Solutions to practice session 11/9/2018

1. Call an integer square-full if each of its prime factors occurs to a second power (at least). Prove that there are infinitely many pairs of consecutive square-fulls.

Hint: The numbers 8 and 9 form one such pair. Given a pair $(n, n+1)$ of consecutive square-fulls, find some way to build another pair of consecutive square-fulls.

Solution: If n and $n+1$ are square-full, so are $4 n(n+1)$ and $4 n(n+1)+1=(2 n+1)^{2}$ (the latter is a square, so its prime factors appear in even powers).
2. Prove that for any integer $n \geq 1,2^{2 n}-1$ is divisible by 3 .

Solution: By induction. Base case $n=1: 2^{2 \cdot 1}-1=4-1=3$ is divisible by 3 . Inductive step: Assume that $n \geq 1$ and $2^{2 n}-1$ is divisible by 3 , so $2^{2 n}-1=3 k$. Then

$$
2^{2(n+1)}-1=2^{2 n+2}-1=4 \cdot 2^{2 n}-1=3 \cdot 2^{2 n}+\left(2^{2 n}-1\right)=3 \cdot 2^{2 n}+3 k,
$$

and this is a multiple of 3 .
Other solutions: Since the polynomial $x^{2 n}-1$ has root $x=-1$ (among others), we can factor $x^{2 n}-1=(x+1)\left(x^{2 n-1}-x^{2 n-2}+\cdots-1\right)$. Put $x=2$. Some of you did it by factoring $2^{2 n}-1=\left(2^{n}-1\right)\left(2^{n}+1\right)$ and considering this product $\bmod 3$. One of the consecutive numbers $2^{n}-1,2^{n}$, and $2^{n}+1$ must be divisible by 3 . Certainly 2^{n} is not, so one of the other two factors must be divisible by 3 .
3. (Putnam 2008, problem B1) What is the maximum number of rational points that can lie on a circle in \mathbb{R}^{2} whose center is not a rational point? (A rational point is a point both of whose coordinates are rational numbers.) Answer: 2

Solution: There are at most two such points. For example, the points $(0,0)$ and $(1,0)$ lie on a circle with center $(1 / 2, x)$ for any real number x, not necessarily rational.

On the other hand, suppose $P=(a, b), Q=(c, d), R=(e, f)$ are three rational points that lie on a circle. The midpoint M of the side $P Q$ is $((a+c) / 2,(b+d) / 2)$, which is again rational. Moreover, the slope of the line $P Q$ is $(d-b) /(c-a)$, so the slope of the line through M perpendicular to $P Q$ is $(a-c) /(b-d)$, which is rational or infinite.

Similarly, if N is the midpoint of $Q R$, then N is a rational point and the line through N perpendicular to $Q R$ has rational slope. The center of the circle lies on both of these lines, so its coordinates (g, h) satisfy two linear equations with rational coefficients, say $A g+B h=C$ and $D g+E h=F$. Moreover, these equations have a unique solution. That solution must then be

$$
\begin{aligned}
& g=(C E-B D) /(A E-B D) \\
& h=(A F-B C) /(A E-B D)
\end{aligned}
$$

(by elementary algebra, or Cramer's rule), so the center of the circle is rational.
For more details go to http://amc.maa.org/a-activities/a7-problems/putnamindex.shtml and download the solution to problem B1-2008.
4. Find the remainder when you divide $x^{81}+x^{49}+x^{25}+x^{9}+x$ by $x^{3}-x$.

Solution: Assume the quotient is $q(x)$ and the remainder is $r(x)=a x^{2}+b x+c$. Plugging in the values $x=-1,0,1$ we get $r(-1)=-5, r(0)=0, r(1)=5$. Therefore $a=c=0$, $b=5$, and thus the remainder is $r(x)=5 x$.
5. Let $a_{n}=10+n^{2}$ for $n \geq 1$. For each n, let d_{n} denote the gcd of a_{n} and a_{n+1}. Find the maximum value of d_{n} as n ranges through the positive integers.

Solution: The answer is 41. Use

$$
\operatorname{gcd}\left(a_{n}, a_{n+1}\right)=\operatorname{gcd}\left(a_{n}, a_{n+1}-a_{n}\right)=\operatorname{gcd}\left(n^{2}+10,2 n+1\right)=\cdots
$$

(since $2 n+1$ is odd we can multiple the other argument by 4 without altering the gcd).

$$
\cdots=\operatorname{gcd}\left(4 n^{2}+40,2 n+1\right)=\operatorname{gcd}((2 n+1)(2 n-1)+41,2 n+1)=\operatorname{gcd}(41,2 n+1) \leq 41 .
$$

The maximum is attained at $n=20$.

