# Affine Weyl Groups and Affine Grassmannian Intervals

Michael Lugo

Virginia Tech Advisor Mark Shimozono

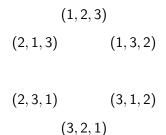
> Visitor's Day 17 March 2017

> > ◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

■ Consider *S*<sub>3</sub>



#### Consider S<sub>3</sub>



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Consider 
$$S_3 = \langle s_1, s_2 \rangle$$

$$(1, 2, 3)$$
  
 $(2, 1, 3)$   $(1, 3, 2)$   
 $(2, 3, 1)$   $(3, 1, 2)$ 

(3, 2, 1)

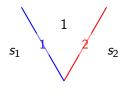
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Consider 
$$S_3 = \langle s_1, s_2 \rangle$$

 $\begin{array}{cccc}
 1 & & \\
 s_1 & & s_2 \\
 s_1 s_2 & & & \\
 s_1 s_2 s_1 \\
 s_2 s_1 s_2 \\
\end{array}$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Consider  $S_3 = \langle s_1, s_2 \rangle$
- Geometric Interpretation

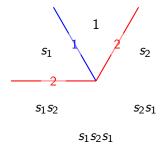






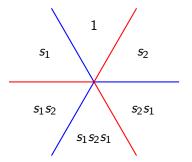
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Consider  $S_3 = \langle s_1, s_2 \rangle$
- Geometric Interpretation



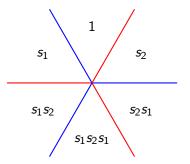
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

- Consider  $S_3 = \langle s_1, s_2 \rangle$
- Geometric Interpretation

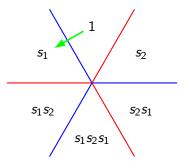


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

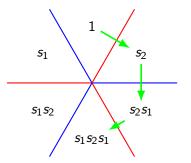
- Consider  $S_3 = \langle s_1, s_2 \rangle$
- Geometric Interpretation
- Walks and  $\ell(w)$



- Consider  $S_3 = \langle s_1, s_2 \rangle$
- Geometric Interpretation
- Walks and  $\ell(w)$

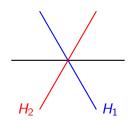


- Consider  $S_3 = \langle s_1, s_2 \rangle$
- Geometric Interpretation
- Walks and  $\ell(w)$

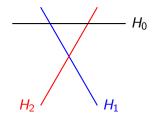




◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへの



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



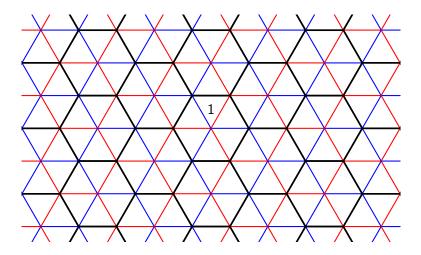
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?





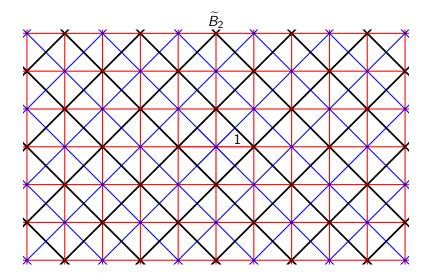


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



 $B_2$ 

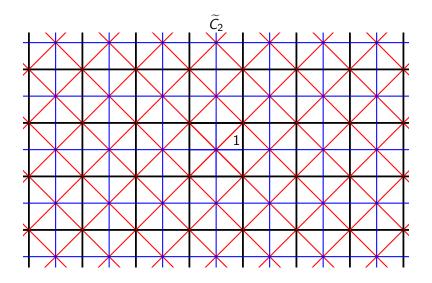
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?





