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Combinatorics of the Cell Decomposition of Affine Springer Fibers

Affine Springer Fiber

Notation

K := C((ε)) and O = C[[ε]]

Fix n ≥ 1

V := Kn be a K -vector space

G := GLn(K ) (alternatively SLn(K ))

P := GLn(O) (alternatively SLn(O))

B := {g ∈ P | g evalulated at ε = 0 is uppertriangular}
(Iwahori subgroup)
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Affine Springer Fiber

Interpretation

Consider elements of V as infinite C tuples∑
i≥N1

aiε
i

∑
i≥N2

biε
i

∑
i≥N3

ciε
i

(. . . , a−1, b−1, c−1, a0, b0, c0, a1, b1, c1, . . . )

ε acts by shifting n spots

If {ei}ni=1 is a C basis of Cn, then

ei+kn = εkei

is a C basis of V
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Affine Springer Fiber

Affine Grassmannian

Definition ([1, 4])

The affine Grassmannian Gn for the group GLn is the moduli space
of O-submodules M of V such that

(a) M is O-invariant

(b) M has rank n as a O-module

(c) There exists N such that ε−NOn ⊃ M ⊃ εNOn

(d) dimC ε
−NOn/M = dimCM/εNOn

Note Gn ∼= G/P.
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Affine Springer Fiber

Affine Flag

Definition

The affine flag ind-variety Fn is the space of collections

M0 ⊃ M1 ⊃ · · · ⊃ Mn = εM0

such that

1 For all i , Mi satisfies (a), (b), and (c) for Gn
2 M0 ∈ Gn
3 dimCMi/Mi+1 = 1

Note Fn
∼= G/B
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Affine Springer Fiber

Consider the single shift of the C basis of V

N =


0 1 0 . . . 0
0 0 1 . . . 0

0 0 0
. . . 0

...
...

...
. . .

...
ε 0 0 . . . 0



Let m > n, gcd(m, n) = 1 and m = nk + b
T = Nm and In + T ∈ G

Definition

Let T be a semiregular nil-elliptic endomorphism. The Affine
Springer Fiber is the set of fixed points of T over Fn. Equivalently,
if u = In + T , then the Affine Springer Fiber is Fu = Fm/n.
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Affine Symmetric Group

Let E ⊂ Rn be perpendicular to (1, 1, . . . , 1)

Let αi be the ith simple coroot (0, 0, . . . , 1,−1 . . . , 0) with 1
in the ith position, 1 ≤ i < n

Let Hi ⊂ E be the hyperplane perpendicular to αi

{Hi} acts on E by reflection

Define si to be the reflection across Hi

The complement of {Hi}, closed under reflections, form Weyl
chambers

The fundamental chamber is on the positive side of all Hi

Assigning 1 ∈ Sn to the fundamental chamber creates an
isomorphism to Sn
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H1 H2
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Example n = 3

α1α2

H1 H2

1

s2s1

s2s1s2

s2s1s1s2
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Affine Symmetric Group (n = 3)

H1
0

1

s2s1

s2s1s2

s2s1s1s2

s0

s2s0s2s1

s2s0s2s1s2s2s0s2

s2s0s1

s2s0s1s2s2s0

s0s1s2s1

s0s2s1s0s1s2

s0s2s0s1
s1s0s1s2

s1s0s1s1s0s1s2s1

s1s0s2

s1s0s1s0s2s1
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Affine Symmetric Group

Definition (Affine Symmetric Group)

The affine symmetric group S̃n is the group of words in
{s0, . . . , sn−1} with the following relations:

s2
i = 1

si sjsi = sjsi sj if i − j 6≡ ±1 (mod n)

si sj = sjsi if i − j ≡ ±1 (mod n) and n > 2
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Affine Symmetric Group

Affine Grassmannians

Consider the cosets of S̃n/Sn

Definition

ω ∈ S̃n is affine grassmannian if it is the minimum length
representative of ωSn in S̃n/Sn.

Q∨ := {(x1, . . . , xn) ∈ Zn |
∑n

i=1 xi = 0}
S̃n ∼= Q∨ o Sn

If ω ∈ S̃n is affine grassmannian, then it is the identity or all
its reduced words end with s0
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Affine Symmetric Group

The Permutation

Consider ω ∈ S̃n as a permutation Z→ Z
1 7→ idZ

We need only define the si action

(ωsi )(x) =


ω(x + 1) if x ≡ i (mod n)
ω(x − 1) if x ≡ i + 1 (mod n)
ω(x) otherwise

n∑
i=1

ω(i) =
n(n + 1)

2

ω(x + n) = ω(x) + n

Denoted by window notation [ω(1), ω(2), . . . , ω(n)]
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Indexing Sets

Recall Fn = G/B and Gn = G/P

Fn =
⊔
ω∈S̃n

BwB/B

Gn =
⊔

ω∈S̃n/Sn

BwP/P
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Hikita’s Representation

