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1. Notation and some basics

Throughout the notes: N = {0, 1, 2, . . .} (the set of natural numbers); Z = N ∪ −N
(the set of integers); Q = {a/b : a, b ∈ Z, b ̸= 0} (the set of rational numbers); R is the
set of real numbers (much harder to define rigorously), and C := R + iR is the set of
complex numbers; here i2 = −1.

It is interesting to observe that if one starts from N then one is naturally led to all
the sets above, including the complex numbers. This can be done by considering roots
of polynomial equations with coefficients in Z. A subtle point is that transcendental
elements such as e or π cannot be obtained in this way.

Exercise. Prove that Z ⊊ Q and Q ⊊ R. That is, provide, with proof, examples of
elements in Q \ Z and R \Q.
Let A,B be two sets and f : A → B be a function. Then f is injective if for all

a1, a2 ∈ A such that f(a1) = f(a2), we have a1 = a2. The function f is surjective if for
any b ∈ B there exists a ∈ A such that f(a) = b. The image of f is f(A) = {b ∈ B :
∃a ∈ A, f(a) = b}.
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2. Well ordering property and Mathematical Induction

Observe that N,Z,Q have a natural order, defined by a < b iff b− a > 0.

Definition 2.1. We say that a subset S of Z is bounded below if there exists n0 ∈ Z
such that if x ∈ S then x ≥ n0.

The following statement can be proved starting from the basic axioms in set theory
(e.g. the Zermelo-Frenkel axioms + axiom of choice).

Proposition 2.1 (Well ordering property). Let S ⊂ Z be a nonempty subset of the
integers which is bounded below. Then S contains a smallest element, denoted by minS.

Observe that this is not true if one does not require the hypothesis of bounded below
(e.g. take S = Z or even S equal strictly positive rational numbers Q>0).

Theorem 2.1 (Principle of Mathematical Induction). Let P (n) be a mathematical state-
ment depending on an integer n, where n ≥ n0. (n0 is fixed, e.g. n0 = 1.) Assume that:

(1) (base case) P (n0) is true;
(2) (induction step) For all n ≥ n0, if P (n) is true, then P (n+ 1) is true.

Then P (n) is true for all n ≥ n0.

Proof. Consider the sets A := {n ≥ n0 : P (n) is true} and B := Z≥n0 \ A. We need
to show that B = ∅. We argue by contradiction. If B ̸= ∅, then by the well ordering
property it has a minimal element b0 ∈ B. Observe that n0 ∈ A (by the base case),
therefore b0 > n0. But then b0−1 ∈ A, meaning that P (b0−1) is true. By the induction
hypothesis this implies that P (b0) is also true, i.e. b0 ∈ A, and this is a contradiction. □

Remark 2.1. An equivalent and useful form of the principle of Mathematical induction
replaces the induction step by the following:

• Assume P (k) is true for all n0 ≤ k ≤ n. Then P (n+ 1) is true.

Example 2.1. Prove by induction that for all n ≥ 2, n! < nn.
We need to check the base case and the induction step.
Base case: n = 2. Clearly 2! < 22.
Induction step: Assume that n! < nn. We need to show that (n + 1)! < (n + 1)n+1.

We have:

(n+ 1)! = n!(n+ 1) < nn(n+ 1) < (n+ 1)n(n+ 1) = (n+ 1)n+1.

Here the first inequality follows from the induction hypothesis. □

Example 2.2. Prove by induction that the number of edges in a complete graph with n

vertices is
(
n
2

)
= 1 + 2 + . . .+ (n− 1) = n(n−1)

2
.

Let Kn denote the complete graph with n vertices. By definition, any two vertices in
it are connected by an edge.

Base case. The complete graph K1 has 0 edges and we are done.
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Induction step. Assume that Kn has 1+2+ . . .+(n− 1) edges. We need to show that
Kn+1 has 1+2+ . . .+n edges. But Kn+1 is obtained from Kn by adding one vertex and
n edges connecting that vertex to the vertices in Kn. This means that

#{edges in Kn+1} = #{edges in Kn}+ n = 1 + 2 + . . .+ (n− 1) + n.

2.1. Exercises.

1. Use the Well Ordering Principle to show that every nonempty set of negative
integers has a greatest element.

2. Conjecture a formula for An where A =

(
1 1
0 1

)
. Prove your conjecture using

mathematical induction.

3. Show that any amount of postage that is an integer number of cents greater than
11 cents can be formed using just 4-cent stamps and 5-cent stamps.

4. Prove using mathematical induction that

13 + 23 + . . .+ n3 =
(n(n+ 1)

2

)2

, ∀n ≥ 1.
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3. The Division Algorithm and applications

Definition 3.1. Let a, b ∈ Z. We say a divides b, written a|b if there exists t ∈ Z such
that b = at.

Question: For what numbers a|b and b|a ? Does 0|0 ?

The main result of this section is the following:

Theorem 3.1 (The Division Algorithm). Let a, b ∈ Z such that b > 0. Then there exist
unique q, r ∈ Z such that a = bq + r and 0 ≤ r ≤ b− 1.

Example 3.1. What happens if a = 36, b = 7 ? What about a = −36, b = 7.

Proof. Define
S := {a− kb : k ∈ Z}; T := S ∩ N.

Observe that T is non-empty (for instance take k > a/b) and it is bounded below by
n0 = 0. Then by the well ordering principle it has a smallest element r := minT . Now
take the (unique!) q such that a − bq = r. Observe that r ≥ 0 (as T ⊂ N) and that
r < b. Indeed, if r ≥ b, then a−b(q+1) = r−b ∈ T , and this contradicts the minimality
of r. We now prove uniqueness. Assume there exist q1, q2, r1, r2 such that a = bqi + ri
and 0 ≤ ri ≤ b− 1 (i = 1, 2). Then

bq1 + r1 = bq2 + r2 ⇐⇒ r1 − r2 = b(q2 − q1).

Thus the left hand side must be a multiple of b; but the hypothesis on ri show that the
only possible multiple of b is equals to 0. Then r1 = r2, from which q1 = q2. □

3.1. Greatest common divisor.

Definition 3.2. Let a, b ∈ Z>0. A greatest common divisor d := gcd(a, b) is a positive
integer satisfying two properties:

(1) d divides both a and b;
(2) if d′ is any other divisor of a and b then d′|d.

Theorem 3.2. (a) Any two positive integers a, b have a unique greatest common divisor.
(b) Let a, b are positive integers and d := gcd(a, b). Then there exists r, s ∈ Z, not

necessarily unique, such that d = ar + bs.

Example 3.2. gcd(24, 42) = 6 and 6 = 2× 24− 42 = 3× 42− 5× 24.

Proof of Theorem 3.2. The idea again is to apply the well ordering property to a suitable
set. Define

S := {ar + bs : r, s ∈ Z, ar + bs > 0}.
This set is clearly nonempty (e.g. take r = 1, s = 0). Take d0 := minS (this exists by
the well ordering property). We claim that d0 is the gcd. Let d0 = ar0 + bs0.

First of all, any common divisor d of a, b must divide d0, since d|a and d|b implies that
d|(ar + bs). This shows that gcd(a, b)|d0. We need to prove the reverse divisibility; this
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will follow once we show that d0|a and d0|b. Consider the division algorithm: a = d0q+r,
where 0 ≤ r < d0. We have that

r = a− d0q = a− (ar0 + bs0)q = (1− r0)a− bs0q.

Since d0 = minS and 0 ≤ r < d0 we must have that r = 0, meaning that d0|a. Similarly
d0|b. This proves the existence part in (1) and part (2) simultaneously. The uniqueness
is clear from the requirement that gcd(a, b) > 0. □

Corollary 3.1. Let a, b be two positive integers, and assume that as + br = k. Then
gcd(a, b)|k. In particular, if k = 1 then gcd(a, b) = 1.

Two numbers a, b such that gcd(a, b) = 1 are called coprime.
A natural question is how to find (r, s) such that ar + bs = gcd(a, b). One method is

to use Euclid’s algorithm, presented below.

3.2. Euclid’s algorithm. We are given two numbers a, b, and we seek the gcd(a, b).
W.lo.g. a > b and b does not divide a. (If b|a then gcd(a, b) = b.) We perform the
following operations.

• a = bq + r1, where 0 ≤ r1 < b;
• b = r1q2 + r2; where 0 ≤ r2 < r1;
• r1 = r2q3 + r3, 0 ≤ r3 < r2;
• . . . ;
• rk−1 = rkqk+1 + rk+1, where 0 ≤ rk+1 < rk;
• rk = rk+1qk+1 (i.e. rk+2 = 0.)

Then gcd(a, b) = rk+1, i.e. it is the last nonzero remainder.

Example 3.3. Calculate gcd(30, 102).

• 102 = 30× 3 + 12;
• 30 = 12× 2 + 6;
• 12 = 6× 2 + 0.

Therefore gcd(30, 102) = 6.

Proof of Euclid’s algorithm. We need to prove that rk+1 = d := gcd(a, b). We will show
that each divides the other; since they are positive numbers, this forces equality. Observe
that d|a and d|b implies d|r1 from the first equation. Continuing, at the sth step, the
equation is rs−2 = rs−1qs + rs and by induction d divides rs−2 and rs−1. Then d divides
rs. This shows that d divides rk+1. To prove the converse divisibility, we go backwards
in the sequence of equations, to show that rk+1 divides rk, therefore it also divides rk−1,
then it also divides rk−2, and so on. At the top we obtain that rk+1 divides both a and
b, therefore it also divides the gcd(a, b), by the definition of the gcd. □

As promised, Euclid’s algorithm also gives a method to find r, s such that ar + bs =
gcd(a, b). This is obtained by going backwards in the series of divisions. We illustrate
it in the case discussed above. We have

6 = 30− 12× 2 = 30− (102− 30× 3)× 2 = 102× (−2) + 30× 7.
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Therefore r = −2 and s = 7. Of course, these numbers are not unique. For instance,
for any k ∈ Z,

ar + bs = a(r + kb) + b(s− ka),

meaning that once a solution (r, s) exists, then there are infinitely many.

Remark 3.1. One important feature of the Euclid’s algorithm is that it is quite efficient
in actual calculations. In contrast, the factorization problem (i.e. factor a number
into its prime factors), is much slower. This sits at the foundation of applications to
cryptography.

3.3. Residue classes modulo n.

Definition 3.3. Let a, b ∈ Z and n ∈ Z≥1. We say that they are equivalent modulo n,
and write a ≡ b mod n if n|(a − b). Equivalenty, a, b have the same remainder when
divided by n.

Proposition 3.1. a ≡ b mod n is an equivalence relation.

Proof. Easy check that it is reflexive, symmetric and transitive. □

Proposition 3.2. Let n ≥ 2 be an integer. Then there are exactly n equivalence classes
for the equivalence modulo n. These classes have representatives 0, 1, 2, . . . , n− 1.

Proof. If a ∈ Z is an integer, we use the division algorithm to write a = nq + r, where
0 ≤ r ≤ n − 1. This implies that a ≡ r mod n. If 0 ≤ i, j ≤ n − 1 then i ≡ j mod n
implies that i = j (why ?). This finishes the proof. □

We denote by i the equivalence (or congruence class of i. By definition i = nZ + i =
{nk + i : k ∈ Z}.

Denote by Z/nZ the equivalence classes modulo n. The previous proposition states
that

Z/nZ = {0, 1, . . . , n− 1}.
Define the following operations on Z/nZ:

i+ j := i+ j; i · j := i · j.

