Math 2534 Solution Homework 10 Spring 2018

Show all work and staple multiple sheets.

Problem 1:

Use Proof By Set Algebra to prove the following where A, B are Sets Justify each step. Convert to union and intersection operations only.

$$[A^C \cup (B-A)]^C - A^C = A$$

Theorem: For any sets A, B $[A^C \cup (B-A)]^C - A^C = A$

Proof:

$$[A^C \cup (B-A)]^C - A^C =$$

 $[A^{c} \cup (B \cap A^{c})]^{c} \cap A^{cc} =$

$$[A^C \cup (B \cap A^C)]^C \cap A =$$

$$(A^C)^C \cap A =$$

$$A \cap A =$$

A

$$\therefore [A^C \cup (B-A)]^C - A^C = A$$

Given

Difference Law

Double Complement Law

Absorption Law

Double Complement Law

Idempotent Law

Problem 2: Define a Boolean Algebra as follows:

Let $B = \{1, 2, 3, 5, 6, 10, 15, 30\}$ be the set of all positive divisors of 30 with operations defined on the set to be as follows: a + b = LCM(a,b), and the $a \cdot b = GCD(a,b)$

The complement is defined $\bar{a} = \frac{30}{a}$

- a) Determine the identities for each operation.

 The identity for "+" is 1 and the identity of "•" is 30.
- b) Evaluate $5+\bar{5}$ and $3\cdot\bar{3}$ and determine if the results are correct for a Boolean algebra. We have that $5+\bar{5}=5+30/5=5+6=30$, $3\cdot\bar{3}=3\cdot(30/3)=3\cdot10=1$
- c) Determine if DeMorgan's Law is valid for the following: $\overline{(6+15)} = \overline{6} \cdot \overline{15}$

$$\overline{(6+15)} = \overline{30} = 30/30 = 1$$

 $\overline{6} \cdot \overline{15} = (30/6) \cdot (30/15) = 5 \cdot 2 = 1$

$$\therefore \overline{(6+15)} = \overline{6} \bullet \overline{15}$$

Problem 3: Fill in the reasons for each step for the following.

Theorem:

For all a in the Boolean Algebra B under the operations of $+, \bullet$, $(a + \overline{a}) + \overline{(h \bullet a)} = k$, where k is the identity for operation \bullet and h is the identity for +.

Proof:

$(a+\overline{a})+\overline{(h\bullet a)}=$	Given
$k + \overline{(h \cdot a)} =$	Complement law
$k + (\overline{h} + \overline{a})$	DeMorgan's law
$k + (k + \overline{a}) =$	Identity complements
k + k =	Universal bound law
k	Idempotent law

Problem 4:

Let a and b be elements in the Boolean Algebra B with the following defined operations. Operation 1 is \otimes with identity p and operation 2 is \odot with identity q. The complement (or negative) is represented by \bar{a} . Prove the following:

Theorem: For any elements a, b in B $\overline{a} \otimes [(\overline{a \otimes b}) \otimes (b \odot \overline{q})] = \overline{a}$

Proof:

$$\overline{a} \otimes [(\overline{a} \otimes \overline{b}) \otimes (b \odot \overline{q})] =$$
 Given
 $\overline{a} \otimes [(\overline{a} \odot \overline{b}) \otimes (b \odot \overline{q})] =$ DeMorgan's Law
 $\overline{a} \otimes [(\overline{a} \odot \overline{b}) \otimes (b \odot p)] =$ Identity Complement Law
 $\overline{a} \otimes [(\overline{a} \odot \overline{b}) \otimes p] =$ Universal Bound Law
 $\overline{a} \otimes [(\overline{a} \odot \overline{b})] =$ Identity for \otimes Law
 $\overline{a} \otimes [(\overline{a} \odot \overline{b})] =$ Absorption Law
 $\therefore \overline{a} \otimes [(\overline{a} \otimes \overline{b}) \otimes (b \odot \overline{q})] = \overline{a}$