereA is a normal subgroup d&. ThenA has orderp? and since groups of ordg® are
abelian, it follows tha#\ is a normal abelian subgroup of order as required.

. The roots oiX3 — 2 are * 2, * 2w and * 2w and it follows easily thaK is the splitting field

for X3— 2. Thereforek /Q is a Galois extension @. Also Q(*2 :Q 3andQ°®2 K.

Since the splitting field of a polynomial of degree 3 has degree dividing 6 and the Galois group
is isomorphic to a subgroup &, we conclude thatk : 6 and the Galois group df

overQ is isomorphic tdSs.

(@) Obviously0 A R. Letab A R Thena—b Aanda—b R,soa—b A R
Finally letr R. Thenar Abecauséis an ideal ofS andar R. Thusar A R
and we have proved that Ris an ideal ofR.



(b) Letx A. SinceF is the field of fractions of the PIIR, we may writex ab~! with
ab Rand(a,b 1. Thenthere exisp,q Rsuchthatp bg 1,sopx q b~
Sincep,g,x S we seethab ! S NowAisanideal ofS soxb a A R Rq,
so there exists R such thatxb rd. Then we havex b~'rd Sdand the result
follows.

6. (a) WehaveG/M:PM/M  G:PM and G:P G:PM PM:P,so G/M:PM/M
divides G: P . SinceP is a Sylowp-subgroup ofG, we see thatG: P is prime top
and henceG/M : PM/M is prime top. This shows thaPM/M is a Sylowp-subgroup
of G.

(b) Letn N.ThennPn! PandnMn! M, hencenPMn! PM. This shows thavin
is in the normalizer oPM/M in G/M and we conclude that H. The result follows.

(c) The number of Sylowp-subgroups o5/Mis G/M : H/M G:H , and the number
of Sylow p-subgroups of5is G: N . SinceN H, we see thatG: H divides G: N
and the result follows.

7. (@) As 7Z/597Z
(b) /27 7.)27. 7./885Z

8. We shall use the structure theorem for finitely generated abelian groups. We may write
n
G z° Pz/piz
i1
n
H z° Pz/z
i1

for certain integerg, b, a;, b, n, and thep; are distinct primes. Sind8 G H H, we see
that

n n
ZZa @ Z/ plzaq 7 ZZb @ Z/ piZbi 7
i1 i1
Using the unigueness statement in the structure theorem for finitely generated abelian groups,

we seethat2 2band 2 2bforalli. Thereforea banda b for all i, which proves
thatG H.
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1. Let0 a R. We must prove thai is invertible, so suppose to the contrary thas not
invertible. Thena®R is an ideal ofR and sincea is not invertible, we see thaR R and
consequentlya®R  R. By hypothesisa®R is a prime ideal ofR and sincea® a°R, we
deduce that a?R. Thereforea a°r for somer R. Since 0 is a prime ideal d®, we see
thatR is an integral domain and we deduce that &r. Thusa is invertible and we have a
contradiction. This completes the proof.

2. By hypothesisG has a normal subgroup &f of order p3. ThenG/K is a group of ordeg?®.
A nontrivial g-group (whereg is a prime) has a normal subgroup of ordgrsoG/K has a
normal subgroug /K of orderg. ThenH is a normal subgroup of ordg@q, as required.

3. Supposer has an elemerd which is neither a zero divisor nor a unit. ThaR s a proper
submodule oR, because is not a unit. Also the map ar is anR-map fromR onto aR
which has kernel 0, becauseis a nonzero divisor. This shows th&atis isomorphic to the
properR-submoduleaR

Conversely suppos® is isomorphic to the propeR-sumoduleM. Then there is aR-
isomorphismf: R M. Seta 61. ThenaR (1R 6(1R 6R M, soaR R
and we see tha is not a unit. Finally ifar O, thenbr 6(1r (81r ar 0 andwe
deduce that 0, becaus® is an isomorphism. Therefords a nonzero divisor and the result
follows.

4. Sincea satisfiesX? —a? K(a? X ,weseethak(a :K(a®? 1or2. AlsoK(a :K
K(a :K(a? K(a? :K. Since K(a :K is odd, we deduce thaK(a :K(a? 1 and
the result follows.

5. By the fundamental structure theorem for finitely generated abelian groups, we know that
G is a direct product of nontrivial cyclip-groups. Sincex G xP 1 has orderp?,
we see thaG is a direct product of exactly two nontrivial cyclig-groups. It now follows
thatG Z/p°Z Z/pZorZ/p*Z 7/p?Z orZ/p’Z 7)pZ (so there are three possible
groups up to isomorphism).

6. SinceK is a splitting ovek, it can be written a&(ay,...,a, whereay,...,a, are all the roots
of some polynomialf kX . If 0 GallL/k , thenog also satisfied, because fixes all
the coefficients off, and soo permutes they. It follows thatoK  k(oay,...,0a, K.

7. LetG be a simple group of order 280. The number of Sylow 7-subgroups is congruent to 1
modulo 7 and divides 40, so there are 1 or 8 Sylow 7-subgroups. There cannot be 1 Sylow
7-subgroup, because then the Sylow 7-subgroup would be normal which contradicts the hy-
pothesis thaG is simple. Therefore there are 8 Sylow 7-subgroups. Since two distinct Sylow
7-subgroups must have trivial intersection, we see that there are at le@st 88 elements
of order 7. The number of Sylow 5-subgroups is congruent to 1 modulo 5 and divides 56.
There cannot be 1 Sylow 5-subgroup, for then it would be normal which would contradict the
hypothesis tha6 is simple. Therefore there are 56 Sylow 5-subgroups. Since two distinct
Sylow 5-subgroups must intersect in the identity, we see that there are at leakt 5824



elements of order 5. Finally since the Sylow 2-subgroup is not normal, there must be at least
9 elements whose order is a power of 2. We now count elements: we finGthas at

least 48 224 9 281 elements, which is impossible beca@éas only 280 elements.
Therefore no sucles can exist and we deduce that there is no simple group of order 280.

. LetK be a splitting field oveF which containE, letG  GallK/F ,andletH GalK/E .

Since we are in characteristic zero, everything is separable and Kéa@Galois extension

of F. Therefore by the fundamental theorem of Galois theory, we see that the number of fields
betweerF andE is equal to the number of subgroups betw€smndH. Also G:H  n. By
considering the permutation representatioai the left cosets dfl in G, we see that there

is a normal subgroupl of G contained irH such thatG/N  nl. The number of subgroups
betweenG andH is at most the number of subgroups betw&andN, which is at most the
number of subsets @/N. Since the number of subsets®fN is 2¢/N , we deduce that the
number of subfields betweéhandE is at most 2', as required.
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1. We first factor 480 as 323 5. Note that sincé is simple, it cannot have a nontrivial subgroup of
index 7, because that would mean ti@ats isomorphic to a subgroup @éf, which is not possible by
Lagrange’s theorem.

(&) LetA P Qandsupposd 1. SinceP,Q< Cg(A ,weseethaP Cg(A . UsingLagrange’s
theorem, we deduce thaEg(A 96, 160 or 480. We cannot have 480 because hemuld
be a central and hence a normal subgrougpfvhich would contradict the hypothesis that
is simple. Also we cannot hav&Cg(A 96 or 160, because that would mean t@ahas a
subgroup of index 5 or 3. We now have a contradiction, and we conclud@ thdt.

(b) The number of Sylow 2-subgroups is congruent to 1 modulo 2 and divides 15. It cannot be 1
because that would mean thathas a normal Sylow 2-subgroup. Nor can it be 3 or 5, because
thenG would have a subgroup of index 3 or 5. Theref@aas 15 Sylow 2-subgroups. Next the
number of Sylow 3-subgroups is congruent to 1 modulo 3 and divides 96. This number cannot be
1, because that would mean that the Sylow 3-subgroup is normal. Nor can it be 4, because that
would yield a subgroup of index 4. Therefdgehas at least 10 Sylow 3-subgroups. Finally the
number of Sylow 7-subgroups is congruent to 1 modulo 7 and divides 160. This number cannot
be 1, because that would mean that the Sylow 7-subgroup is normal. Thekdiaseat least 8
Sylow 7-subgroups.

We now count elements. Since by (a) any two Sylow 2-subgroups intersect trivially, there are
15*31 nontrivial elements whose order is a power of 2. Next any two Sylow 3-subgroups intersect
trivially, because a Sylow 3-subgroup has prime order 3, and we see that there are at least 10*2
elements of order 3. Finally any two Sylow 5-subgroups intersect trivially, because a Sylow 5-
subgroup has prime order 5, and we deduce@has at least 6*4 elements of order 5. We now
count elements: we find th& has at least 1531 10 2 6 4 509 nontrivial elements.
SinceG has only 480 elements altogether, we have now arrived at a contradiction. We conclude
that there is no such group.

2. SinceRis a domain and 0’ S, we see thaS 'Ris a domain. Also foa,b Randsit S we have
a/s b/tifandonlyifat bs Suppose/1 divides(a/s (b/t in S"IR. This means that there exists
c/u S 'Rsuchtha(p/1 (c/u (a/s (b/t , which means thapstc abu. Sincepis prime, we see
that p divides at least one a,b,u. If p dividesu, thenp/1 is a unit inS'R becauses/1 is a unit in
S IR. Therefore we may assume thatloes not divides; without loss of generality, we may assume
thatp dividesa, saypg a. Then(p/1 (g/s a/sand we see that/1 dividesa/s. Therefore ifp/1
is not a unit, it is prime and the result follows.

3. LetP be a finitely generated projectikeX /(X3 X -module. Then there iskaX /(X2 X -module
Qand anintegeesuchthaP Q (kX /(X3 X & Notethatx® X X(X 12andkX /(X3
X kX /(X kX/(X 12, s0oP Q (kX /(X © (kX /(X 12¢ We may view this as
an isomorphism of finitely generatéadX -modules. We use repeatedly without comment that a map
betweerk X /(X3 X -modules is an isomorphism &sX /(X3 X -modules if and only if it is an
isomorphism a& X -modules. Sincé is a field,k X is a PID, so the structure theorem for finitely
generated modules over a PID tells us that

P Pkx/(fi and Q EPkX /(g
i i
where thef;, g; are either 0 or positive powers of monic irreducible polynomials. Then we have

Pkx /(i PkX /(g (KX/X © (kX/(X 12°=



The uniqueness part of the structure theorem for finitely generated modules over a PID now tells us that
fi  Xor(X 12foralli. It follows that a finitely generatekiX /(X® X -module is isomorphic to
a finite direct sum of modules of the forkX /(X ork X /(X2 1.

. Suppose there is a positive integesuch thatMJ” MJ™ 1 0. ThenMJ" is finitely generated
becausé/ is Noetherian, an@MJ" J  MJ" 1 MJ". By Nakayama’s lemma we deduce théal"
0, as required.

. SinceRis aright Artinian ring with no nonzero nilpotent ideals, the Wedderburn structure theorem tells
usthatR R; --- Ry, wherenis a positive integer, and th® are matrix rings over division rings.

If n 1,then(1,0,...,0 is anontrivial idempotent, so 1 which means thaR is a matrix ring over

a division ring. If this matrix ring has degreel, then the matrix with 1 in thél,1 position and zeros
elsewhere is a nontrivial idempotent. Theref®& isomorphic to a matrix ring over a division ring,
and the result follows.

. The character table f@&, is given below; the irreducible characters gge...,Xs. X1 is the principal
characteryz is the character coming from the sign of the permutatis, the permutation character
(notirreducible)xa p—Xi1, andxs Xz2X4. The remaining row, the characteryf, can easily be
filled in using the orthogonality relations.

Class Size| 1 6 8 6 3
Class Rep| (1) | (12) | (123) | (1234)| (12)(34)
X1 1 1 1 1 1

X2 1] -1 1 -1 1

X3 2 0 -1 0 2

X4 3 -1 0 1 -1
X5 3 1 0 -1 -1

p 4 2 1 0 0

. Since splitting fields are determined up to isomorphism, we may as well assunie that Since
the roots ofX*—2are *2, %2, weseethak Q( “2,i.NowX*—2isirreducible ovef) by
Eisenstein’s criterion for the prime 2, sB(*2 : Q 4. Alsoi / Q(*2 andi satisfiesx? 1 0,
consequentyK :Q(*2 2. We deducethakK:Q 8 andthereforeGal(K/Q 8. Now a group

of order 8 has a normal subgroup of order Z{group has normal subgroups of any order dividing the
order of the group); leitl be a normal subgroup of order 2@ and letL be the fixed field oH. Then

H has index 4 irG, so by the fundamental theorem of Galois theory, we sed tisad normal extension
of degree 4 ove), as required.
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1. () H actson the set of conjugates of Q according to the formulagQg— —
hgQgth~1forhe H and g € G. Notethat gQg ! < Gfor al g, s0 Oq
isaset of subgroups. Let S= {hc H | hQh~1 = Q}, the stabilizer of Q
inH. Then |Og||S| = [H|. Now he Sif andonly if he HNNg(Q) =1,
hence |S| = 1 and the result follows.

(b) Let P be a Sylow p-subgroup of G. We apply the above with H = P.
Since PNNg(Q) = PNQ = 1, we see that Og has |P| = p™ subgroups.
Furthermore all the subgroups of Og have prime order g, so any two of
them must intersect in 1. Now each nonidentity element of a subgroup
in Oq has order g, consequently each subgroup of Oq yields q— 1 ele-
ments of order q and we deduce that G has at least (q— 1) p™ elements
of order g. Therefore G has at most pg™ — (q— 1) p™ = p™ elements of
order a power of p. Since |P| = p™ and every element of a Sylow p-
subgroup has order a power of p, we conclude that P isthe only Sylow
p-subgroup of G. Therefore P isnormal in G and we are finished.