Lemma 3.1. The operations + and · are well defined, i.e. they are independent of
choices of representatives.

Proof. We prove this for multiplication, and we leave the addition as an exercise. Let
a1, a2, b1, b2 such that a1 = a2 and b1 = b2 as elements in Z/nZ. We need to show that
a1b1 = a2b2. The hypothesis means that a2 = a1 + nk and b2 = b1 + ns for some k, s.
Then

a2b2 = (a1 + nk)(b1 + ns) = a1b1 + n(sa1 + kb1 + nks),

therefore a1b1 = a2b2. □

Proposition 3.3. The operations + and · have the following properties:
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• Both + and · are commutative and associative;
• (distributivity) a · (b+ c) = a · b+ a · c;
• 0 + i = i; 1 · i = i.

Proof. Exercise. □

In the language defined later, (Z/nZ,+, ·) will be a ring. This is very similar to the
ring of integers (Z,+, ·), except that we may have two non-zero equivalence classes which
multiply to 0. For example, in Z/6Z, 2 · 3 = 0 (because 0 ≡ 6 mod 6).
This has to do with the fact that 6 = 2 · 3, thus it is not prime.
A residue class ā ∈ Z/nZ is called invertible if there exists b̄ such that āb̄ = 1̄ in

Z/nZ.

Lemma 3.2. Let ā ∈ Z/nZ. Then ā is invertible if and only if gcd(a, n) = 1.

Proof. As proved in Theorem 3.2, the condition gcd(a, n) = 1 is equivalent to the ex-
istence of some k, r ∈ Z such that ak + nr = 1. After taking residue classes, this is
equivalent to ak ≡ 1 mod n, i.e. āk̄ = 1̄, meaning that ā is invertible. □

Lemma 3.2 implies that there exist 0̄ ̸= ā, b̄ ∈ Z/nZ such that āb̄ = 0̄ if and only if n
is not prime.

Next we illustrate the usefulness of the operations in Z/nZ in getting divisibility
criteria.

Example 3.4. Let N = anan−1 . . . a1a0 a number written in its decimal representation.
(I.e. a0, a1, . . . an are its digits, from 0, 1, . . . , 9). Then 11|N if and only if 11|(a0 − a1 +
a2− . . .+(−1)Nan). (Informally: 11 divides the alternate sum of its digits, starting from
units.) This holds because

N = an10
n+an−110

n−1+. . .+a110+a0 ≡ an(−1)n+an−1(−1)n−1+. . .+a1(−1)+a0 mod 11.

3.4. Exercises. 1. Prove Proposition 3.3.
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4. Prime factorization and the fundamental theorem of arithmetic

A (positive) number p is prime if its only divisors are 1 and p. Two numbers a, b > 0
are relatively prime if gcd(a, b) = 1.

Lemma 4.1. Let p be a prime number such that p|ab. Then p|a or p|b.

Proof. If p does not divide a, then gcd(a, p) = 1, and by Theorem 3.2 there exists r, s
such that ar + ps = 1. Multiply by b to get b = abr + pbs. Since p divides both terms
in the right hand side, it must divide b. □

Theorem 4.1 (Fundamental Theorem of Arithmetic). Let n ∈ Z be a positive number.
Then n can be written as

n = pa11 · . . . · pakk ,
where p1, . . . , pk are prime numbers, ai ∈ N \ {0}. Further, this decomposition is unique
up to rearranging the factors.

Proof. We argue by induction on n. If n is prime, we are done. If not, there exists some
positive number d such that d|n. Then n = d × (n/d) and induction applied to both d
and n/d gives the decomposition. It remains to prove uniqueness. Let

n = pa11 · . . . · pakk = qb11 · . . . · qbss ,
where pi’s and qj’s are primes. Then p1 divides qb11 · . . . · qbss , and the previous lemma
implies that p1 = qj for some j. W.l.o.g. can assume j = 1. Then necessarily a1 = b1,
divide by pa11 and the result follows by induction. □

Example 4.1. 24 = 22 × 3; 3183624 = 23 × 34 × 173.

Remark 4.1. One can use prime factorization to determine gcd(a, b) and lcm(a, b) (the
lowest common multiple). If

a = pa11 · · · ; b = pb11 · · · ,
where a1, b1 ≥ 0 then

gcd(a, b) = p
min(a1,b1)
1 · · · ; lcm(a, b) = p

max(a1,b1)
1 · · · .

Finding the gcd using the prime factorization is very easy in theory, but may take a
very long time in practice. This is because there are no efficient algorithms to find the
prime factorization of a number. In fact, all the cryptographic applications are based
on the fact that it is difficult to factor large numbers. Nevertheless, Euclid’s algorithm
presented above provides a very efficient algorithm to find the gcd; but this does not
help with the factorization problem.

4.1. Exercises. TODO.
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5. Polynomials and polynomial division

Definition 5.1. A polynomial is a combination of the form

P (x) = anx
n + an−1x

n−1 + . . .+ a1 + a0,

where n ∈ Z≥0, an ̸= 0, and x is an indeterminate. The number deg(P ) := n is called
the degree of the polynomial and ai’s are called the coefficients. The coefficient an
is called the leading coefficient. If all ai ∈ R then P (x) is a polynomial with real
coefficients. Unless otherwise is specified, we assume ai ∈ C.

We denote by C[x] and R[x], the set of polynomials with complex, respectively real,
coefficients.

Polynomials can be added and multiplied. W.l.o.g. we may assume P (x) =
∑n

i=0 aixi,
Q(x) =

∑n
i=0 bixi, by allowing an = 0 or bn = 0. Then

P (x) +Q(x) :=
n∑

i=0

(ai + bi)xi, P (x) ·Q(x) :=
∑

ckx
k,

where ck =
∑

i+j=k aibj. The two operations are commutative, associative, and the
multiplication is distributive with respect to the addition. Check this!

Lemma 5.1. Let P (x), Q(x) be two polynomials such that degP (x) = k and degQ(x) =
s. Then deg(P (x) ·Q(x)) = k + s.

Proof. This follows because the leading coefficient of P (x) · Q(x) is the product of the
leading coefficients of the two polynomial. □

Definition 5.2. Let P1(x), P2(x) be two polynomials. We say that P1(x) divides P2(x)
if P1(x) = P2(x)Q(x) for some polynomial Q(x). A polynomial is called reducible if it
can be factored into polynomials of positive degree. A polynomial is called irreducible
if it is not reducible.

The irreducible polynomials play the same role as the prime numbers in integers.
However, irreducibility depends on the coefficients we are allowed to work with (i.e.
polynomials with real coefficients vs. polynomials with complex coefficients). For in-
stance, the polynomial

x2 + 1 = (x+ i)(x− i)

is reducible over C, but it is irreducible over R. Clearly, any polynomial of degree 1 must
be irreducible.

Let a be a number, considered to be real if we work with real coefficients. The
evaluation map is

eva : C[x] → C; P (x) 7→ P (a) ∈ C.
Sometimes, we will refer to eva(P (x) = P (a) as the specialization of P (x) at x 7→ a.

Lemma 5.2. The evaluation map is compatible with polynomial operations, i.e.

eva(P +Q) = eva(P ) + eva(Q) : eva(P ·Q) = eva(P ) · eva(Q).
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Proof. The lemma translates into

(P +Q)(a) = P (a) +Q(a); (P ·Q)(a) = P (a) ·Q(a).

This follows by definition of the operations in C[x]. □

Theorem 5.1 (Polynomial division algorithm). Let P (x), Q(x) be two polynomials with
Q(x) ̸= 0. Then there exist unique polynomials T (x), R(x) such that P (x) = Q(x)T (x)+
R(x) and either R(x) ≡ 0 or 0 ≤ degR(x) < degQ(x).

Proof. The existence follows from the Long Division algorithm for polynomials. We now
prove uniqueness. Assume that there are polynomials T1, T2, R1, R2 such that

P (x) = Q(x)Ti(x) +Ri(x), degRi(x) < degQi(x), i = 1, 2.

If T1(x) = T2(x) we are done, so we assume deg(T1(x)−T2(x)) ≥ 0. ThenR1(x)−R2(x) =
Q(x)(T2(x)− T1(x)). But

deg(R1(x)−R2(x)) ≤ max{degR1(x), degR2(x)} < degQ(x) + deg(T2(x)− T1(x)),

and this is a contradiction. □

Example 5.1. x6 + 4x5 − x2 + 5 = (x2 + 1) · (x4 + 4x3 − x2 − 4x) + (4x+ 5).

Corollary 5.1. Let P (x) ∈ C[x]. Then x − a divides P (x) if and only if P (a) = 0.
Equivalently, eva(P ) = 0.

Proof. Apply the division algorithm and specialize x 7→ a. □

There is an analogue of the gcd(P,Q) where P,Q are polynomials, defined in the same
way as for the integers. More precisely, the gcd is the polynomial D(x) such that

• D(x)|P (x) and D(x)|Q(x) ;
• if D′(x) divides both P (x) and Q(x) then D′(x) divides D(X).

One difference is that the gcd is no longer unique! The (mild) difference comes from
the fact that two gcd’s may differ by a non-zero constant. We can get uniqueness if we
assume that D(x) is a monic polynomial, i.e. the leading term equals to 1.

And as for integers there is now an Euclid algorithm to determine the gcd of two
polynomials. It works in the same way, just replace each integer by a polynomial, and
the usual division by polynomial division. As a corollary of Euclid’s algorithm we obtain
the following analogue of Euclid’s algorithm:

Proposition 5.1. Let A(x), B(x) ∈ C[x] be two polynomials, and let D(x) be (any) gcd
of A,B. Then

D(x) = A(x)R(x) +B(x)T (x),

for some polynomials R(x), T (x) ∈ C[x].

Proof. As for integers, this follows from the Euclid’s algorithm. □
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Example 5.2. Let A(x) = x(x + 1) and B(x) = x(x − 1). Then gcd(A(x), B(x)) = x
and

x =
1

2
A(x)− 1

2
B(x).

Example 5.3. Let A(x) = x3 − 1 = (x − 1)(x2 + x + 1) and B(x) = (x + 1)2 =
x2 + 2x + 1. Then gcd(A(x), B(x)) = 1 (after normalizing, i.e. multiplying by the
appropriate constant). As an exercise, work out the Euclid’s algorithm for A(x), B(x)
in this case.

Corollary 5.2. Let P (x), S(x), T (x) be polynomials such that P (x) is irreducible and
P (x)|S(x)T (x). Then P (x)|S(x) or P (x)|T (x).

Proof. The proof is the same as the proof of the Lemma 4.1 above. Assume that P (x)
does not divide S(x). Since P (x) is irreducible, it follows that gcd(P, S) = 1. The
previous proposition implies that there exist polynomials A,B such that

AP +BS = 1.

Multiply this expression by T (x), to obtain that APT + BST = T . Since both APT
and BST are divisible by P , the result follows. □

5.1. Irreducible polynomials. We start with the following statement (but the proof
is beyond the scope of this course).

Theorem 5.2 (Fundamental theorem of algebra). Let P (x) ∈ C[x] be any non-constant
polynomial. Then P (x) has a complex root. Equivalently, there exists a complex number
a ∈ C such that x− a divides P (x).

Corollary 5.3. Let P (x) ∈ C[x] be any non-constant polynomial. Then P (x) is irre-
ducible if and only if degP = 1.

Proof. This is immediate from the Fundamental Theorem of Algebra and the definition
of the irreducibility. □

Remark 5.1. Note that this is false if we do not work with complex coefficients. For
example, the polynomial x2 + 1 is irreducible in R[x].

Proposition 5.2. P (x) ∈ R[x] be any non-constant polynomial. Then P (x) is irre-
ducible if and only if either degP = 1 or degP = 2 and P has no real roots.

Proof. If degP = 1 then it is clearly irreducible (by definition). Assume that degP ≥ 2.
Since P has no real roots by assumption, it cannot be divisible by any polynomial of
degree 1 (with real coefficients). By the Fundamental Theorem of Algebra, P must have
a complex, non-real, root, call it z0. Since P has real coefficients, the conjugate z0 of
z0 is also a root. But then P (x), regarded as a complex polynomial, is divisible by
(x− z0)(x− z0). We calculate

Q(x) := (x− z0)(x− z0) = x2 − (z0 + z0)x+ z0z0,
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and find that Q(x) ∈ R[x] is a polynomial with real coeffcients, dividing P (x). By Long
Division, the quotient P (x)/Q(x) is again a polynomial with real coefficients. Since P (x)
is irreducible it follows that P (x) = Q(x), and that, further, Q satisfies all the required
properties. □

Corollary 5.4 (Prime decomposition for polynomials). (a) Let P (x) ∈ C[x] be any
monic polynomial (i.e. the leading coefficient equals to 1), of degree n ≥ 1, and with
complex coefficients. Then P (x) can be written as

P (x) = (x− z1)
a1 · . . . · (x− zk)

ak ,

where ai ≥ 1 and a1 + . . . + ak = n. This decomposition is unique up to reordering
factors.

(b) P (x) ∈ R[x] be any monic polynomial with real coefficients of degree n ≥ 1. Then
P (x) can be written as

P (x) =
∏
j

(x2 + cjx+ dj)
∏
j

(x− λj),

where all factors are irreducible over R, cj, dj, λj are real numbers, and the total degree
on the right equals to n. This decomposition is unique up to reordering factors.

Proof. The proof is the same as for the Fundamental Theorem of Arithmetic (Theorem
4.1 above), replacing the prime numbers by irreducible polynomials. These are deter-
mined by Corollaries 5.3 and 5.2 above. The uniqueness will now use Corollary 5.2,
replacing Lemma 4.1 used before. □

Example 5.4. The polynomial x3 + 1 factors over R as

x3 + 1 = (x+ 1)(x2 − x+ 1).

The quadratic polynomial has (complex, conjugate) roots

z1,2 =
1± i

√
3

2
.

Then the factorization over C is

x3 + 1 = (x+ 1)(x− z1)(x− z2).

5.2. Ideals and residue classes: an analogy to Z/nZ. A consequence of the division
algorithm in Z from §3.3 is that we can place numbers into equivalence classes, according
to their remainders after division by a fixed n ∈ Z. Same thing can be done with
polynomials, but the resulting theory is getting much richer.

Let P (x) ∈ k[x] where k ∈ {R,C}. Define
⟨P (x)⟩ = {f(x)P (x) : f(x) ∈ k[x]}.

This is a subset of k[x], called the ideal generated by P (x). It plays the role of the set
nZ from §3.3.
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Definition 5.3. Let P1(x), P2(x) ∈ k[x]. We say that P1, P2 are equivalent modulo the
ideal ⟨P (x)⟩, written P1 ≡ P2 mod ⟨P (x)⟩, if

P1(x)− P2(x) ∈ ⟨P (x)⟩.

Equivalently, we require that P (x)|(P1(x)− P2(x)).

Lemma 5.3. The equivalence modulo an ideal is an equivalence relation.

Proof. Exercise. □

We denote by k[x]/⟨P (x)⟩ the set of equivalence classes, and we refer to this as a quo-
tient by the ideal ⟨P (x)⟩. As in Z/nZ, the equivalence classes correspond to the possible

reminders upon division by P (x). For r(x) ∈ k[x] we denote by r(x) its equivalence class
in k[x]/⟨P (x)⟩.

Example 5.5. (a) Take k = R and P (x) = x. Then 2x+ 1 ≡ x+ 1 mod ⟨x⟩.
(b) x2 − 1 ≡ 0 mod ⟨x− 1⟩.

As for Z/nZ, we may also add and multiply the equivalence classes by multiplying
representatives. The key point here is that these operations are well defined, i.e. they
do not depend on choices of representatives. (Exercise!)

An interesting fact is that one may detect irreducibility of a polynomial P (x) by
looking at the quotient by the ideal it generates.

Proposition 5.3. Let P (x) ∈ R[x]. Then P (x) is reducible if and only if there are two

representatives a(x), b(x) ̸≡ 0 such that a(x)b(x) = 0 in k[x]/⟨P (x)⟩.

Proof. Exercise. □

Example 5.6. Consider the quotient R[x]/⟨x⟩. Let P (x) ∈ R[x]. The remainder of
P (x) under division by x must be a constant. Therefore

R[x]/⟨x⟩ ≃ R

with c ∈ R corresponding to the set of polynomials of the form

xQ(x) + c.

Example 5.7. Consider the quotient R[x]/⟨x2 + 1⟩. This quotient has a class x which
satisfies the identity:

x2 = −1.

As before, let P (x) ∈ R[x]. The remainder of P (x) under division by x must be a
polynomial of degree ≤ 1. Therefore

R[x]/⟨x1 + 1⟩ = {ax+ b : a, b ∈ R, x2 = −1} ≃ C.
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5.3. Exercises. 1. Describe the following equivalence classes:

(1) R[x]/⟨x+ 2⟩;
(2) R[x]/⟨x2⟩.
2. Prove one has well defined operations of addition and multiplication in k[x]/⟨P (x)⟩

using the usual addition and multiplication of representatives.
3. Prove Proposition 5.3.
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6. Groups

6.1. Definition and basic examples.

Definition 6.1. Let G be a set and ⋆ : G × G → G be a function. We write a ⋆ b for
⋆(a, b), and we refer to this as a binary operation.

• The binary operation ⋆ is associative if ∀ a, b, c ∈ G, a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c.
• The binary operation ⋆ is commutative if ∀a, b ∈ G, a ⋆ b = b ⋆ a.

Examples:

• The addition/substraction ± in R,Q,Z etc;
• Matrix multiplication for G =matrices with coefficients in Z: associative, but
not commutative.

• vector product × in R3; (but not the scalar product, why ??)
• (The Rock-Paper-Scissor operation): consider the set A := {r, p, s} with multi-
plication given by the rules of the game:
(1) r2 = r, p2 = p, s2 = s;
(2) r · p = p,r · s = r, p · s = s;
(3) the operation is commutative, i.e. r · p = p · r.
This multiplication is not-associative. For example r · (p · s) = r · s = r ̸= s =
p · s = (r · p) · s.

• Another example of non-associative operation is the mean value of two rational
numbers: x⊕ y = x+y

2
.

Definition 6.2. Let (G, ⋆) be a set with a binary operation. We say that G is a group
(with respect to ⋆) if the following are satisfied:

(1) (associativity) ⋆ is associative;
(2) (identity element) There exist an element e ∈ G (the identity element) such that

for any g ∈ G, g ⋆ e = e ⋆ g = g;
(3) (inverse) For any g ∈ G there exists an element denoted g−1 such that g ⋆ g−1 =

g−1 ⋆ g = e.

If in addition ⋆ is commutative then (G, ⋆) is a commutative group.

Proposition 6.1. Let (G, ⋆) be a group.

(1) The identity element is unique;
(2) Fix g ∈ G. Then the inverse element g−1 is unique.
(3) for any g ∈ G, (g−1)−1 = g;
(4) for any a, b ∈ G, (a ⋆ b)−1 = b−1 ⋆ a−1

Proof. Largely homework. □

Examples: (1) (Z,+), (Q \ 0, ·), (R,+), GLn(R) = {A ∈ Mn,n(R) : detA ̸= 0} (the
general linear group); SLn(R) = {A ∈ Mn,n(R) : detA = 1} (the special linear group).
Observe that the last two examples are non-commutative.
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(2) Is (R, ·) a group ? How about (Z/nZ, ·) ? What do we need to do to make them
groups ? (remove 0 first; in the second example we also need that n is a prime number.)

Proposition 6.2. Let (G, ·) be a group and consider the equations ax = b and xa = b
(a, b ∈ G). These equations have unique solutions x = a−1b respectively x = ba−1.

Proof. Consider the equation ax = b. Then we multiply on the left by a−1 and use
associativity to obtain a−1·(a·x) = a−1·b, i.e. x = a−1·b. In a similar way, x = b·a−1. □

6.2. Subgroups and group homomorphisms.

Definition 6.3. Let (G, ⋆) be a group. A subset H ⊂ G is called a subgroup if the
following hold:

• ∀a, b ∈ H, the product a ⋆ b ∈ H. (we say that the operation ⋆ is closed with
respect to H.)

• e ∈ H.
• if a ∈ H then a−1 ∈ H.

Proposition 6.3. A subset H ⊂ G is a subgroup if and only if H is non-empty and for
any a, b ∈ H, a ⋆ b−1 ∈ H.

Proof. The implication assuming that H is a subgroup is immediate from the definition.
Conversely, assume that H is non-empty and for any a, b ∈ H, a ⋆ b−1 ∈ H. Then if
a ∈ H, then a ⋆ a−1 = e ∈ H. Further, a−1 = e ⋆ a−1 ∈ H by hypothesis. So it remains
to show that H is closed under ⋆. If a, b ∈ H, then a ⋆ b = a ⋆ (b−1)−1, which is in H
since b−1 ∈ H. □

Notation: If (G, ⋆) is a group, H ≤ G means H is a subgroup.

Remark 6.1. If H is a subgroup of (G, ⋆), then (H, ⋆) is a group on its own, with the
same identity as G.

Example 6.1. (a) Denote by Q∗ = Q \ 0 and similarly for Z∗,R∗,C∗ etc. The groups
(Q∗, ·), (R∗, ·) are all subgroups of (C∗, ·). Observe that (Z∗, ·) is not a subgroup, since
inverses of integers are in general not integers.

(b) 2Z ≤ Z; (0,∞) ≤ (R∗, ·).
(c) The circle S1 = {eiθ = cos(θ) + i sin(θ) ∈ C : θ ∈ R} is a subgroup of (C∗, ·).
(d) The special linear group SLn(R) = {A ∈ Mn(R) : detA = 1} is a subgroup of

the general linear group(GLn(R), ·), where

GLn(R) = {A ∈Mn(R) : det(A) ̸= 0}.

Lemma 6.1. Let (G, ⋆) be a group and let H1, H2 ≤ G be subgroups. Then H1 ∩H2 is
also a subgroup of G.

Proof. Apply Proposition 6.3. □
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Definition 6.4. Let f : (G1, ⋆) → (G2, ◦) be a function. We say that f is a group
homomorphism if for any a, b ∈ G1, f(a⋆b) = f(a)◦f(b). If there exists g : (G2, ◦) →
(G1, ⋆) such that fg = idG2 and gf = idG1 then f, g are called isomorphisms and the
groups G1 and G2 are isomorphic.

Remark 6.2. In the definition of an isomorphism φ : G → H, it is enough to require
that φ is a bijective group homomorphism. (Why ?)

Proposition 6.4. Assume that f : (G1, ⋆) → (G2, ◦) is a group homomorphism. Then:

• f(e1) = e2 where ei is the identity in Gi;
• ∀a, b ∈ G1, f(a ⋆ b

−1) = f(a) ◦ f(b)−1.

Proof. To prove (a), note that f(e1) = f(e1 ⋆ e1) = f(e1) ◦ f(e1), thus f(e1) = e2 after
simplifying. To prove the second part it suffices to show that f(a−1) = f(a)−1. To this
end, observe that f(a) ◦ f(a−1) = f(a ⋆ a−1) = f(e1) = e2. Then the claim follows
because of the uniqueness of inverses. □

Example 6.2. (a) The map exp : (R,+) → (0,∞), x 7→ ex is an isomorphism. (What
is the inverse ?)

(b) The determinant map det : (GLn(R), ·) → (R \ 0, ·) is a group homomorphism.
(c) The determinant from the additive groups, det : (Mn(R),+) → (R,+) is not a

group homomorphism.

Proposition 6.5. Let f : G→ H be a group homomorphism. The kernel of f , denoted
ker(f) is defined by

ker(f) = {g ∈ G : f(g) = eH}.
The image of f , denoted Im(f), is the subset of H given the image of the map f , i.e.

Im(f) := {h ∈ H : ∃g ∈ G, f(g) = h}.
By definition, ker(f) ≤ G and Im(f) ≤ H.

Proof. We prove the statement about the kernel; the proof about the image is similar.
We apply Proposition 6.3. Observe that eG ∈ ker(f). If a, b ∈ ker(f), then f(ab−1) =
f(a)f(b−1) = f(a)f(b)−1 = eGeG = eG. This shows that ab−1 ∈ ker(f) and we are
done. □

Proposition 6.6. Let f : (G, ⋆) → (H, ◦) be a group homomorphism. Then the following
hold:

(a) f is injective ⇐⇒ ker(f) = {eG};
(b) f is surjective ⇐⇒ Im(f) = H.

Proof. If f is injective, then ker(f) = {eG} by definition. Conversely, assume that
g1, g2 ∈ G satisfy f(g1) = f(g2). Then by properties of group homomorphisms eH =
f(g1)f(g2)

−1 = f(g1g
−1
2 ). Then g1g

−1
2 ∈ ker(f), thus g1g

−1
2 = eG, giving g1 = g2.

The surjectivity follows from definitions. □
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From now on we will use “·” for the group multiplication, or we we will simply omit
the multiplication symbol.

Definition 6.5. Let (G, ·) be a group and let g ∈ G. The order of g, denoted |g|, is the
smallest integer n ≥ 1 such that gn = eG. If no such n exists, then the order of g is ∞.

We denote by |G| the order of G and by |g| (for g ∈ G) the order of the element g.

Example 6.3. (a) In G = Z/10Z, the elements 1, 3, 7, 9 have order 10; the elements
2, 4, 6, 8 have order 5, the element 5 has order 2 and 0 has order 1.
(b) Let G = (C∗, ·). If x ̸= 1 and x ∈ R, then the order of x is infinity. If x = e2πi/n

then the order of x is n.
(c) Take G = (Z/2Z× Z/2Z,+). Then the identity has order 1 (as always), and the

order of the other elements are:

|(1, 0)| = |(0, 1)| = |(1, 1)| = 2.

Definition 6.6. (a) A subset A ⊂ G is a generating set if any g ∈ G can be written as
a product of elements in A, and their inverses, i.e.

g = an1
1 · . . . · ans

s ,

where ni ∈ Z and ai ∈ A.
(b) A group is cyclic if it has a generating set with 1 element. If this is the case, we

write G = ⟨a⟩, where a is the generator.

We denote by ⟨A⟩ the subgroup generated by A. The next proposition justifies this
terminology. shows that this is indeed a subgroup.

Proposition 6.7. For ∅ ≠ A ⊂ G, the set ⟨A⟩ is a subgroup of G.

Proof. The identity eG is in ⟨A⟩ (just take all powers ni = 0). Take g1 = an1
1 · . . . · ans

s

and g2 = bm1
1 · . . . · bnp

p where all ai, bj ∈ A. By possibly adding some powers of eG we
may assume that s = p. Then

a · b−1 = (an1
1 · . . . · ans

s ) · (b−np
ns

· . . . · b−n1
1 ) ∈ ⟨A⟩

by definition of ⟨A⟩. Then the result follows from Proposition 6.3. □

Example 6.4. Take G = Z/4Z. These are the subgroups generated by a single element
in G:

⟨0⟩ = {0}; ⟨1⟩ = ⟨3⟩ = Z/4Z; ⟨2⟩ = {0, 2}.
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7. More in-depth examples of groups

7.1. The dihedral group D2n. Fix a regular polygon P with vertices labelled 1, 2, . . . , n
and imagine it as a solid plate. Then D2n is the group of rigid symmetries of Pn.
There are two such basic symmetries:

• The (clockwise) rotation r which sends the label i 7→ i+1 (for ease of notation
we take labels mod n, i.e., r(n) = 1.

• The reflection s across the axis of symmetry which fixes 1 and bisects Pn into
two congruent sides (if n is odd).

Example 7.1. D6 (the rigid symmetries of an equilateral triangle) is the same as the
full symmetric group S3.

A rigid symmetry is completely determined by how any neighboring labels are mapped.
For example, take labels 1, 2 and φ any rigid symmetry. Then φ is determined by the
following:

• φ(1) and φ(2) are connected by an edge;
• To determine where φ(3) goes, travel φ(1) → φ(2), then take the next edge.

Example 7.2. Visualize the symmetries of a square.

In the next lemma we write explicitly how r, s act on labels.

Lemma 7.1. (a) For any integer k, rk(i) = i+ k, where labels are interpreted mod n.
(b) s(i) = n+ 2− i (again interpreting results mod n).

Proof. Homework □

Lemma 7.2. (a) The orders of r and s in D2n are |r| = n and |s| = 2;
(b) s ̸= ri for any 0 ≤ i ≤ n− 1;
(c) ris = sr−i for any 0 ≤ i ≤ n.
(d) The elements 1, r, . . . , rn−1, s, sr, . . . , srn−1 are distinct. In particular, D2n is not

abelian if n ≥ 3.
(e) D2n = {1, r, . . . , rn−1, s, sr, . . . , srn−1}.

Proof. Part (a) follows from the definition of the order. For (b), just evaluate both sides
at i = 1. Part (c) is induction on i ≥ 1. To check that rs = sr−1, evaluate both sides at
the labels 1 and 2. Part (d) follows by evaluating all these elements at two consecutive
labels (say 1 and 2), and then checking that the outputs are distinct. We leave details
as homework.

For (e), the previous parts prove that the elements listed are distinct. Now take any
rigid symmetry φ. There are n possibIlities for φ(1), 2 possibilities for φ(2). Once φ(1)
and φ(2) are fixed, then φ(j) is completely determined for j ≥ 3. This argument shows
that there are at most 2n rigid symmetries φ. But since we already produced 2n distinct
ones in part (d), it follows that D2n must consist exactly of these elements. □
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Proposition 7.1. The set (D2n, ◦) equipped with composition of symmetries ◦ is a group,
called the dihedral group.

Proof. Composition of rigid symmetries is again a rigid symmetry, therefore ◦ is a binary
operation on D2n. Each such symmetry corresponds to a function, and composition of
functions is associative; therefore ◦ is associative. The identity element is the identity
symmetry (no labels are moved). Finally, each symmetry is reversible, showing that
each element has an inverse. □

7.2. The groups Z/nZ and (Z/nZ)∗. Recall the notation Z/nZ := { 0̄, 1̄, . . . , n− 1}
for the set of equivalence classes of residues modulo n.

Definition 7.1. Denote by (Z/nZ)× to be the set of invertible elements in Z/nZ with
respect to the multiplication, i.e. those elements a such that ab ≡ 1 mod n for some b.
Sometimes the invertible elements are also called units in Z/nZ.

The following follows from Lemma 3.2.

Lemma 7.3. The set (Z/nZ)× = {a : gcd(a, n) = 1}, i.e. an element a is invertible if
and only if gcd(a, n) = 1.

Recall that on Z/nZ we defined two operations:

ī+ j̄ = i+ j; ī · j̄ = ij.

Proposition 7.2. (a) (Z/nZ,+) is a group;
(b) ((Z/nZ)×, ·) is a group.

Proof. Part (a) follows from Lemma 3.1 and the definition of the addition. For part (b),
the only thing one needs to show is that if a, b are invertible, then so is their product.
The hypothesis means that there exists a′, b′ such that aa′ = bb′ = 1. Then

abb′a = aa′ = 1,

and the claim is proved. □

We will see later on that the two operations give Z/nZ a structure of a ring. Also note
that by definition and Lemma 7.3, observe that if n is prime, then (Z/nZ)× = Z/nZ\{0}.

Example 7.3. Z/4Z = {0, 1, 2, 3}. The elements 1 and 3 have order 4; the element 2
has order 2.

Example 7.4. The group (Z/4Z)× consists of the elements 1 and 3. This group (with
multiplication) is isomorphic to (Z/2Z,+).

Proof of Theorem 7.2. Parts (a) and (b) follow from Lemma 3.1 and the definition of
the addition.

For part (c), assume n is prime, and take 1 ≤ a ≤ n−1. Then gcd(a, n) = 1 therefore
one can write ka+ ns = 1. This means that ka ≡ 1 mod n, i.e. a is invertible modulo
n. Obviously 0 is not invertible. This finishes the proof of (c).
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The only thing one needs to show is that if a, b are invertible, then so is their product.
The hypothesis means that there exists a′, b′ such that aa′ = bb′ = 1. Then

abb′a = aa′ = 1,

and the claim is proved. □

We now study some properties of the group Z/nZ and its group of units.

Proposition 7.3. (a) The group Z/nZ is cyclic, i.e. it is generated by one element.
(b) An element a ∈ Z/nZ generates Z/nZ if and only if a ∈ (Z/nZ)×.

Proof. Clearly 1 generates Z/nZ. We now prove (b). If a generates Z/nZ, then 1 =
ka = ka for some k. This means that a is invertible. Conversely, assume that a is a
unit, thus ab ≡ 1 mod n. Then for any k we have k = kba, showing that a generates
Z/nZ. □

Definition 7.2. The Euler function Φ : {1, 2, . . .} → {1, 2, l . . . , } is defined by

Φ(n) := #(Z/nZ)× = #{a : gcd(a, n) = 1}.

Example 7.5. (a) Φ(4) = 2, Φ(15) = 8;
(b) If p is a prime, Φ(pn) = pn − pn−1. (Idea: substract all multiples of p in the set

1, 2, . . . , pn.)
(c) One can show that if gcd(a, b) = 1, then

Φ(a · b) = Φ(a) · Φ(b).
Combined with (b), this implies a formula for any Φ(n), given its prime decomposition
n = pa11 · . . . · pakk .

7.3. Exercises.
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8. Cyclic groups

8.1. On generators. Recall the definition:

Definition 8.1. A group G is cyclic if it is generated by a single element x ∈ G, i.e.
G = {1, x±1, · · · , x±k, ...} (but elements are not necessarily distinct).

When x is a generator for a cyclic group, then with the previous notation G = ⟨x⟩.
As first examples, note that the groups (Z,+), (Z/nZ,+) are cyclic groups, with

generators 1, respectively 1. The choice of the single generator is not unique:

Z = ⟨1⟩ = ⟨−1⟩; Z/nZ = ⟨a⟩ where (a, n) = 1,

meaning that a generates Z/nZ if and only if gcd(a, n) = 1 (cf. Proposition 7.3).

Proposition 8.1. Let (G, ·) and x ∈ G an element. Then the following hold:

• If |x| = ∞ then xi ̸= xj for any i, j ∈ Z, i ̸= j;
• If |x| = n then ⟨x⟩ consists of the distinct elements G = {1, x, . . . , xn−1}.

Proof. Since x ∈ G, the set {xk : k ≥ 0} ⊂ G, thus |x| ≤ |G|. We prove the reverse
inequality. We distinguish the two cases in the proposition.

Case 1. |x| = ∞. If xi = xj then xi−j = 1, which is impossible. It follows that there
are infinitely many elements in G, thus |G| = |x| = ∞.

Case 2. |x| = n. Let g = xk ∈ G. By the division algorithm, k = nq + r where
0 ≤ r < n. Then xk = (xn)qxr = xr, from which we deduce that |G| ≤ n. On the other
side, since |x| = k, there are at least k distinct powers of x. This finishes the proof. □

One way to restate Proposition 8.1 is as follows:

Corollary 8.1. In the hypotheses above, |x| = |⟨x⟩|, i.e. the order of x equals the order
of the subgroup it generates.

Example 8.1. (A family of cyclic groups in SL2(R).) Let G := SL2(R) and fix a ∈ R.
Define the matrix

xa :=

(
1 a
0 1

)
∈ G.

Observe that (xa)
k = xka; in other words,(

1 a
0 1

)k

=

(
1 ka
0 1

)
.

The subgroup generated by xa is isomorphic to Z.
This gives a family of cyclic groups in SL2 indexed by a ∈ R. Two such groups are

the same, i.e. ⟨xa⟩ = ⟨xb⟩, if and only if a = ±b.
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8.2. Classification and first properties of cyclic groups. The next proposition
states that up to isomorphism there exist only two cyclic groups: the additive groups Z
and Z/nZ.

Theorem 8.1. Let G = ⟨x⟩ be a cyclic group.

• If |G| = ∞ then G is isomorphic to (Z,+);
• If |G| = n then G is isomorphic to (Z/nZ,+).

Proof. Let |G| = ∞. Then |x| = ∞. Define the function φ : G→ Z given by φ(xk) = k.
(k ∈ Z). It is easy to see this is an isomorphism.

Let now |G| = |x| = n. Then by the previous proposition G = {1, x, . . . , xn−1}
(distinct elements). Define the function φ : G → Z/nZ given by φ(xk) = k. (0 ≤
k ≤ n − 1). It is easy to see this is a surjective group homomorphism. To prove it is
an isomorphism we need to check injectivity. Let φ(xa) = φ(xb). Then a = b, thus
a− b = 0, from which we deduce that n divides both a− b and b− a. W.l.o.g. we can
assume that a ≤ b. Then 0 ≤ b− a ≤ n− 1, and the divisibility condition forces a = b,
hence xa = xb. □

Example 8.2. (Groups of order 2.) The only group of order 2 is (isomorphic to) Z/2Z.

Example 8.3. (Groups of order 3.) Let G = {1, x, y}. By analyzing the multiplication
table of G, we find that the only group of order 3 is (isomorphic to) Z/3Z. There are
two identifications:

1 ↔ 0; x↔ 1; y ↔ 2 and 1 ↔ 0; x↔ 2; y ↔ 1.

This proves that there are two isomorhisms φ : (Z/3Z,+) → (Z/3Z,+). (One is the
identity k 7→ k, the other is k 7→ −k.)

Example 8.4 (Groups of order 4). Up to isomorphism, there are only two groups of
order 4: Z/4Z and Z/2Z× Z/2Z. Idea: write down the possible multiplication tables.

Example 8.5 (Groups of order 5 and 6). This example will become much easier to prove
once we know Lagrange’s Theorem, which implies that the order of an element in a group
must divide the order of the group.

There is a single group of order 5: Z/5Z.
There are three groups of order 6: Z/6Z,Z/3Z× Z/2Z and the (non-abelian!) group

S3, the symmetric group in 3 letters.

Theorem 8.2. Any subgroup of a cyclic group is cyclic.

Proof. Let G = ⟨x⟩. W.l.o.g we can assume that H is not the trivial subgroup. Consider
the number

a := min{k > 0 : xk ∈ H}.
The assumption implies that this minimum exists. We claim that H = ⟨xa⟩. Clearly
⟨xa⟩ ⊂ H, thus it suffices to show the reverse inclusion. Let h ∈ H. Then h = xk

for some integer k. By the division algorithm, k = na + r where 0 ≤ r < a. Then
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xk = (xa)qxr ∈ H, from which we deduce that xr ∈ H. Since 0 ≤ r < a, and from the
definition of a, we obtain that r = 0. Then xk = (xa)q ∈ H. This proves that H ⊂ ⟨xa⟩,
and it finishes the proof. □

We now relate the order of an element in a cyclic group by the order the the group.

Proposition 8.2. Let G ≃ Z/nZ be a finite cyclic group, and let a ∈ G. Then the
following hold:

(a) If ka = 0, then k is a multiple of the order of a.
(b) The order of a equals n

gcd(a,n)
.

Proof. Assume ka = 0, and let n0 be the order of a. By the division algorithm, k =
n0q + r, where 0 ≤ r ≤ n0, and ra = 0. Then by the definition of the order, r = 0; this
proves (a).

For (b), denote by n0 be the order of a. Then n0a ≡ 0 mod n, i.e. n|an0. Part (a)
implies that n is a multiple of n0, thus n/n0 divides a. Then n/n0 divides gcd(a, n), i.e
n
n0
s = gcd(a, n). This implies that n

gcd(a,n)
divides n0. On the other side n

gcd(a,n)
a ≡ 0

mod n, showing that n0 divides n
gcd(a,n)

, and we are done. □

Observe that part (b) of the above proposition generalizes Proposition 7.3. In partic-
ular, we deduce the following corollary:

Corollary 8.2. Let a, b, n be positive integers.

• The order of the subgroup generated by a in Z/nZ is n
gcd(a,n)

.

• If b is a multiple of a then

⟨a⟩ = ⟨b⟩ ⇐⇒ gcd(a, n) = gcd(b, n).

Proof. Exercise! □

8.3. Group homomorphisms from cyclic groups. An important property of cyclic
groups is about the group homomorphisms from a cyclic group. This will be useful to
rule out that many familiar groups are cyclic, e.g. Q or R.

Lemma 8.1. Let φ : G→ H be a group homomorphism. If G is cyclic then so is φ(G).

Proof. Exercise! □

Proposition 8.3. Let φ : G→ H be a group homomorphism, and assume that G = ⟨x⟩
is cyclic. Then φ is completely determined by the image of x.

Proof. If φh(x) = h then φh(x
k) = hk for any k ∈ Z. But G consists of all such elements

xk, so φh is uniquely determined by the choice of φh(x). Conversely, it is immediate to
see that if φh and φ′

h would be two such homomorphisms, then φh(x
k) = hk = φ′

h(x
k),

thus φ = φ′. □

Proposition 8.4. Let G = ⟨x⟩ be a cyclic group, and let H be an arbitrary group.
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(1) Assume that |G| = ∞. Then for each h ∈ H, there exists a unique group
homomorphism φh such that φh(x) = h.

(2) Assume that G is generated by x and that |G| = n. Then for each h ∈ H, there
exists at most one group homomorphism φ : G → H such that φ(x) = h. This
homomorphism exists if and only if the order of h divides the order of x.

Proof. We prove part (1) first. Since |G| = ∞, it follows that the elements xk, k ∈ Z
are distinct. Then by the group homomorphism property, if φ(x) = h, then φ(xk) = hk.
One checks that

φ(xa · xb) = φ(xa+b) = ha+b = φ(xa) · φ(xb),
therefore this is the (unique!) homomorphism we seek.

For part (2), observe first that as in (1), since φ(x) = h, and because of the group
homomorphism property, we obtain that φ(xk) = hk. So there is at most one such
homomorphism. We need to prove existence, i.e. that φ is well defined; this issue arises
because powers of x are no longer distinct.
First, observe that |x| = n, therefore eH = φ(xn) = hn. Therefore, if one applies

Proposition 8.2 to the (cyclic!) subgroup generated by x, we must have that the order
of h divides n. Then for powers of the form 0 ≤ kq + r ≤ n− 1, we have

φ(xkq+r) = hkq+r = hr,

and one may check directly that this is well defined. □

Remark 8.1. In fact, one can show that there is a one-to-one correspondence between
group homomorphisms φ : G→ H and elements of H of order dividing the order of x.

Example 8.6. As an application, we can determine all isomorphisms φ : Z → Z.
Any such isomorphism sends a generator of Z to another generator. But Z has only
generators ±1, thus there are only two possible such assignments:

φ(1) = 1; ψ(1) = −1.

By the previous proposition both φ and ψ extend uniquely to group homomorphisms:
φ(x) = x and ψ(x) = −x.

Example 8.7. • There are 12 homomorphisms φ : Z → Z/12Z, because Z = ⟨1⟩,
and 1 may be sent to any of the 12 elements in Z/12Z.

• There are 2 homomorphisms Z/4Z → Z/2Z; again Z/4Z = ⟨1⟩ and by Proposi-
tion 8.4 part (2), 1 may be sent to both 0, 1.

• There are 3 homomorphisms Z/3Z → Z/9Z, since Z/3Z = ⟨1⟩ but in this case
by Proposition 8.4 part (2), 1 may be sent only to 0, 3 and 6.

• There is just one homomorphism Z/12Z → Z and one homomorphism Z/10Z →
Z/9Z (the trivial homomorphism).

8.4. Exercises.
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9. Symmetric groups

9.1. Definitions and basic properties. Let Ω be a set, and define

SΩ := {f : Ω → Ω : f is a bijection }.

Proposition 9.1. (SΩ, ◦) is a group, where ◦ is the composition of functions.

Proof. The associativity follows from associativity of composition of functions. The
identoty is the identity function x 7→ x. If f : Ω → Ω is a bijection, there is a well
defined inverse f−1 : Ω → Ω; this is the inverse of f , also when regarded as en element
in SΩ. □

If Ω is a finite set, let Ω = {a1, ..., an}. Then SΩ is the symmetric group in n letters,
denoted Sn. (Note that the structure of SΩ depends only on the cardinality of Ω, and
not on Ω itself.)

To simplify notation we will assume from now on that Ω = {1, ..., n}. The elements
of Sn are called permutations. There are two ways of writing a pemutation σ ∈ Sn:
matrix notation, and cycle notation. We will explain this on an example. Consider
the bijection σ : S10 → S10 given by

σ(1) = 5, σ(2) = 3, σ(3) = 4, fσ(4) = 2, σ(5) = 8,σ(6) = 7, σ(7) = 6,

σ(8) = 10, σ(9) = 9, σ(10) = 1.

The matrix notation displays the inputs and outputs as the two rows of a matrix:

σ =

(
1 2 3 4 5 6 7 8 9 10
5 3 4 2 8 7 6 10 9 1

)
The cycle notation displays any way of tracing the cycles in σ:

σ = (1 5 8 10)(2 3 4)(6 7)(9).

So (1 5 8 10) is the cyclic permutation sending 1 → 5 → 8 → 10 → 1 and keeping all
the other numbers fixed, and the product is the composition is such cycles.

Proposition 9.2. (1) Every two disjoint cycles commute.
(2) Every permutation σ ∈ Sn can be written as a product of disjoint cycles. (i.e.

cycles which do not have any digit in common). The decomposition is unique up
to cyclically reordering the elements in a given cycle, and up to reordering the
cycles themselves.

(3) The order of a permutation is the l.c.m. of the lengths of cycles in its cycle
decomposition.

Proof. Part (1) is immediate. Part (2) is left as an exercise (just trace the cycles in σ).
We prove part (3). We start by considering a single cycle w = (i1, i2, . . . , ik). Then
w2 = (i1, i3, i5, . . .), i.e. it is the cycle (or product of cycles) obtained from the initial
cycle with the step 2. Similarly, w3 uses step 3 and so on. In particular, the first time



28 LEONARDO CONSTANTIN MIHALCEA

when one obtains the identity is when the step equal to k, i.e the order of a k-cycle equals
to k. (In particular, this also means that the cyclic group generated by the k-cycle w is
isomorphic to Z/kZ, via the morphism given by w 7→ 1.)
In general, write w as a product of disjoint cycles, and let n1, . . . , nk denote the

lengths of the cycles. Since disjoint cycles commute, it follows that wlcm(n1,...,nk) = id.
This means that the order of w must divide lcm(n1, . . . , nk). On the other side, since
the cycles are disjoint, if wN = id, it follows that N must be a multiple of each ni. But
then the order of w must equal to the lcm in question, and this finishes the proof. □

Example 9.1. As before, let

σ =

(
1 2 3 4 5 6 7 8 9 10
5 3 4 2 8 7 6 10 9 1

)
Then the cycle decomposition is

σ = (1, 5, 8, 10)(2, 3, 4)(6, 7);

(we ignore the cycles of length 1). The order of this permutation is 12.

It is easy to find inverses of a permutation σ in the matrix and cycle notation:

• in the matrix notation, exchange the two rows. With σ above we obtain:

σ−1 =

(
1 2 3 4 5 6 7 8 9 10
10 4 2 3 1 7 6 5 9 8

)
• In the cycle notation, one simply reverses the order of indices in each cycle:

σ−1 = (10 8 5 1)(4 3 2)(7 6)(9) = (1 10 8 5)(2 4 3)(6 7)(9)

where the last equality follows from cyclically permuting indices so that each
cycle begins with the smallest index.

Two permutations u, v are conjugate if there exists w ∈ Sn such that v = w−1uw.

Proposition 9.3. (a) The relation of conjugation is an equivalence relation.
(b) Two permutations are conjugated if and only if they have the same cycle type.

Proof. Part (a) is left as an exercise. For part (b), consider v = wuw−1. One can write
u as a product of disjoint cycles, let’s say u(1), u(2), . . . , u(k). Then

wuw−1 = (wu(1)w−1)(wu(2)w−1) . . . (wu(k)w−1).

Using this, we see that it suffices to assume that u is a single cycle u = (i1, . . . , is). We
now calculate wuw−1(i). Assume first that w−1(i) = ip (one of the labels in the cycle
u); then

wuw−1(i) = wuw−1(w(ip)) = w(ip+1).

If w−1(i) is not in {i1, . . . , is} then wuw−1(i) = i. This implies that w(i1, . . . , is)w
−1 is

the cycle (w(i1), w(i2), . . . w(is)). □



LECTURE NOTES FOR 3124 (MODERN ALGEBRA) 29

We record the following identity obtained within the proof:

Corollary 9.1. Let u = (i1, . . . , ip) ∈ Sn be a cycle and w ∈ Sn a permutation. Then

w(i1, . . . , ip)w
−1 = (w(i1), . . . , w(ip)).

Remark 9.1. The previous proposition also implies two facts:

(1) There is a partition of Sn into equivalence classes;
(2) each equivalence class is determined by a partition of n, i.e. a sequence λ =

(λ1, . . . , λk) such that λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0 and λ1 + λ2 + . . .+ λk = n.

Example 9.2. Consider the symmetric group S3. The partitions of 3 are (1, 1, 1), (2, 1)
and (3).
The corresponding number of elements in each conjugacy class is 1, 3, 2 and each

equivalence class contains the following:

• There is 1 permutation with cycle type (1, 1, 1): the identity (1)(2)(3);
• There are 3 permutations with cycle type (2, 1): (12)(3), (13)(2) and (1)(23);
• There are 2 permutations with cycle type (3): (123) and (132).

Note 6 = 1 + 3 + 2, expressing the fact that S3 is the disjoint union of its equivalence
classes.

Example 9.3. Consider the symmetric group S4. The partitions of 4 are (1, 1, 1, 1),
(2, 1, 1),(2, 2), (3, 1) and (4). The number of elements in each conjugacy class is 1,

(
4
2

)
, 1/2×(

4
2

)
,
(
4
3

)
× 2!, 3!. Note that

1 +

(
4

2

)
+

1

2
×

(
4

2

)
+ 4× 2! + 3! = 1 + 6 + 3 + 8 + 6 = 24 = |S4|.

9.2. Any group is a subgroup of a symmetric group.

Proposition 9.4. Let G be a group of order n. Then G is isomorphic to a subgroup of
Sn.

Proof. We construct an isomorphism from G to a subgroup of SG = Sn. Pick g ∈ G,
and define φg : G → G by φg(x) = gx. Since G is a group, φg is a bijection, i.e.
φg ∈ SG = Sn. Now define

Ψ : G→ SG; g 7→ φg.

We show this is an injective group homomorphism. To check it is a homomorphism,
Ψ(g1g2) = φg1 ◦ φg2 . Since this is an equality of functions, we need to show

φg1g2(x) = φg1 ◦ φg2(x); ∀x ∈ G.

Indeed φg1g2(x) = (g1g2)x and φg1 ◦ φg2(x) = g1(g2x) and the two are obviously equal,
by associativity.

To show Ψ is injective, we calculate its kernel. We have

ker(Ψ) = {g ∈ G : Ψ(g) = (id : G→ G)} = {g ∈ G : gx = x ∀x ∈ G} = {eG}.
Finally, since Ψ is injective, it follows that G is isomorphic to its image Ψ(G) ≤ SG. □
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The group homomorphism Ψ defined in the proof of the proposition above is called the
left regular representation of G. A direct way to define this group homomorphism is
as follows. Enumerate elements of G in some order, for instance eG = x1, . . . , xn where
n = |G|. Then

Ψ(g) =

(
x1 x2 x3 . . . xn
gx1 gx2 gx3 . . . gxn

)
The key is that the bottom row is just a permutation of the top.

Example 9.4. We illustrate the construction of Ψ in the case G = Z/3Z. Then G =
{0, 1, 2}. The map φa(k) = a+ k. This gives the following homomorphism Ψ:

Ψ(0) =

(
0 1 2
0 1 2

)
; Ψ(1) =

(
0 1 2
1 2 0

)
: Ψ(2) =

(
0 1 2
2 0 1

)
.

9.3. The alternating group. A cycle (i j) of length 2 is called a transposition, and
if the cycle is si := (i i+ 1) it is a simple transposition. One can show that Sn has a
presentation with generators given by the simple transpositions, and relations

s2i = id; sisj = sjsi, |i− j| ≥ 2; sisi+1si = si+1sisi+1.

The last is called a braid relation.
Given a permutation w ∈ Sn, an inversion is a pair (i < j) such that w(i) > w(j).

The length of a permutation w is the number of its inversions.

Example 9.5. (a) The length of a simple transposition is 1;
(b) The length of a transposition (i, j) is 2(j − i)− 1.

Proposition 9.5. The following hold:
(a) ℓ(uv) ≡ ℓ(u) + ℓ(v) mod 2;
(b) If w := (i1, . . . , ik) is a k-cycle, then ℓ(w) = k − 1 mod 2.

Proof. To prove (a), consider the product

∆ :=
∏

1≤i<j≤n

(xi − xj).

This is a polynomial in variables x1, . . . , xn. For each w ∈ Sn, one may permute the
variables in ∆ according to w, i.e.

w.∆(x1, . . . , xn) = ∆(xw(1), . . . , xw(n)).

Observe that id.∆ = ∆ and that in general

w.∆ = (−1)ℓ(w)∆.

On the other side, it is clear that u.(v.∆) = (uv).∆, and combined with the previous
equation this gives (−1)ℓ(uv) = (−1)ℓ(u) · (−1)ℓ(v). This proves the result.
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We now prove (b). Consider the product u := (i1, i2, . . . , ik)(i1, ik). Then u(i1) = i1,
and u(j) = j for j not a label in the cycle. One checks that in fact u = (i2, . . . , ik).
Then by part (a),

ℓ((i1, i2, . . . , ik)) ≡ ℓ(u) + ℓ((i1, ik)) mod 2.

By induction ℓ(u) ≡ k − 2 mod 2, and of course ℓ((i1, ik)) ≡ 1 mod 2. This finishes
the proof. □

Definition 9.1. The alternating group An is the subset of Sn consisting of permutations
of even length.

Proposition 9.6. An is a subgroup of Sn.

Proof. This follows from proposition 9.5. □

Example 9.6. By Proposition 9.5, the alternating group A4 consists of all permutations
which are either 3-cycles, or a product of two 2-cycles, or identity. There are

(
4
3

)
×2 = 8

permutations which are 3-cycles, and 3 products of two 2-cycles. Thus A4 has 8+3+1 =
12 elements. Observe that 12 = 4!/2.

Proposition 9.7. The alternating group has order n!/2. (Later, this will be expressed
as: An has index 2 in Sn.)

Proof. Let w ∈ Sn. If ℓ(w) is even then wAn = An. If ℓ(w) is odd, then ℓ((1, 2)w) is
even by Proposition 9.5, whihc implies that wAn = (1, 2)An. Then Sn = An ∪ (1, 2)An

and we are done. □

9.4. Exercises.
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10. Cosets and Lagrange theorem

Let G be a group and H ≤ G be a subgroup.

Definition 10.1. A (left) coset of H is a set xH for some x ∈ G. Any element in
this coset is called a coset representative. The set of all (left) cosets of H is denoted by
G/H.

Example 10.1. Let G = S3 and H = ⟨(12)⟩ (the group generated by the permutation
that exchanges 1 ↔ 2; this is called a simple transposition). Since (12) has order 2, it
follows that |H| = 2. In fact, H = {id, (12)}. Then any coset xH will be a set of size 2,
and it consists with multiplying on the left by elements of H. Here are some examples:

idH = H; (12)H = H;

(23)H = {(23), (23)(12) = (132)}; (123)H = {(123), (123)(12) = (13)}.
We may also consider the right cosets:

Hid = H; H(12) = H;

H(23) = {(23), (12)(23) = (123)}; H(123) = {(123), (12)(123) = (23)}.

One can make a similar definition for right cosets Hh, and in that case we obtain
H G. Note the following:

Proposition 10.1. (a) x1H = x2H ⇐⇒ (x2)
−1x1H = H ⇐⇒ (x1)

−1x2 ∈ H.
(b) x1H ∩ x2H is either empty or x1H = x2H.
(c) |xH| = |Hx| = |H| for any x ∈ G.

Proof. (a) is clear. For (b), assume x1H ∩ x2H ̸= ∅, and let g ∈ x1H ∩ x2H. Then
g = x1h1 = x2h2. Then

gH = x1h1H = x1H; gH = x2h2H = x2H.

