Practice session 11/30/2018

1. (Inspired by Putnam 1968, B6) Prove that a polynomial with only real roots and all coefficients equal to ± 1 has degree at most 3 .
2. (Putnam 1974) Call a set of positive integers "conspirational" if no three of them are pairwise relatively prime. What is the largest number of elements in any conspirational subset of integers 1 through 16 ?
3. (From Putnam 1942, problem A-3) Is the following series convergent or divergent?

$$
1+\frac{1}{2} \cdot \frac{19}{7}+\frac{2!}{3^{2}}\left(\frac{19}{7}\right)^{2}+\frac{3!}{4^{3}}\left(\frac{19}{7}\right)^{3}+\frac{4!}{5^{4}}\left(\frac{19}{7}\right)^{4}+\cdots
$$

4. Prove that

$$
|\sin (n x)| \leq n|\sin x|
$$

for any real number x and positive integer n.

