Math 2534 Homework 11 Spring 2018

Show all work and staple multiple sheets.

Problem 1: Given elements a, b in the Boolean algebra B with operations \boxtimes and \odot where m is the identity for \boxtimes and p is the identity for \odot , Justify each step of the proof below. The inverse of any element **a** is **a**^{*l*}.

Theorem: For a, b in B, $(a \boxtimes b)' \odot (b \boxtimes b) = m$

Problem 2: Consider the set A of all divisors of 18, $A = \{1, 2, 3, 6, 9, 18\}$, with the operations defined as follows: $a \neq b = LCM(a, b)$, $a \neq b = GCD(a,b)$ and the complement(or negation) is defined to be $a^{C} = 18/a$.

- 1) Find the elements in this set that will act as the identity for each operation.
- 2) Determine if the universal bound property holds for these operations
- 3) Determine if the complement (inverse) property holds for these operations.
- 4) Intuitively, do you think this system forms a Boolean algebra? Why or Why not?

Problem 3: Prove the following using method of contradiction:

Theorem: Let A and B be finite sets and n(A) < n(B). If f maps A to B, then f cannot be onto.

Problem 4: Let the function h(x) map set A to set B. Let C and D be disjoint subsets so that $C \cup D = A$. Define functions $f: C \to B$ and $g: D \to B$ so that h(x) = f(x) for all x in C and h(x) = g(x) for all x in D.

Determine if the following are true statements. Justify your conclusions.

a) If f(x) is one to one and g(x) is one to one, then h(x) one to one.

b) If $f^{-1}(x)$ exist and $g^{-1}(x)$ exists, then $h^{-1}(x)$ exists.

Problem 5: If functions f and g are each onto then the composition is also onto.

Problem 6: If the function f(x) maps A to B and $f^{-1}(x)$ exists, then f(x) is onto.

Problem 7:

If $f: A \to B$, $g: B \to C$ and $(f^{-1} \circ g^{-1})(4) = f^{-1}(2)$ and g(b) = 4, then find the value of b.