Lectures on quantum K theory of flag manifolds (1)

Leonardo Mihalcea (Virginia Tech)

UIUC

Lecture notes, slides, and homework, available at https://personal.math.vt.edu//lmihalce/slides.html

June, 2023

Where are we and where we are going ?

A way too early example in $\operatorname{QK}(\operatorname{Gr}(3,6))$ (here $\operatorname{deg} q=6$):

$$
\begin{aligned}
\mathcal{O}^{(3,2,1)} & \circ \mathcal{O}^{(2,1)}=q \mathcal{O}^{(3)}+2 q \mathcal{O}^{(2,1)}-2 q \mathcal{O}^{(2,2)} \\
& -2 q \mathcal{O}^{(3,1)}+q \mathcal{O}^{(3,2)}+q \mathcal{O}^{(1,1,1)}-2 q \mathcal{O}^{(2,1,1)}+q \mathcal{O}^{(2,2,1)}+q \mathcal{O}^{(3,1,1)} \\
& -q \mathcal{O}^{(3,2,1)}+\mathcal{O}^{(3,3,3)} .
\end{aligned}
$$

Use the A. Buch's Equivariant Schubert Calculator available at https://sites.math.rutgers.edu/ asbuch/equivcalc/

K theory

X complex projective manifold. The K-theory

$$
K(X)=\frac{\{[E]: E \rightarrow X \text { vector bundle }\}}{[E]=[F]+[G]},
$$

for any short exact sequence $0 \rightarrow F \rightarrow E \rightarrow G \rightarrow 0$. Addition and multiplication are given by

$$
[E]+[F]:=[E \oplus F] ; \quad[E] \cdot[F]:=[E \otimes F] .
$$

There is a pairing $\langle\cdot, \cdot\rangle: K(X) \times K(X) \rightarrow \mathbb{Z}$ defined by

$$
\langle[E],[F]\rangle=\int_{X} E \otimes F=\sum(-1)^{i} \operatorname{dim} H^{i}(X ; E \otimes F)
$$

If $Y \subset X$ closed subvariety, \mathcal{O}_{Y} has a finite resolution by vector bundles, thus $\left[\mathcal{O}_{Y}\right] \in K(X)$. More generally, any coherent sheaf \mathcal{F} has such a resolution, and it gives $[\mathcal{F}] \in K(X)$. The K theory classes $\left[\mathcal{O}_{Y}\right],[\mathcal{F}]$ are called Grothendieck classes.

More generally, for arbitrary X :

- The (Grothendieck) ring of vector bundles $=K^{\circ}(X)$;
- The (Grothendieck) group of coherent sheaves $=K_{\circ}(X)$;
- If X is smooth $K^{\circ}(X)=K_{\circ}(X)=K(X)$;

$K(p t), K\left(\mathbb{P}^{1}\right)($ part I $)$

Intersections

Lemma (Fulton-Pragacz, Brion)

Let Y, Z be equidimensional Cohen-Macaulay subvarieties of a nonsingular variety X. Assume that the intersection $Y \cap Z$ is proper, i.e., it has the expected dimension $\operatorname{dim} Y+\operatorname{dim} Z-\operatorname{dim} X$. Then each component of the scheme theoretic intersection $Y \cap Z$ has the expected dimension and $Y \cap Z$ is Cohen-Macaulay. Furthermore,

$$
\left[\mathcal{O}_{Y}\right] \cdot\left[\mathcal{O}_{z}\right]=\left[\mathcal{O}_{Y \cap z}\right] \quad \in K(X) .
$$

Example

- Any smooth variety is Cohen-Macaulay.
- Any Schubert variety is Cohen-Macaulay.
- More generally, we have a Kleiman's transversality statement: if $Y \subset X$, then for general $g_{1}, \ldots, g_{k} \in G, Y \cap g_{1} X^{w_{1}} \cap g_{2} X^{w_{2}} \cap \ldots \cap g_{k} X^{w_{k}}$ is either empty or purely-dimensional, of expected dimension, and Cohen-Macaulay.
- (To be defined later.) The moduli space of stable maps $\overline{\mathcal{M}}_{0, n}(G / P, d)$ is Cohen-Macaulay, because it is locally a smooth variety modulo a finite group.
- Smooth pull-backs preserve the Cohen-Macaulay property.

Example: $K\left(\mathbb{P}^{n}\right)$

Functoriality

- $K_{\circ}(X)$ a structure of $K^{\circ}(X)$-module. (Note the strong similarities to cohomology/homology versions!)
- If $f: X \rightarrow Y$ is a morphism, there is a pull-back ring homomorphism

$$
f^{*}: K^{\circ}(Y) \rightarrow K^{\circ}(X), \quad[E] \mapsto\left[f^{*} E\right]
$$

If f is flat and $Z \subset X$ is a subvariety, then $f^{*}\left[\mathcal{O}_{Z}\right]=\left[\mathcal{O}_{f^{-1}(Z)}\right]$.

- If $f: X \rightarrow Y$ is proper, there is a push-forward

$$
f_{*}: K_{\circ}(X) \rightarrow K_{\circ}(Y), \quad f_{*}[\mathcal{F}]=\sum_{i \geq 0}(-1)^{i}\left[R^{i} f_{*} \mathcal{F}\right]
$$

(This sum is finite, as the higher direct images vanish beyond the dimension of X.)

- The push-forward and pull-back satisfy the usual projection formula:

$$
f_{*}\left(f^{*}[E] \otimes[\mathcal{F}]\right)=[E] \otimes f_{*}[\mathcal{F}] \quad \in K(Y)
$$

- Integration: Let $p: X \rightarrow p t$ and assume X is proper. Then

$$
p_{*}[\mathcal{F}]=\sum(-1)^{i} \operatorname{dim} H^{i}(X ; \mathcal{F})=\chi(X ; \mathcal{F})
$$

The Chern character

As usual X is a manifold/smooth variety. The Chern character

$$
c h: K(X) \rightarrow H^{*}(X)_{\mathbb{Q}} ; \quad c h[L]=e^{c_{1}(L)}=1+c_{1}(L)+c_{1}(L)^{2} / 2!+\ldots
$$

where $L \rightarrow X$ is a line bundle. For a general vector bundle $E \rightarrow X$, the splitting principle allows us to assume that $E=L_{1} \oplus \ldots \oplus L_{r}$ is a direct sum of line bundles with Chern roots x_{1}, \ldots, x_{r}. Then

$$
c h(E)=e^{x_{1}}+\ldots+e^{x_{r}} .
$$

If $Z \subset X$ is closed and irreducible, then

$$
c h(Z)=[Z]+\text { h.o.t. }
$$

where h.o.t. are terms in cohomological degree strictly larger than codim Z. In other words $c h\left(\left[\mathcal{O}_{z}\right]\right) \in \oplus_{j \geq i} H^{j}(X)$, where subscripts denote dimension. The Chern character is always a ring isomorphism, if one works over \mathbb{Q}.

Example: $\operatorname{ch}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right)$

The Hirzebruch λ_{y} class

Let $E \rightarrow X$ vector bundle of rank r. The Hirzebruch λ_{y} class of E is defined by

$$
\lambda_{y}(E)=1+y[E]+y^{2}\left[\wedge^{2} E\right]+\ldots+y^{r}\left[\wedge^{r} E\right] \quad \in K(X)[y] .
$$

This class is multiplicative: if $0 \rightarrow E_{1} \rightarrow E_{2} \rightarrow E_{3} \rightarrow 0$ is a short exact sequence then

$$
\lambda_{y}\left(E_{1}\right) \cdot \lambda_{y}\left(E_{3}\right)=\lambda_{y}\left(E_{2}\right)
$$

The class $\lambda_{-1}\left(E^{*}\right)$ is sometimes called the K-theoretic Chern class of E, denoted by $c K(E)$. If L is a line bundle with first Chern class $c_{1}(L)$, then

$$
\operatorname{ch}\left(\lambda_{-1}\left(L^{*}\right)\right)=1-e^{-c_{1}(L)}=c_{1}(L)+\text { h.o.t. }
$$

