Combinatorics of the Cell Decomposition of Affine Springer Fibers

Michael Lugo

Virginia Tech Under the Advising of Mark Shimozono

28 April 2015

Contents

- 1 Affine Springer Fiber
- 2 Affine Symmetric Group
- 3 Hikita's Representation
- 4 Gorsky, Mazin, and Vazirani's Parking Functions
- 5 Combinatorial Connection

Overview

- 1 Affine Springer Fiber
- 2 Affine Symmetric Group
- 3 Hikita's Representation
- 4 Gorsky, Mazin, and Vazirani's Parking Functions
- 5 Combinatorial Connection

Notation

- $K := \mathbb{C}((\epsilon))$ and $\mathcal{O} = \mathbb{C}[[\epsilon]]$
- Fix *n* > 1
- $V := K^n$ be a K-vector space

Notation

- $K := \mathbb{C}((\epsilon))$ and $\mathcal{O} = \mathbb{C}[[\epsilon]]$
- Fix n > 1
- $V := K^n$ be a K-vector space
- $G := GL_n(K)$ (alternatively $SL_n(K)$)
- $ightharpoonup P := GL_n(\mathcal{O}) ext{ (alternatively } SL_n(\mathcal{O}))$

Notation

- $K := \mathbb{C}((\epsilon))$ and $\mathcal{O} = \mathbb{C}[[\epsilon]]$
- Fix *n* > 1
- $V := K^n$ be a K-vector space
- $G := GL_n(K)$ (alternatively $SL_n(K)$)
- $ightharpoonup P := GL_n(\mathcal{O}) ext{ (alternatively } SL_n(\mathcal{O}))$
- $B := \{g \in P \mid g \text{ evalulated at } \epsilon = 0 \text{ is uppertriangular}\}$ (Iwahori subgroup)

lacksquare Consider elements of V as infinite $\mathbb C$ tuples

$$\sum_{i\geq N_1} a_i \epsilon^i \qquad \sum_{i\geq N_2} b_i \epsilon^i \qquad \sum_{i\geq N_3} c_i \epsilon^i$$

$$\sum_{i\geq N_2} b_i \epsilon^i$$

$$\sum_{i>N_3} c_i \epsilon^i$$

■ Consider elements of V as infinite $\mathbb C$ tuples

$$\sum_{i \geq N_1} a_i \epsilon^i \qquad \sum_{i \geq N_2} b_i \epsilon^i \qquad \sum_{i \geq N_3} c_i \epsilon^i$$

$$(\dots, a_{-1}, b_{-1}, c_{-1}, a_0, b_0, c_0, a_1, b_1, c_1, \dots)$$

■ Consider elements of V as infinite \mathbb{C} tuples

$$\sum_{i \geq N_1} a_i \epsilon^i \qquad \sum_{i \geq N_2} b_i \epsilon^i \qquad \sum_{i \geq N_3} c_i \epsilon^i$$

$$(\dots, a_{-1}, b_{-1}, c_{-1}, a_0, b_0, c_0, a_1, b_1, c_1, \dots)$$

lacksquare ϵ acts by shifting n spots

■ Consider elements of V as infinite \mathbb{C} tuples

$$\sum_{i \geq N_1} a_i \epsilon^i \qquad \sum_{i \geq N_2} b_i \epsilon^i \qquad \sum_{i \geq N_3} c_i \epsilon^i$$

$$(\dots, a_{-1}, b_{-1}, c_{-1}, a_0, b_0, c_0, a_1, b_1, c_1, \dots)$$

- lacksquare ϵ acts by shifting n spots
- If $\{e_i\}_{i=1}^n$ is a $\mathbb C$ basis of $\mathbb C^n$, then

$$e_{i+kn} = \epsilon^k e_i$$

is a $\mathbb C$ basis of V

Affine Grassmannian

Definition ([1, 4])

The affine Grassmannian G_n for the group GL_n is the moduli space of \mathcal{O} -submodules M of V such that

- (a) M is \mathcal{O} -invariant
- (b) M has rank n as a \mathcal{O} -module
- (c) There exists N such that $e^{-N}\mathcal{O}^n \supset M \supset e^N\mathcal{O}^n$
- (d) $\dim_{\mathbb{C}} \epsilon^{-N} \mathcal{O}^n / M = \dim_{\mathbb{C}} M / \epsilon^N \mathcal{O}^n$

Note $\mathcal{G}_n \cong G/P$.

Affine Flag

Definition

The affine flag ind-variety \mathcal{F}_n is the space of collections

$$M_0 \supset M_1 \supset \cdots \supset M_n = \epsilon M_0$$

such that

- **1** For all i, M_i satisfies (a), (b), and (c) for \mathcal{G}_n
- $M_0 \in \mathcal{G}_n$

Note $\mathcal{F}_n \cong G/B$

■ Consider the single shift of the $\mathbb C$ basis of V

$$N = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \epsilon & 0 & 0 & \dots & 0 \end{bmatrix}$$

■ Consider the single shift of the $\mathbb C$ basis of V

$$N = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \epsilon & 0 & 0 & \dots & 0 \end{bmatrix}$$

Let m > n, gcd(m, n) = 1 and m = nk + b

 $lue{}$ Consider the single shift of the $\Bbb C$ basis of V

$$N = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \epsilon & 0 & 0 & \dots & 0 \end{bmatrix}$$

- Let m > n, gcd(m, n) = 1 and m = nk + b
- lacksquare $T=N^m$ and $I_n+T\in G$

 $lue{}$ Consider the single shift of the $\Bbb C$ basis of V

$$N = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \epsilon & 0 & 0 & \dots & 0 \end{bmatrix}$$

- Let m > n, gcd(m, n) = 1 and m = nk + b
- lacksquare $T=N^m$ and $I_n+T\in G$

Definition

Let T be a semiregular nil-elliptic endomorphism. The Affine Springer Fiber is the set of fixed points of T over \mathcal{F}_n . Equivalently, if $u = I_n + T$, then the Affine Springer Fiber is $\mathcal{F}^u = \mathcal{F}_{m/n}$.