2. Let F = Q(v/2,v/3) and N = Gal(K/F). Then F C K and is the splitting
field over Q for (x*> — 2)(x? — 3). Therefore N is a normal subgroup in
Gal (K /Q) of index [F : Q]. Now /2 satisfiesx? — 2 and v/2 ¢ Q. Therefore
[Q(v2):Q] =2
Next we show that v/3 ¢ Q(+/2). Suppose v/3 € Q(+/2). Then we could
write v/3 = a+byv/2 with a,b € Q, because every element of Q(v/2) can
be written in this form. Squaring, we obtain 3 = a? + 2b” + 2aby/2. Since
V2 ¢ Q, wededucethat aorb=0. Buta=0yields/3/2 € Q, whileb=0
yields v/3 € Q, neither of which is true. We conclude that v/3 ¢ Q(v/2).
Since /3 satisfies x? — 3, we deduce that [F : Q(v/2)] = 2. Therefore

F:Q]=[Q(v2,v3):Q(V2)[Q(V2): Q] =2+2=4.

Thus N isanormal subgroup of index 4 in Gal(K/Q).

Suppose v/2 € K. Since v/2 satisfies X8 — 2 and x — 2 is irreducible over
Q by Eisenstein’s criterion for the prime 2, we see that 8 divides [K : Q],
consequently 8 divides | Gal (K /Q)|. But | Gal(K/Q)| = 4|N|, so thisis not
possibleif |N| isodd.



3. (8

(b)

If X andY areright R-modulesand 8: X — Y isan R-module homomor-
phism, then there is a unique group homomorphism 8 ® 1: X rRC —
Y ®rC such that B(x®c) = (Bx) @ cfor al xe X and c € C.

First we apply this to the maps

(a,b)—a: AeB— A
(a,b) — b: AgB — B.

We obtain a group homomorphism
0: (AGB)®RrC — ARRCHB®RC
such that 8((a,b) ® ¢) = (a® ¢, b®c). Next we apply it to the maps

a— (a,0)®c: AQrRC — (A®B)®RrC
a— (0,b)®c: BerC — (A® B) ®RrC.

We obtain a group homomorphism
¢: (A®RRC)® (BRRC) — (A®B)®RC

such that p(a® c,b®d) = (a,0) @ c+ (0,b) ®d.
Finally we show that @8is the identity on (A® B) ®rC, and that 8@ is
the identity on (A®RC) & (B®RC). We have

P, b)@c=gp@®cbxc)=(ab) ®c.

Since (A@ B) ®RrC is generated as an abelian group by elements of the
form (a,b) ® c, we see that @Bisthe identity. Also

Bpamc,b@d) =0(a,0)®c+6(0,b)od=(awcbxd).

Since (A®C) & (B®C) isgenerated as an abelian group by elements of
theform (a® c,b®d), we deduce that 8@istheidentity. It now follows
that (A® B) 9rC = (A®RC) @ (BRRC).

Since M is afinitely generated Z-module, we may expressit as afinite
direct sum of cyclic Z-modules, say M = @;Z/&Z, where we may
assumethat a; # +1 for al i. Then by thefirst part, we see that

MozM = 7Z/aZ @7 7/aiZ.
ij



Thereforeit will be sufficient to prove Z/aZ 7 7./ &7 # O for al i (of
course even for just one i will be sufficient). However we can define a
bilinear map

0: Z/aZ <7/l — 1|7

by 8(x,y) = xy. This induces a Z-module homomorphism Z/aZ @z
Z7]&Z — 7./&Z, which is obviously onto. We conclude that Z /&, Z ®7,
Z /&7 # 0, asrequired.

4. Note that Ann(m) is an ideal of R. Since R is Noetherian, we may choose
w € M such that Ann(w) is maximal (that is Ann(w) is aslarge as possible,
but not R). Suppose Ann(w) is not prime. Then there exists a,b € R\
Ann(w) such that ab € Ann(w), i.e. abw = 0. But then a € Ann(bw) and
Ann(w) C Ann(bw). Furthermore Ann(bw) # R because bw # 0, so the
maximality of Ann(w) has been contradicted and the result follows.

5. Suppose Ris afield. Then an R-module is the same thing as an R-vector
space, and since every vector space has a basis this means that every R-
module isfree; in particular every R-module is projective.

Conversely suppose every R-module is projective. Since R is an integral
domain, to prove Ris afield we only need show that every nonzero element
of Risinvertible. Suppose to the contrary that x is a nonzero element of
R which is not invertible. Then R/Rx is a nonzero R-module, so it has a
nonzero element u. Note that xu = 0. Consider the exact sequence

0—RX— R— R/XR— 0.

Since R/xR is projective, the sequence splits, in particular R/xR is isomor-
phic to a submodule of R. Now R is an integral domain, so xv # O for all
nonzero v € R and we deduce that xu # 0. We now have a contradiction and
the result follows.

6. Since Zn = Zn1, We seethat Z(G/Zy) = 1. Therefore K C Zy.
Now suppose L isanormal subgroup of G suchthat Z(G/L) =1 and L does
not contain Zy. Then there is a nonnegative integer n such that
Zn g L7 Zn+1 g L.

Choosex € Zp,1\L. ThenxL #1inG/L. Alsoxgx 1g-te Z, 1 foralge
G, because xZ 1 € Z(G/Zn,1). Therefore xgx g € L and we deduce
that XL € Z(G/L). Thisisa contradiction, and so the result is proven.



7. Let| bethe set of matricesin Mo(Q[x]/(x? — 1)) of the form

ax+1)+(x*-1) 0
(b(x+ 1)+ (x2—1) O) '

with a,b € Q. Note that if f € Q[x], then (x—1) divides f(x) — f(1), con-
sequently f(X)(x+1)+ (x> —1) = f(1)(x+1) + (x® = 1) inQ[x]/(x* - 1).

Now we verify that | isaleft ideal of Q[x]/(x?>—1). Clearly | is an abelian
group under addition. Since

(f(x)+(x2—1) g(x)+(x2—1)) (a(x+1)+(x2—1) 0)
k(X)+(x*—1) ) \b(x+1)+(x*-1) 0

_[(af(D)(x+1)+(x*—1) O

_(bh(l)(x+1)+(x2—1) o)

weseethat | isclosed under left multiplication by elementsof Q[x] /(x> —1),
and it now followsthat | isaleft ideal.

Finally we need to show that | is a minimal ideal. Obviously | # 0 (note
X+ 1¢ (x*—1)). Suppose J is anonzero left ideal contained in 1. We need
to show that J = |. By multiplying on the left by the matrix

<1+(>(<)2—1) 1+()g_1))

if necessary, we may assume that | contains a matrix of the form

ax+1)+(x*—1) 0
(b(x+ 1)+ (x%—1) O)

with a # 0. Then by multiplying on the left by

c/at+(x¥*-1) 0
(d/a+(x2—1) o)

we see that J must be the whole of | and the result follows.



Algebra Prelim Solutions, Winter 2003

1. We have f(x) = (x4 1)(x* +3); since —1 € Q, the splitting field for x* +
3 is also K. Let @ = (14 i)/+/2, a primitive 8th root of 1. Then ®* =
—1 and we see that the four roots of x* + 3 are w"v/3 for r = 1,3,5,7.
Therefore K = @(a)\“/§, 3 \‘7§, N \4/§, 0)7%). Since x* + 3 is irreducible
by Eisenstein for the prime 3, we see that [Q(w+/3) : Q] = 4. Let y denote
complex conjugation. Since x* 43 is a polynomial with real coefficients, we
see that ¥ € Gal(K/Q). Thus v/12 € K, because v/12 = 0v/3 + y(w+v/3).
Now v/12 satisfies x* — 12, which is irreducible by Eisenstein for the prime
3. Therefore [Q(v/12) : Q] = 4. Note that Q(v/12) # Q(w+/3), because
the former is contained in R while the latter is not. We deduce that K #
Q(wv/3). Alsoi = w3v/3/@+/3, which shows that i € K. Since @>+1v/3 =
i"@~/3, we conclude that K = Q(i, ®+/3). Therefore [K : Q(®+/3)] =2 and
hence [K : Q] = 8.

Of course a consequence of this is that x* +3 remains irreducible over Q(i).
Let 6 € Gal(K/Q(i)) satisfy 8(w+v/3) = ®>+/3. Then 8(w3v/3) = & V/3,
6(&)5\4@) = ®’v/3 and 6(w7{7§) = w+/3, in particular 0 has order 4. Fur-
thermore y0y(i) = i and Y8y(w+/3) = ®’+/3, which shows that y8y =06~
We now see that Gal(K/Q) = {6y | r=0,1,2,3, s =0, 1} and is isomor-
phic to the dihedral group of order 8.

2. This is false. Consider the group Z4 & Z,, where Z, denotes the integers
modulo n. Then (2,0) and (0, 1) both have order 2 (when we write (2,0),
the 2 means 2 modulo 4). Suppose 6 is an automorphism such that 6(2,0) =
(0,1). Then 2(6(1,0)) = 6(2,0) = (0,1). On the other hand 2(6(1,0)) is
of the form 2(a,b) = (2a,0), and so cannot be equal to (0, 1). Thus we have
a contradiction and we conclude that there is no such 6.

3. Let n denote the number of Sylow 2-subgroups. Since 2002 = 2 x 1001,
we see that a Sylow 2-subgroup has order 2 and n | 1001. Therefore each
Sylow 2-subgroup has exactly one element of order 2 and n is odd. Also
any element of order 2 is in exactly one Sylow 2-subgroup, consequently
the number of elements of order 2 is n. Since the number of elements in the
set {h € H | h* = e} is n+1 (the “+1” for the identity), we conclude that
this number is even.

However a better proof is to pair each 4 € H with h='. If h> # e, then
{h,h='} has order 2, otherwise {,h~'} has order 1. It follows that the



number of elements 2 € H such that #*> # e has even order and since |H| is
even, it follows that the number of elements 4 € H such that 42 = e is even,
as required.

. Suppose G is nonabelian, so there exist a,b € G such that ab # ba. Set
g=aba"'b~!, s0 g # 1. By hypothesis there exists K <IG such that G/K is
abelian and g ¢ K. But KaKb(Ka)~!(Kb)~! = Kg # 1, which shows that
KaKb # KbKa and hence G/K is nonabelian, which is a contradiction. The
result follows.

. Certainly if A and B are commutative rings, then A X B is also a commutative
ring. We need to show that if A and B are in addition Noetherian, then so
is A X B. Suppose 11,1, ... is an ascending chain of ideals in A x B. Then
(0x B)NI;,(0x B)NI,... is an ascending chain of ideals in O x B. But
0 x B = B and B is Noetherian, hence there exists a positive integer M such
that 0 x BNI, =0 x BNy for all n > M. Also (AxB)/(0xB) = A as
rings, so (A x B)/(0 x B) is Noetherian. Therefore the ascending chain of
ideals (0 x B) +1,(0 X B) + I,... of (A X B)/(0 x B) becomes stationary,
that is there is a positive integer N such that (0 x B) 4+ 1, = (0 x B) + Iy for
all n > N. Let P be the maximum of M and N. We claim that I, = Ip for
all n > P. Obviously I, O Ip for all n > P, so we need to show the reverse
inclusion. Let x € I,,. Since (0 x B) + 1, = (0 X B) + Ip, we may write x =
b+iwhere b €0x Bandi € Ip. Since x,i € I,, we see that b € (0 x B) N1,
and hence b € (0 x B) NIp, because (0 x B) N1, = (0 x B) N Ip. This shows
that x € Ip and hence I,, = Ip forn > P.

. Obviously P/IP is an R/I-module; we need to prove that it is projective.
Suppose we are given an R/I-epimorphism p: M — N of R/I-modules and
an R/I-map 6: P/IP — N. We need an R/I-map f3: P/IP — M such that
0 = upf. Let &: P — P/IP denote the natural epimorphism. We can also
view M and N as R-modules, and then u is also an R-map. Since P is a
projective R-module, certainly there exists an R-map «: P — M such that
pua=0rx. Ifi€land p € P, then a(ip) =iap € IM = 0. Therefore IP C
ker o and we deduce that o induces an R/I-map 3: P/IP — M satisfying
Br = o. Then ufrw = po = Ox and since 7 is onto, we conclude that
up=6.

Sketch of alternate proof. Since P is projective, we may write P& Q = F for

some R-modules Q,F with F free. Then P/IP & Q/IQ = F/IF and since
F/IF is a free R/IR-module, we see that P/IP is a projective R/IR-module.



7. (a)

(b)

Certainly k + 1 is a subgroup of k[x] under addition; we need to show
that it is closed under multiplication. However if a,b € k and i, j € I,
then (a+i)(b+j)=ab+ (aj+ib+ij) € k+1, because aj,ib,ij € I by
using 7 <1 k[x].

Let R = k+ 1. We first prove that k[x| is finitely generated as an R-
module. We may write / = (f) where f is a monic polynomial in k[x].
Let d denote the degree of f and set M = R+ Rx+ ---+ Rx?, an R-
submodule of k[x]. We prove by induction on 7 that x" € M for all n > 0.
This is obviously true if n = 0, because 1 € R. It is also obviously true
for d = 0 because then R = k[x]. Now suppose d,n > 0. Then by the
division algorithm x" = ¢f + r, where ¢,r € k[x] and degr < n. Then
we must have deg g < n. Therefore by induction g, r € M, and it follows
that x* € M as required.

Now k[x] ®gk[x] /I is an R-module and also an R/I-module. Since k|[x] is
a finitely generated R-module, we see that k[x] /I is also a finitely gener-
ated R-module, and we deduce that k[x] ®g k[x] /I is a finitely generated
R/I-module. Since R/I = (k+1)/I = k/kNI = k/0 = k, we conclude
that k[x] ®g k[x]/I is a finitely generated k-module and the result fol-
lows.