Furthermore, the identity

$$
\left(1-e^{x}\right)\left(1-e^{y}\right)=\left(1-e^{x}\right)+\left(1-e^{y}\right)-\left(1-e^{x+y}\right)
$$

implies that if L^{\prime} is another line bundle, then

$$
c K\left(L \oplus L^{\prime}\right)=c K(L)+c K\left(L^{\prime}\right)-c K\left(L \otimes L^{\prime}\right)
$$

recovering the formal group law for K theory.
Finally, note that the class $\lambda_{-1}(E)$ appears geometrically as an Euler class: if $E \rightarrow X$ is a vector bundle with a general section $s: X \rightarrow E$, then the zero locus of s has class

$$
\left[\mathcal{O}_{Z(s)}\right]=\lambda_{-1}\left(E^{*}\right) \in K(X)
$$

Hirzebruch-Grothendieck-Riemann-Roch

THEOREM. Let X be a projective manifold and $E \rightarrow X$ a vector bundle on E. Denote by T_{X} the tangent bundle. Then

$$
\chi(X ; E)=\int_{X} \operatorname{ch}(E) \cdot T d\left(T_{X}\right),
$$

where $\operatorname{Td}\left(T_{X}\right)$ denotes the Todd class of T_{X}.

Flag manifolds

In these lectures we consider partial flag manifolds

$$
\mathrm{Fl}\left(i_{1}, \ldots, i_{k} ; n\right)=\left\{F_{i_{1}} \subset \ldots \subset F_{i_{k}} \subset \mathbb{C}^{n}\right\}=G / P
$$

with $G:=G L_{n}, B:=$ Borel subgroup of UT matrices, B^{-}is the opposite subgroup. Special cases:

$$
\operatorname{Gr}(k ; n)=\left\{V \subset \mathbb{C}^{n}: \operatorname{dim} V=k\right\}=G / P
$$

the Grassmannian, with P maximal parabolic, and

$$
\operatorname{Fl}(n)=\left\{F_{1} \subset \ldots \subset F_{n-1} \subset \mathbb{C}^{n}\right\}=G / B
$$

the complete flag manifold. The Weyl group $W=S_{n}$, and for $P \supset B$, define

$$
W_{P}=\left\langle s_{i_{1}}, \ldots, s_{i_{k}}: s_{i_{j}} \in P\right\rangle \leq W
$$

and let W^{P} the set of minimal length representatives in W / W_{P}.

- For $\operatorname{Fl}(n)=G / B, W_{B}=\langle 1\rangle$ and $W^{B}=W$;
- For $\operatorname{Gr}(k, n)=G / P, W_{P}=\left\langle s_{1}, \ldots, \widehat{s}_{k}, \ldots, s_{n-1}\right\rangle$ and

$$
W^{P} \leftrightarrow \lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k} \geq 0\right) \text { and } \lambda_{1} \leq n-k
$$

partitions included in the $k \times(n-k)$ rectangle.
Let $w_{0}=\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ n & n-1 & \ldots & 1\end{array}\right)$ and $w^{\vee}=$ is the minimal length representative for $w_{0} w$ in W^{P}.

Tautological sequences

Schubert varieties

Fix a flag $F_{\bullet}=\left\langle e_{1}\right\rangle \subset\left\langle e_{1}, e_{2}\right\rangle \subset \ldots \subset \mathbb{C}^{n}$. Schubert varieties:

- For $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k} \geq 0\right)$, and $\lambda_{1} \leq n-k$,

$$
X^{\lambda}=\left\{V \in \operatorname{Gr}(k, n): \operatorname{dim} V \cap F_{n-k+i-\lambda_{i}} \geq i\right\}
$$