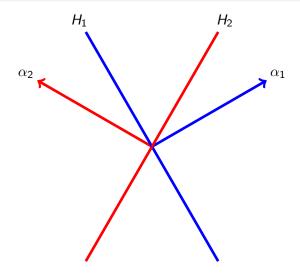
Overview

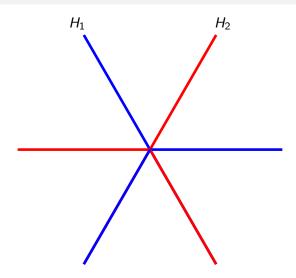
- 1 Affine Springer Fiber
- 2 Affine Symmetric Group
- 3 Hikita's Representation
- 4 Gorsky, Mazin, and Vazirani's Parking Functions
- 5 Combinatorial Connection

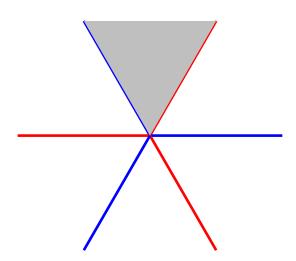
- Let $E \subset \mathbb{R}^n$ be perpendicular to $(1,1,\ldots,1)$
- Let α_i be the *i*th simple coroot $(0,0,\ldots,1,-1\ldots,0)$ with 1 in the *i*th position, $1 \le i < n$

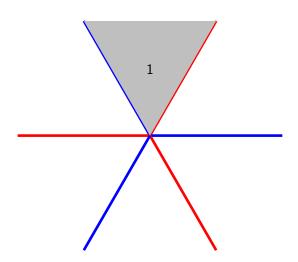
- Let $E \subset \mathbb{R}^n$ be perpendicular to $(1,1,\ldots,1)$
- Let α_i be the *i*th simple coroot $(0,0,\ldots,1,-1\ldots,0)$ with 1 in the *i*th position, $1 \le i < n$
- Let $H_i \subset E$ be the hyperplane perpendicular to α_i
- \blacksquare { H_i } acts on E by reflection
 - Define s_i to be the reflection across H_i

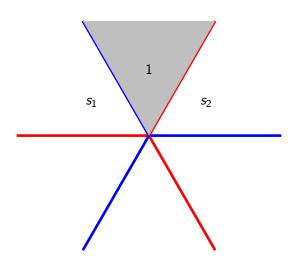
- Let $E \subset \mathbb{R}^n$ be perpendicular to $(1,1,\ldots,1)$
- Let α_i be the *i*th simple coroot $(0,0,\ldots,1,-1\ldots,0)$ with 1 in the *i*th position, $1 \le i < n$
- Let $H_i \subset E$ be the hyperplane perpendicular to α_i
- \blacksquare { H_i } acts on E by reflection
 - Define s_i to be the reflection across H_i
- The complement of $\{H_i\}$, closed under reflections, form Weyl chambers
- The fundamental chamber is on the positive side of all H_i
 - Assigning $1 \in S_n$ to the fundamental chamber creates an isomorphism to S_n

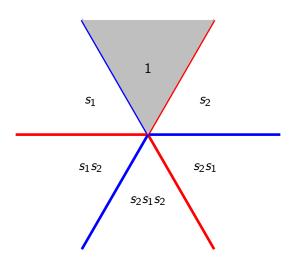


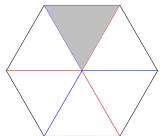


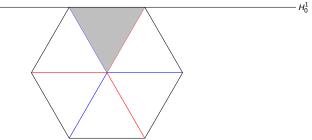


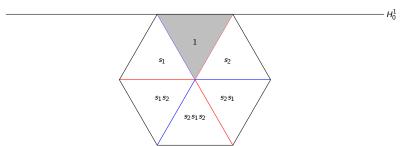


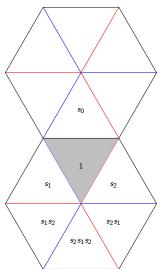


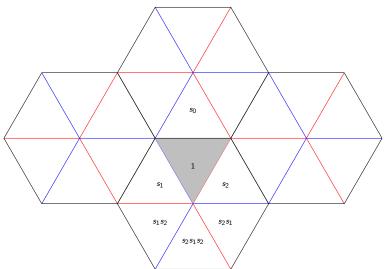


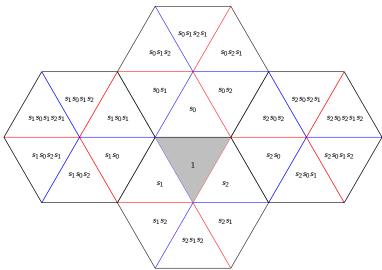












Definition (Affine Symmetric Group)

The affine symmetric group \widetilde{S}_n is the group of words in $\{s_0, \ldots, s_{n-1}\}$ with the following relations:

- $s_i^2 = 1$
- $s_i s_j s_i = s_j s_i s_j$ if $i j \not\equiv \pm 1 \pmod{n}$
- $s_i s_j = s_j s_i$ if $i j \equiv \pm 1 \pmod{n}$ and n > 2

Affine Grassmannians

■ Consider the cosets of \widetilde{S}_n/S_n

Definition

 $\omega \in \widetilde{S}_n$ is affine grassmannian if it is the minimum length representative of ωS_n in \widetilde{S}_n/S_n .

Affine Grassmannians

■ Consider the cosets of \widetilde{S}_n/S_n

Definition

 $\omega \in \widetilde{S}_n$ is affine grassmannian if it is the minimum length representative of ωS_n in \widetilde{S}_n/S_n .

- $Q^{\vee} := \{(x_1, \dots, x_n) \in \mathbb{Z}^n \mid \sum_{i=1}^n x_i = 0\}$
- $\widetilde{S}_n \cong Q^{\vee} \rtimes S_n$

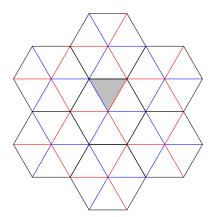
Affine Grassmannians

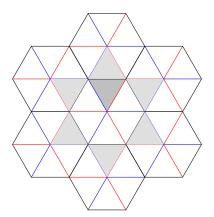
lacksquare Consider the cosets of \widetilde{S}_n/S_n

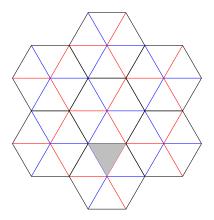
Definition

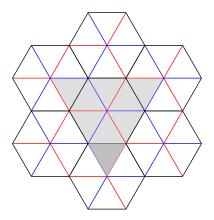
 $\omega \in \widetilde{S}_n$ is affine grassmannian if it is the minimum length representative of ωS_n in \widetilde{S}_n/S_n .