Notation

Fn

Gn

π

Fm/n

Gm/n

π

⊆

⊆Cλ ⊆

Fλm/n

π−1

⊆

⊆

π : Fn → Gn the natural projection

(Gm/n := π(Fm/n))

Gn has paving by Iwahori orbits BωP/P where ω ∈ S̃n/Sn

Gm/n has a paving by Gm/n ∩ (BωP/P)

The non-zero cells are indexed by partitions, called Cλ

Fλm/n = π−1(Cλ)
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Hikita Representation

P = {(ai ) | ai ∈ Z≥0, an = 0, a1, . . . , an−1 ≥ 0, ai+n = ai + 1}
λ̌ : P → Q∨ is a bijection

a =
∑n−1

i=1 ai

sa+l · λ̌(a1, . . . , an−1) =
λ̌(a1, . . . , al+1, al , . . . , an−1) if l = 1, 2, . . . , n − 2,
λ̌(an−1 − 1, a1, . . . , an−2) if l = n − 1 and an−1 ≥ 1,
λ̌(a1, . . . , an−1) if l = n − 1 and an−1 = 0,
λ̌(a2, . . . , an−1, a1 + 1) if l = 0.
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Hikita’s Representation

Example

(0,0)

(0,1)

(1,0)(1,1)

(0,2)

(2,0)

(1,2)

(2,1)

(0,3)
(3,0)
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Hikita’s Representation

Relation to Partitions

Recall m = nk + b

δ = (k(n− 1) + b − 1, k(n− 2) + b − 1, . . . , k + b − 1, b − 1)

δ − δ′ is the partition below the diagonal (0, n) to (m, 0)

Proposition ([2])

There is a bijection{
(ai ) ∈ P | Cλ̌(ai )

6= ∅
}
→ {λ | λ is a partition, λ ⊆ δ − δ′}

(ai ) 7→ λ(ai ) := δ − (ab, a2b, . . . , anb)
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Combinatorics of the Cell Decomposition of Affine Springer Fibers

Gorsky, Mazin, and Vazirani’s Parking Functions

Overview

1 Affine Springer Fiber

2 Affine Symmetric Group

3 Hikita’s Representation

4 Gorsky, Mazin, and Vazirani’s Parking Functions

5 Combinatorial Connection



Combinatorics of the Cell Decomposition of Affine Springer Fibers

Gorsky, Mazin, and Vazirani’s Parking Functions

Parking Functions

Denote [n] = {1, 2, . . . , n}
Let there be n parking spots on a one-way street

f : [n]→ [n] such that f (i) is the ith car’s parking preference

A car will go to its preference, then take the next open spot

f is a parking function if all can park without circling back

Denote a parking function by Lf (1) f (2) f (3) . . . f (n)M
Consider f (1) = 2, f (2) = 1, f (3) = 4, f (4) = 1

−→ L2141M

1 2 3 4
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Gorsky, Mazin, and Vazirani’s Parking Functions

Parking Function Properties

f ([n]), when sorted as a1, a2, . . . , an, obeys ai ≤ i

Any permutation of a parking function is a parking function

There are (n + 1)n−1 parking functions on domain [n]
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Gorsky, Mazin, and Vazirani’s Parking Functions

PFm/n

Let n < m and gcd(m, n) = 1

PFm/n - Parking functions whose Young diagram fits below
the diagonal of an n ×m box

|PFm/n| = mn−1

Consider the parking function L2040M

L2040M 6∈ PF5/4 but L2040M ∈ PF7/4
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Gorsky, Mazin, and Vazirani’s Parking Functions

Mapping

mS̃n ⊂ S̃n is the set of m-restricted permutations
mS̃n = {ω | i < j ⇒ ω(j)− ω(i) 6= m}

GMV created a map SP : mS̃n → PFm/n

ω 7→ SPω

Proven to be a bijection for m = kn ± 1

SP is conjectured to be a bijection for all m

SPω(i) = #{j > i | 0 < ω(i)− ω(j) < m}
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Gorsky, Mazin, and Vazirani’s Parking Functions

Example

SPω(i) = |{j > i | ω(i)−m < ω(j) < ω(i)}|

n = 4, m = 7, ω = [4,−2, 3, 5]

· · · -3 -2 -1 0 1 2 3 4 5 6 7 8 · · ·
· · · 0 -6 -1 1 4 -2 3 5 8 2 7 9 · · ·

SPω(1) =

3

SPω(2) =

0

SPω(3) =

1

SPω(4) =

1

SPω = L3011M
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Gorsky, Mazin, and Vazirani’s Parking Functions

Relation to the Affine Springer Fiber

Theorem ([3])

Consider the nil-elliptic operator T , where m is coprime to n.
Then the corresponding affine Springer Fiber Fm/n ⊂ Fn admits an
affine paving by mn−1 affine cells.
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Gorsky, Mazin, and Vazirani’s Parking Functions

Theorem (GMV [1])

There is a natural bijection between the affine cells in Fm/n and

the affine permutations in mS̃n. The dimension of the cell Σω

labeled by the affine permutation ω is equal to

n∑
i=1

SPω(i).
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Combinatorial Connection

What do we know?

