Affine Weyl Groups and Affine Grassmannian Intervals

Michael Lugo

Virginia Tech
Advisor Mark Shimozono

Visitor's Day
17 March 2017

Symmetric Group

- Consider S_{3}

Symmetric Group

- Consider S_{3}
$(1,2,3)$
$(2,1,3) \quad(1,3,2)$
$(2,3,1)$
$(3,1,2)$
$(3,2,1)$

Symmetric Group

- Consider $S_{3}=\left\langle s_{1}, s_{2}\right\rangle$
$(1,2,3)$
$(2,1,3) \quad(1,3,2)$
$(2,3,1)$
$(3,1,2)$
$(3,2,1)$

Symmetric Group

- Consider $S_{3}=\left\langle s_{1}, s_{2}\right\rangle$ 1

s_{1}		s_{2}
$s_{1} s_{2}$		$s_{2} s_{1}$
	$s_{1} s_{2} s_{1}$	
	$s_{2} s_{1} s_{2}$	

Symmetric Group

- Consider $S_{3}=\left\langle s_{1}, s_{2}\right\rangle$
- Geometric Interpretation

Symmetric Group

- Consider $S_{3}=\left\langle s_{1}, s_{2}\right\rangle$
- Geometric Interpretation

Symmetric Group

- Consider $S_{3}=\left\langle s_{1}, s_{2}\right\rangle$

■ Geometric Interpretation

Symmetric Group

- Consider $S_{3}=\left\langle s_{1}, s_{2}\right\rangle$
- Geometric Interpretation
- Walks and $\ell(w)$

Symmetric Group

－Consider $S_{3}=\left\langle s_{1}, s_{2}\right\rangle$
－Geometric Interpretation
－Walks and $\ell(w)$

Symmetric Group

- Consider $S_{3}=\left\langle s_{1}, s_{2}\right\rangle$
- Geometric Interpretation
- Walks and $\ell(w)$

Affine Symmetric Group

Affine Symmetric Group

Affine Symmetric Group

Affine Symmetric Group

1

\qquad

Affine Symmetric Group

Affine Symmetric Group

Different Affine Weyl Groups

B_{2}

[^0]
Different Affine Weyl Groups

Different Affine Weyl Groups

C_{2}

Different Affine Weyl Groups

Different Affine Weyl Groups

G_{2}

$\bar{\equiv}$

Different Affine Weyl Groups

Covers and Intervals

$$
\begin{aligned}
u & \lessdot v \text { if } \\
& ■ \ell(v)=\ell(u)+1 \\
& ■ \text { can reflect } u \text { to } v
\end{aligned}
$$

Covers and Intervals

$$
\begin{aligned}
u & \lessdot v \text { if } \\
& \square \ell(v)=\ell(u)+1 \\
& \square \text { can reflect } u \text { to } v
\end{aligned}
$$

Covers and Intervals

$$
\begin{aligned}
u & \lessdot v \text { if } \\
& \square \ell(v)=\ell(u)+1 \\
& \square \text { can reflect } u \text { to } v
\end{aligned}
$$

Covers and Intervals

$$
\begin{aligned}
u & \lessdot v \text { if } \\
& ■ \ell(v)=\ell(u)+1 \\
& ■ \text { can reflect } u \text { to } v
\end{aligned}
$$

Covers and Intervals

$$
\begin{aligned}
u & \lessdot v \text { if } \\
& \square \ell(v)=\ell(u)+1 \\
& \square \text { can reflect } u \text { to } v
\end{aligned}
$$

Covers and Intervals

$$
\begin{aligned}
u & \lessdot v \text { if } \\
& ■ \ell(v)=\ell(u)+1 \\
& ■ \text { can reflect } u \text { to } v
\end{aligned}
$$

Covers and Intervals

■ $u \lessdot v$ if
■ $\ell(v)=\ell(u)+1$

- can reflect u to v
- Extend to partial order

Covers and Intervals

- $u \lessdot v$ if
- $\ell(v)=\ell(u)+1$
- can reflect u to v

■ Extend to partial order
■ $[v, w]=\{u \mid v \leq u \leq w\}$

Affine Grassmannian Elements

- C are in the fundamental chamber

Affine Grassmannian Elements

- C are in the fundamental chamber

Affine Grassmannian Elements

- C are in the fundamental chamber

Affine Grassmannian Elements

- C are in the fundamental chamber

- C is not a group

An Interesting Question

Research Question

If we have a $w \in C$, can we characterize the $v \in C$ such that $[v, w] \subseteq C$?

An Interesting Question

Research Question

If we have a $w \in C$, can we characterize the $v \in C$ such that $[v, w] \subseteq C$?

An Interesting Question

Research Question

If we have a $w \in C$, can we characterize the $v \in C$ such that $[v, w] \subseteq C$?

■ If $w=s_{0} s_{2}$

An Interesting Question

Research Question

If we have a $w \in C$, can we characterize the $v \in C$ such that $[v, w] \subseteq C$?

■ If $w=s_{0} s_{2}$

An Interesting Question

Research Question

If we have a $w \in C$, can we characterize the $v \in C$ such that $[v, w] \subseteq C$?

■ If $w=s_{0} s_{2}$, then $v=1$ DOESN'T work.

An Interesting Question

Research Question

If we have a $w \in C$, can we characterize the $v \in C$ such that $[v, w] \subseteq C$?

■ If $w=s_{0} s_{2}$, then $v=1$ DOESN'T work.

Example Intervals

Solutions

Solutions

Solutions

Solutions

Solutions

Solutions

Solutions

Questions

[^0]:

