Math 2534SolutionHomework 4Proof methodsSpring 2018_Follow homework requirements to avoid point deductions.

Problem 1:

Determine if the following is true or false and justify your conclusion.

 $\left(\forall x, x \in D_1 \to [\exists y | y \in D_2 \land P(x, y)] \right) \to \left(\forall y, y \in D_2 \to [\exists x | x \in D_2 \land P(x, y)] \right)$

Solution:

The first statement says that for each arbitrary x-value, there will exist an appropriate y-value so that P(x,y) is true. (But this does not guarantee that all y-values in the D_2 will be used.)

The second statement says that for all y-values there is an appropriate x-value so that P(x,y) is true. However the first statement <u>does not imply</u> the second statement is true since the first statement does not guarantee that all y-values in D_2 will be included.

Problem 2: Use direct proof or counter example. (use previous theorems only) **Theorem:** If a and b are odd integers and c is an even integer, then $(a^2-1)b+c$ is an even integer.

Proof: Given that *a* is an odd integer, then we know that $a^2 = (a)(a)$ since the product of two odd integers is always odd. We also know that the difference of two odd integers is even, so $a^2 - 1$ is even. Since *b* is also odd and the product of an even and odd integer is even, we have that $(a^2 - 1)b$ is even. The integer *c* is given to be even and the sum of two even integers is even, so $(a^2 - 1)b + c$ is even.

Problem 3: Use direct proof or counter example. (use definitions only) **Theorem:** For integers a, b, and c, if a|c, and a|b then a|(b-2c).

Proof: Given that a|c, and a|b, then by definition of Divisible there exist integers p and q so that c = ap and b = aq. Now consider b - 2c = aq - 2(ap) = a(q - 2p) = am where m = q - 2p is also an integer. Therefore by definition of Divisible, b - 2c = 2m means that a|(b - 2c).

Problem 4: Use direct proof or counter example. (Use definitions only) **Theorem:** The quotient of two rational numbers is rational.

Proof: Let r_1 and r_2 be two rational numbers. By definition of rational there exist **non-zero** integers *a*, *b*, *c*, *d* where and $r_1 = \frac{a}{b}$ and $r_2 = \frac{c}{d}$.

Consider the quotient $\frac{r_1}{r_2} = \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)} = \left(\frac{a}{b}\right)\left(\frac{d}{c}\right) = \frac{ad}{bc} = \frac{m}{n}$ where m = ad and $n = bc \neq 0$ are

also integers. Therefore by definition of rational the quotient $\frac{r_1}{r_2} = \frac{m}{n}$ is rational.

Problem 5: Prove by direct proof or counter example. (use definitions only) Theorem: If a|bc, then a|b for integers a, b, c

Counter Example: Let a = 8, c = 12 and b = 2, Clearly 8 does not divide 12 or 2 evenly, 8 does divide (12)(2) = 24 evenly.

Problem 6: Use proof by **Contrapositive** or counter example. (use previous theorems only) **Theorem:** If n^3 is odd, then n is odd where n is a natural number. **Proof: by contraposition:**

Restatement of Theorem: If n is even then n^3 is even for $n \in N$.

Given n is even, we know that $n^2 = (n)(n)$ is even, since the product of **two** even integers is always even. This also means that $n^3 = (n^2)(n)$ is even since the product of **two** even integers is even. Therefore n is even $\rightarrow n^3$ is even.

Since the contrapositive is true the equivalent original statement is also true and n^3 is odd, then n is odd.

Problem 7: Use proof by **Contrapositive** or counter example. (use definitions only) Theorem: For all non-zero integers **a**, **b**, and **c**, if **a** does not divide **bc** then **a** does not divide **b**.

Proof: by contraposition: Restatement of Theorem: If a divides b evenly then a divides bc evenly where $a,b,c \in Z$.

Since we have that a|b, by definition of divisible there exist an integer k so that b = ak. Now consider bc = (ak)c = a(kc) = am where m = kc is an integer. Since bc = am, by definition of divisible, a|bc.

Since the contrapositive is true the equivalent original statement is also true and if \mathbf{a} does not divide \mathbf{bc} then \mathbf{a} does not divide \mathbf{b} .