## Solutions to practice session 11/2/2018

1. (Leningrad Mathematical Olympiad, 1988) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous, with $f(x)$. $f(f(x))=1$ for all $x \in \mathbb{R}$. If $f(1000)=999$, find $f(500)$.
Set $y=f(x)$. Then $f(y)=1 / y$ for all $y \in f(\mathbb{R})$. Hence $f(999)=1 / 999$. Since $f$ is continuous it takes all values between $1 / 999$ and 999. So $500 \in f(\mathbb{R})$. Hence $f(500)=1 / 500$.
2. If $a, b, c \geq 0$, prove that $\sqrt{3(a+b+c)} \geq \sqrt{a}+\sqrt{b}+\sqrt{c}$.

Use the Schwarz inequality.
3. If $p$ is an odd number not divisible by 3 , then it is congruent to $\pm 1$ modulo 6 .
(a) Suppose that $p=2 k+1=3 s+1$. Then $2 k=3 s$, so $s$ is even, $s=2 p$. Then $p=6 p+1$ and so $p \equiv 1(\bmod 6)$.
(b) Suppose that $p=2 k+1=3 s+2$. Then $2 k=3 s+1$, which implies that $(k, s)=$ $w(3,2)+(-1,-1)$. So $k=3 w-1$ and so $p=6 w-1$. This is the case when $p \equiv-1(\bmod 6)$.
4. Suppose $p>3$ is prime. Show that $p^{2}+2$ cannot be prime. Hint: Use $\# 3$.

For $p>3$ we have that $p$ is odd and not divisible by 3 . So it is congruent to $\pm 1$ modulo 6 . This implies that $p^{2}+2 \equiv 3 \bmod 6$. So $p^{2}+2$ is a multiple of 3 and cannot be prime.
5. Define a domino to be a $1 \times 2$ rectangle. In how many ways can an $n \times 2$ rectangle be tiled by dominoes?
Let $x_{n}$ be the number of tilings of an $n \times 2$ rectangle. We have $x_{1}=1, x_{2}=2$. For $n \geq 3$ we can place the bottom domino horizontally and tile the rest of the rectangle in $x_{n-1}$ ways, or we can place two vertical dominoes at the bottom and tile the rest in $x_{n-2}$ ways. So $x_{n}=x_{n-1}+x_{n-2}$. The solution is the shifted Fibonacci sequence, $x_{n}=F_{n+1}$.