To prove (c) we need to construct a bijection φ : xH → Hx. Define φ(xh) = hx. This
is clearly injective and surjective. □

Remark 10.1. A similar characterization works for right cosets. In fact, there is a
bijection between G/H (the set of left cosets), and H\G (the set of right cosets), given
by

xH 7→ (xH)−1 = Hx−1.

We can define an equivalence relation by x ≃ y iff xH = yH. It is easily checked
that this is reflexive, symmetric and transitive. Note also that each equivalence class
has the same number of elements: the order of H. Recall that G/H denotes the set of
equivalence classes.
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Corollary 10.1 (Lagrange Theorem). Let G be a finite group and H ≤ G a subgroup.
Then

|G/H| = |G|
|H|

.

In particular, the order of H divides the order of G.

Proof. The cosets of H partition G into equivalence classes, and each equivalence class
has the same size equal to |H|. By definition, the number of equivalence classes equals
to |G/H|. Then the claim follows. □

Definition 10.2. The cardinality of G/H is called the index of H in G, and it is denoted
by |G : H|. Lagrange theorem says that

|G : H| = |G|
|H|

.

Corollary 10.2. Let G be a finite group and x ∈ G. Then |x| divides |G|.

Proof. Apply Lagrange’s theorem to the cyclic group generated by x. □

Corollary 10.3. Let p be a prime number, and let G be a finite group of order p. Then
G is cyclic, in particular G is isomorphic to Z/pZ.

Proof. Let x ∈ G such that x ̸= 1. By Corollary 10.2, the order of x divides p. Since p
is prime, the order of x equals p, which means that G is the cyclic group generated by
x. □

Remark 10.2. The converse of either Lagrange Theorem or of Corollary 10.2 is not
true. For example:

• Take n = |G|. Then G has an element of order n iff G is cyclic. We know that
not all groups are cyclic (e.g. Z/2Z× Z/2Z).

• Consider the alternating group A5, which has order 5!/2 = 60. It is known that
it does not have a subgroup of order 30. (It is a simple group, and any subgroup
or order 30 has index 2, thus a normal subgroup.)

However, two partial converses hold:

• (Cauchy theorem.) If p is prime then G has an element of order p.
• G has a subgroup of order pk where pk is the maximal power of p dividing |G|.
(This is called a Sylow subgroup.)

10.1. Exercises.
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11. Normal subgroups

Let G be any group and H ≤ G a subgroup. Define NG(H) := {x ∈ G : xHx−1 =
H} = {x ∈ G : xH = Hx}. This is called the normalizer of H in G.

Lemma 11.1. The normalizer NG(H) is a subgroup of G.

Proof. Clearly id ∈ NG(H). If g1, g2 ∈ NG(H) then

(g1g2)H = g1Hg2 = H(g1g2),

thus g1g2 ∈ NG(H). Similarly,

(g1H)−1 = H−1g−1
1 = Hg−1

1 and (Hg1)
−1 = g−1

1 H;

since Hg1 = g1H this shows that g−1
1 ∈ NG(H). This finishes the proof. □

Remark 11.1. If x ∈ NG(H), the condition xHx−1 = H is equivalent xHx−1 ⊂ H. To
see that, it suffices to show the reverse inclusion H ⊂ xHx−1. Since x−1 ∈ NG(H), we
have:

x−1Hx ⊂ H =⇒ H ⊂ xHx−1.

Definition 11.1. Let H ≤ G be a subgroup. We say that H is normal if NG(H) = G.
Equivalently, for any x ∈ G, xHx−1 ⊂ H.

The main property of normal subgroup is that we can ’divide’ by them, and define a
group operation on the quotient G/H:

xH ◦ yH = (xy)H.

In general this operation does depend on the choice or representatives x, y. The next
proposition shows this is not the case if H is normal.

Proposition 11.1. The multiplication ◦ is well defined if and only if for any x ∈ G,
xHx−1 = H. This is equivalent to any of the following statements:

• NG(H) = G;
• xH = Hx for all x ∈ G.

Proof. Assume that xHx−1 = H. This is equivalent to xH = Hx. We prove the
multiplication is well defined. Let x1, x2 such that x1H = x2H and let y1, y2 such that
y1H = y2H. Then

x1y1H = x1Hy1 = x2Hy1 = x2Hy2 = x2y2H,

finishing the proof of this implication.
We now prove the converse. Let x ∈ G. Then xH = xH ◦H = H ◦ xH, which means

that hxH = xH for any h ∈ H i.e. HxH = xH. This implies that Hx ⊂ xH, for all
x ∈ G. Taking inverses, and using that H−1 = H, we obtain

x−1H ⊂ Hx−1, ∀x ∈ G.

As x−1 varies over all elements in G as x varies in G, this proves the reverse inclusion. □
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We denote the fact that H is normal in G by H ⊴ G. In this case, the quotient
(G/H, ◦) is a group called the quotient group. It has identity 1.H and inverses given by
(xH)−1 = x−1H. Note that

(xH)−1 = Hx−1 = x−1H,

where the last equality holds because of normality.

Remark 11.2. A normal group H ⊴G comes as a ‘package’:

• a quotient subgroup (G/H, ◦);
• a group homomorphism π : G→ G/H sending g 7→ gH such that kerπ = H.

The homomorphism π is called the projection.

Lemma 11.2. Let f : G → H be any group homomorphism. Then ker(f) is a normal
subgroup of G.

Proof. For any g ∈ G, x ∈ ker(f), we have that

f(gxg−1) = f(g)f(x)f(g)−1 = f(g) · 1H · f(g)−1 = 1H .

Thus gxg−1 ∈ ker(f) and we are done. □

Some examples of normal subgroups:

(1) Let G be an abelian group. Then any subgroup is normal. (Definition!)
(2) The alternating group An is normal in Sn. (Either use Proposition 9.5 directly,

or use it to show that e : Sn → {±1} given by w 7→ (−1)ℓ(w) is a group homo-
morphism.)

(3) Let G be any group (possibly infinite) and H ≤ G a subgroup of index 2, i.e.
|G : H| = 2. Then H is normal in G.

Proof. Let x /∈ G. Since G = H ∪ xH = Hx ∪ H (disjoint union) we have
xH = G \H = Hx. □

(4) SLn(R)⊴GLn(R); (use the homomorphism det).

Theorem 11.1 (Cauchy’s theorem for abelian groups). Let G be a finite abelian group
and p a prime such that p||G|. Then G has an element of order p.

Proof. We argue by induction on |G| > 1. The base case is clear. If G =< x > is cyclic
of order a such that p|a then take y := xa/p. Assume that G is not cyclic, and take
x ∈ G such that x ̸= 1. Notice that |x| < |G|. If p divides the order of x we are done by
induction. If p does not divide the order of x, then < x > is normal in G and p divides
the order of G/ < x >. By induction hypothesis there exists y < x >∈ G/ < x > of
order p. This means that there exists y ∈ G such that y /∈< x > but yp ∈< x >. In
particular, < yp >⊂< x > which implies that < yp ≯=< y >. (Otherwise y would be
in < x >.) Let k be the order of y. Then the order of yp is

|yp| = k

gcd(p, k)
.
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Since < yp ≯=< y > we must have that gcd(p, k) ̸= 1, which forces p|k. Then by the
induction hypothesis < y > contains an element of order p. □

11.1. Exercises.
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12. Isomorphism Theorems

Lemma 12.1. Let φ : G → H be a group homomorphism and let K ⊴ G be a normal
subgroup such that K ⊂ ker(φ). Then there is a well defined group homomorphism
φ : G/K → H defined by φ(gK) = φ(g).

G H

G/K

φ

π
φ

Proof. We need to prove several things:
• φ is well defined. Take g1, g2 ∈ G such that g1K = g2K. We need to show that

φ(g1) = φ(g2). By hypothesis g2 = g1k where k ∈ ker(φ). Then

φ(g2) = φ(g1k) = φ(g1)φ(k) = φ(g1);

here the second equality follows since k ∈ ker(φ).
• φ is a group homomorphism. This follows because φ is a group homomorphism:

φ(g1K ◦ g2K) = φ(g1g2K) = φ(g1g2) = φ(g1)φ(g2) = φ(g1K)φ(g2K).

The fact that φ(gK) = φ(g) follows from definition. □

Recall the following lemma (cf. Proposition 6.6 above):

Lemma 12.2. Let φ : G → H be a group homomorphism. Then φ is injective if and
only if Ker(φ) = {1}.

Theorem 12.1 (First Isomorphism Theorem). Let φ : G → H be a group homomor-
phism. Then

G/ kerφ ≃ Im(φ).

Proof. By Lemma 12.1 we have an induced homomorphism φ : G/ ker(φ) → H, which
in turn induces a homomorphism φ̃ : G/ ker(φ) → Im(φ) defined by

φ̃(g ker(φ)) = φ(g).

We check that this is an isomorphism.
To start, the definition of φ̃ implies that it is surjective. To prove injectivity we

calculate the kernel:

ker φ̃ = {g ker(φ) : φ(g) = 1} = ker(φ) = 1G/ ker(φ).

Then the claim follows from Lemma 12.2. □

Theorem 12.2 (Third Isomorphism Theorem). Let G be a group and let K,H⊴G such
that H ⊂ K. Then K/H ⊴G/H and

(G/H)/(K/H) ≃ G/K.
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Proof. Consider the diagram

G G/K

G/H

πK

πH
π

Since H ⊂ ker(πK) = K, Lemma 12.1 implies that there exists a group homomorphism

π : G/H → G/K; π(gH) = gK.

We apply the first isomorphism theorem 12.1 to π. By definition Im(π) = G/K. We
calculate

ker(π) = {gH : π(gH) = 1.K} = {gH : gK = K} = K/H.

This finishes the proof. □

12.1. Examples. We show several examples for the first isomorphism theorem.

(1) (Z/15Z)/(3Z/15Z) ≃ Z/3Z. (Apply the third isomorphism theorem.)
(2) For any groupsG,H, the quotient (G×H)/(1×H) ≃ G. (Consider the projection

morphism G×H → G, defined by (g, h) 7→ g.)
(3) R7/R3 ≃ R4 where R4 is a subgroup of R7 by (x1, x2, x3, x4) 7→ ((x1, x2, x3, x4, 0, 0, 0).

(Use the projection from R7.)
(4) GLn(R)/SLn(R) ≃ R∗. (Consider the determinant map det : GLn(R) → R∗.)
(5) Sn/An ≃ Z/2Z. (consider the ‘signature’ map ε : Sn → {±1}, defined by

w 7→ (−1)ℓ(w).
(6) R/Z ≃ S1 = {z ∈ C : |z| = 1}. Use the exponential map f : R → S1,

x 7→ e2πix = cos(2πx) + i sin(2πx). This map is surjective, and its kernel is Z.
(7) If a, b are two relatively prime numbers, then Z/abZ ≃ Z/aZ × Z/bZ. (Use the

projection x 7→ (x mod a, x mod b).)

Theorem 12.3 (The Correspondence Theorem). Let H ⊴ G. Then there is a one-to-
one correspondence between subgroups of G/H and subgroups of G containing H. The
correspondence is given by

K 7→ K/H; K 7→ π−1(K),

where π : G→ G/H is the natural projection.
Further, the correspondence theorem preserves the index:

|G : K| = |G/H : K/H|.

