## Solutions to practice session $11 / 30 / 2018$

1. (Inspired by Putnam 1968, B6) Prove that a polynomial with only real roots and all coefficients equal to $\pm 1$ has degree at most 3 .

Solution: We may assume that the leading coefficient is +1 . The sum of the squares of the roots of $x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ is $a_{1}^{2}-2 a_{2}$. The product of the squares of the roots is $a_{n}^{2}$. By the Arithmetic Mean-Geometric Mean inequality we have

$$
\frac{a_{1}^{2}-2 a_{2}}{n} \geq \sqrt[n]{a_{n}^{2}}
$$

Since the coefficients are $\pm 1$ that inequality is $(1 \pm 2) / n \geq 1$, hence $n \leq 3 . n=3$ is optimal; consider $x^{3}-x^{2}-x+1$.
2. (Putnam 1974) Call a set of positive integers "conspirational" if no three of them are pairwise relatively prime. What is the largest number of elements in any conspirational subset of integers 1 through 16 ?

Solution: A conspirational subset of $S=\{1,2, \ldots, 16\}$ has at most two elements from $T=\{1,2,3,5,7,11,13\}$, so it has at most $2+16-7=11$ numbers. On the other hand all elements of $S \backslash T=\{4,6,8,9,10,12,14,15,16\}$ are multiples of either 2 or 3 , so adding 2 and 3 we obtain the following 11-element conspirational subset:

$$
\{2,3,4,6,8,9,10,12,14,15,16\}
$$

Hence the answer is 11 .
3. (From Putnam 1942, problem A-3) Is the following series convergent or divergent?

$$
1+\frac{1}{2} \cdot \frac{19}{7}+\frac{2!}{3^{2}}\left(\frac{19}{7}\right)^{2}+\frac{3!}{4^{3}}\left(\frac{19}{7}\right)^{3}+\frac{4!}{5^{4}}\left(\frac{19}{7}\right)^{4}+\cdots
$$

Solution: It is convergent. The ratio test gives

$$
\frac{a_{n+1}}{a_{n}}=\frac{19}{7} \frac{1}{\left(1+\frac{1}{n}\right)^{n}}
$$

and $19 /(7 e)<1$.
4. Prove that

$$
|\sin (n x)| \leq n|\sin x|
$$

for any real number $x$ and positive integer $n$.

Solution: The case $n=1$ is clear. Try $n=2$. $|\sin (2 x)|=2|\sin x||\cos x| \leq 2|\sin x|$. This suggests to introduce cosines as factors in the proof of the inductive step.
Assume the inequality holds for $n=k$. Then

$$
\begin{aligned}
|\sin (k+1) x| & =|\sin (k x) \cos x+\sin x \cos (k x)| \leq|\sin (k x)||\cos x|+|\sin x||\cos (k x)| \\
& \leq|\sin (k x)|+|\sin x| \leq k|\sin x|+|\sin x|=(k+1)|\sin x|
\end{aligned}
$$