Algebra Prelim Solutions, Fall 2005

1. Let G be a group of order 18. The number of Sylow 3-subgroups is con-
gruent to 1 mod 3 and divides 18/9 = 2. Therefore G has a unique Sylow
3-subgroup H of order 9, and H <<G. Also G has an element x of order
2. Then G = H x (x). Since groups of order p? are prime, H is an abelian
group. For a positive integer n, let C, denote the cyclic group of order n.
We have three cases to consider.

(a) The conjugation action of x on H is trivial, that is xhx 1 = h for all
h € H and we have G = H x (x). There are two isomorphism classes
for H, namely Cg and C3 x C3. It follows that there are two isomorphism
classes for G in this case.

(b) The conjugation action of x on H is nontrivial and H = Cy. There is
exactly one automorphism of H of order two, namely h+— h=! for h e
H. It follows that there is exactly one isomorphism class for G in this
case.

(c) The conjugation action of x on H is nontrivial and H = C3 x C3. Either
X acts by inversion on H and this gives us one isomorphism class for
G. Otherwise we may write H = A x B where A, B = Cg, X centralizes
A and x acts by inversion on B. This yields a second isomorphism class
for G.

We conclude that there are 2+ 1+ 2 = 5 isomorphism classes for a group
of order 18.

2. First suppose that A is Noetherian. Then A[X, Y] is Noetherian by Hilbert’s
basis theorem. Since factor rings of Noetherian rings are Noetherian, we
see that A[X,Y]/(X? —Y?) is also Noetherian.

Conversely suppose A[X,Y]/(X?—Y?) is Noetherian. Since (X,Y) D (X2 —
Y?), we see that A[X,Y]/(X,Y) is also Noetherian. But A[X,Y]/(X,Y) = A,
because the homomorphism

X—0,Y—0:AXY —A
is surjective with kernel (X,Y), and the result follows.

3. Let 0+ uc F2and let Sdenote the stabilizer in GLn(F) of the one-dimensional
subspace Fu. We need to prove that Sis not simple. Set D = {diag(f, ) |



0 # f € F}, where diag(f, f) indicates the invertible matrix in GL(F)
which has f’s on the main diagonal and zeros elsewhere. Then D is a cen-
tral subgroup of Sand since |[F| > 3, it is not 1. Let v be an element of F?2
which is not in Fu. Then {u,v} is a basis of F? and so we can define a
linear isomorphism of F2 by u— u, vi— u+Vv. This yields an element of
S\ D. Thus D is a normal subgroup of Swhich is neither 1 nor D, and we
conclude that Sis not simple.

. Clearly M cannot be free of rank 0. Nor can M be free of rank at least 2,
because if a,b € M were part of a free R-basis for M, we would have 0 £
ab € aRN bR, which would mean that {a,b} was not linearly independent
over R. Therefore the only possibility of M being free is that it is free of
rank 1. This means we can write 2R+ XR = cR for some c € R There are
several methods to show that this is not possible; we present one of them.

Since 2 € cR, we see that c is a polynomial of degree zero and thus c= +1
or +2. Without loss of generality, we may assume that c= 1 or 2. Since X €
cR, we may write X = cf for some polynomial f € Z[X]. By considering
the leading coefficient (degree 1) of f, we see that ¢ = 1 and we deduce that
there exist g,h € R such that 2g+ Xh = 1. This is not possible because the
left hand side has constant coefficient € 27Z and in particular cannot be 1. It
follows that M is not a free R-module.

. Since ca—a € F for all 6 € G, we see that (3scg0a) — |Glae F. Now
1Y scc0a=Yscgoaforall T € G. Since K/F is a Galois extension with
Galois group G, it follows that ;g ca € F and we deduce that |Gla € F.
We conclude that a € F because F has characteristic zero.

. Set m=,/n. A finite dimensional simple algebra over an algebraically
closed field is isomorphic to a full matrix ring over the field. In this situ-
ation, this means Sis isomorphic to My(C), the mx m matrices over C.
Let &j (1 <i,j < m) denote the matrix units of Mn(C), so & has 1 in the
(i, j)th position and zeros elsewhere. Then Sg; is the ith column of Sand
we see that S= Sey1 & Sexp @ - - - & Sem. Al that remains to prove is that
Sg; is irreducible for all i. Without loss of generality, we may assume that
i = 1. Suppose M is a nonzero R-submodule of Sey;. The general element
o of Seyq is of the form Y, a;g1. If this is a nonzero element of M, then
a # 0 for some i, 1 <i <m, and we deduce that e;; = ai‘lelioc € M. Thus
M = Sey; and the result follows.



7. Themap f — f ®1: F — F ®¢ L is an algebra monomorphism with im-
age F ® 1. Furthermore, if {A1,...,An} is a basis for L over F, then {1®
M,...,1®@\n} is a basis for F @¢ L over F @ 1. It follows that F @ L is a
field extension of degree n over F and since F is algebraically closed, we
deduce that n= 1. Therefore L = F as required.



Algebra Prelim Solutions, Fall 2007

1. Let G be a simple group of order 168. The number of Sylow 7-subgroups
of Gis congruent to 1 mod 7 and divides 168/7 = 24. This number cannot
be 1 because that would mean that G has exactly one Sylow 7-subgroup,
consequently G would have a normal Sylow 7-subgroup and we would de-
duce that G is not simple, contrary to the hypothesis. It follows that G has
exactly 8 Sylow 7-subgroups. Also by Lagrange’s theorem, two distinct Sy-
low 7-subgroups must intersect in the identity. Since any element of order
7 is contained in a Sylow 7-subgroup and there are 6 elements of order 7
in each Sylow 7-subgroup, we deduce that there are 8 x 6 = 48 elements of
order 7 in G.

2. Note that p = i. The following are easy to check: Q(v/2) # Q+/3. Thus
Q(v/2,+/3) is a Galois extension of degree 4 over Q. Let K be the splitting
field of x* — 2 over Q and let L be the splitting field of x> —3 over Q. The
roots of x* — 2 are ++v/2, +iv/2, hence K is a Galois extension of degree 8
over Q, and has maximal real subfield of degree 4 over Q, namely @({‘/E).
Since this subfield is not normal over Q, we deduce that Q(v/2,+/3) is not
contained in K. Therefore KNL = Q, and we deduce that KN L(i) = Q(i).
The Galois group of L/Q has order two and is therefore isomorphic Z/27Z.
Also the Galois group of K/Q is a group of order 8 and not every sub-
group is normal, because Q(v/2) is not normal over Q. and we deduce
that this group is isomorphic to the dihedral group Dg of order 8. Finally
Gal(K/Q(i)) =2 Z/AZ, being generated by the automorphism determined by
V21— iv2.

(a) The Galois group of (x* —2) (x> —3) over Q is Gal(K /Q) x Gal(L/Q) =2
Dg x Z/27. The Galois group of (x* —2)(x? —3) over Q(i) is
Gal(K/Q(i)) x Gal(L(i)/Q(i)) = Z/AZ x Z] 2.

(b) Q(i) is Galois over Q because it is the splitting field of x* 4 1 over Q.

(c) Yes, because Gal(LK /Q(i)) has nontrivial normal subgroups.

3. Since0 — A iR BZC—-0is split exact, there exists h: B — A such that
hf = 1,4, the identity map on A. Then (1p®h)(Ip® f) =1lp®hf =1p®
1o=1 Thusifxe DerAand (1p® f)(x) =0, then (1p® f)(Ip@h)(X) =
0, consequently 1(x) = 0 and we conclude that x = 0, as required.



. Certainly S™'R is an integral domain, since it is a subring of the field of
fractions of R, so we need to prove that every ideal of S"'Ris principal. Let
| 9«S1RandletJ=1NR Then J<R, so J = xRfor some x € R. Obviously
xSIRC 1, so it remains to prove that xS R D |. However if y € |, then
sy € Il NR=J where s Sand hence we may write sy = xr for somer € R.
Therefore y = s71(sy) = xs71r € xS~*Rand the result is proven.

. Let G be a group of order 2*-112. The number of Sylow 11-subgroups is
congruent to 1 mod 11 and divides 16, consequently there is exactly one
Sylow 11-subgroup; call this Sylow 11-subgroup H. Then H <<G. Now
G/H and H are p-groups for p =2 and 11 respectively, and p-groups are
solvable (even nilpotent). However the property of being solvable is closed
under extensions, that is H and G/H solvable implies G is solvable, which
is the required result.

. (@) Apply Eisenstein’s criterion for the prime 3.

(b) We know that f is irreducible (from (a)) and that g is irreducible (use
Eisenstein for the prime 2). Since Q[x] is a PID, we see that (f) and (g)
are maximal ideals of Q[x]. Furthermore (f) # (g), because f and g
are not scalar multiples of each other. It now follows from the Chinese
remainder theorem that Q[x|/(fg) = Q[x]/(f) x Q[x]/(g), a product of
two fields. The dimension over Q of these two fields are the degrees of
the polynomials f and g, that is 4 and 2 respectively.

. (a) Since1-0=0, we see that 0 € t(X). Next suppose that X,y € t(X). Then
there exist r,s € R\ 0 such that rx = 0 = sy and we have (rs)(x+Yy) = 0.
Since rs= 0 because R is an integral domain, we conclude that x+y €
t(X). Finally suppose that x e t(X) and r € R. Then there exists s€ R\ 0
such that sx = 0 and consequently s(rx) = 0. This shows that rx € t(X)
and we have established that t(X) is an R-submodule of X.

(b) Write T =t(X) and let x € t(T); we want to prove that x € T. Since
X € t(T), there exists s € R\ 0 such that sx € T, and then there exists
t € R\ 0 such that t(sx) = 0. It follows that (st)x = 0 and since s # 0
because Ris an integral domain, we conclude that x € T as required.

(c) Because t(X/t(X)) is cyclic, t(X/t(X)) = R/l for some | <R But
t(X/t(X)) = 0 by (b), hence | = 0 and we deduce that X/t(X) 2 R.
Since Ris a projective R-module, 0 — t(X) — X — X /t(X) — 0 splits,
in particular X =t(X) @& R, as required.



Algebra Prelim Solutions, December 2007

. (@ By using the elementary divisor decomposition, up to isomorphism,
there are three abelian groups of order p3g, namely Ly X Lq, Lz X
Zip X Ly @ Zp X Zip X L X Lg.

(b) The first group above is generated by one element, while the third re-
quires 3 elements. Therefore G = Z X Zp X Zgq = Zpz X Ly, because
Zip X Lq = Zipg, asrequired.

. Wehave k(o) : k] =deg f and [K : k(at)][k(o); K] = [K : K]. Thusdegf | [K:
k| and the result follows.

. By Gauss'slemma, f isirreduciblein Q[x]. Since Q[x] isaPID, thistellsus
that fQ[x] isamaximal idea of Q[x]. The result follows.

. Agisanormal subgroupsof S andV :={(1),(12)(34),(13)(24),(14)(23)}
isanormal subgroup of A4 (even normal inSy). Since |Sy/Aq| =2, |A4|/V =
3, |V| =4, thegroups S;/A4, Aq/V and V are all abelian, because groups of
order 2,3 or 4 are abelian. This provesthat & is solvable.

. We have ashort exact sequence0 — ker f — P iR Q— 0. SinceQisprojec-
tive, the sequence splits, so P = Q@ ker f. This proves the result, because
direct summands of projective modules are projective.

. First observe that Q ®rQ = Q as Q-modules. To do this, define f: Q x
Q— Qby f(p,q) = pg. Clearly thisis R-bilinear, so induces an R-map
g: QerQ — Q satisfying g(p® ) = pg. Also we can define a Q-map
h: Q — Q®rQby h(q) =g®1. Sincegh(q) =g(q® 1) = q, we seethat gh
istheidentity on Q. Now consider hg(p®q) = pq® 1. Writeq= a/bwhere
a,be Rwithb#0. Thenpqe 1= pa/b® 1= p/b®ab/b= pb/ba/b=
p® g and it follows that hg is the identity on P ® Q, because we only need
to check that hg isthe identity on the“simpletensors’. Thus hisone-to-one
and onto, and our observation is established.

Now observe that Q®@qV = V. Indeed we can define a Q-bilinear map
0: QxV —V by 6(q,v) = qv, and thisinduces a Q-map ¢: QRqV —V
satisfying ¢(q® v) = qv. Also we can define a Q-map y: V — Q®qV
by y(v) =1®Vv. Then ¢y(v) = 6(1®V) =V, S0 Oy is the identity on V.
Sinceyd(qe V) =y(qv) =1®gv=qeVvand y¢ istheidentity on QqV



provideditistheidentity on the simpletensors, we seethat y¢ istheidentity
on Q®qV, and the result follows.

Note that this proof does not use the hypothesisthat V isfinite dimensional.

. Let G denote the Galois group of F over K. Since G is a p-group for the
prime p = 11, it has a sequence of normal subgroups 1 = G4 <1G3<1Go <
G1<Gp = G, such that Gy <G and |Gj+1/G;i| = 11 for all i. Now let K; be
thefixed subfield of G; inK, fori =0,1,...,4. ThenK; isaGaloisextension
of F for al i, because G; < G. Since [K; : Ki_1] = |Gi_1/Gi| = 11, the result
IS proven.

. Suppose R/ is a projective R-module. Then we may write R=1&®J for
some R-submodule J of R. Of course R-submodules of R are the same as
ideals, so J isanideal of R. Since M is the unigue maximal ideal of R and
| €M, wemust haveJ =R. ButthenJ D | and thus | +J is not a direct
sum. We now have a contradiction and the result follows.



