Lectures on quantum K theory of flag manifolds (2)

Leonardo Mihalcea (Virginia Tech)

UIUC

Lecture notes, slides, and homework, available at https://personal.math.vt.edu//lmihalce/slides.html

June, 2023

Where are we and where we are going ?

Example (Still too early)

In $\operatorname{QK}(\operatorname{Gr}(3,6))(\operatorname{deg} q=6):$

$$
\begin{aligned}
\mathcal{O}^{3,2,1} \circ \mathcal{O}^{3,2,1} & =q^{2}-2 q^{2} \mathcal{O}^{1} \\
& +q^{2} \mathcal{O}^{2}+q^{2} \mathcal{O}^{1,1}-q^{2} \mathcal{O}^{2,1}+q \mathcal{O}^{3,3} \\
& +q \mathcal{O}^{2,2,2}+2 q \mathcal{O}^{3,2,1}-2 q \mathcal{O}^{3,2,2}-2 q \mathcal{O}^{3,3,1}+q \mathcal{O}^{3,3,2}
\end{aligned}
$$

Use the A. Buch's Equivariant Schubert Calculator available at https://sites.math.rutgers.edu/ asbuch/equivcalc/

Quantum K theory (Givental, Y.P. Lee)

For simplicity we take $X=G / P$ (a complex, projective, manifold) and $q=\left(q_{\beta}\right)$ a sequence of (Novikov) variables indexed by a basis $\left\{\left[C_{i}\right]\right\} \in H_{2}(X)$. Define

$$
\operatorname{deg} q_{i}=c_{1}\left(T_{X}\right) \cap\left[C_{i}\right] \in \mathbb{Z}
$$

(For $X=\operatorname{Gr}(k, n), H_{2}(X) \simeq \mathbb{Z}$ and $\operatorname{deg} q=n$.)

- As a module, $\mathrm{QK}(X)=K(X) \otimes_{\mathbb{Z}} \mathbb{Z}[[q]]$, i.e.,

$$
\mathrm{QK}(G / P))=\bigoplus_{w \in W^{P}} \mathbb{Z}[[q]] \mathcal{O}^{w}
$$

- The ring structure of $\mathrm{QK}(G / P)$ is determined by the QK metric and the 2-point and 3-point K-theoretic Gromov-Witten (KGW) invariants.

The moduli space of stable maps

For an effective degree $d \in H_{2}(X)$, denote by $\overline{\mathcal{M}}_{0, n}(X, d)$ the Kontsevich moduli space of (genus 0 , n pointed) stable maps of degree d. This is a projective scheme, with points stable maps:

$$
f:\left(C, p_{1}, \ldots p_{n}\right) \rightarrow X ; \quad f_{*}[C]=d
$$

Here C is a tree of \mathbb{P}^{1} 's, and f satisfies a stability condition. There are evaluation maps

$$
\mathrm{ev}_{i}: \overline{\mathcal{M}}_{0, n}(X, d) \rightarrow X \quad f \mapsto f\left(p_{i}\right)
$$

If $n=3$ and $d=0$, then $\overline{\mathcal{M}}_{0 . n}(X, 0)=X$ and $\mathrm{ev}_{i}=i d_{X}$.
We list some important properties of the Kontsevich moduli space.
Let $X=G / P$ be a flag manifold. Then:

- $\overline{\mathcal{M}}_{0, n}(X, d)$ has finite quotient singularities, hence rational singularities (this follows from construction);
- $\overline{\mathcal{M}}_{0, n}(G / P, d)$ is a connected, thus irreducible variety (Thomsen);
- $\overline{\mathcal{M}}_{0, n}(X, d)$ is a rational variety (Kim and Pandharipande).

The Gromov-Witten invariants and the QK product

Let $a_{1}, \ldots, a_{n} \in K(X)$ and $d \in H_{2}(X)$. The \mathbf{K}-theoretic Gromov-Witten invariant is

$$
\left\langle a_{1}, \ldots, a_{n}\right\rangle_{d}=\int_{\overline{\mathcal{M}}_{0, n}(X, d)} \operatorname{ev}_{1}^{*}\left(a_{1}\right) \cdot \ldots \cdot \operatorname{ev}_{n}^{*}\left(a_{n}\right)=\chi\left(\operatorname{ev}_{1}^{*}\left(a_{1}\right) \cdot \ldots \cdot \operatorname{ev}_{n}^{*}\left(a_{n}\right)\right) .
$$

In general the moduli space is not smooth, but since X is, one may write each of the classes a_{i} as a finite alternating sum of classes of vector bundles.
The (small) QK pairing is defined by

$$
((a, b))=\langle a, b\rangle+\sum_{d>0}\langle a, b\rangle_{d} q^{d} \quad \in \mathbb{Z}[[q]]
$$

The quantum K product is the unique product \circ which satisfies

$$
((a \circ b, c))=\sum_{d \geq 0}\langle a, b, c\rangle_{d} q^{d} .
$$

Examples of QK pairing; a○1

For $X=\operatorname{Gr}(k, n)$, the pairing is

$$
((1,1))=1+q+q^{2}+\ldots=\frac{1}{1-q} .
$$

More generally, the (simplest example of the) string equation implies that

$$
\langle a, b, 1\rangle_{d}=\langle a, b\rangle_{d}
$$

which furthermore gives that $((a \circ 1, b))=((a, b))$ for any $a, b \in K(X)$. Therefore

$$
a \circ 1=a \quad \in Q K(X)
$$

(For more details see examples 4.2 and 4.4 in the lecture notes.)

The quantum K ring

Theorem (Givental, Lee)

The product o equips $\mathrm{QK}(X)$ with a structure of a commutative, associative ring with identity $1=\left[\mathcal{O}_{x}\right]$.

From definition it follows that:

- $K(X) \simeq Q K(X) /\langle q\rangle$;
- Since $K(X)$ is filtered algebra, it induces a filtration on $Q K(X)$, with $\operatorname{deg} q_{i}=\int_{X} c_{1}\left(T_{X}\right) \cap\left[C_{i}\right]$. The associated graded algebra is

$$
\operatorname{Gr} Q K(X)=Q H^{*}(X)
$$

the quantum cohomology of X.

Unraveling the QK product

We discuss two equivalent formulations of the definition. Consider the product

$$
\mathcal{O}^{u} \circ \mathcal{O}^{v}=\sum N_{u, v}^{w, d} q^{d} \mathcal{O}^{w} .
$$

Then:

$$
N_{u, v}^{w, d}=\left\langle\mathcal{O}^{u}, \mathcal{O}^{\vee},\left(\mathcal{O}^{\omega}\right)^{\vee}\right\rangle_{d}-\sum_{d^{\prime}>0, \kappa} N_{u, v}^{\kappa, d-d^{\prime}}\left\langle\mathcal{O}^{\kappa},\left(\mathcal{O}^{\omega}\right)^{\vee}\right\rangle_{d^{\prime}}
$$

or, equivalently,

$$
\begin{aligned}
N_{u, v}^{w, d}= & \left\langle\mathcal{O}^{u}, \mathcal{O}^{\vee},\left(\mathcal{O}^{w}\right)^{\vee}\right\rangle_{d} \\
& +\sum(-1)^{s}\left\langle\mathcal{O}^{u}, \mathcal{O}^{\vee},\left(\mathcal{O}^{\kappa_{0}}\right)^{\vee}\right\rangle_{d_{0}} \cdot\left\langle\mathcal{O}^{\kappa_{0}},\left(\mathcal{O}^{\kappa_{1}}\right)^{\vee}\right\rangle_{d_{1}} \cdot \ldots \cdot\left\langle\mathcal{O}^{\kappa_{s}},\left(\mathcal{O}^{k}\right)^{\vee}\right\rangle_{d_{s}} ;
\end{aligned}
$$

here the sum is over effective degrees d_{0}, \ldots, d_{s} such that $d_{0}+\ldots+d_{s}=d$ and $d_{p}>0$ if $p>0$.

Some theorems for $X=G / P$

(1) (QK metric) Let $u, v \in W^{P}$. Then for each d there is an explicitly defined element $u(d) \in W^{P}$ such that

$$
\left\langle\mathcal{O}_{u}, \mathcal{I}^{v}\right\rangle_{d}=\delta_{u(d), v} .
$$

The Schubert variety $X_{u(d)}$ is the curve neighborhood of X_{u}. The QK metric may be calculated by

$$
\left(\left(\mathcal{O}^{u}, \mathcal{O}^{\vee}\right)\right)=\frac{q^{d_{\min }(u, v)}}{\prod\left(1-q_{i}\right)}
$$

where $q^{d_{\text {min }}(u, v)}$ is the minimum power of q in the quantum cohomology product $\left[X^{u}\right] \star\left[X^{v}\right]$.
(2) (Finiteness) The quantum K product is finite, i.e., for any $u, v \in W^{P}$, $\mathcal{O}^{u} \circ \mathcal{O}^{v} \in \mathrm{~K}(X) \otimes \mathbb{Z}[q]$.