Proof. Let S1 denote the set of all subgroups K such that H ⊂ K ⊂ G, and let S2

denote the set of subgroups of G/H. Define the map Φ : S1 → S2 by K 7→ K/H. We
need to show that Φ is a bijection.

We first show Φ is surjective. For that, let K ≤ G/H be any subgroup. Define

K := Φ−1(K) = {g ∈ G : gH ∈ K}.
Then K is a subgroup of G containing H (homework !), and by definition Φ(K) = K.
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We now show Φ is injective. Let K1, K2 ∈ S1 such that K1/H = K2/H. Let x ∈ K1.
Then xH ∈ K1/H = K2/H, meaning that x = k2h for some k2 ∈ K2 and h ∈ H. But
H ⊂ K2, therefore

x = k2h ∈ K2.

We conclude that K1 ⊂ K2. Similarly K2 ⊂ K1 and we are done.
It now remains to show the assertion about the index. We will construct a bijection

G/K → (G/H)/(K/H). (Warning: K may not be normal, so G/K is not a group!)
Define

f : G/K → (G/H)/(K/H); f(gK) = (gH)K/H.

This is a well defined map: if g1K = g2K, then g2 = g1k for some k ∈ K, thus

f(g2H) = (g2H)K/H = (g1H)(kH)K/H = (g1H)K/H = f(g1H).

The map f is surjective by definition. We now prove it is injective. Assume f(g1H) =
f(g2H). Then (g1H)K/H = (g2H)K/H, which means that g2H = (g1H)(kH) for some
k ∈ K. Using the multiplication in G/H, this means that g2H = g1kH, i.e. g2 = g1kh
for some h ∈ H. But then g2K = g1khK = g1K, since kh ∈ K. □

Remark 12.1. One can prove more directly the correspondence theorem by defining
Ψ : S2 → S1 by K 7→ π−1(K) and then showing that Φ and Ψ are inverse to each other.

Remark 12.2. One may also show that the correspondence theorem preserves normal
groups, i.e.

K ⊴G⇐⇒ K/H ⊴G/H.

Remark 12.3. If all groups in the correspondence theorem are finite then

|G/H : K/H| = |G/H|
|K/H|

=
|G|/|H|
|K|/|H|

=
|G|
|K|

= |G : K|.

Example 12.1. Describe subgroups of Z/15Z. In this case G = Z and H = 15Z.
We look for subgroups K such that 15Z ⊂ K ⊂ Z. Since Z is cyclic, each such K is
generated by an element a such that a|15. There are 4 such elements: 1, 3, 5, 15. Then
the correspondence is given by:

Z ↔ Z/15Z; 3Z ↔ 3Z/15Z ≃ Z/5Z;
5Z ↔ 5Z/15Z ≃ Z/3Z; 15Z ↔ 15Z/15Z ≃ {id}.

Example 12.2. One can use the correspondence theorem to prove that in some cases
there exist groups of a fixed index. For instance, if H is normal in G of index 4, then
G/H is a group of order 4. Then G/H is isomorphic to Z/4Z or Z/2Z × Z/2Z. In
particular, it has a subgroup of index 2, implying that G also has a subgroup K of index
2. Such a group is automatically normal.

Where is the second isomorphism theorem ?
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Theorem 12.4 (Second Isomorphism Theorem). Let G be a group and A,B ≤ G.
Assume that A ≤ NG(B). Then AB ≤ G, B ⊴ AB, A ∩B ⊴ A and

AB/B ≃ A/A ∩B.

Sketch of the proof. The hypothesis on A implies that AB is a subgroup of G. To prove
that B ⊴ AB take a ∈ A, and b, x ∈ B. Then

(ab)x(ab)−1 = a(bxb−1)a−1 ∈ B

because A ≤ NG(B). Same idea shows that A ∩B ⊴ A.
To prove the claimed isomorphism we will apply the 1st isomorphism theorem to the

map φ : A → AB/B by φ(a) = aB. Notice that this is given by the sequence of
homomorphisms

A ↪→ AB 7→ AB/B,

therefore the composition must be again a homomorphism. We have

kerφ = {a ∈ A : aB = B} = {a ∈ A : a ∈ B} = A ∩B.
The map is clearly surjective. □

12.2. Exercises.
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13. Rings

13.1. Definition and examples.

Definition 13.1. A ring (R,+, ·) is a set with two operations + and · such that the
following are satisfied:

• (R,+) is an abelian group; the identity element is called 0.
• the operation · is associative and with multiplicative identity denoted by 1.
• the operation · is distributive with respect to +, meaning that a·(b+c) = a·b+a·c
and (b+ c) · a = b · a+ c · a for any a, b, c.

If in addition the operation · is commutative then R is called a commutative ring.
A commutative ring where (R \ 0, ·) is a group is called a field. A subring (S,+, ·) of
(R,+, ·) is a subgroup (S,+) ≤ (R,+) such that the operation · is closed in S, i.e. for
any x, y ∈ S, x · y ∈ S. Unless we otherwise specify, if R has 1, then 1 ∈ S.

If R, S are rings, a ring homomorphism is a map φ : R → S which is a homomorphism
of abelian groups, and it is compatible with multiplication:

φ(a+ b) = φ(a) + φ(b); φ(a · b) = φ(a) · φ(b).
The kernel of a ring homomorphism is its kernel regarded as a group homomorphism:

ker(φ) = {x : φ(x) = 0}.

Example 13.1. Here are several important examples:

• R = (Z,+, ·). More generally, R = (Z/nZ,+·).
• Polynomial rings in one variable. If R is a commutative ring, then one can
consider R[x]- polynomials with coefficients in R and in the variable x. The
addition and multiplications are defined as for the usual polynomials.

• Polynomial rings in several variables. More generally, if R is a ring, one can
consider R[x1, . . . , xn] - polynomials in n-variables with coefficients in R. Its
elements are:

R[x1, . . . , xn] := {
∑

ai1...inx
i1
1 · . . . xinn : ai1...in ∈ R}.

• Matrix rings. Let R be a commutative ring, and Mn(R) the set of n×n matrices
with coefficients in R. Then one can add and multiply matrices in the usual way.
The resulting structure is a ring, called a matrix ring. Note: Matrix rings are
not commutative.

• Fields: R,Q,C,Z/pZ (p-prime), rational functions

C(x) := {P (x)
Q(x)

: P,Q ∈ C[x], Q ̸= 0}.

Remark 13.1. In these notes we assume that rings have multiplicative identity. How-
ever, there are examples where which we would like call rings, but have no identity. One
such instance is vectors in R3, with componentwise addition, and multiplication given
by cross product.
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Lemma 13.1. Let R be a ring and a, b ∈ R. Then the following hold:

• 0 · a = 0;
• (−1) · a = −a;
• (−a) · b = −(a · b).

Proof. We have that 0 ·x = (0+0) ·x = 0 ·x+0 ·x; then apply the cancellation property
in the additive group (R,+). The result in (b) follows because

0 = (1− 1) · a = a+ (−1 · a).
The part (c) is holds because (−a) · b = (−1) · (a · b). □

13.2. Ideals.

Definition 13.2. An ideal of a ring R is a subset I ⊂ R such that (I,+) is a subgroup
of (R,+) and for any r ∈ R, x ∈ I, both rx, xr ∈ I.

It follows from definition that an ideal I = R if and only if 1 ∈ I.

Proposition 13.1. Let R be a ring, and I an ideal of R. Then R/I is a ring with the
induced operations:

(a+ I) + (b+ I) = (a+ b) + I; (a+ I) · (b+ I) = ab+ I.

Proof. Since I is an ideal, it is in particular a normal subgroup of R. Therefore (R/I,+)
is a group. It remains to show that the multiplication · is independent of the choice
of representatives; then the remaining part follows immediately. The details are left as
homework. □

Definition 13.3. Let S be a subset of R. The ideal generated by S, denoted by ⟨S⟩,
consists of the finite combinations

∑
aisi where ai ∈ R and si ∈ S. An ideal which can

be generated by a single element is called principal.

Example 13.2. (a) R = Z. The ideal ⟨2⟩ = 2Z; ⟨2, 3⟩ = Z.
(b) Consider the polynomial ring R[x]. The ideal generated by P (x) consists of all

multiples of P (x). For instance, ⟨x − 2⟩ consists of all polynomials P (x) such that
P (2) = 0 (i.e. P has a root x = 2).
(c) The kernel of any ring homomorphism is an ideal.

13.3. Ideals in univariate polynomial rings. TODO. Goal: Show that for k a field,
every ideal in k[x] is principal. Discuss prime ideals in this context.

13.4. Prime and maximal ideals.

Definition 13.4. Let I be an ideal of a ring R. We say that I is a maximal ideal if for
any non-trivial ideal J such that I ⊂ J , we have that J = I.
We say that I is a prime ideal if for any x, y ∈ R such that xy ∈ I, then either x ∈ I

or y ∈ I.
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Definition 13.5. Let (R,+·) be a commutative ring. (a) We say that x ∈ R is a zero
divisor if x ̸= 0 and there exists y ̸= 0 such that xy = 0.

(b) We say that R is an integral domain if R has no zero divisors.

Example 13.3. In Z/4Z, the element 2 satisfies 2
2
= 0, therefore it is a zero divisor.

More generally, if n is not a prime, then Z/nZ has zero divisors. However, Z is an
integral domain; any field is also an integral domain.

Proposition 13.2. Let R be a commutative ring. Then the following hold:
(a) An ideal I is prime if and only if R/I is an integral domain.
(b) An ideal I is maximal if and only if R/I is field.

Proof. Since R is commutative, it follows that R/I is commutative. Assume that I is
prime, and take a, b ∈ R such that (a+ I) · (b+ I) = 0 in R/I. Then ab ∈ I, and since
I is prime, either a ∈ I or b ∈ I; equivalently, either a + I or b + I equal to 0 in R/I.
Conversely, assume that R/I is an integral domain, and take a, b ∈ R such that ab ∈ I.
Then (a+ I) · (b+ I) = 0 in R/I, and as before it follows that either a ∈ I or b ∈ I.

We now prove (b). Assume that I is maximal, and take any x + I ∈ R/I. We need
to show that if x + I ̸= 0, then x + I is invertible. The hypothesis on x and I implies
that the ideal generated by I and x must be the whole R. This means that there exists
r ∈ R such that rx + a = 1 for some a ∈ I. But then (r + I) · (x + I) = 1 + I in R/I,
showing that x+ I is invertible. Conversely, assume that R/I is a field. If J is an ideal
containing I, then J/I is an ideal of R/I. But since R/I is a field, it follows that either
J/I is either the zero ideal, or the full ring R/I. In the first situation J = I, and in the
second J = R, showing that I is maximal. □

Corollary 13.1. Any maximal ideal is prime.

Proof. Let I be the ideal in question. Then R/I is a field, which is a particular case of
an integral domain. Thus I is also prime. □

Example 13.4. (a) The ideal ⟨x− 2⟩ ⊂ R[x] is maximal; the same ideal is only prime
in Z[x]; for instance ⟨2, x − 2⟩ is a maximal ideal. This follows because one can de-
fine a homomorphism φ : R[x] → R sending P (x) 7→ P (2). The kernel of this ring
homomorphism is ⟨x− 2⟩. Using this, we obtain ring isomorphisms:

R[x]/⟨x− 2⟩ ≃ R; Z[x]/⟨x− 2⟩ ≃ Z.
The ideal ⟨x⟩ ⊂ C[x, y] is prime, but not maximal.

13.5. Exercises.
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