 $C_2$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

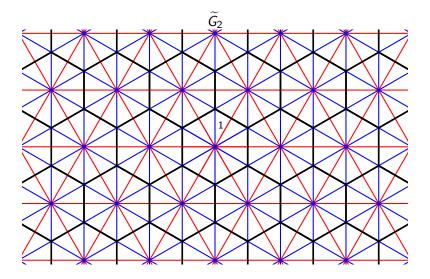


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○



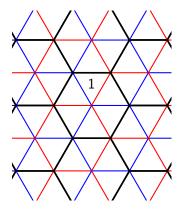
 $G_2$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

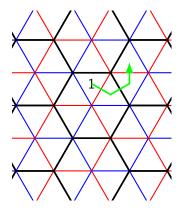


◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 の々で

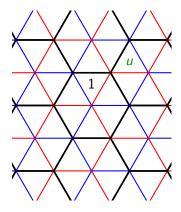
•  $u \leq v$  if •  $\ell(v) = \ell(u) + 1$ • can reflect u to v



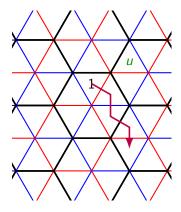
•  $u \leq v$  if •  $\ell(v) = \ell(u) + 1$ • can reflect u to v



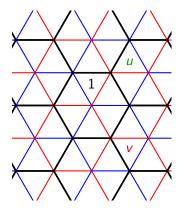
•  $u \leq v$  if •  $\ell(v) = \ell(u) + 1$ • can reflect u to v



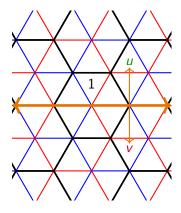
•  $u \leq v$  if •  $\ell(v) = \ell(u) + 1$ • can reflect u to v



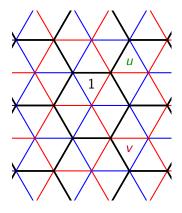
•  $u \leq v$  if •  $\ell(v) = \ell(u) + 1$ • can reflect u to v



•  $u \leq v$  if •  $\ell(v) = \ell(u) + 1$ • can reflect u to v



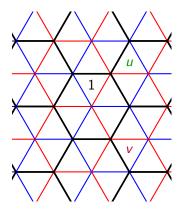
u < v if</li>
 ℓ(v) = ℓ(u) + 1
 can reflect u to v
 Extend to partial order



*u* ≤ *v* if

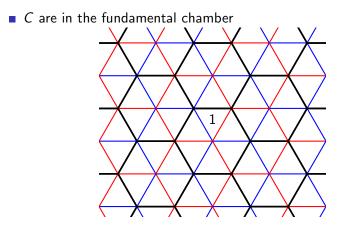
 ℓ(*v*) = ℓ(*u*) + 1
 can reflect *u* to *v* 

 Extend to partial order
 [*v*, *w*] = {*u* | *v* ≤ *u* ≤ *w*}



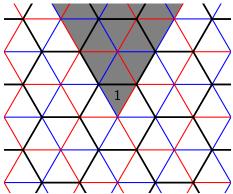
• C are in the fundamental chamber





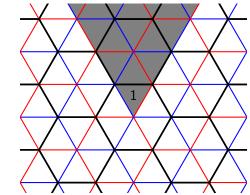
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• *C* are in the fundamental chamber



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• *C* are in the fundamental chamber



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

C is not a group

#### An Interesting Question

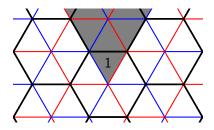
#### Research Question

# If we have a $w \in C$ , can we characterize the $v \in C$ such that $[v, w] \subseteq C$ ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

#### Research Question

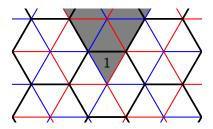
# If we have a $w \in C$ , can we characterize the $v \in C$ such that $[v, w] \subseteq C$ ?



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

#### Research Question

# If we have a $w \in C$ , can we characterize the $v \in C$ such that $[v, w] \subseteq C$ ?

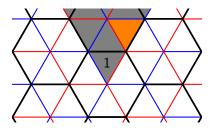


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If 
$$w = s_0 s_2$$

#### Research Question

# If we have a $w \in C$ , can we characterize the $v \in C$ such that $[v, w] \subseteq C$ ?

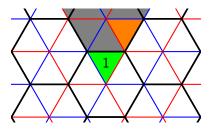


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If 
$$w = s_0 s_2$$

#### Research Question

# If we have a $w \in C$ , can we characterize the $v \in C$ such that $[v, w] \subseteq C$ ?

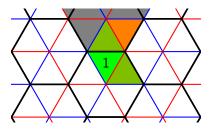


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• If  $w = s_0 s_2$ , then v = 1 DOESN'T work.