Algebra Prelim Solutions, August 2009

. Let s € S and let H denote the stabilizer of s in G. Since G acts transitively
on S, we have |G| = p"|H|, hence p" | |G|/|PNH| and we deduce that
p" | |P|/|PNH, because p t|G|/|P|. Therefore p" divides the size of the
orbit of s under P, because PN H is the stabilizer of s in P. Thus we must
have the orbit of s under P is the whole of S and the result is proven.

. Let G be a simple group of order 448. The number of Sylow 2-subgroups
of G is congruent to 1 mod 2 and divides 7, and cannot be 1 because G is
not simple. Therefore G has exactly 7 Sylow 2-subgroups and because G
is simple, we deduce that G is isomorphic to a subgroup of A7. This is not
possible because 448 does not divide |A7|, so the result is proven.

. (a) If x2 + 1 was not irreducible, then it would have a root in Z /37Z. This is
not the case, because x> =0 or 1 mod 3.

(b) We have an epimorphism Z/3Z[x] — Z][i|/37Z]i] determined by x +— i
whose kernel contains x?> + 1. Thus from part (a), we see that Z[i] /37Z]i]
is a field and hence 3 is a prime in Z[i]. We can now apply Eisenstein’s
criterion for the prime 3. Since 3 divides 3 and —9, but 3> does not
divide 12 in Z[i], the result is proven.

. By the structure theorem for finitely generated modules over a PID, there is
an R-submodule K of M containing N such that M /K is a torsion module
and K/N is a free module, so there exists 0 # r € R such that Mr C K.
Since K /N is free, there exists a submodule L of K such that L+ N = K and
LNN =0. The result follows.

. Let b € B. Since f is onto, there exists a € A such that f(a) = b. Now set
k(b) = g(a). If we had instead chosen d’ € A such that f(a’) = b, then

jgld) =hf(d') =h(b) = hf(a) = jg(a)

and we deduce that g(a") = g(a) because j is one-to-one; in other words, the
definition of k does not depend on the choice of a. Next we need to show that
k is an R-module homomorphism. Suppose b,b’ € B and choose a,d’ € A
suchthat f(a) =band f(a') =b'. Then f(a+d') =b+b'. Thusk(b+b'") =
gla+d) =gla)+g(d) =k(b)+ k(). Also if r € R, then f(ar) = br,
consequently k(br) = g(ar) = g(a)r = k(b)r and we have shown that & is



an R-module homomorphism. Clearly kf = g. Furthermore jkf = jg =hf
and since f is onto, we deduce that jk = h. Finally £ is unique because j is
one-to-one.

. Solving x* —2x% +9 = 0, we find that x> = 1 +2+/2i and we deduce that
the roots of x* —2x> +9 are £v/2 4. It follows that the splitting field
is Q[i,v/2]. Since this has degree 4 over Q, we see that the Galois group
has order 4. The automorphisms induced by i — —i, \/§ — \/§ and i — i,
v/2 — —+/2 both have order 2 and we conclude that the Galois group is
isomorphic to Z /27 x 7./ 2.

. We can define an R-bilinear map R/I xR/J — R/(I+J) by (r+1,s+J) —
rs. This induces an R-module map 6: R/I ®grR/J — R/(I +J) satisfying
O((r+1)®(s+J))=rs+I1+J. Now define ¢: R— R/IQrR/J by ¢(r) =
(r+1)®g (14J). Then ¢ is an R-module map and clearly I C ker ¢. Also if
jeJ then¢(j) =G+ @(1+J)=(14+1)®(j+J)=0. It follows that I +
J C ker ¢ and we deduce that ¢ induces an R-module map y: R/(I+J) —
R/I®gR/J such that y(r+1+J) = (r+1)® (1+J). Note that Oy(r+
I+J))=0((r+I)®(1+J)) =r+1+J so Oy is the identity map. Finally
vo(r+H@(s+J)=yrs+I1+J)=(rs+ )@ (1+J)=(r+1)@(s+J)
and we conclude that y0 is also the identity map. This shows that 6 and y
are isomorphisms, and the result is proven.



Algebra Prelim Solutions, August 2011

1. First we write 380 as a product of prime powers, namely 2% % 5% 19. Suppose
by way of contradiction G is a simple group of order 380. The number of
Sylow 19-subgroups is congruent to 1 mod 19 and divides 20, hence is 1
or 20. But 1 is ruled out because then G would have a normal subgroup of
order 19, which would contradict the hypothesis that G is simple. Therefore
G has 20 Sylow 19-subgroups. Next we consider the Sylow 5-subgroups.
The number is congruent to 1 mod 5 and divides 4 * 19. Thus there are 1 or
76 Sylow 5-subgroups.

Now we count elements. If P and Q are distinct Sylow 19-subgroups, then
PNQ#Pand PNQ < P. Since [PNQ| divides |P| = 19 by Lagrange’s
theorem, we deduce that PN Q = 1. It follows that G has at least 20 x
18 = 360 elements of order 19. Similarly two distinct Sylow 5-subgroups
intersect trivially and we deduce that G has at least 76 x4 = 304 elements of
order 5. We conclude that G has at least 360 + 304 = 664 > 380 elements,
which is a contradiction. Therefore there is no simple group of order 380.

2. Letw=2c Ty, 50 ®# 1= Wehave (f —g)(f — wg)(f — 0?) = I’
Since f,g are coprime, we see that f —g, f — wg, f — @?g are pairwise
coprime. Now use the fact that k[x,...,x,] is a UFD; remember that the
units of k[xy,...,x,] are precisely the nonzero elements of k. Write h =
upy'...pim where 0 # u € k, m is a nonnegative integer, p; is prime for all
i, and r; is a positive integer for all i. Since f —g, f — wg, f — w’g are
pairwise coprime, we see that if p; divides one of these three polynomials,
then p; doesn’t divide the other two polynomials, and it follows that p?”
is the precise power of p; which divides this polynomial. We deduce that
each of f —g, f — wg, f — w?g is of the form ug> for some unit « and some
polynomial ¢, and the result follows.

3. We use the structure theorem for finitely generated modules over a PID,
elementary divisor form. We may write M = @,;(R/p'R)¢ & &, C;, where
e; € N, I is a finite subset of N, and the C; are modules of the form R or
R/q"R, where h € N and ¢ is a prime which is not associate to p. This
expresses M in a unique way as a direct sum of indecomposable R-modules.
The hypothesis that pm = 0 # m implies Rm is not a direct summand of M
tells us that 1 ¢ 1. Similarly we may write N = @;.,(R/p'R)/ © @, D;,
where f; € N, J is a finite subset of N not containing 1, and the D; are



modules of the form R or R/q/R, where f € N and ¢ is a prime which
is not associate to p. Note that pC; = C; and pD; = D; for all i. Also
p(R/P'R) =< R/p™'R # 0 for i > 2. Thus pM = @,.;R/p" 'R ®,C;
and pN = @;; R/ p! @ R, D;, and these expressions are direct sums of
indecomposable modules. Since pM = pN, the uniqueness statement in the
structure theorem for modules over a PID yields / = J and after renumbering
if necessary, C; = D; for all i. The result follows.

. Let G denote the Galois group of K over Q. Then |G| = 27 and there is
a one-to-one correspondence between subfields of K and subgroups of G
which is reverse including. Also [Q(c) : Q] = 9 because f is irreducible
with degree 9. Therefore Q(a) corresponds to a subgroup H of order 3.
To find a subfield of Q(a) which has degree 3 over QQ, we need to find a
subgroup of order 9 which contains H. Since G is a nontrivial finite 3-group,
it contains a central subgroup Z of order 3. If Z is not contained in H, then
HNZ =1, hence

|HZ|/3 = |HZ|/|Z| = |HZ/Z| = |H/HNZ| = |H| =3

and we see that HZ is a subgroup of order 9 containing H. On the other hand
if ZC H, then H = Z and hence H <<G. Thus G/H is a group of order 9,
and hence has a subgroup of order 3, which by the subgroup correspondence
theorem we may write as K/H, where K is a subgroup of G containing H.
The order of K is 3|H| = 9, which finishes the proof.

. We note that given a,b € A, there exists n € N and ¢ € A such that p"a =0
and p"c = b. This shows that for a,b € A,

a®b=a@p'c=plarc=0x0c=0.

Since A ® A is generated as an abelian group by “simple tensors” a ® b, we
deduce that every element of A ®7 A is zero, in other words A ®7 A = 0.

. The minimal polynomial divides the characteristic polynomial, so is x, x>

or x>. Also since the minimal polynomial factors into linear factors over k,
the Jordan canonical form for A is defined over k.

If the minimal polynomial is x, then A = 0, so we could take B = 0, since
then B> =0 = A.



If the minimal polynomial is x*, then the invariant factors of A are x,x’.

Consider the matrix

0 0 1
0 0O
0 0O

C:=

Then C # 0 and C 2 — (), so the invariant factors of C are x7x2 and therefore C
is similar to A. Thus it will be sufficient to find a matrix B such that BZ = C;
here we could take B to be

S O O
S O =
o = O

Then B? = C as required.

Finally suppose A has one invariant factor, which will necessarily be x°.
Then the Jordan canonical form of A is

0
0
0

S O =
S = O

Suppose there is a matrix B such that B> = A. Then B® = A®> = 0. Therefore
the minimal polynomial of B divides x® and since B is a 3 by 3 matrix, we

deduce that the minimal polynomial of B divides x>. Therefore B3 = 0 and
we conclude that A> = B* = 0. But

A2 =

S O O
S OO
S O =

which is nonzero, and the result follows.

. Let K denote the field of fractions of R and let I denote the ideal of K[x1, ..., x,]
generated by S. Then Z(S) = {(r1,...,rn) € R*| f(r1,...,r,) = 0} for all
f € 1. By Hilbert’s basis theorem, there is a finite subset 7 of S which
generates the ideal /. Then Z(S) = Z(T).
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1. Let n = |G|. Then G has an element x of order n. However if H is any
proper subgroup of G, then every element of H has order strictly less than
n. Thus x cannot be in any proper subgroup of G and the result follows.

2. Suppose G be a simple group of order 6435. Then the number of Sylow
5-subgroups is congruent to 1 mod 5 and divides 9-11-13. Furthermore
this number is not 1 because G is not simple. Therefore this number must
be 11 and it follows that G has a subgroup of index 11. Since G is simple,
we deduce that G is isomorphic to a subgroup of Si; (even Ayy). This is
not possible because 13, and hence 6435, does not divide 11! = |S;;|. We
conclude that there is no simple group of order 6435 as required.

3. Define 8: M, (Q) x M»(Q) — M»(Q) by (A, B) = AB. Itis easily checked
that 6 is an M;(Z)-balanced map. Therefore 6 induces a group homomor-
phism

¢: M2 (Q) @, (z) M2(Q) — M2(Q).

It is easy to see that this map is a (M(Q),M2(Q))-bimodule map. It re-
mains to prove that ¢ is bijective, and we do this by producing the inverse
map. Define y: Mz(Q) — M2(Q) @,(z) M2(Q) by y(A) =A® 1. Itis
clear that ¢y is the identity, so it remains to prove that ¢y is the iden-
tity. Since ¢ and y are both group homomorphisms, it will be sufficient to
show that y¢ is the identity on simple tensors, that is y¢(A® B) = A® B.
Therefore we need to prove that AB® 1 = A ® B.

Choose a positive integer n such that Bn € M (Z). Then

A

A A
AB®1=—(Bn)®@1l=—®Bn=—n®@B=ARB,
n n

n
and the result is proven.

4. By the structure theorem for finitely generated modules over a PID, M is
a direct sum of modules of the form R and R/p" where p is a prime in R
and n is a positive integer. If M is nonzero, then it must contain a summand
which is either isomorphic to R or R/p"R, where p is a prime in R. Since
M is injective and R is a domain, rM = M for all r € R\ 0, in particular
pM = M for primes p in R. Thus M cannot contain a summand isomorphic
to R/p"R. On the other hand if M contains a summand isomorphic to R, let



p be a prime in R, which exists because R is not a field. Since pR # R, we
see that pM # M, a contradiction and the result follows.

5. (a) Obviously Q(&,) C Q(&y,), because szp = (. On the other hand {,, =
—{,, hence Q(&>,) € Q(&,) and the result follows.

(b) Set f(x) =1 +x>+---+x**"2. Since f(x)(1 —x*) =1—x* and
$p,8op # £1, we see that §, and {», both satisfy f(x). Thus the min-
imal polynomial of both these divides f(x). Now (), satisfies g(x) :=
14+x+---+xP~!. By making the substitution y = x4 1, we see that
g(x) is irreducible in Z[x] by Eisenstein for the prime p. Since deg(g) =
p—12>1,itis also irreducible in Qx]. It follows that g(x) is the mini-
mal polynomial of {, over Q. Also by considering the automorphism of
Q|[x] induced by x — —x, we see that g(—x) is the minimal polynomial
of {», over Q, so g(—x) divides f(x). It follows that f(x) = g(x)g(—x),
the product of two irreducible polynomials.

6. Set f(x) =x> —5x—1. Then f'(x) =5x* =5 =5x*+1)(x— 1) (x+ 1).
Thus f(x) has a maximum at —1, a minimum at 1. Since f(1) > 0 and
f(—=1) <0, we find that f has exactly 3 real roots and 2 complex roots. We
want to prove that f is irreducible (as a polynomial in Q[x]). By Gauss’s
lemma, if f is not irreducible, then we may write f = gh where g,h € Z[x],
degg,degh > 1, and g, h are monic. Neither of g, 4 has degree one, because
+1 is not a root of f. Therefore we may without loss of generality assume
that degg = 3 and degh = 2, say g = x> + ax’> + bx+c and h = dx +e,
where a,b,c,d,e € 7Z. By equating coefficients, we find that a +d = 0,
ad+bc+e=0,ae+bd+c=0,be+cd=1,ce=1. Thus c,e=1 or
c,e = —1, and we find that a®*+a+1=0. This last equation has no root in
Z and we conclude that f is irreducible.