- (Positivity) Let $X=\operatorname{Gr}(k, n)$ and consider

$$
\mathcal{O}^{\lambda} \circ \mathcal{O}^{\mu}=\sum N_{\lambda, \mu}^{\nu, d} q^{d} \mathcal{O}^{\nu}
$$

Then $(-1)^{|\nu|+n d-|\lambda|-|\mu|} N_{\lambda, \mu}^{\nu, d} \geq 0$.

'Quantum=classical'

Assume $X=\operatorname{Gr}(k, n)$ is a Grassmannian. Consider the incidence diagram

$$
\begin{aligned}
& Z_{d}:=\mathrm{Fl}(k-d, k, k+d ; n) \xrightarrow{p_{d}} \longrightarrow \mathrm{q},=\operatorname{Gr}(k, n) \\
& \quad q_{d} \\
& Y_{d}:=\mathrm{Fl}(k-d, k+d ; n)
\end{aligned}
$$

Here, if $d \geq k$ then we set $Y_{d}:=\mathrm{Fl}(k+d ; n)$ and if $k+d \geq n$ then we set $Y_{d}:=\operatorname{Gr}(k-d ; n)$. If $d \geq \min \{k, n-k\}$, then Y_{d} is a single point. Then for any $a, b, c \in \mathrm{~K}(X)$ and any effective degree d

$$
\langle a, b, c\rangle_{d}=\int_{Y_{d}}\left(q_{d}\right)_{*} p_{d}^{*}(a) \cdot\left(q_{d}\right)_{*} p_{d}^{*}(b) \cdot\left(q_{d}\right)_{*} p_{d}^{*}(c)
$$

The 'quantum $=$ classical' theorem has many applications, including:

- explicit combinatorial Pieri/Chevalley formulae for any (co)minuscule Grassmannians X;
- Presentations of $\operatorname{QK}(\operatorname{Gr}(k, n))$ by generators and relations which quantize the Whitney presentation;
- Positivity;
- An extension of Seidel representation and combinatorics of quantum shapes, generalizing Postnikov's cylinder.

Example

Recall that $\operatorname{QK}(\operatorname{Gr}(3,6))(\operatorname{deg} q=6)$:

$$
\begin{aligned}
\mathcal{O}^{3,2,1} \circ \mathcal{O}^{3,2,1} & =q^{2}-2 q^{2} \mathcal{O}^{1} \\
& +q^{2} \mathcal{O}^{2}+q^{2} \mathcal{O}^{1,1}-q^{2} \mathcal{O}^{2,1}+q \mathcal{O}^{3,3} \\
& +q \mathcal{O}^{2,2,2}+2 q \mathcal{O}^{3,2,1}-2 q \mathcal{O}^{3,2,2}-2 q \mathcal{O}^{3,3,1}+q \mathcal{O}^{3,3,2}
\end{aligned}
$$

Then

$$
\left(\left(\mathcal{O}^{(3,2,1)}, \mathcal{O}^{(3,2,1)}\right)\right)=\frac{q}{1-q} .
$$

Curve neighborhoods

Let $\Omega_{1}, \ldots, \Omega_{n} \subset X$ be closed subvarieties and fix an effective degree $d \in H_{2}(X)$.
(1) The (n-point) Gromov-Witten variety is the intersection

$$
\operatorname{GW}_{d}\left(\Omega_{1}, \ldots, \Omega_{n}\right)=\operatorname{ev}_{1}^{-1}\left(\Omega_{1}\right) \cap \ldots \cap \operatorname{ev}_{n}^{-1}\left(\Omega_{n}\right) \subset \overline{\mathcal{M}}_{0, n+a}(X, d)
$$

