Practice session 11/2/2018

1. (Leningrad Mathematical Olympiad, 1988) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous, with $f(x)$. $f(f(x))=1$ for all $x \in \mathbb{R}$. If $f(1000)=999$, find $f(500)$.
2. If $a, b, c \geq 0$, prove that $\sqrt{3(a+b+c)} \geq \sqrt{a}+\sqrt{b}+\sqrt{c}$.
3. If p is an odd number not divisible by 3 , then it is congruent to ± 1 modulo 6 .
4. Suppose $p>0$ is prime. Show that $p^{2}+2$ cannot be prime. Hint: Use $\# 3$.
5. Define a domino to be a 1×2 rectangle. In how many ways can an $n \times 2$ rectangle be tiled by dominoes?