Let G denote the Galois group of f over Q. We consider G as a subgroup
of S5 (by permuting the 5 roots of f). Since f is irreducible and 5 is prime,
we see that G contains a 5-cycle. Also G contains a transposition, namely
complex conjugation. Since S5 is generated by a 5-cycle and a transposition,
we deduce that G = Ss.

7. (a) We may write the general element of Q[x,y] as fo + fiy+ foy*> +--- +
fny", where n is a positive integer and f; € Q[x] for all i. Then modulo
the ideal (x> —y?), we may replace y> with x> everywhere and we see



(b)

(c)

(d)

(e

that every element of Q[x,y] can be written in the form f + gy + (x* —
y?)h, where f,g € Q[x] and h € Qlx,y]. The result follows.

Define a ring homomorphism 6 : Q[x,y] — Q[t] by 8(x) =12, 8(y) =13
and 0(q) = g for g € Q. Then im @ = Q[t?,#*]. Also if i € ker 0, write
h=k+ f+yg, where k € (x> —y?), and f,g € Q[x]. Then 6(h) =
f(£2)+13g(¢?). Since f(¢?) is a polynomial involving only even powers
of ¢ and 3g(¢?) is a polynomial involving only odd powers of ¢, we see
that 6(h) can only be zero if f,g = 0. It follows that ker® = (x* —
y?) and the result now follows from the fundamental homomorphism
theorem. Note that we have also proven that if 2(x?,x}) = 0, then h €
(= y).

Note that > and > are irreducible in Q[¢2,#°] (use unique factorization
in Q[t]). Since 1 = (1?)* = (¢3)?, two different ways of factoring 1%, we
see that Q[¢%,#7] is not a UFD.

Note that 2 (x* —y?) = {(t?,£3) | t € Q}. Indeed (£%,3) € Z(x,y?),
because (12)° — (£3)> = 0. On the other hand if (p,q) € Z°(x* —y?),
write t = g/p (t = 0 if p = 0). Since p> = ¢, we see that p =% and ¢ =
13. Now suppose f is a polynomial vanishing on V. Then f(t2,£3) =0
for all t € Q. Since Q is infinite, we see that f (xz,x3) = 0 and it follows
from (b) that f € (x> —y?). It follows that the coordinate ring Q[V] of
Vis Q[x,y]/(x* —y?) = Q[x?,x%] by (b).

Since Q is an infinite field, A has coordinate ring Q[x], a UFD. But
Q[V] is not a UFD by (c), in particular Q[A'] is not isomorphic to
Q[V]. Since isomorphic affine algebraic sets have isomorphic coordi-
nate rings, we deduce that V is not isomorphic to A!.
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1. We use without further comment the property that a p-subgroup of a group
is a Sylow p-subgroup if and only if it has index in the group prime to p.

First suppose P is a Sylow p-subgroup of G. Then PN H 1is a subgroup of
P, so PNH is a p-subgroup of H. Also P/PNH = PH/H, hence |H|/|PN
H| = |PH|/|P|. Furthermore |G|/|P| = |G|/|PH| - |PH|/|P| and we deduce
that |H|/|P N H| divides |G|/|P|. Since |G|/|P| is prime to p, it follows
that |H|/|P N H| is also prime to p, which proves that PN H is a Sylow
p-subgroup of H.

Next, PH/H = P/PNH, so PH/H is a p-subgroup of G/H. Furthermore
|G|/|P| = |G|/|PH| - |PH|/|P|, and we see that |G|/|PH| is prime to p.
Therefore |G/H|/|PH/H| is also prime to p and it follows that PH/H is
a Sylow p-subgroup of G/H.

Now suppose PN H and PH/H are Sylow p-subgroups. Since P/PNH =
PH/H and |P| = |P/PNH|-|PNH]|, we see that P is a p-group. Finally if
|H| = p°x and |G/H| = p”y, where x and y are prime to p, then |G| = p**’xy
and xy is prime to p. This means that a Sylow p-subgroup of G has order
p**t. But since [PNH| = p and |PH/H| = p", we see that |P| = p**? and
hence P is a Sylow p-subgroup of G, as required.

2. Suppose G is simple group of order 576. The number of Sylow 2-subgroups
is congruent to 1 mod 2 and divides 9, so has to be 1, 3 or 9. It cannot be
1, because then G would have a normal Sylow 2-subgroup. Nor can it be 3,
otherwise G would be isomorphic to a subgroup of A3. Finally suppose it
is 9. Then G is isomorphic to a subgroup of Ag; unfortunately at first sight
this seems possible, because 576 divides |A9|. However the isomorphism
is induced by the representation of G on the 9 left cosets of a Sylow 2-
subgroup P in G. Thus g € G gives the permutation xP — gxP. Then g
stabilizes some xP if and only if g is in some Sylow 2-subgroup. So if g has
order 6, it can be considered as an element of A9 which fixes no points; a
quick check shows that this is not possible and therefore G has no element
of order 6.

Now consider the Sylow 3-subgroups. If P and Q are distinct Sylow 3-
subgroups and 1 # x € PN Q, then Cg(x) contains P and Q and hence
contains an element of order 2. It follows that G has an element of or-
der 6, which is not possible by the previous paragraph, so distinct Sylow
3-subgroups intersect trivially.



Next the number of Sylow 3-subgroups is 16 or 64. If it is 16, we consider
the representation of G on the left cosets of a Sylow 3-subgroup P. If Q is
another Sylow 3-subgroup, then there is an orbit under Q which has order 3,
which shows that there exists 1 # g € Q such that g € PN Q, contradicting
the previous paragraph. Finally if there are 64 Sylow 3-subgroups, then
since two distinct Sylow 3-subgroups intersect in the identity, we can count
elements to show that G has a normal Sylow 2-subgroup.

. Consider p™ + ¢". If this is not a unit, then there exists some prime which
divides it, which without loss of generality we may assume is p. Thus p
divides p 4 ¢", hence p divides ¢", which is not possible.

Now let 7 <<R. We want to prove / is a principal ideal, and since 0 is clearly
a principal ideal, we may assume that / # 0. Each nonzero element of /
has a factorization up'q’/, where u is a unit and i, j are nonnegative integers.
Choose 0 # x € I such that x = p'q/, with i as small as possible, and then
choose 0 # y € I such that y = pXq’, with [ as small as possible. We will
show that I = (p'q'). Clearly I C (p'q'). On the other hand p*~' 4+ ¢/~ is a
unit by the above, hence p'¢’ is an associate of y+x and we see that pig’ € 1.
This proves that I = (p/q').

. Note that k[x] is a PID. By the structure theorem for finitely generated mod-
ules over a PID, we may write M = k[x]¢ ©k[x]/(f1) @ - -- ©k[x]/(f,), where
the f; are monic polynomials, say of degree a;, and f; | fi1 for all i. Sup-
pose d = 0. Then dimy M =} | a;, and then it is clear that if N is a proper
k[x]-submodule of M, then N 2 M, because dimy N < dimy M. Therefore
d > 0, in particular there is an epimorphism M — k[x]. Since C is a cyclic
k[x]-module, there exists an epimorphism k[x] - C. By composing these
two epimorphisms, we obtain a k[x]-module epimorphism M — C.

. Let p denote the characteristic of K. Then we may write |K| = p" where
neN. Set M =Kt ®zL*. Then |[KT|M =0and |[L*|M =0, soif (|K|,|L| —
1) =1, we see that |[M| = 0. Now suppose (|K|,|L| — 1) # 1. Then p divides
IL|—1. Also Kt = (Z/pZ)" and L* 2 Z/(|L| —1)Z.

Now we have well defined homomorphisms 0: Z/pZ ®77/(|L| — 1)Z and
0:Z/pZ —7/pZRy7/(|L|—1)Z determined by 0 (X¥®y) =Xy and ¢ (X) =
¥®1, and ¢ and ¢ are the identity maps. This shows that Z/pZ ®y,
Z/(|L| —1)Z = Z/pZ and we deduce that M = (Z/pZ)". Therefore if
(IK|,|L| —1) # 1, it follows that |M| = |K]|.



6. Write KNL =Q(ay,...,0), let f; denote the minimum polynomial of ¢;
over Q, and set f = f]...f,. Let F denote the splitting field of f over Q,
a subfield of C. Since K and L are Galois extensions of Q, all the roots of
all f; lie in both K and L and hence the splitting field of f is contained in
KNL. Therefore K N L is the splitting field of f and it follows that K N L is
a Galois extension of Q.

7. We can split up the given exact sequence into two short exact sequences,
namely 0 +Z —+P =Y - 0and 0 - Y — Q — Z — 0. Then using the
long exact sequence for Ext in the first variable, we obtain

H'Y(G,X) = Ext}(Z,X) 2 Ext3;(Y,X) 2 Ext};(Z,X) = H (G, X),

as required.
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1. (a) If x € X, then o(g) is a power of p, and since o(g) = o(xgx~!), we see
that o(g-x) € X. Also g-(h-x) = g- (hxh™!) = ghxh~'g™! = (gh) - x
for g,h € P. Finally 1-x = x, and so we have an action.

(b) {z} is an orbit of size 1 if and only if g-z = z for all g € P, if and only
if z 1s in the center of P.

(c) The size of the orbits divide |P| and therefore are powers of p. Let Z
denote the center of G. By (b), the number of orbits of size 1 is |Z|.
Since p | |G|, we see that p | |P| and hence p | |Z|, because the center of
a nontrivial p-group is nontrivial. The result follows.

2. We prove the result by induction on |G|. We may assume that G # 1, be-
cause if G is the trivial group, then G has no maximal subgroups. Let Z de-
note the center of G and first suppose H O Z. By subgroup correspondence
theorem, H/Z is a maximal subgroup of G/Z. By induction, H/Z < G/Z

g—éa = p. Therefore H <G and |G/H| = p.

Now assume that H 2 Z.Since HZ < G and HZ # H, we see that HZ = G.
Since the normalizer of H in G contains H and Z, we see that H <1 G. Since
G/H is a nontrivial p-group, its center Y /H is nontrivial and we see that
Y = G, by maximality of H. Therefore G/H is abelian. But then G/H has
a subgroup K/H of order p, and we must have K = G, again by maximality
of H, and the result is proven.

and |

3. Let I <R. Since R is noetherian, there exist xi,...,x, € R such that [ =
(x1,...,%x,). Let g denote the greatest common divisor of {xi,...,x,}. Since
g | x; for all i, there exist r; € R such that x; = gr; and we see that [ C
(g). Also x;/g € R for all i and no prime divides all the x;. Therefore
(x1/8,...,%,/g) =R, in particular there exist s; € R such that x;s; /g+---+
xnsn/g = 1 and hence g = x1s1 + ...x,s,. Therefore g € I, consequently
I = (g) and it follows that R is a PID, as required.

4. Since M is an injective Z-module over the PID I and ¢ # 0, we see that
gM = M. Now let m ® z be a simple tensor in M ®y, Z. Since gM = M, there
exists n € M such that gn = m and the

mRz=qnR®z=n®qz=nx0=0.



Since every tensor is a sum of simple tensors, it follows that M ®y, Z /qZ =
0.

. Since M is a finitely generated module over the PID C[x], we may write
M =F &T, where F is a free C[x]-module of finite rank and 7T is a finitely
generated torsion module. Furthermore we may write F = @7 C[x]/(x —
a;) for some integers n,b; and a; € C. First suppose F = 0. Note that
dimc T < oo, so dimg M < oo, in particular no such N can exist (dimg M =
dimc N = M = N as C-modules).

Therefore we may assume that F # 0. Now choose any ¢ € C with ¢ # q; for
all i. By the Chinese remainder theorem (x —¢)T =T. Also (x—¢c)F = F
and hence (x —c)M = M. Finally F = C[x]™ for some m € N, consequently
(x—¢)F = (x — ¢)C[x]™ and we deduce that (x — ¢)F # F. Therefore (x —
¢)M # M and the result follows (in fact there exist infinitely many such c).

. (a) A polynomial has a degree 1 factor if and only if it has a root. Therefore
a degree 2 polynomial f € F;[x] is irreducible if and only if f(0) =
f(1) = 1. There are only 4 degree 2 polynomials, and it is easy to see
that only x” 4 x + 1 satisfies this criterion.

(b) If g:= x> +x3+ 1 is not irreducible, it has a factor of degree 1 or 2.
But g(0) = g(1) = 1 and x> +x + 1 does not divide g. Therefore g is
irreducible and it follows that [Fy(a) : F] =5. If h:=x*+x+1is
not irreducible, it has a factor of degree 1 or 2. But 2(0) = h(1) =1
and x> 4 x + 1 does not divide . Therefore 4 is also irreducible and it
follows that [Fy(fB) : Fo] = 4. Since 4 and 5 are coprime, we deduce
that [Fa(a, B) : F5] = 45 = 20.

(c) Since all field extensions involving finite fields are Galois extensions,
K =TF,(a,3). Also we know that the Galois group is cyclic with order
the degree of the extension. Therefore Gal(K /IFy) = Z/20Z.