If $\Omega_{2}=\ldots=\Omega_{n}=X$ we will simply use the notation
$\operatorname{GW}_{d}\left(\Omega_{1}\right)=\operatorname{GW}_{d}\left(\Omega_{1}, X, \ldots, X\right)$.
(3) The (n-point) curve neighborhood of $\Omega_{1}, \ldots, \Omega_{n}$ is defined as the image of the corresponding Gromov-Witten variety:

$$
\Gamma_{d}\left(\Omega_{1}, \ldots, \Omega_{n}\right)=\operatorname{ev}_{n+1}\left(\operatorname{GW}_{d}\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right)
$$

As before, $\Gamma_{d}(\Omega):=\operatorname{ev}_{n+1}\left(\mathrm{GW}_{d}(\Omega)\right)$.
All these may be extended to the case when one has a sequence of degrees d_{1}, \ldots, d_{k}, by replacing the moduli space with an appropriate stratum in the boundary.

Examples

Example

(a) If $d=0$, then $\Gamma_{0}\left(\Omega_{1}, \Omega_{2}\right)=\Omega_{1} \cap \Omega_{2}$.
(b) Take $X=\mathbb{P}^{n}$ and $d>0$. Then $\Gamma_{d}(p t)=\mathbb{P}^{n}$ and

$$
\Gamma_{d}(p t, p t)= \begin{cases}\text { line } & d=1 \\ \mathbb{P}^{n} & d \geq 2 .\end{cases}
$$

Basic properties of curve neighborhoods

Theorem (Buch-Chaput-M.-Perrin)

Let $\Omega_{1}, \ldots, \Omega_{n}$ be general translates of Schubert varieties in X. Then the following hold: (a) The GW variety $\mathrm{GW}_{d}\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ is either empty, or locally irreducible of expected dimension, and with rational singularities. Furthermore,

$$
\left\langle\left[\mathcal{O}_{\Omega_{1}}\right], \ldots,\left[\mathcal{O}_{\Omega_{n}}\right]\right\rangle_{d}=\chi\left(\left[\mathcal{O}_{\mathrm{GW}_{d}\left(\Omega_{1}, \ldots, \Omega_{n}\right)}\right]\right)
$$

(b) The non-empty Gromov-Witten varieties $\mathrm{GW}_{d}\left(\Omega_{1}, \Omega_{2}\right)$ are irreducible and rationally connected. In particular, the 2-point curve neighborhood $\Gamma_{d}\left(\Omega_{1}, \Omega_{2}\right)$ is also irreducible and rationally connected.
(c) If Ω is any Schubert variety, then $\Gamma_{d}(\Omega)$ is again a Schubert variety and the evaluation map $\mathrm{ev}_{i}: \mathrm{GW}(\Omega) \rightarrow \Gamma_{d}(\Omega)$ is cohomologically trivial.

Two-point KGW invariants

For $u \in W^{P}$ and $d \geq 0$ an effective degree, define $u(d), u(-d) \in W^{P}$ by:

$$
X_{u(d)}=\Gamma_{d}\left(X_{u}\right) ; \quad X^{u(-d)}=\Gamma_{d}\left(X^{u}\right) .
$$

Then for $u, v \in W^{P}$, the 2 -point KGW invariants are given by:

$$
\left\langle\mathcal{O}_{u}, \mathcal{O}^{v}\right\rangle_{d}=\left\langle\mathcal{O}_{\Gamma_{d}\left(X_{u}\right)}, \mathcal{O}^{v}\right\rangle_{0}= \begin{cases}1 & v \leq u(d) \\ 0 & \text { otherwise } .\end{cases}
$$

In particular the minimum quantum degree in $\left[X_{u}\right] *\left[X^{\nu}\right]$ is

$$
d_{\min }(u, v)=\min \{d: v \leq u(d)\} .
$$

From the duality between structure and ideal sheaves:

$$
\left\langle\mathcal{O}^{u},\left(\mathcal{O}^{v}\right)^{v}\right\rangle_{d}=\delta_{u(-d), v},
$$

(the Kronecker delta symbol).

Curve neighborhoods: the moment graph method

The moment graph of G / P has:

- vertices corresponding to $u \in W^{P}$;
- edges $u \xrightarrow{d(i, j)} v$ if $\ell(v)>\ell(u)$ and $u \cdot(i, j)=v$ for $i<j$.

The edge has (multi)degree $d_{i, j}=\varepsilon_{i}-\varepsilon_{j}$ modulo Δ_{P} (the simple roots which are already in P).

Theorem (Buch-M.)