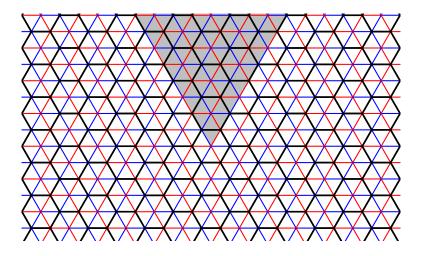
#### Research Question

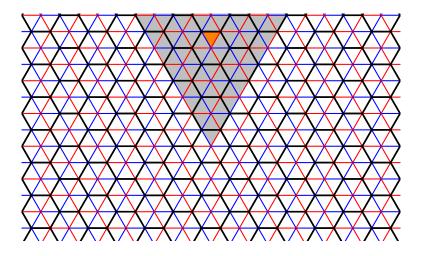
# If we have a $w \in C$ , can we characterize the $v \in C$ such that $[v, w] \subseteq C$ ?

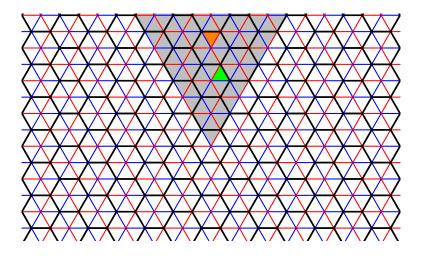


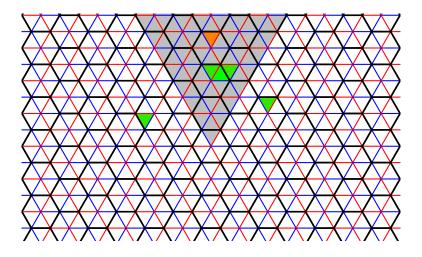
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

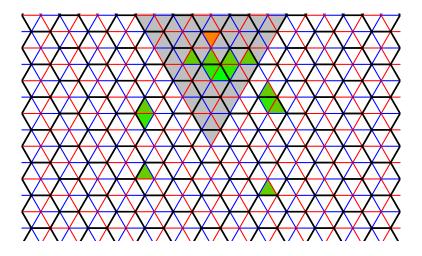
• If  $w = s_0 s_2$ , then v = 1 DOESN'T work.

