Practice session 11/9/2018

1. Call an integer square-full if each of its prime factors occurs to a second power (at least). Prove that there are infinitely many pairs of consecutive square-fulls.

Hint: The numbers 8 and 9 form one such pair. Given a pair $(n, n+1)$ of consecutive square-fulls, find some way to build another pair of consecutive square-fulls.
2. Prove that for any integer $n \geq 1,2^{2 n}-1$ is divisible by 3 .
3. (Putnam 2008, problem B1) What is the maximum number of rational points that can lie on a circle in \mathbb{R}^{2} whose center is not a rational point? (A rational point is a point both of whose coordinates are rational numbers.) Answer: 2
4. Find the remainder when you divide $x^{81}+x^{49}+x^{25}+x^{9}+x$ by $x^{3}-x$.
5. Let $a_{n}=10+n^{2}$ for $n \geq 1$. For each n, let d_{n} denote the gcd of a_{n} and a_{n+1}. Find the maximum value of d_{n} as n ranges through the positive integers.

