Math 2534 Homework 12 Functions and Equivalence Relations

Show all work and staple multiple sheets.

Problem 1:

Given $A = \{a, b, c, d\}$, $F : X \to Y$ for X is the set P(A)] and Y = $\{0, 1, 2, 3, 4, 5, 6\}$, Define F on all elements S in P(A) so that F(S) = n(S) (i.e. the number of elements in S)

a) Is F one to one? Justify your conclusion

b) Is F onto? Justify your conclusion

Problem 2 : Explain the mistake in the following proof:

Theorem: If $f(x) = 5x^2 - 2$ for all integers, Then f(x) is one to one. Proof: Suppose any integer z is given. Then by definition of a function, there is only one possible value for f(z), namely $y = f(z) = 5z^2 - 2$. Hence f(x) is one to one.

Problem 3: For each of the following relations defined on the set $A = \{1,2,3,4,5\}$, determine if R is reflexive, symmetric and/or transitive. Draw the directed graph for each relation R. If R is an equivalence relation the give the partition of A.

 $R1 = \{(1,1), (2,2), (2,3)(3,2), (3,3), (3,4), (4,3), (5,5), (4,4)\}$ $R2 = \{(1,2), (1,4), (1,5)(2,4), (2,5), (3,4), (3,5), (4,5), (4,4)\}$ $R3 = \{(1,3), (1,5), (2,4)(3,1), (3,5), (4,2), (5,1), (5,3)\}$ $R4 = \{(1,1), (2,2), (1,3), (1,5), (3,1), (3,3), (2,4), (5,3), (3,5), (4,2)(4,4), (5,1)\}$

Problem 4: Prove or give a counter example;

Theorem:

If the relations S and R are each transitive then the union $S \cup R$ is also transitive.

Problem 5: Prove the following:

Theorem: A relation R is a symmetric relation on the set of all sets when for sets A,B, ARB if and only if there is a bijection from one set to other.

Problem 6: Modular Equivalences: Let a, b be any integers and d is a positive integer where d > 1. The following statements are equivalent.

- a) $a \equiv b \mod d$
- b) $a \mod d = b \mod d$
- c) d|a-b|
- *d*) b = dq + a[mod d], for $q \in Z$

Part A: Prove the following:

Theorem: If R is defined on the integers so that $a \equiv b \mod 6$, then R is an equivalence relation on the integers when for integers a, b, aRb iff 6|a-b.

Part B:

Zmod 6 partitions the integers as follows: $Z = [0] \cup [1] \cup [2] \cup [3] \cup [4] \cup [5]$ Label the following equivalence classes with the correct remainder representation.

[8],[-9],[24],[-22]