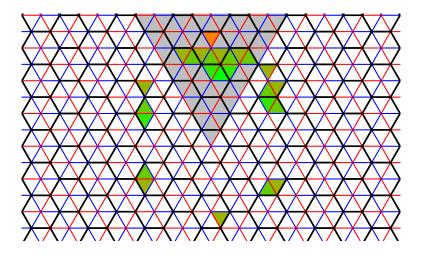


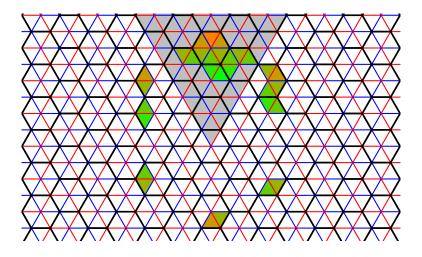


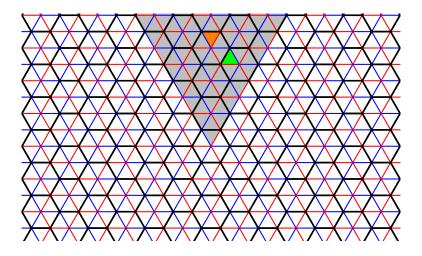


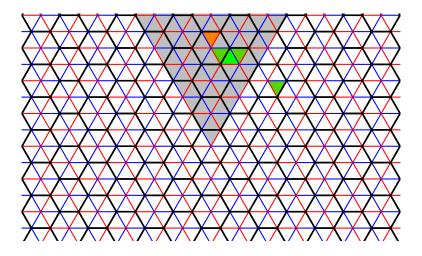


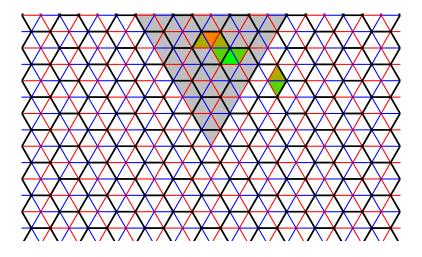


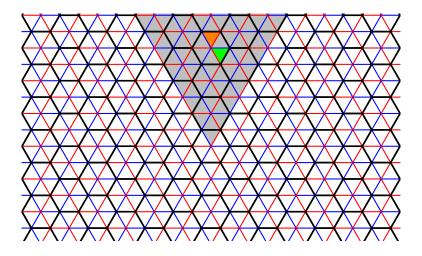


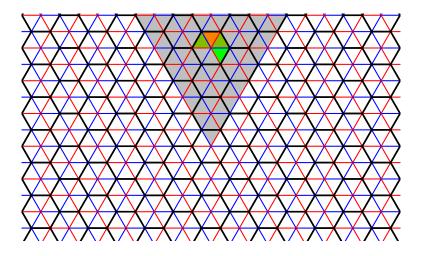


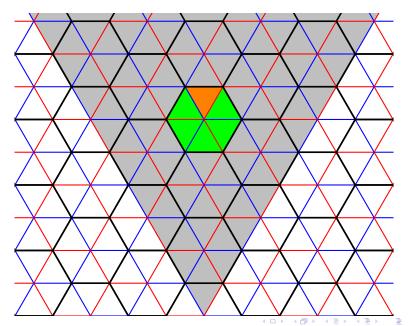


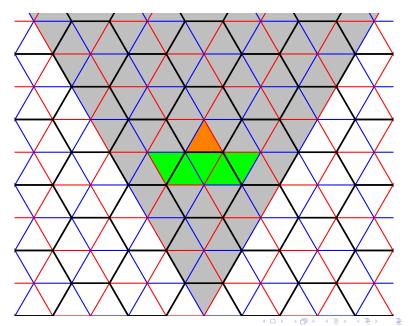


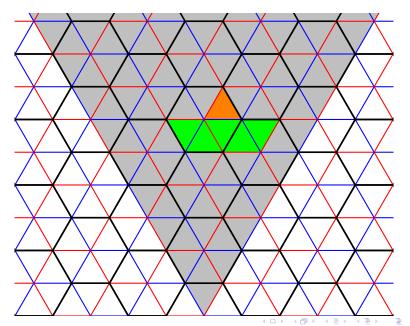


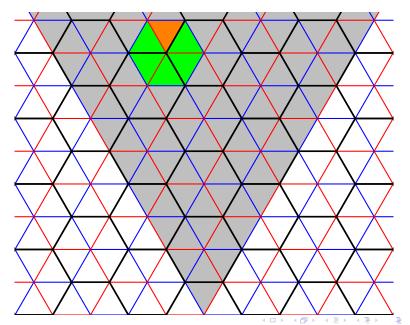


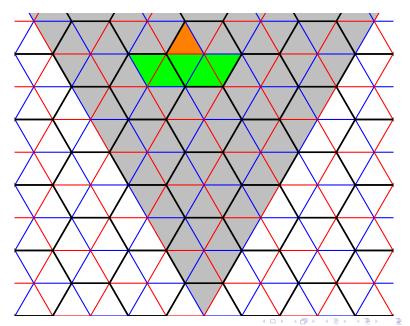


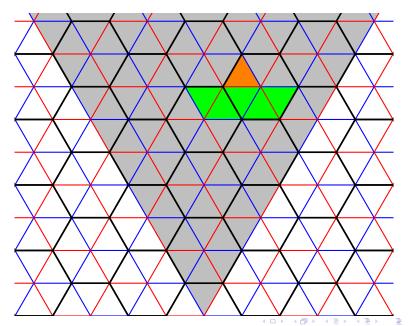


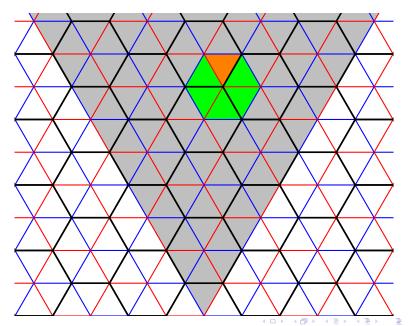












### Questions