- $Q^{\vee} := \{(x_1, \dots, x_n) \in \mathbb{Z}^n \mid \sum_{i=1}^n x_i = 0\}$
- $\widetilde{S}_n \cong Q^{\vee} \rtimes S_n$
- If $\omega \in \widetilde{S}_n$ is affine grassmannian, then it is the identity or all its reduced words end with s_0









The Permutation

- Consider $\omega \in \widetilde{S}_n$ as a permutation $\mathbb{Z} \to \mathbb{Z}$
- lacksquare $1\mapsto id_{\mathbb{Z}}$
- We need only define the s_i action

The Permutation

- Consider $\omega \in \widetilde{S}_n$ as a permutation $\mathbb{Z} \to \mathbb{Z}$
- lacksquare $1\mapsto id_{\mathbb{Z}}$
- We need only define the s_i action

$$(\omega s_i)(x) = \left\{ egin{array}{ll} \omega(x+1) & ext{if } x \equiv i \pmod{n} \\ \omega(x-1) & ext{if } x \equiv i+1 \pmod{n} \\ \omega(x) & ext{otherwise} \end{array}
ight.$$

The Permutation

- lacksquare Consider $\omega \in \widetilde{\mathcal{S}}_n$ as a permutation $\mathbb{Z} o \mathbb{Z}$
- \blacksquare 1 \mapsto $id_{\mathbb{Z}}$
- We need only define the s_i action

$$(\omega s_i)(x) = \left\{ egin{array}{ll} \omega(x+1) & ext{if } x \equiv i \pmod{n} \\ \omega(x-1) & ext{if } x \equiv i+1 \pmod{n} \\ \omega(x) & ext{otherwise} \end{array} \right.$$

$$\sum_{i=1}^{n} \omega(i) = \frac{n(n+1)}{2}$$

- $\omega(x+n) = \omega(x) + n$
- Denoted by window notation $[\omega(1), \omega(2), \dots, \omega(n)]$

Indexing Sets

lacksquare Recall $\mathcal{F}_n=G/B$ and $\mathcal{G}_n=G/P$

Indexing Sets

$$ullet$$
 Recall $\mathcal{F}_n=G/B$ and $\mathcal{G}_n=G/P$
$$\mathcal{F}_n=\bigsqcup_{\omega\in\widetilde{\mathcal{S}}_n}BwB/B$$

Indexing Sets

$$ullet$$
 Recall $\mathcal{F}_n=G/B$ and $\mathcal{G}_n=G/P$
$$\mathcal{F}_n=\bigsqcup_{\omega\in\widetilde{\mathcal{S}}_n}BwB/B$$

$$\mathcal{G}_n=\bigsqcup_{\omega\in\widetilde{\mathcal{S}}_n/\mathcal{S}_n}BwP/P$$

Overview

- 1 Affine Springer Fiber
- 2 Affine Symmetric Group
- 3 Hikita's Representation
- 4 Gorsky, Mazin, and Vazirani's Parking Functions
- 5 Combinatorial Connection

$$\begin{array}{c}
\mathcal{F}_n \\
\downarrow \pi \\
\mathcal{G}_n
\end{array}$$

lacksquare $\pi:\mathcal{F}_n o\mathcal{G}_n$ the natural projection

$$\begin{array}{ccc}
\mathcal{F}_{m/n} \subseteq & \mathcal{F}_n \\
\downarrow \pi & & \downarrow \pi \\
\mathcal{G}_{m/n} \subseteq & \mathcal{G}_n
\end{array}$$

lacksquare $\pi:\mathcal{F}_n o\mathcal{G}_n$ the natural projection $(\mathcal{G}_{m/n}:=\pi(\mathcal{F}_{m/n}))$

$$\mathcal{F}_{m/n} \subseteq \mathcal{F}_n \\
\downarrow \pi \qquad \qquad \downarrow \pi \\
\mathcal{G}_{m/n} \subseteq \mathcal{G}_n$$

- lacksquare $\pi:\mathcal{F}_n o\mathcal{G}_n$ the natural projection $(\mathcal{G}_{m/n}:=\pi(\mathcal{F}_{m/n}))$
- lacksquare \mathcal{G}_n has paving by Iwahori orbits $B\omega P/P$ where $\omega\in\widetilde{\mathcal{S}}_n/\mathcal{S}_n$
- $lacksquare \mathcal{G}_{m/n}$ has a paving by $\mathcal{G}_{m/n}\cap (B\omega P/P)$

$$\mathcal{F}_{m/n} \subseteq \mathcal{F}_n$$

$$\downarrow \pi \qquad \downarrow \pi$$
 $\mathcal{C}_{\lambda} \subseteq \mathcal{G}_{m/n} \subseteq \mathcal{G}_n$

- lacksquare $\pi:\mathcal{F}_n o\mathcal{G}_n$ the natural projection $(\mathcal{G}_{m/n}:=\pi(\mathcal{F}_{m/n}))$
- lacksquare \mathcal{G}_n has paving by Iwahori orbits $B\omega P/P$ where $\omega\in\widetilde{\mathcal{S}}_n/\mathcal{S}_n$
- $\mathcal{G}_{m/n}$ has a paving by $\mathcal{G}_{m/n} \cap (B\omega P/P)$
- lacktriangle The non-zero cells are indexed by partitions, called \mathcal{C}_{λ}

$$\mathcal{F}_{m/n}^{\lambda} \subseteq \mathcal{F}_{m/n} \subseteq \mathcal{F}_{n} \\
\pi^{-1} \qquad \qquad \downarrow \pi \qquad \qquad \downarrow \pi \\
C_{\lambda} \subseteq \mathcal{G}_{m/n} \subseteq \mathcal{G}_{n}$$

- lacksquare $\pi:\mathcal{F}_n o\mathcal{G}_n$ the natural projection $(\mathcal{G}_{m/n}:=\pi(\mathcal{F}_{m/n}))$
- lacksquare \mathcal{G}_n has paving by Iwahori orbits $B\omega P/P$ where $\omega\in\widetilde{\mathcal{S}}_n/\mathcal{S}_n$
- $\mathcal{G}_{m/n}$ has a paving by $\mathcal{G}_{m/n} \cap (B\omega P/P)$
- $lue{}$ The non-zero cells are indexed by partitions, called \mathcal{C}_λ