. First we compute the character table for S3. There are three conjugacy
classes in S3, and representatives are 1, (1 2) and (1 2 3). There is the trivial
representation with character y; defined by x;(x) = 1 for all x € S3. Then
there is the character ¥, which is defined by the sign of a permutation, so
x2(1) = x2(123)=1and (1 2) = —1. The number of irreducible char-
acters equals the number of conjugacy classes, so there are exactly three
irreducible characters. The final character )3 can be determined by the or-
thogonality relations. We have x3(1) = 2. Since x an irreducible character



if and only if ¥ (complex conjugate) is an irreducible character, we see that
x3(1 2) and x3(1 2 3) are real numbers. Taking the inner product of the
first two columns of the character table, we obtain y3(1 2) = 0, and then it
follows easily that y3(1 2 3) = —1. Thus the character table of S3 is

Class Size | 1 3 2
ClassRep | 1| (12) | (123)
X1 1 1 1
X2 1| -1 1

X3 1 0 —1

Since Z /37 is an abelian group, all its irreducible characters are of degree
one and correspond to homomorphisms into the cube roots of 1 in C, be-
cause |Z/37Z| =3. Let o = e2mi/3 g primitive cube root of 1. Let 0, 1, 2
represent the conjugacy classes 0, 1, 2 respectively. Then the character table
for Z/3Z is

Class Size | 1 | 1 1
ClassRep |0 | 1 2
) 1] 1 1
v 1| o | ©*
V3 1| o?] o

Now for a finite group of the form G x H, the conjugacy classes of G x H
is C x D, where C is the set of conjugacy classes of G and D is the set of
conjugacy classes of D, and then the irreducible characters are of the form
iV := Xi(c)y;(d), in particular there are |C|- |D| irreducible characters.
Therefore the character table of S3 x Z/3Z is

Class Size 1 1 1 3 3 3 2 2 2
ClassRep | (1,0) | (L1) | (1,2) | (12),0) | (12),1) | (12),2) | (123),0) | (123),1) | ((123),2)
X1 1 1 1 1 1 1 1 1 1
1V 1 ) 2 1 ) ? 1 » o?
0w 1 o’ ® 1 o’ ) 1 o’ ®
v ] I I 1 1 1 T T T
1V 1 ® o? -1 -0 —0? 1 ® o’
LV 1 o? ® -1 —w? -0 1 ? ®
GV 2 2 2 0 0 0 ] ] 1
BV 2 20 207 0 0 0 -1 -0 —0?
B 2 207 20 0 0 0 -1 —o? —o




1. (a)

(b)

(©

2. (a)

(b)
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Let U denote the upper unitriangular matrices of G and let D denote the
diagonal matrices of G. Then it is easily checked that U <G, |U| = 5°,
and that |D| = 43. Therefore G has a normal Sylow 5-subgroup, which
means it is unique and so Ps = U.

Let
1 0 z I a O
Z={|l0 1 0| |z€FstandletN={|0 1 b||a,beFs}.
0 01 0 01

Then N,Z <1 G (in fact Z is the center of G) and 1 <Z<IN <G is a
composition series (in fact a chief series) for G, with corresponding
quotients isomorphic to Z/5Z.

Set P, = D (note that P; is a Sylow 2-subgroup of G, however it is
not normal and thus there are other choices for a Sylow 2-subgroup of
G). Then P,NPs = 1, and since |P;| - |Ps| = |G|, it follows that G is
isomorphic to the semidirect product P> x Ps.

Let 0 # u € U. Then u, # 0 (dth entry of u) for some d, where 1 <d <
n. Let E;; denote the matrix unit that has 1 in the (i, j)th position and
zeros elsewhere. Then E;ju = u,v;, where v; is the column vector that
has 1 in the ith position and zeros elsewhere. It follows easily that U
contains " and hence U is simple as required.

Note that S is a direct sum of n copies of V as an S-module. Thus V' is
a projective S-module, because it is a direct summand of S. Also if / is
a left ideal of S, then it has a composition series as an S-module such
that each composition factor is isomorphic to V. Since V is projective,
it follows that S is a direct sum (of a finite number) of copies of S and
the result follows.

. Letw = #, a primitive cube root of 1. Then the roots of x'2 — 1 are

i“®w?, where 0 <a <3 and 0 < b < 2. Also the roots of x> —2x+2 are 1 +i.
It follows easily that a splitting field K for f(x) over Q is Q(i,v/2). Now
Q(i) and Q(+/3) are Galois extensions of Q of degree 2. Thus [K : Q] < 4.
Also i ¢ v/3 and it follows that [K : Q] = 4. We conclude that Gal(K /Q) =
7./27 % 7.J2Z. Let o, B € Gal(K/Q) be defined by ai = —i, /3 = /3,
Bi =i, Bv/3 = —+/3. Then «, B have order 2 and Gal(K/Q) = (a) x (B).



4. Let A be a 5 x 5 matrix of order 3. Then its minimal polynomial divides
x* — 1 and is not x — 1.

(a)

(b)

5. (a)

We use the rational canonical form to determine the conjugacy classes
in GL5(Q) (assume this is what the question means). Here the minimal
polynomial must be (x — 1)(x?> +x+ 1) and there are two possibilities
for the invariant factors, namely {x — 1,x — 1,x> — 1} and {x* +x+
1,x° — 1}. It follows that there are two conjugacy classes of matrices of
order 3. The corresponding matrices are

1 0000 0 -1 00O
01000 1 -1 000
0 00O0T]Jand |O O O O 1
00100 0 0 10O
00010 0 0 010

We use the Jordan canonical form to determine the conjugacy classes
in GL5(C) (again, assume this is what the question means). Since A
has finite order, its Jordan canonical form will be a diagonal matrix
and hence the conjugacy classes will be determined by the eigenvalues
of A (including multiplicities). Let @ = eXmi/3 a primitive cube root
of 1. Now the eigenvalues are the cube roots of 1, there must be 5
eigenvalues, and not all the eigenvalues can be 1 because A is not the
identity. It follows that a set of representatives for the conjugacy classes
over Q are {diag(1,...,®,...,w?)}, where there is at most four 1’s, and
otherwise arbitrary.

If one wants to find out precisely how many conjugacy classes, note that

the number without the restriction that there are at most four ones is the
coefficient of x° in

(I4x+x24--- )P =1-x)73,

that is 7!/(2!-5!) = 21. Therefore the number of conjugacy classes is
20.

Clearly if M = 0, the Mp = O for all prime ideals P. Conversely suppose
Mp = 0 for all prime ideals P and let 0 # m € M; we need to show that
no such m exists. Define I = {r € R | rm = 0}. Then [ is a proper ideal
of R and therefore it is contained in a maximal ideal P. Since maximal



ideals are prime, P is a prime ideal. Now Mp = O tells us that sm =0
for some s € R\ P, and we now have a contradiction as required.

(b) It is obvious that if f: M — N is surjective then fp: Mp — Np is sur-
jective, so we need to prove the converse. Now localization is an exact
functor, in particular Mp — Np — (M /N)p — 0 is exact. Therefore if fp
is surjective for all prime ideals P, we see that (M /N)p = 0 for all prime
ideals P, and then we deduce from (a) that M /N = 0. This completes
the proof.

. Note that a Sylow p-subgroup has order p, in particular a Sylow p-subgroup
is a nontrivial proper subgroup of G. We’ll consider the cases a = 1,2,3
separately. First suppose a = 1. Then the number of Sylow p-groups is
congruent to 1 mod p and divides 2 and we see that there is exactly one
Sylow p-subgroup. Thus the Sylow p-subgroup is normal and we see that
G is not simple.

Next suppose that a = 2. Then the number of Sylow p-groups is congruent
to 1 mod p and divides 4 and we see that there is exactly one Sylow p-
subgroup unless p = 3 and we conclude that G is not simple. On the other
hand if p = 3 and G is simple, then G is isomorphic to a subgroup of A3
because G has a subgroup of index 3, namely a Sylow 2-subgroup. This is
clearly not possible because |G| = 12 and |A3| = 3. We deduce that in all
cases, G is not simple.

Finally suppose that a = 3. Then the number of Sylow p-groups is congru-
ent to 1 mod p and divides 8 and we see that there is exactly one Sylow
p-subgroup unless p =3 or 7. If p = 3, then the Sylow 2-subgroup has
index 3 in G, so if G is simple, we see that G is isomorphic to a subgroup
of As. This is not possible because |G| = 24 and |A3| = 3. Now suppose
that p = 7. Then the number of Sylow 7-subgroups is congruent to 1 mod 7
and divides 8. If there is 1, then the Sylow 7-subgroup is normal, so if G is
simple, then there are 8 Sylow 7-subgroups. Since two distinct subgroups
of order 7 intersect in the identity, we see that there are 48 elements of order
7 in G. Also if the Sylow 2-subgroup is not normal, there are at least 9 ele-
ments of order a power of 2, so G has at least 48 +9 = 57 elements, which
is not possible. We conclude that in all cases, G is not simple.

. It is obvious that each statement implies the next, because at each stage
given a solution, we use the images of that solution for the next stage.



(c) implies (b). Write n = p{'p5*...pi, where the p; are distinct primes,

and d,e; € N. Suppose we have solutions (aj ;,...ap,;) in Z/pf"Z for all i.
By the Chinese remainder theorem, we may choose ajy,...,a,, € Z/nZ such
that a; = a;; mod Z/p;'Z for all i. Then (aj,...,a,) is a solution in Z /nZ.

(c) doesn’t imply (a). Consider the polynomial f(x) = (x? + x4 1)(x* —
7)(x> —2). Clearly f has no root in Z. We need to show that f has a root
in Z/p"Z, for all primes p and n € N. Recall that the multiplicative group
U(p") of nonzero elements of Z/p"Z has order p"~'(p—1). If 3| p—1,
then U(p") has an element o of order 3. If & = 1 mod p, then a?" = 1
which is not the case. It follows that oo — 1 is a unit Z/p"Z and since (o —
1)(o® 4+ a+1) =0, we deduce that o is a root of x> +x -+ 1 and hence also a
root of f. On the other hand if 3 | p—2, then (3, |U(p")|) =1and 7 € U(p"),
and therefore there exists 8 € U(p") such that B3 = 7. It again follows that
f has root in Z/p"Z. If p =3, then 2 € U(3") and (|U(3"),5) =1 and
therefore there exists ¥ € U(3") such that y° = 2. We have now shown that
f(x) has aroot in Z/p"Z for all primes p and all n € N.

(d) doesn’t imply (c). Consider the polynomial f(x) = (x*> 4+ x4 1)(x* —2).
We first show that f has a root in Z/pZ for all primes p. If 3 | p— 1, then
U(p) has an element of order 3 and we see that x> +x + 1 and hence also
f(x) has aroot. On the other hand if 3 | p—2 and p # 2, then (|U(p)|,3) =1
and since 2 € U(p), we find that x> — 2 and hence also f(x) has a root.
Finally f(0) =0in Z/27Z and f(1) = 0 in Z/3Z, and we have now shown
that f has a root in Z/pZ for all primes p. However f(x) # 0 for all x €
Z/AZ (just plug in x =0, 1,2,3).



1. (a)

(b)

2. (a)

(b)
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The number of Sylow 5-subgroups is congruent to 1 mod 5 and divides
48, so the possibilities are 1, 6 and 16. However G is simple, so 1 is not
possible, nor is 6 because then G would be isomorphic to a subgroup of
Ag which has order 360, but |G| does not divide 360. Therefore G has
exactly 16 Sylow 5-subgroups, which means that G has a subgroup of
order 240/16 = 15. Let H be a group of order 15. The number of Sylow
3-subgroups is congruent to 1 mod 3 and divides 5, so there is a unique
Sylow 3-subgroup A which must be normal. Similarly the number of
Sylow 5-subgroups is congruent to 1 mod 5 and divides 3, so there is
a unique Sylow 5-subgroup B which must be normal. Since ANB =1
and AB = H, it follows that H = A X B, so H is an abelian group of
order 15 and it follows from the structure theorem for finitely generated
abelian groups that H is cyclic.

From (a), we see that the normalizer of a Sylow 3-subgroup has a sub-
group of order 15, and we deduce that the number of Sylow 3-subgroups
divides 240/15 = 16. Therefore number of Sylow 3-subgroups is con-
gruent to 1 mod 3 and divides 16, so the possibilities are 1, 4 and 16.
However 1 and 4 are not possible because G is simple. Therefore G has
exactly 16 Sylow 3-subgroups. Since two distinct Sylow 3-subgroups
intersect in the identity, we conclude that G has exactly 32 elements of
order 3.

Since each ; is principal, there exist a; € I; such that I; = (g;) for all
i € N. Write a; = up;...pg where u is a unit and the p; are primes.
Since (a;) C (a;+1), we see that ;| divides a; for all i. But R is a UFD,
so either a; and a; 1 are associates in which case (a;) = (a;11), or @11
is divisible by at least one fewer prime of the primes in {py,...,ps}
than q;. The result follows.

Note that if / is an ideal generated by finitely many elements ay,...,a,
where d > 2, then (ay_1,ay) is principal, so is equal to (b) for some
b € R and then I = (ay,...,ag_»,b). Thus I can be generated by d —
1 elements and it follows by induction on d that [ is principal. Now
let I be an arbitrary ideal. If I is not finitely generated, then we can
find an infinite sequence aj,as,--- € I such that a,1 ¢ (a,). Set I, =
(ai,...,ay). Then I, is a principal ideal for all n because it is finitely
generated. This contradicts (a).



3. (a) This is true. Since P is projective, we may write P® Q = F, where F is
a free S-module. Then

(R®sP)® (R®sQ) =R®s (P Q)= RRsF.

Now R ®g S = R as left R-modules (via the map induced by r ® s — rs,
which has inverse r — r® 1). If F is free on X, then R ®g F is free on
1®x, so R®g P is a direct summand of the free R-module R ®g F. This
proves that R ®g P is a projective R-module.

(b) Let F be a field (e.g. Q), let S = F and let R = F'[x|. Then S is an injec-
tive S-module (over a field all modules are both injective and projective;
this is just a consequence of the fact that every subspace has a direct
complement). On the other hand R ®g S = R (see above). This is not
injective; consider the F'[x]-submodule xF [x] of F[x]. The map f + xf
show that F[x] = xF[x], so if xF'[x] was injective, then xF[x] would be
also and we would conclude that xF'[x] is a direct summand of F|[x],
say F[x] = xF[x] ® K, where K is an ideal of F[x]. Since xF[x| # F[x]
(because xF [x] consists of polynomials of degree at least 1), we see that
K #0. Let 0 # k € K. Then 0 # xk € xF [x] N K, which contradicts the
direct sum property. Therefore F[x] is not an injective F[x]-module, as
required.