Fm/n is paved by mS̃n

Gm/n is paved by a subset of S̃n/Sn

mS̃n bijects with PFm/n

Non-zero S̃n/Sn bijects with P

Fm/n
π−→ Gm/n

How to map from PFm/n → P?
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Combinatorial Connection

Extended Example

m = n + 1 and λ ⊆ δ

λ ∅
(2,1,0) (2,0,0) (1,1,0) (1,0,0) (0,0,0)

(ai ) = δ − λ (0,0) (0,1) (1,0) (1,1) (2,1)

PF(n+1)/n (2,1,0) (2,0,0) (1,1,0) (1,0,0) (0,0,0)
(2,0,1) (0,2,0) (1,0,1) (0,1,0)
(0,2,1) (0,0,2) (0,1,1) (0,0,1)
(1,2,0)
(0,1,2)
(1,0,2)
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Convert (ai ) to S̃n
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Useful Facts

GMV extended the Hk
i notation

Hk
i ,j = {x̄ ∈ E | xi − xj = k}

Hk
i 7→ Hk

i ,i+1 for 1 ≤ i < n

Hk
0 7→ Hk

1,n

Hk
i ,j = H−kj ,i = Hk

i+tn,j+tn = Hk−1
i ,j−n

Dm
n is the Sommers region bounded by {H0

i ,i+m | 1 ≤ i ≤ n}

Lemma (GMV)

The set of alcoves {ω(A0) | ω ∈ mS̃n} coincides with the set of
alcoves that fit inside the region Dm

n .
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Extended Example

Label D4
3

s1s0s1s2

s1s0s1

s0s1
s0

s0s2
s2s0s2

s2s0s2s1

s1s0
s1

1
s2

s2s0

s1s2

s2s1s2

s2s1

s2s1s2s0

[150]
[105]

[204]
[024]

[042]
[-143]

[4-13]

[015]

[213]

[123]

[132]

[-134]

[231]

[321]

[312]

[-226]

L120M
L102M

L101M
L001M

L020M
L021M

L201M

L002M
L100M

L000M
L010M

L011M

L110M
L210M

L200M

L012M
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Extended Example

Convert to windows
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Extended Example

Apply SP
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The Projection

L120M
L102M

L101M
L001M

L020M
L021M

L201M

L002M
L100M

L000M
L010M

L011M

L110M
L210M

L200M

L012M

(0,0)

(2,1)

(0,1)

(1,0)(1,1)
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The Un-natural Mapping

What is the combinatorial projection from PF4/3 → P?

P (0,0) (0,1) (1,1) (1,0) (2,1)

PFm/n L000M L001M L002M L011M L012M
L100M L101M L102M L021M
L010M L020M L120M L201M
L110M
L200M
L210M
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The Conjectured Natural Mapping

GMV also created A : S̃m
n → PFm/n a bijection

mS̃n

S̃m
n

Dm
nPFm/n

PFm/n

ω 7→ ω−1

A

SP

PS
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The Conjectured Natural Mapping

m-Restricted m-Stable A map (PF) Word of Restricted
[1, 2, 3] [1, 2, 3] [0, 1, 2] []
[2, 1, 3] [2, 1, 3] [1, 0, 2] [1]
[1, 3, 2] [1, 3, 2] [0, 2, 1] [2]
[2, 3, 1] [3, 1, 2] [1, 2, 0] [1, 2]
[3, 1, 2] [2, 3, 1] [2, 0, 1] [2, 1]
[3, 2, 1] [3, 2, 1] [2, 1, 0] [1, 2, 1]
[0, 2, 4] [0, 2, 4] [0, 2, 0] [0]
[2, 0, 4] [0, 1, 5] [2, 0, 0] [0, 1]
[0, 4, 2] [−1, 3, 4] [0, 0, 2] [0, 2]
[0, 1, 5] [2, 0, 4] [0, 1, 1] [1, 0]
[1, 0, 5] [1, 0, 5] [1, 0, 1] [1, 0, 1]
[1, 5, 0] [1,−1, 6] [1, 1, 0] [1, 0, 1, 2]

[−1, 3, 4] [0, 4, 2] [0, 0, 1] [2, 0]
[−1, 4, 3] [−1, 4, 3] [0, 1, 0] [2, 0, 2]
[4,−1, 3] [−2, 5, 3] [1, 0, 0] [2, 0, 2, 1]
[−2, 2, 6] [4, 2, 0] [0, 0, 0] [2, 1, 2, 0]
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