Math 2534_ In Class_ PMI_ worksheet

Problem 1:

Theorem: if $f(x) = x^2 e^x$, then $f^{(n)}(x) = e^x [x^2 + 2nx + n(n-1)], \forall n \in N, x \in R$

Problem 2:

Theorem: $n! > 4^n$ for natural numbers n > ? (fill missing value for n before beginning proof)

Problem 3: Theorem: $\forall n \in N$, $3^n - 1$ is divisible by 2

Problem 4:

Theorem:	For all natural numbers	2	$1 \rceil^n$	2^n	$n2^{n-1}$
		0	2	0	2^n

Problem 5:

Theorem: The function $f(x) = 2x^2 + 6x + 5$ is even for all values of the natural numbers. **Proof by PMI:**

If my hypothesis is true for n = 1, then assume true up to some arbitrary k so that $f(k) = 2k^2 + 6k + 5$ is even and then prove true for k + 1: i.e. we will show that $f(k+1) = 2(k+1)^2 + 6(k+1) + 5$ is also even. Consider the k + 1 term given below:

$$f(k+1) = 2(k+1)^{2} + 6(k+1) + 5 = 2k^{2} + 4k + 2 + 6k + 6 + 5 = (2k^{2} + 6k + 5) + 4k + 6$$
$$= (2k^{2} + 6k + 5) + 2(2k + 3)$$

We assumed $2k^2 + 6k + 5$ is even and 2(2k + 3) = 2m is even by definition of even where m = 2k+3 is an integer. Therefore $(2k^2 + 6k + 5) + 2(2k + 3)$ is even since the sum of two even integers is always even.

I have assumed true for k and proved true for k+1, therefore $f(x) = 2x^2 + 6x + 5$ is even for all natural numbers.