4. We use the structure theorem for finitely generated modules over a PID,
elementary divisor form. We may write

M = R*& P (R/Rg;)*
N =R ® P (R/Rq:)"
i

where d,e,d;,e; > 0, the g; are distinct prime powers in R, and uniquely so
apart from the possibility that some of the d,e,d;,e; = 0. Since M> = N2,
we deduce from uniqueness that 3d = 2e and 3d; = 2e¢; for all i. Therefore
d and all d; are divisible by 2 and we may set P = R/2@.(R/Rq;)*.

5. (a) Since A is similar to A2, there exists an invertible matrix X such that
XAX ! = A? and we see that XA"™X ! = A?" for all m € N. Then for
n € N, we have

XnAxfn — Xn71A2an+1 — Xn72A4X27n — ... :A2n,

which proves that A is similar to A>",



(b) We show that the Jordan canonical form J for A is a diagonal matrix,
which will prove the result because J is similar to A. Since A is similar
to A%, we see that J is similar to JZ and by part (a), we deduce that J
is similar to J%' for all n € N. Choose n greater than the size of the
matrix A and set e = 2". We show that J¢ is a diagonal matrix. Let
K = J(d,a) be a Jordan block of A, that is a d X d matrix with a’s on
the main diagonal and 1’s on the superdiagonal. Then we may write
K = al + N where I is the identity matrix. Note that a/ and N commute,
because everything commutes with the identity matrix, and N¢~! =0,
in particular N¢ = 0. By Freshman’s dream, we get K> = ¢*I + N?, and
repeating this n times, we obtain K¢ = a¢l, a diagonal matrix, and the
result follows.

6. Let @ = ¢*™/7 a primitive 7th root of 1. Then Q(w) is a Galois extension
of Q with degree 6 and abelian Galois group G of degree 6. Complex con-
jugation Y is an element of order 2 of G, and its fixed field F will be a Galois
extension of Q of degree 3 (Galois because all subgroups of G are normal).
Since @ + y(w) € F —Q, we see that Q(@ + y(®)) is a Galois extension
of degree 3 over Q. We conclude that Q(cos(27/7)) is a Galois extension
of Q. If K is any such field, then K is the splitting field of some polyno-
mial f € Q[x]. Then K(+/2) is the splitting field for (x> —2)f and we see
that K (+/2) is a Galois extension of . We cannot have v/2 € K, because
[Q(v2) : Q] =2 and [K : Q] = 3. Therefore K(/2) is a Galois extension
of degree 6 over Q; let G denote the Galois group. Since K is a Galois ex-
tension of degree 3 over QQ, we see that G has a normal subgroup of index
3, i.e. of order 2. Also Q(+/2) is a Galois extension of degree 2 over Q, so
G also has a normal subgroup of index 2, i.e. of order 3. It follows that G is
abelian and hence isomorphic to Z/6Z.

7. Write w = Ind$(x). For h € H, we have

|H|y(h) =Y x(ghg™") = |Glx(h)
geG

because ghg~! = h for all g € G. Therefore y|y = |G/H|yx. By Frobenius
reciprocity, we now see that

(W? W)G = (%7 l)U|H)H = ’G/H|(%7%)H7
which proves that y is not irreducible when |G/H| > 1.
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1. The number of Sylow 5-subgroups is congruent to 1 mod 5 and divides
99, so if G does not have a normal Sylow 5-subgroup, it has 11 Sylow
5-subgroups and hence 44 elements of order 5. The number of Sylow 11-
subgroups is congruent to 1 mod 11 and divides 45, so if G does not have a
normal subgroup of order 11, it has 45 subgroups of order 11 and hence 450
elements of order 11. If G does not have a normal Sylow 3-subgroup, then
there are at least 10 elements of order a power of 3. We now see that G has
at least 44 + 450+ 10 = 504 > 495, too many elements, and it now follows
that G has normal Sylow p-subgroup for p = 3, or 5, or 11, as required.

If G does not have a normal Sylow 3-subgroup, then it has either a normal
Sylow 5-subgroup or a normal Sylow 11-subgroup. Suppose G has a normal
Sylow 5-subgroup A. Then G/A is a group of order 99, and therefore G/A
has a normal subgroup B/A of order 9, because the number of Sylow 3-
subgroups in a group of order 99 is 1. Since |B| = 45, the number of Sylow
3-subgroups of B is 1 and we deduce that B has a characteristic subgroup
C of order 9. We conclude that C <1 G as required. On the other hand if G
has a normal Sylow 11-subgroup D, then G/D is a group of order 45 which
has a normal subgroup E /D of order 9. Then E is a group of order 99 and
the number of Sylow 3-subgroups is 1, consequently E has a characteristic
subgroup F of order 9. It follows that G has a normal subgroup F of order
9 as required and the proof is complete.

2. Let f € Z[x] be a monic polynomial of degree n. We will show that I = (f).
If this is not the case, then we may choose g € '\ (f) with smallest possible
degree. Clearly g # 0 and therefore deg(g) > n, so we may write g = a,,x" +
a1 X"V 4 -+ ag where m = deg(g) and a,, # 0. Then g — a,,f € I and
has degree strictly less than m, so we have a contradiction and the result is
proven.

3. To show that Q/Z ® I = 0, it will be sufficient to show that ever simple
tensor x ® y = 0. Choose n € N such that nx = 0. Since [/ is injective, we
know that nl = I, so there exists z € I such that nz =y. Then

XRy=x@nz=nxxz=0

as required.



4. By the structure theorem for finitely generated modules over a PID, invari-
ant factor form, we may write

M=R'®R/Rty®---®R/Rt,

where t1|t2|...|t, #0. Here T := R/Rt; & - -- & R/Rt, is the torsion submod-
ule of M. First suppose C = R. Then M is not a torsion module, so d > 1
and we may write M = R® S, where S = R1'®T. Then M/S = R and it
follows that we have an epimorphism M — C.

Now suppose C 2 R. Then C is a torsion module, so C C T'. Since t,T =0,
we see that 7,C = 0 and we deduce that C = R/sR where s|t,. Since there
exists an R-epimorphism R/f,R — R/sR and R/t,R is a direct summand of
M, we deduce that there exists an R-epimorphism M — C, which completes
the proof.

5. (a) Let G = Gal(K/Q). Note that G has a subgroup H of order 10, for
example the normalizer of a Sylow 5-subgroup, because the number
of Sylow 5-subgroups is 6. Let F' denote the fixed field of H. Then
[F : Q] = 6 and by the primitive element theorem, F = Q(p) for some
p € F. Let f denote the minimal polynomial of p over Q. Then f is
irreducible, deg f = 6, and the splitting field for f is a Galois extension
of Q contained in K. Since As is simple, the only Galois extensions of
Q contained in K are (Q and K, and we deduce that K is the splitting
field of f.

(b) Complex conjugation is an element y of G, because K is a Galois ex-
tension of Q. The order of ¥ is 2, because K is not contained in the real
numbers, and the fixed field of y is R. Therefore [K : R| =2 and we
deduce that [R : Q] = 30.

(c) By considering its action on the roots of f, we get an embedding of G
into Sg. If ¥ is an odd permutation, then the even permutations yield a
subgroup of index 2 in G, which is not possible because G is simple. It
follows that 7y is an even permutation of order 2, so it must be a product
of two 2-cycles. We deduce that f has exactly two real roots.

(d) From (c), let a,b be the two real roots of f. Then Q(a,b) C R. Since
6|(Q(a,b) : Q] and [R : Q] = 30, we see that either [Q(a,b) : Q] =6 or
[Q(a,b) : Q] = 30. If the latter is true, then we must have R = Q(a, b) as
required. On the other hand if [Q(a,b) : Q] = 6, then the corresponding



subgroup for Q(a,b) has order 10 in G and therefore must contain a 5-
cycle o. But then ¢ can only fix one root and we have a contradiction.

6. Let A be the given matrix. The characteristic polynomial f of A must be
x> +x%>+ax+1, where a = 0 or 1. First suppose a = 0. Then f(x) # 0
for x =0 or 1 and we see that f has no linear factor. It follows that f is

irreducible and it we deduce that the rational canonical form for A is the
0 0 1

companion matrix for x> +x>+ 1, thatis [ 1 0 0
011

Now suppose a = 1. Then f(x) = (x+ 1) and we see that there are three
possibilities for the invariant factors, namely {(x+1)3}, {(x+ 1), (x+1)}
and {x+ 1,x+ 1,x+ 1}. The corresponding rational canonical forms are

o = O
- o O

1
1
1

S = O
- o O

1 1
0 and 0
0 0

S = O

0
0
1
Thus there are four possible rational canonical forms, as described above.

7. Representatives for the conjugacy classes for A4 are (1), (12 3), (1 32) and
(1 2)(3 4). The sizes of the conjugacy classes are 1, 4, 4 and 3 respectively.
Let V denote the Sylow 2-subgroup of A4, a normal subgroup of order 4
consisting of 1 and the fourth conjugacy class above. Then A4/V is a group
of order 3, so it has 3 one-dimensional representations, and hence A4 has 3
one-dimensional representations. Since A4 has 4 conjugacy classes, it has
4 irreducible representations. Thus A4 has one more irreducible representa-
tion, which will have degree 3, because the sum of the squares of the degrees
of the irreducible representations of A4 is |A4| = 12. Let 1 denote the trivial
character, let o, B denote the two other degree 1 characters, and let ¥ denote
the irreducible degree 3 character. Let @ = ¢?/3 = (—14i\/3)/2 denote
a primitive cube root of 1. Then the character table is

Class Size | 1 4 4 3
ClassRep | 1| (123) | (132) | (12)34)
1 1 1 1 1

o 1 ) w? 1

B 1| o? ® 1

X 3 0 0 1




The character y is derived from the rest of the character table and the or-
thogonality relations.
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1. Let G be a group of order 992. The number of Sylow 31-subgroups is
congruent to 1 mod 31 and divides 32 and is therefore 1 or 32. First suppose
G has 1 Sylow 31-subgroup N. Then N <G and G/N is a group of order
32. Since a nontrivial p-group has nontrivial center, we see that G/N has a
central element of order 2 and therefore it has a normal subgroup M /N of
order 2, where M <1 G, by the subgroup correspondence theorem. Then M
is a normal subgroup of order 62.

Now suppose that the number of Sylow 31-subgroups is 32. Then the num-
ber of elements of order 31 is 32-30 = 960. It follows that G has at most
32 elements that are a power of 2. Let H be a Sylow 2-subgroup of G. Then
H has 32 elements that are a power of 2. If K is another Sylow 2-subgroup,
then there exists k € K\ H, and since k has order a power of 2, we have that
G has a least 33 elements that have order a power of 2. This means that G
has at least 960 + 33 = 993 > 992 elements, a contradiction. Therefore G
has only one Sylow 2-subgroup and it follows that H <1 G. This completes
the proof.

2. Let A denote the set of prime ideals of R. Since R # 0, it has maximal
ideals. Furthermore every maximal ideal is a prime ideal, consequently
A # (. Partially order the prime ideals of A by reverse inclusion; that is
P < Q means Q C P. Suppose {P; | j € J} is a chain in A (where J is
an indexing set). Let Q =(1;P;. Then Q is certainly an ideal of R (the
intersection of ideals is always an ideal), so we need to check that it is
prime. Suppose a,b € R\ Q. Thena ¢ P; and b ¢ P, for some j,k € J. Since
{P;} is a chain, without loss of generality we may assume that P; C P,.
Then a,b ¢ P; and since P; is a prime ideal, we deduce that ab ¢ P; and
hence ab ¢ Q. Therefore Q € A and is an upper bound for the chain. We
conclude by Zorn’s lemma that A has maximal elements. This means that R
has minimal prime ideals with respect to inclusion.

3. Suppose R is not a field. Then R has a nonzero maximal ideal M. Since R/M
is irreducible, it is free a free R-module by hypothesis. Choose m € M\ 0
and x € R\ M. Since R/M is free, we see that m(x+ M) # 0in R/M. On the
other hand m(x+ M) = mx+ M = 0 because M is an ideal, a contradiction,
and the result follows.



4. Suppose first that dimyM < c. If N is a proper submodule of N, then
dimy N < dimy M and we cannot have N = M. This proves the “only if”
part of the statement.

Now suppose dimy M = oo. We use the structure theorem for finitely gener-
ated modules over the PID k[x] to write M = k[x]" @%_, k[x]/(f;), where the
fi are monic polynomials with positive degree, and n and d are nonnegative
integers. Since dimyk[x]/(f;) < o, this implies that n > 0 and therefore we
may write M = k[x] & L for some k[x]-module L. Since xk[x] is a proper
k[x]-submodule of k[x] and xk[x] = k[x], we see that xk[x] © L is a proper
submodule of k[x] @ L and xk[x| ® L = k[x] @ L. The result follows.

5. Let G denote the automorphism group of Q(c) over Q. Since o and f
are roots of the same irreducible polynomial f, there is an isomorphism
0: Q(a) — Q(B). Thus 6 € G and therefore G # 1. Since [Q(«) : Q] =
deg f, because f is irreducible, we see that [Q(a) : Q] = p, a prime, and it
follows that the fixed field of G is Q. We conclude that Q(a) is a Galois
extension of Q.

6. (a) Leta,b € K and ¢ € k. Then 0(a+b) = 6a+ 0b by Freshman’s dream,
and 6(ca) = 6cBa = cOa because O¢c = c. This proves that 6 is a k-
linear map.

