Math 2534 Solution Test 2 Solutions Spring 2018

Problem 1: : Use **PMI** to prove the following theorem and be clear where you use the inductive assumption. Justify all steps and tie your work together with complete sentences.

(18 pts) Theorem: $\forall n \in N \text{ and } n \ge 3$, $(n+1)! > 1+2^n$ Proof: The hypothesis is true for at least one value of n. Consider n = 3. (3+1)! = 4! = 24 and $1+2^3 = 9$ so 24 > 9

Now assume the hypothesis is true from n = 3 up to some arbitrary value k so that

 $(k+1)! > 1+2^k$ and prove true for the k+1 term by showing $(k+2)! > 1+2^{k+1}$

For the body of the proof, consider the k + 1 term which is (k + 2)!.

 $(k + 2)! = (k + 2)(k + 1)! > (k+2)(1 + 2^{k})$ by the inductive assumption. Now we have that $(k + 2)! > (k+2)(1 + 2^{k}) > (2)(1 + 2^{k})$ since k + 2 > k > 2. This gives the following results that $(k + 2)! > (2)(1 + 2^{k}) = 2 + 2^{k+1} > 1 + 2^{k+1}$ since 2 > 1.

We have assumed the hypothesis is true up to k and proved true for k + 1. Therefore the hypothesis is true for all natural numbers greater than 2.

Problem 2: (14 pts) Prove the following using Set Algebra. Do not leave out steps in body of proof and state the properties used.

Theorem: For any sets A and B, $[(A^C \cap B^C)^C - A^C] \cup (A \cap \emptyset^C) = A$

Proof:

$[(A^{C} \cap B^{C})^{C} - A^{C}] \cup (A \cap \mathcal{O}^{C}) =$	given
$[(A^{\mathcal{C}} \cap B^{\mathcal{C}})^{\mathcal{C}} - A^{\mathcal{C}}] \cup (A \cap U) =$	the Identity complement
$[(A^C \cap B^C)^C - A^C] \cup (A) =$	the Identity law
$[(A^{CC} \cup B^{CC}) - A^C] \cup (A) =$	DeMorgans law
$[(A \cup B) - A^C] \cup (A) =$	Double complement law
$[(A \cup B) \cap A^{CC}] \cup (A) =$	Difference law
$[(A \cup B) \cap A] \cup (A) =$	Double Complement law
$[A] \cup (A) =$	Idempotent law
A	Absorption Law
Therefore $[(A^C \cap B^C)^C - A^C] \cup (A \cap \emptyset^C) = A$	

Problem 3: Prove the following using method of **Contradiction.** (10pts)

Theorem: For all sets A, $A \times \emptyset = \emptyset$

Proof:

Assume that there exist at least one set A so that $A \times \emptyset \neq \emptyset$

By definition of Cartesian product,

for $(x, y) \in A \times \emptyset \to x \in A \land y \in \emptyset$ However this is a contradiction to the definition of \emptyset which contain no elements. Therefore For all sets A, $A \times \emptyset = \emptyset$.

Problem 4: (12pts) Use proof by elements to verify that for all nonempty sets A, B, and D **Theorem:** If $A \subseteq B$, $D^c \subseteq B^c$ Then $D^c \subseteq A^c$. (Justify each step of proof) Proof:

 $\forall x \in D^C \to x \in B^C \qquad \text{since } D^C \subseteq B^C$ $\to x \notin B \qquad \text{by definition of complement}$ $\to x \notin A \qquad \text{since } A \subseteq B$ $\to x \in A^C \qquad \text{by definition of complement}$

therefore by definition of containment $D^C \subseteq A^C$

Problem 5: (18pts)Use PMI to prove the following theorem and be clear where you use the inductive assumption. Justify all steps and tie your work together with complete sentences. **Theorem:** Given the Fibonacci Sequence $f_1 = 1, f_2 = 1, f_n = f_{n-1} + f_{n-2}, n > 2$, then

 $f_n = 3f_{n-3} + 2f_{n-4}$, for all natural numbers n > 4

Proof: To verify that hypothesis is true for at least one value of n, consider n = 5 to see that $f_5 = f_4 + f_3 = 3 + 2 = 5$ and $3f_{n-3} + 2f_{n-4} = 3f_2 + 2f_1 = 3(1) + 2(1) = 5$ so it is clear that $f_5 = 3f_2 + 2f_1$

also consider n = 6 so that $f_6 = f_5 + f_4 = 5 + 3 = 8$ and $3f_{n-3} + 2f_{n-4} = 3f_3 + 2f_2 = 3(2) + 2(1) = 8$ so it is clear that $f_6 = 3f_3 + 2f_2$

Assume that the hypothesis continues to be valid from n = 6 up to some arbitrary value k so that $f_k = 3f_{k-3} + 2f_{k-4}$ and prove true for k + 1 by showing $f_{k+1} = 3f_{k-2} + 2f_{k-3}$.

In the body of the proof consider the k + 1 term: $f_{k+1} = f_k + f_{k-1}$ by definition of Fibonacci sequence So $f_{k+1} = f_k + f_{k-1} = (3f_{k-3} + 2f_{k-4}) + (3f_{k-4} + 2f_{k-5})$ by the inductive assumption. This then gives us $f_{k+1} = (3f_{k-3} + 2f_{k-4}) + (3f_{k-4} + 2f_{k-5}) = 3(f_{k-3} + f_{k-4}) + 2(f_{k-4} + f_{k-5}) = 3f_{k-2} + 2f_{k-3}$ By the Fibonacci sequence.

We have assumed the hypothesis is true up to k and proved true for k + 1. Therefore the hypothesis is true for all natural numbers n > 4.

Problem 6: (16pts) Let set A = {a, {b}, {a,b}}, B = {b}, C = {a, {b}, b} and D = {{a},a} Part A) Find the following a) $A \cap C = {a, {b}}$ b) $C - B = {a, {b}}$ c) $D \cup C = {a, {a}, {b}, b}$ d) $B \times D = {(b, {a}), (b, a)}$ e) $A \oplus C = {{a,b},b}$ f) Power set $P(C - D) = P({{b},b}) = {\emptyset, {{b},b}, {{b}}, {{b}}}$

Part B) (12pts) Indicate if the following is true or false and justify your response. *a*) $\{\{a\}\} \in P(D)$ True Since $\{a\} \in D$

b) $\{b\} \in P(A)$	False	Since b∉A
b) $\emptyset \subset P(B)$	True	\varnothing is a subset of every set
c) $\{\emptyset\} \in P(C)$	False	Since $\emptyset \notin C$
d) $P(B) \subset P(C)$	True	since $b \in B$ and $b \in C$ and $n(B) = 1 < n(C) = 3$.
e) $P(B) \subset P(A)$	False	A does not contain the element b and so P(A) will contain {b} which is in P(B)