HOMEWORK

1. Lecture 1 homework (K theory)

1. Use the intersection property in K theory to work out the multiplication table for $K\left(\mathbb{P}^{n}\right)$.
2. Utilize the short exact sequence $0 \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-1) \rightarrow \mathcal{O}_{\mathbb{P}^{n}} \rightarrow \mathcal{O}_{\mathbb{P}^{n-1}} \rightarrow 0$ to prove that $K\left(\mathbb{P}^{n}\right)$ has a presentation by generators and relations given by $\mathbb{Z}[x] /\langle(1-$ $\left.x)^{n+1}\right\rangle .\left(^{*}\right)$ Can you say how is this related to the Whitney relations:

$$
\lambda_{y}(\mathcal{O}(-1)) \cdot \lambda_{y}\left(\mathbb{C}^{n+1} / \mathcal{O}(-1)\right)=\lambda_{y}\left(\mathbb{C}^{n+1}\right) \quad ?
$$

3. Find the Schubert class expansion of $\left[\mathcal{O}_{\mathbb{P}^{3}}(\pm k)\right] \in K\left(\mathbb{P}^{3}\right)$.
4. Consider the Chern character $\operatorname{ch}: K\left(\mathbb{P}^{n}\right) \rightarrow H^{*}\left(\mathbb{P}^{n}\right)$.
(a) Find the Schubert expansion of $\operatorname{ch}\left(\mathcal{O}_{\mathbb{P}^{n}}(\pm 1)\right)$.
(b) Find the image of each K-theoretic Schubert class through the Chern character.
5. (*) Let \mathcal{Q} be the (rank $n-k)$ tautological quotient bundle over $\operatorname{Gr}(k, n)$. Prove that $\operatorname{det} \mathcal{Q}=\sum \mathcal{O}_{\lambda}$. (Hint: multiply by the duals of Schubert classes and take Euler characteristic.)
6. (The Demazure operator) Let $\mathrm{Fl}(\hat{i}, n)$ denote the partial flag manifold parametrizing $F_{1} \subset \ldots \subset \widehat{F}_{i} \subset \ldots \subset \mathbb{C}^{n}$, and let $p_{i}: \mathrm{Fl}(n) \rightarrow \mathrm{Fl}(\hat{i} ; n)$ be the natural projection. Define the endomorphism of $K(\mathrm{Fl}(n))$

$$
\partial_{i}=p_{i}^{*}\left(p_{i}\right)_{*}
$$

Prove that

$$
\partial_{i}\left(\mathcal{O}^{w}\right)= \begin{cases}\mathcal{O}^{w s_{i}} & \text { if } w s_{i}<w \\ \mathcal{O}^{w} & \text { otherwise }\end{cases}
$$

Utilize this to show that ∂_{i} 's satisfy $\partial_{i}^{2}=\partial_{i}$, and the usual commutation and braid relations.

2. Lectures 2 and 3: Quantum K theory

1. Describe all lines (i.e., degree 1 rational curves) in \mathbb{P}^{n}.
2. Draw the moment graphs, and utilize them to calculate the curve neighborhoods (of all degrees) in \mathbb{P}^{n} and in $\operatorname{Gr}(2,4)$.

3*. Use the formula for the distance $d_{\min }(\lambda, \mu)$ to calculate the quantum K metric $\left(\left(\mathcal{O}^{(1)}, \mathcal{O}^{\lambda}\right)\right)$ for each λ included in the $2 \times(4-2)$ rectangle. (Hint: use that
the quantum cohomology ring $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$ is graded with $\operatorname{deg} q=n$ to deduce that $d_{\text {min }}((1),(2,2))<2$.)
4. Use the recursion formulae from the notes to calculate the curve neighborhood elements z_{d} (i.e., $\Gamma_{d}(p t)=X_{z_{d}}$) in the case $X=\mathrm{Fl}(3)$.
5. Utilize the 'quantum $=$ classical' to prove that for any $d>0$,

$$
\left\langle\mathcal{O}^{(1)}, \mathcal{O}^{\lambda}, \mathcal{O}^{\mu}\right\rangle_{d}=\left\langle\mathcal{O}^{\lambda}, \mathcal{O}^{\mu}\right\rangle_{d}
$$

6. Utilize problems 1 and 4 in set 2 to work out the quantum K theory of \mathbb{P}^{n}. Check the quantized Whitney relations:

$$
\lambda_{y}(\mathcal{O}(-1)) \circ \lambda_{y}\left(\mathbb{C}^{n} / \mathcal{O}(-1)\right)=\lambda_{y}\left(\mathbb{C}^{n}\right)-y^{n} \frac{q}{1-q} \mathcal{O}(-1) \circ \operatorname{det}\left(\mathbb{C}^{n} / \mathcal{O}(-1)\right)
$$

(Problem 5 in homework set 1 should be helpful.)