Hikita Representation

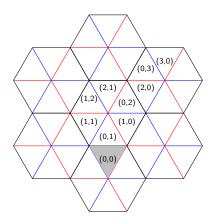
- $P = \{(a_i) \mid a_i \in \mathbb{Z}^{\geq 0}, a_n = 0, a_1, \dots, a_{n-1} \geq 0, a_{i+n} = a_i + 1\}$
- $lack \lambda: P o Q^ee$ is a bijection

Hikita Representation

- $P = \{(a_i) \mid a_i \in \mathbb{Z}^{\geq 0}, a_n = 0, a_1, \dots, a_{n-1} \geq 0, a_{i+n} = a_i + 1\}$
- $lack \lambda: P o Q^ee$ is a bijection
- $a = \sum_{i=1}^{n-1} a_i$
- $s_{a+l} \cdot \check{\lambda}(a_1,\ldots,a_{n-1}) =$

$$\begin{cases} \check{\lambda}(a_1,\ldots,a_{l+1},a_l,\ldots,a_{n-1}) & \text{if } l=1,2,\ldots,n-2, \\ \check{\lambda}(a_{n-1}-1,a_1,\ldots,a_{n-2}) & \text{if } l=n-1 \text{ and } a_{n-1} \geq 1, \\ \check{\lambda}(a_1,\ldots,a_{n-1}) & \text{if } l=n-1 \text{ and } a_{n-1} = 0, \\ \check{\lambda}(a_2,\ldots,a_{n-1},a_1+1) & \text{if } l=0. \end{cases}$$

Example



Relation to Partitions

Recall m = nk + b

Relation to Partitions

- Recall m = nk + b
- $\delta = (k(n-1)+b-1, k(n-2)+b-1, \ldots, k+b-1, b-1)$
- $\delta \delta'$ is the partition below the diagonal (0, n) to (m, 0)

Relation to Partitions

- Recall m = nk + b
- $\delta = (k(n-1)+b-1, k(n-2)+b-1, \ldots, k+b-1, b-1)$
- $\delta \delta'$ is the partition below the diagonal (0, n) to (m, 0)

Proposition ([2])

There is a bijection

$$\left\{ egin{aligned} igl(a_i) \in P \mid C_{\check{\lambda}(a_i)}
eq \emptyset
ight\} & o \{\lambda \mid \lambda \ \textit{is a partition}, \lambda \subseteq \delta - \delta' \} \end{aligned}$$

$$\left(a_i \right) \mapsto \lambda(a_i) := \delta - \left(a_b, a_{2b}, \dots, a_{nb} \right)$$

Overview

- 1 Affine Springer Fiber
- 2 Affine Symmetric Group
- 3 Hikita's Representation
- 4 Gorsky, Mazin, and Vazirani's Parking Functions
- 5 Combinatorial Connection

- Denote $[n] = \{1, 2, ..., n\}$
- lacktriangle Let there be n parking spots on a one-way street

- Denote $[n] = \{1, 2, ..., n\}$
- Let there be *n* parking spots on a one-way street
- $f:[n] \rightarrow [n]$ such that f(i) is the *i*th car's parking preference
- A car will go to its preference, then take the next open spot
- f is a parking function if all can park without circling back

- Denote $[n] = \{1, 2, ..., n\}$
- Let there be *n* parking spots on a one-way street
- $f:[n] \rightarrow [n]$ such that f(i) is the *i*th car's parking preference
- A car will go to its preference, then take the next open spot
- f is a parking function if all can park without circling back
- Denote a parking function by $(f(1) f(2) f(3) \dots f(n))$

- Denote $[n] = \{1, 2, ..., n\}$
- Let there be *n* parking spots on a one-way street
- $f:[n] \rightarrow [n]$ such that f(i) is the *i*th car's parking preference
- A car will go to its preference, then take the next open spot
- f is a parking function if all can park without circling back
- Denote a parking function by $(f(1) f(2) f(3) \dots f(n))$
- Consider f(1) = 2, f(2) = 1, f(3) = 4, f(4) = 1

- Denote $[n] = \{1, 2, ..., n\}$
- Let there be *n* parking spots on a one-way street
- $f:[n] \rightarrow [n]$ such that f(i) is the *i*th car's parking preference
- A car will go to its preference, then take the next open spot
- f is a parking function if all can park without circling back
- Denote a parking function by $(f(1) f(2) f(3) \dots f(n))$
- Consider f(1) = 2, f(2) = 1, f(3) = 4, f(4) = 1

- Denote $[n] = \{1, 2, ..., n\}$
- Let there be *n* parking spots on a one-way street
- $f:[n] \rightarrow [n]$ such that f(i) is the *i*th car's parking preference
- A car will go to its preference, then take the next open spot
- f is a parking function if all can park without circling back
- Denote a parking function by $(f(1) f(2) f(3) \dots f(n))$
- Consider f(1) = 2, f(2) = 1, f(3) = 4, f(4) = 1

- Denote $[n] = \{1, 2, ..., n\}$
- Let there be *n* parking spots on a one-way street
- $f:[n] \rightarrow [n]$ such that f(i) is the *i*th car's parking preference
- A car will go to its preference, then take the next open spot
- f is a parking function if all can park without circling back
- Denote a parking function by $(f(1) f(2) f(3) \dots f(n))$
- Consider f(1) = 2, f(2) = 1, f(3) = 4, f(4) = 1

- Denote $[n] = \{1, 2, ..., n\}$
- Let there be *n* parking spots on a one-way street
- $f:[n] \rightarrow [n]$ such that f(i) is the *i*th car's parking preference
- A car will go to its preference, then take the next open spot
- f is a parking function if all can park without circling back
- Denote a parking function by $(f(1) f(2) f(3) \dots f(n))$
- Consider f(1) = 2, f(2) = 1, f(3) = 4, f(4) = 1

- Denote $[n] = \{1, 2, ..., n\}$
- Let there be *n* parking spots on a one-way street
- $f:[n] \rightarrow [n]$ such that f(i) is the *i*th car's parking preference
- A car will go to its preference, then take the next open spot
- f is a parking function if all can park without circling back
- Denote a parking function by $(f(1) f(2) f(3) \dots f(n))$
- Consider $f(1) = 2, f(2) = 1, f(3) = 4, f(4) = 1 \longrightarrow (2141)$

