Solutions to practice session $11 / 14 / 2018$

1. Prove that $n!<\left(\frac{n+1}{2}\right)^{n}$, for $n=2,3 \ldots$ Hint: Use the Arithmetic Mean-Geometric Mean inequality.

Solution:

$$
\sqrt[n]{a_{1} \cdot a_{2} \cdots a_{n}} \leq \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}, \quad a_{k} \geq 0
$$

Solution: $n!\leq\left(\frac{1+2+\cdots+n}{n}\right)^{n}=\left(\frac{n(n+1)}{2 n}\right)^{n}=\left(\frac{n+1}{2}\right)^{n}$.
The fact that $1+2+\cdots+n=n(n+1) / 2$ was used.
2. A spherical, 3 -dimensional planet has center at $(0,0)$ and radius 20 . At any point of the surface of this planet, the temperature is $T(x, y, z)=(x+y)^{2}+(y-z)^{2}$ degrees. What is the average temperature of the surface of this planet?

Solution: Consider the function

$$
f(x, y, z)=T(x, y, z)+T(y, z, x)+T(z, x, y)=4 x^{2}+4 y^{2}+4 z^{2}
$$

On the surface of the planet this function is constant and equal to $4 \cdot 20^{2}=1600$, and its average is 1600 . Since the equation of a sphere with center at $(0,0,0)$ is invariant under rotations, the three terms on the left-side all have the same average value \bar{T}. Hence $1600=$ $3 \bar{T}$, so $\bar{T}=1600 / 3$.
3. Show that the equation

$$
n_{1}^{4}+n_{2}^{4}+\cdots+n_{14}^{4}=1599
$$

has no solutions in nonnegative integers. Hint: Think mod 16.
Solution: Note that $n^{4} \equiv 0$ or $1(\bmod 16)$ depending on whether n is even or odd. On the other hand $1599 \equiv 15(\bmod 16)$. So the equation can be satisfied only if the number of odd terms on the LHS is $15(\bmod 16)$. But that is impossible because there are only 14 terms on the LHS.

