Math 2534 Homework 8 Spring 2018 (due March 21)

Show all work. Use complete sentences. Staple multiple sheets.

Problem 1:

Theorem: for all natural numbers. If $f(x) = \ln x$, then the nth derivative $f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{x^n}$ (Remember that 0! = 1)

Problem 2: Given the recursive sequence $a_1 = a_2 = 1$ with $a_n = (a_{n-1})^2 + a_{n-2}$ for $n \ge ??$

- a) Find the least value of n where n is an natural number.
- b) Find the next 4 terms in this sequence

Problem 3: Given the sequence 1, 7, 49, 343,,

- a) Find the function sequence representation f(n)
- b) Find the recursive representation a_n

Problem 4: Given the recursive sequence: $a_1 = 1, a_2 = 1$ and $a_n = 2a_{n-1} + 3a_{n-2}, n \ge 3$, Show that $a_n < 2(3^{n-2})$ for all $n \in N$, n > 2.

Problem 5:

Theorem: If $a_1 = 1$ and $a_2 = 2$ and $a_n = a_{n-1} + 2a_{n-2}$ for all $n \ge 3$ and $f(n) = 2^{n-1}$, then $a_n = f(n)$ for all natural numbers..

Problem 6:

Theorem: Given the Fibonacci sequence f_n , $f_1 + f_3 + f_5 + ... + f_{2n-1} = f_{2n}$ $\forall n \in N$

Problem 7: A group of people stand in line to purchase concert tickets. The first person in line is a women and the last person is a man. Use PMI to show that somewhere in the line a woman will always be directly in front a man.