Parking Function Properties

- f([n]), when sorted as a_1, a_2, \ldots, a_n , obeys $a_i \leq i$
- Any permutation of a parking function is a parking function
- There are $(n+1)^{n-1}$ parking functions on domain [n]

Gorsky, Mazin, and Vazirani's Parking Functions

$$\mathcal{PF}_{m/n}$$

- Let n < m and gcd(m, n) = 1
- $\mathcal{PF}_{m/n}$ Parking functions whose Young diagram fits below the diagonal of an $n \times m$ box

$$\mathcal{PF}_{m/n}$$

- Let n < m and gcd(m, n) = 1
- $\mathcal{PF}_{m/n}$ Parking functions whose Young diagram fits below the diagonal of an $n \times m$ box

$$|\mathcal{PF}_{m/n}| = m^{n-1}$$

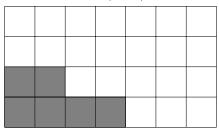
Gorsky, Mazin, and Vazirani's Parking Functions

$$\mathcal{PF}_{m/n}$$

- Let n < m and gcd(m, n) = 1
- $\mathcal{PF}_{m/n}$ Parking functions whose Young diagram fits below the diagonal of an $n \times m$ box

$$|\mathcal{PF}_{m/n}| = m^{n-1}$$

■ Consider the parking function (2040)



$$\mathcal{PF}_{m/n}$$

- Let n < m and gcd(m, n) = 1
- $\mathcal{PF}_{m/n}$ Parking functions whose Young diagram fits below the diagonal of an $n \times m$ box

$$|\mathcal{PF}_{m/n}| = m^{n-1}$$

■ Consider the parking function (2040)

$\mathcal{PF}_{m/n}$

- Let n < m and gcd(m, n) = 1
- $\mathcal{PF}_{m/n}$ Parking functions whose Young diagram fits below the diagonal of an $n \times m$ box

$$|\mathcal{PF}_{m/n}| = m^{n-1}$$

■ Consider the parking function (2040)

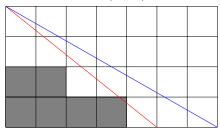
■ $(2040) \notin \mathcal{PF}_{5/4}$

$\mathcal{PF}_{m/n}$

- Let n < m and gcd(m, n) = 1
- $\mathcal{PF}_{m/n}$ Parking functions whose Young diagram fits below the diagonal of an $n \times m$ box

$$|\mathcal{PF}_{m/n}| = m^{n-1}$$

■ Consider the parking function (2040)



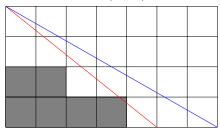
■ $(2040) \notin \mathcal{PF}_{5/4}$

$\mathcal{PF}_{m/n}$

- Let n < m and gcd(m, n) = 1
- $\mathcal{PF}_{m/n}$ Parking functions whose Young diagram fits below the diagonal of an $n \times m$ box

$$|\mathcal{PF}_{m/n}| = m^{n-1}$$

■ Consider the parking function (2040)



• (2040) $\not\in \mathcal{PF}_{5/4}$ but (2040) $\in \mathcal{PF}_{7/4}$

- $\widetilde{S}_n \subset \widetilde{S}_n$ is the set of *m*-restricted permutations

- $\widetilde{S}_n \subset \widetilde{S}_n$ is the set of *m*-restricted permutations
- $\widetilde{S}_n = \{ \omega \mid i < j \Rightarrow \omega(j) \omega(i) \neq m \}$
- GMV created a map \mathcal{SP} : ${}^{m}\widetilde{S}_{n} \to \mathcal{PF}_{m/n}$

$$\omega \mapsto \mathcal{SP}_{\omega}$$

- $\widetilde{S}_n \subset \widetilde{S}_n$ is the set of *m*-restricted permutations
- $\widetilde{S}_n = \{ \omega \mid i < j \Rightarrow \omega(j) \omega(i) \neq m \}$
- lacksquare GMV created a map $\mathcal{SP}:\ ^{m}\widetilde{\mathcal{S}}_{n}
 ightarrow\mathcal{PF}_{m/n}$

$$\omega \mapsto \mathcal{SP}_{\omega}$$

- Proven to be a bijection for $m = kn \pm 1$
- SP is conjectured to be a bijection for all m

- lacksquare $^{m}\widetilde{S}_{n}\subset\widetilde{S}_{n}$ is the set of *m*-restricted permutations
- $\widetilde{S}_n = \{ \omega \mid i < j \Rightarrow \omega(j) \omega(i) \neq m \}$
- lacksquare GMV created a map $\mathcal{SP}:\ ^{m}\widetilde{\mathcal{S}}_{n}
 ightarrow\mathcal{PF}_{m/n}$

$$\omega \mapsto \mathcal{SP}_{\omega}$$

- Proven to be a bijection for $m = kn \pm 1$
- SP is conjectured to be a bijection for all m

$$\mathcal{SP}_{\omega}(i) = \#\{j > i \mid 0 < \omega(i) - \omega(j) < m\}$$

$$SP_{\omega}(i) = |\{j > i \mid \omega(i) - m < \omega(j) < \omega(i)\}|$$

$$n = 4$$
, $m = 7$, $\omega = [4, -2, 3, 5]$

$$SP_{\omega}(i) = |\{j > i \mid \omega(i) - m < \omega(j) < \omega(i)\}|$$

■
$$n = 4$$
, $m = 7$, $\omega = [4, -2, 3, 5]$
 \cdots -3 -2 -1 0 | 1 2 3 4 | 5 6 7 8 \cdots
 \cdots 0 -6 -1 1 | 4 -2 3 5 | 8 2 7 9 \cdots

$$SP_{\omega}(i) = |\{j > i \mid \omega(i) - m < \omega(j) < \omega(i)\}|$$

■
$$n = 4$$
, $m = 7$, $\omega = [4, -2, 3, 5]$
 \cdots -3 -2 -1 0 | 1 2 3 4 | 5 6 7 8 \cdots
 \cdots 0 -6 -1 1 | 4 -2 3 5 | 8 2 7 9 \cdots