Then $\Gamma_{d}\left(X_{u}\right)$ is the (unique!) maximal element in the Bruhat order obtained from tracing a path from u of degree $\leq d$.

Example

Below is the moment graph for $\mathrm{Fl}(3)$. With blue we drew the paths giving $\Gamma_{(1,0)}(p t)=X_{s_{1}}, \Gamma_{(0,1)}(p t)=X_{s_{2}}, \Gamma_{(1,1)}(p t)=X_{s_{1} s_{2} s_{1}}$.

Curve neighborhoods of Grassmannians

Let λ included in the $k \times(n-k)$ rectangle. The curve neighborhoods have nice combinatorial descriptions:

- $\lambda(d)$ is obtained from λ by adding d rim hooks of maximal length;
- $\lambda(-d)$ is obtained from λ by removing d rim hooks of maximal length.

The curve neighborhood $\lambda(2)$, for $\lambda=(3,2,1)$.

How to calculate curve neighborhoods for general flag manifolds
The Demazure product - of two Weyl group elements is defined as follows. If $u \in W$ and $s_{i} \in W$ is a simple reflection,

$$
u \cdot s_{i}= \begin{cases}u s_{i} & \ell\left(u s_{i}\right)>\ell(u) \\ u & \ell\left(u s_{i}\right)<\ell(u)\end{cases}
$$

If $v=s_{i_{1}} \ldots s_{i_{k}}$ is a reduced decomposition, then $u \cdot v=\left(\left(\left(u \cdot s_{i_{1}}\right) \cdot s_{i_{2}}\right) \ldots\right) \cdot s_{i_{k}}$. This equips (W, \cdot) with a structure of an associative monoid. Let also $z_{d} \in W$ be the unique element defined by

$$
X_{z_{d}}=\Gamma_{d}(p t) \subset \mathrm{Fl}(n)
$$

We have the following algorithm to calculate $u(d)$:

Theorem (BCMP,Buch-M)

The following hold:
(a) $\operatorname{In} G / B, \Gamma_{d}\left(X_{u}\right)=X_{u \cdot z_{d}}$.
(b) Take $\alpha>0$ be the largest positive root such that $d-\alpha^{\vee} \geq 0$ in $\mathrm{H}_{2}(\mathrm{Fl}(n))$. Then

$$
z_{d}=z_{d-\alpha} \vee \cdot s_{\alpha}=s_{\alpha} \cdot z_{d-\alpha} \vee
$$

(c) Same procedure applies to any G / P : take $\alpha \in R^{+} \backslash R_{P}^{+}$maximal such that $d-\alpha^{\vee} \geq 0$ in $H_{2}(\mathrm{Fl}(\mathbf{i}))$. Then

$$
z_{d} W_{P}=s_{\alpha} \cdot z_{d-\alpha} \vee W_{P}
$$

A ring homomorphism

Theorem (Buch-Chung-M.-Li)

Assuming that the QK product is finite, consider the specialization at $q_{i} \mapsto 1$ for all i of the usual pairing $\chi: \operatorname{QK}(X) \rightarrow \mathrm{QK}(p t)=\mathbb{Z}[q]$. Then this is a ring homomorphism, i.e.

$$
\chi(a \circ b)=\chi(a) \cdot \chi(b) .
$$

This is false in any other (quantum or classical) cohomology theory. (Just try $[p t] \cdot[p t] \in K\left(\mathbb{P}^{1}\right)$ or $[p t] \star[p t] \in Q H^{*}\left(\mathbb{P}^{1}\right)$; see more about this in the lecture notes, e.g., Ex. 6.10.)

A more general ring homomorphism

Theorem (Kato)

Let $\pi: G / P \rightarrow G / Q$ be the natural projection for $P \subset Q$. Consider the $\mathbb{Z}[q]$-module projection $\pi_{*}: \operatorname{QK}(G / P) \rightarrow \mathrm{QK}(G / Q)$ defined by extending the usual projection $\pi_{*}: \mathrm{K}(G / P) \rightarrow \mathrm{K}(G / Q)$ and specializing $q_{i} \mapsto 1$ for all i such that $s_{i} \in W_{Q} \backslash W_{P}$. Then this is a ring homomorphism.

THANK YOU

Cominuscule spaces

The node k is cominuscule if the simple root α_{k} appears with multiplicity 1 in the highest root.