(b) Let 1: K — K denote the identity map. Note that 8" (a) = a”". Since
a”" =aforall a € K, we see that 8" = 1 and we deduce that the minimal
polynomial of 6 divides X" — 1.

(c) Sincen ‘ p— 1, we see that the roots of X" — 1 are a subset of the roots of
XP~1 —1 (including multiplicities). However the roots of X?~! — 1 are
precisely the p — 1 nonzero elements of k. Therefore minimal polyno-
mial has distinct roots, all lying in k. It follows that 6 is diagonalizable
over k.

7. 83 has 3 conjugacy classes with representatives (1), (1 2) and (1 2 3). It
has two one-dimensional characters, namely the trivial character, which we
shall denote by Y, and the sign of a permutation, which we shall denote
by x». Since there are 3 conjugacy classes, there are three irreducible char-
acters; we’ll call the third irreducible character )3. This character can be
derived from the orthogonality relations. Therefore character table for S3 is



Class Size | 1 3 2

ClassRep | 1 | (12) ] (123)

X1 1 1 1

X2 1] —1 1

X3 21 0 —1
The character table for Z /27 is

Class Size | 1 | 1

ClassRep |0 | 1

|41 11

|2} 1] -1

The conjugacy classes for S3 x Z /27 are of the form . x .7, where . is a
conjugacy class for S3 and .7 is a conjugacy class for Z/27. Thus in partic-
ular S3 X Z /27 has 3 %2 = 6 conjugacy classes. We get the six irreducible
representations from taking the tensor product of irreducible representations
of S3 and Z /47, namely the representations ; ® y;, which have characters

XiVj.
Class Size 1 1 3 3 2 2
Class Rep | ((1),0) | (1), 1) | ((12),0) | (12),1) | ((123),0) | ((123),1)
X1 QY 1 1 1 1 1 1
X1 QY 1 —1 1 —1 1 —1
X2 QY 1 1 —1 —1 1 1
X2 QY 1 -1 —1 1 1 —1
X3 QY 2 2 0 0 —1 —1
X3 R Y» 2 -2 0 0 -1 1
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1. Let G be a simple group of order 4860. The number of Sylow 3-subgroups
is congruent to 1 mod 3 and divides 20, so if G does not have a normal
Sylow 3-subgroup, it has 4 or 10 Sylow 3-subgroups. If there are 4 Sylow
3-subgroups, then G will be isomorphic to a subgroup of A4 which has order
12, which is clearly not possible because 12 < 4860. Therefore G must have
10 Sylow 3-subgroups and then G will be isomorphic to a subgroup of Ayy.
This is not possible because 33 ‘ 4860, but the largest power of 3 dividing
|A10| = 10!/2 is 4. Therefore there is no such G, as required.

2. Let f(x) = 2x> +19x% — 54x + 3. If f is not irreducible, then it must have a
degree one factor, which we may assume is of the form ax+b where a,b € Z
and (a,b) = 1, a primitive polynomial in Z[x]. Write f(x) = (ax+ b)g(x)
where g € Q[x]. Then by Gauss’s lemma, g(x) € Z[x]. Write g(x) = cx? +
dx+ e where c,d,e € Z. We now equate coefficients. We have ac = 1, so
either a = &1 or a = 2, and be = 3. Suppose a = +1. Then 1 or 3 is a
root of f, which by inspection is not the case. On the other hand if a = £2,
then +1/2 or +3/2 is a root of f, which again by inspection is not the case.
This proves that f is irreducible in Q[x].

3. Define 6: S x S — S by 0(s,t) = st. Note that for s1,s2,1,1, € Sand r € R,

9(S1 —l-Sz,ll) = (S1 -I—Sz)tl =81t + 85201 = 9(S1,t1)+9(S2,t1),
e(sl,l‘l +t2) = Sl(tl +t2) =St + 851 = G(Sl,l‘l) + 9(.9171?2),
9(s1r,t1) =811t = 9(81,)’1‘1).

This shows that 0 is an R-balanced map. Therefore 6 induces a group ho-
momorphism ¢ : S®g S — S such that ¢(sy,7;) = 5171, in particular ¢ (1 ®
1) =1#0. It follows that S®g S # 0.

4. By the structure theorem for finitely generated modules over a PID, we may
write I =T @& F where T is the torsion submodule of / and F is a free R-
module. First suppose F # 0. Then we may write F = E & R where E is
a free module, so I =T & E & R. Since R is not a field, we may choose
r € R\ 0 which is not a unit in R. Also / is an injective R-module, so s/ =1
and hence sR = R and we have a contradiction. Therefore F = 0 and hence
I is a torsion module. It follows there exists s € R\ 0 such that s/ = 0. But
sI = I because [ is injective and we conclude that / = 0 as required.



5. Let A € GLg(Q) be an element of order 7. Then A’ = I, which means
that the minimal polynomial of A divides x’ — 1. Now x’ — 1 = f(x)(x— 1)
where f(x) = x4+ x° +x* +x3 + x>+ x+1, and f(x) is irreducible. Since the
minimal polynomial of A is not x — 1, we see that the minimal polynomial of
A s either f(x) or x” — 1. Since the characteristic polynomial has degree 8, it
must be f(x)(x— 1)2. It follows that there is one conjugacy class of matrices
in GLg(@Q) which consists of elements of order 7, namely the matrices with
invariant factors {x’ —1,x — 1}.

6. Write G = Gal(K/Q) and F = Q(¢2™/?). Since G = S5, we know that
K : Q] =|S5| = 120.

(a) If fisnotirreducible, then we may write f = f| f, where deg f1,deg f> >
1 and deg f1 +deg f> = deg f = 5. We then have

[K: Q] < (degf1)!(deg f2)! <5!=120

and we have a contradiction. Therefore f is irreducible. Since an irre-
ducible polynomial over a field of zero characteristic has distinct roots,
it follows that f has 5 distinct roots.

(b) If ais aroot of f, then so is ya and it follows that y permutes the roots
of f. Also F is a cyclic extension of Q of degree p — 1. The subgroup
corresponding to this extension in G will be a normal subgroup of index
p — 1 1in G with cyclic quotient. The only normal subgroups of G which
have this property have index 1 or 2 and it follows that p = 3.

(c) Since K ¢ R, we see that f must have at least one complex root. Since
complex roots appear in pairs, this means that f has either 2 complex
roots or 4 complex roots. Since As is the unique subgroup of index 2 in
G, we see that F is the fixed field of As. Now if f has 4 complex roots,
then Y € A5 and hence ¥ fixes F', which is not the case. It follows that f
has 2 complex roots and therefore fixes 3 of the roots of f.

7. Write w = Ind% x. By Frobenius reciprocity, (v, W) = (W|g, X )u. Since
{1,x,x2} is a transversal for H in G, we see that for h € H,

w(h) = x(h)+ x (xhx™ ") + g (hx %) = 3x(h)

and we deduce that (y|g, x ) = 3. Therefore if we write y =a;x; +---+
anXn Where a; € N and %; is an irreducible character for all i, then a% 4+
a2 = 3 and we must have a; = 1 for all i and n = 3. This proves the result.
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1. Let G be a group of order 63 = 32-7. The number n7 of Sylow 7-subgroups
of G divides 9 and is congruent to 1 mod 7. Hence n; = 1 and G has a
normal Sylow 7-subgroup Q == Z7. We have G = P x Q for any Sylow 3-
subgroup P < G.

The group Aut(Q) = Z7 is cyclic of order 6. Fix a generator b of Q and let
o € Aut(Q) be the element of order 3 such that 6 (b) = b?. Since P = Zg or
P = 73 X Z3, any homomorphism P — Aut(Q) has image in (o).

We deduce that there exist exactly 4 non-isomorphic groups of order 63: the
abelian groups Zg X Z7 and Z3 X Z3 X Z7, and two non-abelian semi-direct
products Zg X Z7 and (Z3 X Z3) X Z7. The various possibilities for the latter
are seen to be isomorphic by suitably changing generators. (For example,
if Zo x Z7 is generated by a,b such that a° = b’ = e and aba~! = b*> =
o (b), then in terms of the generators a®,b we have a’ba~? = b* = 6%(b),
corresponding to the other non-trivial homomorphism P — Aut(Q) in the
case P = Zy.)

2. We know that A is similar to matrix in Jordan canonical form, with nonzero
eigenvalues (since A is invertible). Without loss of generality, we may as-
sume that A is an n x n Jordan block matrix with eigenvalue u # 0.

Consider a single n x n Jordan block J with eigenvalue A # 0 on the diagonal
and 1 on the superdiagonal. Its square J2 has A2 on the diagonal, 24 on the
superdiagonal, 1 on the next diagonal, and all other entries 0. In particular,
one has (J2 — A%I)" = 0 and no smaller power of x — A? annihilates J>.
Thus the Jordan canonical form of J? also consists of a single block, i.e., J>
is similar to a n x n Jordan block with eigenvalue A°2.

Now pick A € C so that A> = u. By the previous paragraph, we have
PJ?>P~! = A for some invertible matrix P. Then A = B> for B= PJP~ .

3. If A and B are both free, then so is A ®g B. If either A or B is 0, then A ®r B
is also 0 and hence free.

Suppose A and B are both nonzero, but not both free. Without loss of gen-
erality, we may assume that A has an elementary divisor p'. If the free
part of B is nonzero, then A ®g B contains a (torsion) submodule isomor-
phic to R/(p') ®x R = R/(p') and therefore cannot be free. Thus, in order



for A ®g B to be free, B must be a torsion module. But then, for the same
reason, A must also be a torsion module.

Assuming A and B are nonzero torsion modules, the elementary divisors of
A ®p B are determined from those of A and B by using the bilinearity of the
tensor product and the isomorphism R/I ®@g R/J = R/(I +J) (or by direct
arguments), which gives

R/(p") @rR/(p') = R/ (p™n{h})
R/(p)) @rR/(¢') =0

for distinct primes p,q € R and positive integers i, j. Thus, in order for
A ®g B to be free, A and B cannot have elementary divisors for a common
prime.

By the classification theorem, we conclude that A ®g B is free if and only if
one of the following holds:

e oneof A,Bis0
e both A and B are free

e both A and B are nonzero torsion modules and they do not having
elementary divisors for a common prime

4. The classification of finite abelian groups gives that the Sylow p-subgroup
of Ais A(p) = {a € A: p"a=0}. A homomorphism f: Z/p"Z — A is
uniquely determined by f(1), which must belong to A(p). Moreover, for
each a € A(p), since p"a = 0, there exists unique such f with f(1) = a,
by the First [somorphism Theorem. In other words, the map sending f €
Hom(Z/p"Z,A) to f(1) € A(p) is a bijection. This map is a group isomor-
phism, since f1 + f2 — (fi + £2)(1) = fi(1) + f2(1).

5. () Let a = V4 €R, B = aw, y= aw’ be the roots of x> —4, where
o = e¥™/3 is a primitive 3" root of unity. We have E = Q(c, ®).
We claim that E/QQ has degree 6. We know that [E: Q] < 3! =6. The
polynomial x* — 4 is irreducible over Q, since it has degree 3 and no
rational roots (since 1, £2, +-4 are not roots). The minimal polynomial
of @ is x> +x+ 1. Since E contains o and @, its degree [E: Q] must be
divisible by 2 and 3, hence by 6. Therefore [E: Q] = 6.

The action of G = Gal(E/Q) on «, 3,7 gives an injective homomor-
phism G — S3. Since |G| = 6, it must be an isomorphism G = Sj.



(b)

6. (a)

(b)

7. (a)

(b)

By the Galois correspondence, E /QQ has one intermediate field for each
subgroup of §3, of which there are 6. Thus

Q,Q(w),Q(a),Q(B),Q(r),E

are all intermediate fields of E/Q. (These are the fixed fields of the sub-
groups S3,((123)),((12)), ((13)),((23)), (e), respectively, where we iden-
tify o with 1, B with 2, and y with 3.)

It suffices to find 8 € E whose stabilizer in G is trivial. One checks that

60 = o + o has this property:

12
oc+a)n(——)>[3’+af1

a+wu£2y+ﬁ/y:aw2+w4:uﬂ—w—ly—w—l

23
a+wL$a+Wa:a—w—1

(123)
o+owr— B+o=00+0

(132) >
a+w|—>y+w:aa) + o

=oaw—ow-—1

Here we use that {1, o, a?, 0, aw, o’®} is a Q-basis of E to see that
none of these images are equal to & + ®.

We know . is not empty, because the zero ideal belongs to .. Let
Iy ChL C--- beachain in .. The union / = {J,_1, is an ideal of R
and a* ¢ I for all k > 0. Hence I belongs to . and is an upper bound
for the chain. We have verified the conditions of Zorn’s lemma.

Let P be a maximal element of .. Then a ¢ P. We will show that P
is a prime ideal of R. Suppose xy € P for some x,y € R, but x,y ¢ P.
Then the ideals (x) 4+ P and (y) + P strictly contain P, and therefore do
not belong to .. Hence a* € (x) + P and a’ € (y) + P for some k,I > 0.
But then 1! ¢ (xy) + P = P, which is a contradiction, since P € ..

We apply the orbit-stabilizer theorem. We have hxk~! = x if and only
if h = xkx~! € HNxKx~!'. Hence the stabilizer of x has [H N xKx™!|
elements, and the orbit of x has |H x K|/|H NxKx~!| elements.

The orbit through the identity is HeH = H, which has |H| = g(q —

1)2 elements. Taking any s ¢ H, e.g., s = <(1) (1)), we find that [H N



sHs™!| = (¢— 1)? and hence, by (a), the orbit through s has size ¢*(q —

1)*/(g—1)*=q¢*(g—1)% Since (¢*+q)(g—1)* =q(g+1)(g—1)* =
|G| we are done.
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