$$\mathcal{SP}_{\omega}(1) =$$

$$SP_{\omega}(i) = |\{j > i \mid \omega(i) - m < \omega(j) < \omega(i)\}|$$

■
$$n = 4$$
, $m = 7$, $\omega = \begin{bmatrix} 4, -2, 3, 5 \end{bmatrix}$
 \cdots -3 -2 -1 0 | 1 2 3 4 | 5 6 7 8 \cdots
 \cdots 0 -6 -1 1 | 4 -2 3 5 | 8 2 7 9 \cdots

$$\mathcal{SP}_{\omega}(1) =$$

$$SP_{\omega}(i) = |\{j > i \mid \omega(i) - m < \omega(j) < \omega(i)\}|$$

■
$$n = 4$$
, $m = 7$, $\omega = \begin{bmatrix} 4, -2, 3, 5 \end{bmatrix}$
 \cdots -3 -2 -1 0 | 1 2 3 4 | 5 6 7 8 \cdots
 \cdots 0 -6 -1 1 | 4 -2 3 5 | 8 2 7 9 \cdots

$$\mathcal{SP}_{\omega}(1) =$$

$$SP_{\omega}(i) = |\{j > i \mid \omega(i) - m < \omega(j) < \omega(i)\}|$$

■
$$n = 4$$
, $m = 7$, $\omega = [4, -2, 3, 5]$
 \cdots -3 -2 -1 0 | 1 2 3 4 | 5 6 7 8 \cdots
 \cdots 0 -6 -1 1 | 4 -2 3 5 | 8 2 7 9 \cdots

$$\mathcal{SP}_{\omega}(1) = 3$$

$$SP_{\omega}(i) = |\{j > i \mid \omega(i) - m < \omega(j) < \omega(i)\}|$$

■
$$n = 4$$
, $m = 7$, $\omega = [4, -2, 3, 5]$
 \cdots -3 -2 -1 0 | 1 2 3 4 | 5 6 7 8 \cdots
 \cdots 0 -6 -1 1 | 4 -2 3 5 | 8 2 7 9 \cdots

- $\mathcal{SP}_{\omega}(1) = 3$
- $\mathcal{SP}_{\omega}(2) =$

$$SP_{\omega}(i) = |\{j > i \mid \omega(i) - m < \omega(j) < \omega(i)\}|$$

■
$$n = 4$$
, $m = 7$, $\omega = [4, -2, 3, 5]$
 \cdots -3 -2 -1 0 | 1 2 3 4 | 5 6 7 8 \cdots
 \cdots 0 -6 -1 1 | 4 -2 3 5 | 8 2 7 9 \cdots

- $\mathcal{SP}_{\omega}(1) = 3$
- $\mathcal{SP}_{\omega}(2) = 0$

$$SP_{\omega}(i) = |\{j > i \mid \omega(i) - m < \omega(j) < \omega(i)\}|$$

■
$$n = 4$$
, $m = 7$, $\omega = \begin{bmatrix} 4, -2, 3, 5 \end{bmatrix}$
 \cdots -3 -2 -1 0 | 1 2 3 4 | 5 6 7 8 \cdots
 \cdots 0 -6 -1 1 | 4 -2 3 5 | 8 2 7 9 \cdots

- $\mathcal{SP}_{\omega}(1) = 3$
- $\mathcal{SP}_{\omega}(2) = 0$
- $\mathcal{SP}_{\omega}(3) =$

$$\mathcal{SP}_{\omega}(i) = |\{j > i \mid \omega(i) - m < \omega(j) < \omega(i)\}|$$

■
$$n = 4$$
, $m = 7$, $\omega = \begin{bmatrix} 4, -2, 3, 5 \end{bmatrix}$
 \cdots -3 -2 -1 0 | 1 2 3 4 | 5 6 7 8 \cdots
 \cdots 0 -6 -1 1 | 4 -2 3 5 | 8 2 7 9 \cdots

- $\mathcal{SP}_{\omega}(1) = 3$
- $\mathcal{SP}_{\omega}(2) = 0$
- $\mathcal{SP}_{\omega}(3) =$

$$\mathcal{SP}_{\omega}(i) = |\{j > i \mid \omega(i) - m < \omega(j) < \omega(i)\}|$$

■
$$n = 4$$
, $m = 7$, $\omega = \begin{bmatrix} 4, -2, 3, 5 \end{bmatrix}$
 \cdots -3 -2 -1 0 | 1 2 3 4 | 5 6 7 8 \cdots
 \cdots 0 -6 -1 1 | 4 -2 3 5 | 8 2 7 9 \cdots

- $\mathcal{SP}_{\omega}(1) = 3$
- $\mathcal{SP}_{\omega}(2) = 0$
- $\mathcal{SP}_{\omega}(3) = 1$

$$\mathcal{SP}_{\omega}(i) = |\{j > i \mid \omega(i) - m < \omega(j) < \omega(i)\}|$$

■
$$n = 4$$
, $m = 7$, $\omega = \begin{bmatrix} 4, -2, 3, 5 \end{bmatrix}$
 \cdots -3 -2 -1 0 | 1 2 3 4 | 5 6 7 8 \cdots
 \cdots 0 -6 -1 1 | 4 -2 3 5 | 8 2 7 9 \cdots

- $\mathcal{SP}_{\omega}(1) = 3$
- $\mathcal{SP}_{\omega}(2) = 0$
- $\mathcal{SP}_{\omega}(3) = 1$
- $\mathcal{SP}_{\omega}(4) =$

$$\mathcal{SP}_{\omega}(i) = |\{j > i \mid \omega(i) - m < \omega(j) < \omega(i)\}|$$

■
$$n = 4$$
, $m = 7$, $\omega = [4, -2, 3, 5]$
 \cdots -3 -2 -1 0 | 1 2 3 4 | 5 6 7 8 \cdots
 \cdots 0 -6 -1 1 | 4 -2 3 5 | 8 2 7 9 \cdots

- $\mathcal{SP}_{\omega}(1) = 3$
- $\mathcal{SP}_{\omega}(2) = 0$
- $\mathcal{SP}_{\omega}(3) = 1$
- $\mathcal{SP}_{\omega}(4) =$

$$\mathcal{SP}_{\omega}(i) = |\{j > i \mid \omega(i) - m < \omega(j) < \omega(i)\}|$$

■
$$n = 4$$
, $m = 7$, $\omega = [4, -2, 3, 5]$
 \cdots -3 -2 -1 0 | 1 2 3 4 | 5 6 7 8 \cdots
 \cdots 0 -6 -1 1 | 4 -2 3 5 | 8 2 7 9 \cdots

- $\mathcal{SP}_{\omega}(1) = 3$
- $\mathcal{SP}_{\omega}(2) = 0$
- $\mathcal{SP}_{\omega}(3) = 1$
- $\mathcal{SP}_{\omega}(4) = 1$

$$\mathcal{SP}_{\omega}(i) = |\{j > i \mid \omega(i) - m < \omega(j) < \omega(i)\}|$$

■
$$n = 4$$
, $m = 7$, $\omega = \begin{bmatrix} 4, -2, 3, 5 \end{bmatrix}$
 \cdots -3 -2 -1 0 | 1 2 3 4 | 5 6 7 8 \cdots
 \cdots 0 -6 -1 1 | 4 -2 3 5 | 8 2 7 9 \cdots

- $\mathcal{SP}_{\omega}(1) = 3$
- $\mathcal{SP}_{\omega}(2)=0$
- $\mathcal{SP}_{\omega}(3) = 1$
- $\mathcal{SP}_{\omega}(4) = 1$
- $\mathcal{SP}_{\omega} = (3011)$

Relation to the Affine Springer Fiber

Theorem ([3])

Consider the nil-elliptic operator T, where m is coprime to n. Then the corresponding affine Springer Fiber $\mathcal{F}_{m/n} \subset \mathcal{F}_n$ admits an affine paving by m^{n-1} affine cells.

Theorem (GMV [1])

There is a natural bijection between the affine cells in $\mathcal{F}_{m/n}$ and the affine permutations in ${}^m\widetilde{S}_n$. The dimension of the cell Σ_ω labeled by the affine permutation ω is equal to

$$\sum_{i=1}^{n} \mathcal{SP}_{\omega}(i).$$

Overview

- 1 Affine Springer Fiber
- 2 Affine Symmetric Group
- 3 Hikita's Representation
- 4 Gorsky, Mazin, and Vazirani's Parking Functions
- 5 Combinatorial Connection

- lacksquare $\mathcal{F}_{m/n}$ is paved by $^{m}\widetilde{S}_{n}$
- $lacksquare \mathcal{G}_{m/n}$ is paved by a subset of \widetilde{S}_n/S_n

- $\mathcal{F}_{m/n}$ is paved by ${}^m\widetilde{S}_n$
- $lacksquare \mathcal{G}_{m/n}$ is paved by a subset of \widetilde{S}_n/S_n
- \blacksquare $^{m}\widetilde{S}_{n}$ bijects with $\mathcal{PF}_{m/n}$
- Non-zero \widetilde{S}_n/S_n bijects with P

- $\mathcal{F}_{m/n}$ is paved by ${}^m\widetilde{S}_n$
- $lacksquare \mathcal{G}_{m/n}$ is paved by a subset of \widetilde{S}_n/S_n
- lacksquare $^{m}\widetilde{S}_{n}$ bijects with $\mathcal{PF}_{m/n}$
- Non-zero \widetilde{S}_n/S_n bijects with P
- $F_{m/n} \xrightarrow{\pi} \mathcal{G}_{m/n}$

- lacksquare $\mathcal{F}_{m/n}$ is paved by ${}^m\widetilde{S}_n$
- lacksquare $\mathcal{G}_{m/n}$ is paved by a subset of \widetilde{S}_n/S_n
- \blacksquare $^{m}\widetilde{S}_{n}$ bijects with $\mathcal{PF}_{m/n}$
- Non-zero \widetilde{S}_n/S_n bijects with P
- $\blacksquare \mathcal{F}_{m/n} \xrightarrow{\pi} \mathcal{G}_{m/n}$
- How to map from $\mathcal{PF}_{m/n} \to P$?

$$lacksquare m=n+1 \ \mathsf{and} \ \lambda\subseteq\delta$$

λ	Ь		В		Ø
	(2,1,0)	(2,0,0)	(1,1,0)	(1,0,0)	(0,0,0)

lacksquare m=n+1 and $\lambda\subseteq\delta$

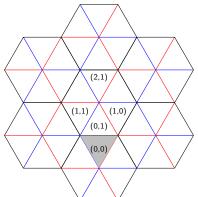
λ	Ь		В		Ø
	(2,1,0)	(2,0,0)	(1,1,0)	(1,0,0)	(0,0,0)
$(a_i) = \delta - \lambda$	(0,0)	(0,1)	(1,0)	(1,1)	(2,1)

lacksquare m=n+1 and $\lambda\subseteq\delta$

λ	В		В		Ø
	(2,1,0)	(2,0,0)	(1,1,0)	(1,0,0)	(0,0,0)
$(a_i) = \delta - \lambda$	(0,0)	(0,1)	(1,0)	(1,1)	(2,1)
$PF_{(n+1)/n}$	(2,1,0)	(2,0,0)	(1,1,0)	(1,0,0)	(0,0,0)
	(2,0,1)	(0,2,0)	(1,0,1)	(0,1,0)	
	(0,2,1)	(0,0,2)	(0,1,1)	(0,0,1)	
	(1,2,0)				
	(0,1,2)				
	(1,0,2)				

Convert (a_i) to \widetilde{S}_n

(0,0)	(0,1)	(1,0)	(1,1)	(2,1)
1	<i>s</i> ₀	<i>s</i> ₂ <i>s</i> ₀	<i>s</i> ₁ <i>s</i> ₀	s ₂ s ₁ s ₂ s ₀



Convert (a_i) to \widetilde{S}_n

(0,0)	(0,1)	(1,0)	(1,1)	(2,1)		
1	<i>s</i> ₀	<i>s</i> ₂ <i>s</i> ₀	<i>s</i> ₁ <i>s</i> ₀	$s_2s_1s_2s_0$		
(0,1) (1,1) (0,0) (1,0)						
\leftarrow						

• GMV extended the H_i^k notation

$$H_{i,j}^k = \{\bar{x} \in E \mid x_i - x_j = k\}$$

■ GMV extended the H_i^k notation

$$H_{i,j}^k = \{\bar{x} \in E \mid x_i - x_j = k\}$$

- $H_i^k \mapsto H_{i,i+1}^k \text{ for } 1 \leq i < n$
- $\blacksquare \ H_0^k \mapsto H_{1,n}^k$

■ GMV extended the H_i^k notation

$$H_{i,j}^k = \{\bar{x} \in E \mid x_i - x_j = k\}$$

- $\blacksquare H_i^k \mapsto H_{i,i+1}^k \text{ for } 1 \leq i < n$
- $\blacksquare H_0^k \mapsto H_{1,n}^k$
- $H_{i,j}^k = H_{j,i}^{-k} = H_{i+tn,j+tn}^k = H_{i,j-n}^{k-1}$

■ GMV extended the H_i^k notation

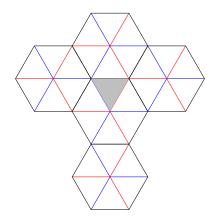
$$H_{i,j}^k = \{\bar{x} \in E \mid x_i - x_j = k\}$$

- $\blacksquare H_i^k \mapsto H_{i,i+1}^k \text{ for } 1 \leq i < n$
- $\blacksquare H_0^k \mapsto H_{1,n}^k$
- $H_{i,j}^k = H_{j,i}^{-k} = H_{i+tn,j+tn}^k = H_{i,j-n}^{k-1}$
- D_n^m is the Sommers region bounded by $\{H_{i,i+m}^0 \mid 1 \le i \le n\}$

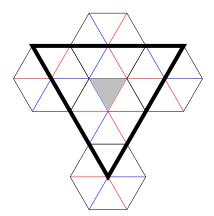
Lemma (GMV)

The set of alcoves $\{\omega(A_0) \mid \omega \in {}^m\widetilde{S}_n\}$ coincides with the set of alcoves that fit inside the region D_n^m .

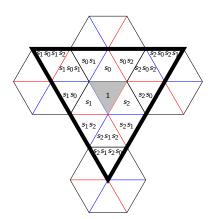
Label D_3^4



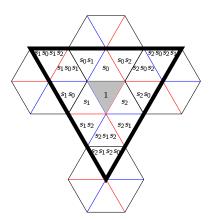
Label D_3^4



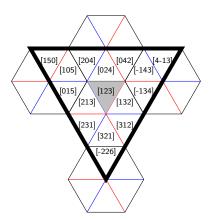
Label D_3^4



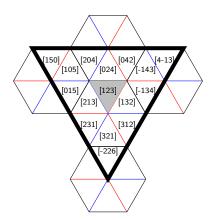
Convert to windows



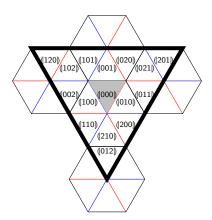
Convert to windows



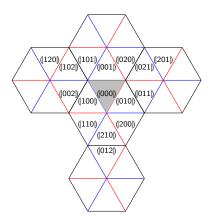
Apply \mathcal{SP}

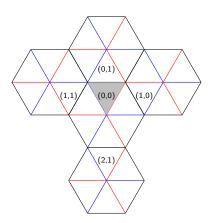


Apply \mathcal{SP}



The Projection





The Un-natural Mapping

■ What is the combinatorial projection from $\mathcal{PF}_{4/3} \rightarrow P$?

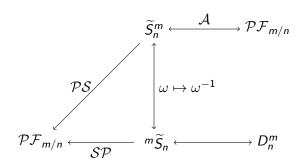
Р	(0,0)	(0,1)	(1,1)	(1,0)	(2,1)
$\mathcal{PF}_{m/n}$	(000)	(001)	(002)	(011)	(012)
,	(100)	(101)	(102)	(021)	
	(010)	(020)	(120)	(201)	
	(110)				
	(200)				
	(210)				

The Conjectured Natural Mapping

lacksquare GMV also created $\mathcal{A}:\widetilde{S}_n^m o \mathcal{PF}_{m/n}$ a bijection

The Conjectured Natural Mapping

lacksquare GMV also created $\mathcal{A}:\widetilde{S}_n^m o \mathcal{PF}_{m/n}$ a bijection



The Conjectured Natural Mapping

	m-Restricted	m-Stable	A map (PF)	Word of Restricted
_	[1, 2, 3]	[1, 2, 3]	[0, 1, 2]	[]
	[2, 1, 3]	[2, 1, 3]	[1, 0, 2]	[1]
	[1, 3, 2]	[1, 3, 2]	[0, 2, 1]	[2]
	[2, 3, 1]	[3, 1, 2]	[1, 2, 0]	[1, 2]
	[3, 1, 2]	[2, 3, 1]	[2, 0, 1]	[2, 1]
	[3, 2, 1]	[3, 2, 1]	[2, 1, 0]	[1, 2, 1]
_	[0, 2, 4]	[0, 2, 4]	[0, 2, 0]	[0]
	[2, 0, 4]	[0, 1, 5]	[2, 0, 0]	[0, 1]
	[0, 4, 2]	[-1, 3, 4]	[0, 0, 2]	[0, 2]
_	[0, 1, 5]	[2, 0, 4]	[0, 1, 1]	[1, 0]
	[1, 0, 5]	[1, 0, 5]	[1, 0, 1]	[1, 0, 1]
	[1, 5, 0]	[1, -1, 6]	[1, 1, 0]	[1, 0, 1, 2]
_	[-1, 3, 4]	[0, 4, 2]	[0, 0, 1]	[2,0]
	[-1, 4, 3]	[-1, 4, 3]	[0, 1, 0]	[2, 0, 2]
	[4, -1, 3]	[-2, 5, 3]	[1, 0, 0]	[2, 0, 2, 1]
	[-2, 2, 6]	[4, 2, 0]	[0, 0, 0]	· · · [2,1,2,0] · · · ·

Eugene Gorsky, Makhail Mazin, and Monica Vazirani. Affine permutations and rational slope parking functions. *arXiv*, March 2014.

Tatsuyuki Hikita.

Affine srpinger fibers of type *a* and combinatorics of diagonal coinvariants.

arXiv, 2012.

G. Lusztig and J. M. Smelt.

Fixed point varieties on the space of lattices.

London Mathematical Society, 23:213–218, 1991.

Peter Magyar.

Affine schubert varieties and circular complexes. *arXiv*, 1999.