- There is also an opposite Schubert variety X_{λ}.
- $\operatorname{dim} X_{\lambda}=\operatorname{codim} X^{\lambda}=|\lambda|=\lambda_{1}+\ldots+\lambda_{k}$.
- A similar description for Schubert varieties $X_{u}, X^{u} \subset G / P$, for permutations $u \in W^{P}$:

$$
X^{u}=\overline{B^{-} u P / P} ; \quad X_{u}=\overline{B u P / P}
$$

With these definitions

$$
\operatorname{dim}_{\mathbb{C}} X_{u}=\operatorname{codim}_{\mathbb{C}} X^{u}=\ell(u)
$$

- The boundary of X^{w} is defined by

$$
\partial X^{w}=X^{w} \backslash X^{w, o}=\overline{B^{-} u P / P} \backslash B^{-} u P / P ; \quad \partial X_{w}=\overline{B w P / P} \backslash B w P / P
$$

Denote

$$
\mathcal{O}^{w}=\left[\mathcal{O}_{X^{w}}\right], \quad \mathcal{I}^{w}=\left[\mathcal{O}_{X^{w}}\left(-\partial X^{w}\right)\right]=\left[\mathcal{I}_{\partial X^{w}}\right]=\left[\mathcal{O}_{X^{w}}\right]-\left[\mathcal{O}_{\partial X^{w}}\right]
$$

where \mathcal{I}^{w} is the ideal sheaf of ∂X^{w}. The classes of the ideal sheaves of the boundaries $\partial X_{w}, \partial X^{w}$ are denoted by $\mathcal{I}_{w}, \mathcal{I}^{w}$. Note that

$$
\mathcal{O}_{w}=\mathcal{O}^{w^{\vee}}, \quad \mathcal{O}^{w}=\mathcal{O}_{w} \vee \text { and } \mathcal{I}_{w}=\mathcal{I}^{w^{\vee}}, \quad \mathcal{I}^{w}=\mathcal{I}_{w} \vee
$$

Example: the ideal sheaves in Grassmannians

Assume that $G / P=\operatorname{Gr}(k, n)$ is a Grassmann manifold and let

$$
\iota: \operatorname{Gr}(k, n) \rightarrow \mathbb{P}=\mathbb{P}\left(\wedge^{k} \mathbb{C}^{n}\right)
$$

be the Plücker embedding. Then the boundary of Schubert varieties are also Cartier divisors, corresponding to the restriction of the line bundle $\mathcal{O}_{\mathbb{P}}(1)$ to X_{w}. This implies that for any partition $\lambda \subset k \times(n-k)$,

$$
\mathcal{I}^{\lambda}=\mathcal{O}^{\lambda} \cdot \mathcal{O}_{\operatorname{Gr}(k, n)}(-1)
$$

Combinatorially,

$$
\mathcal{I}^{\lambda}=\sum_{\lambda \subset \mu}(-1)^{|\mu / \lambda|} \mathcal{O}^{\mu} ; \quad \mathcal{O}^{\lambda}=\sum_{\lambda \subset \mu} \mathcal{I}^{\mu}
$$

where the sums are over partitions $\mu \supset \lambda$ such that μ / λ is a rook strip, i.e. the skew shape does not have two boxes in the same row or column. This is a particular case of the Chevalley formula.

The Schubert package $(X=G / P)$

- Schubert basis. The (Grothendieck) classes of the structure/ideal sheaves give bases:

$$
K(X)=\bigoplus_{w \in W^{P}} \mathbb{Z} \mathcal{O}^{w}=\bigoplus_{w \in W^{P}} \mathbb{Z} \mathcal{I}^{w}
$$

- Duals. The duals of the Schubert classes are the (opposite) boundary classes:

$$
\left\langle\mathcal{O}_{v}, \mathcal{I}^{w}\right\rangle=\left\langle\mathcal{O}^{v}, \mathcal{I}_{w}\right\rangle=\delta_{v, w}
$$

- Positivity. (Buch, Brion) If $\mathcal{O}^{u} \cdot \mathcal{O}^{v}=\sum c_{u, v}^{w} \mathcal{O}^{w}$ then

$$
(-1)^{\ell(u)+\ell(v)-\ell(w)} c_{u, v}^{w} \geq 0
$$

- Presentation. The Whitney relations give a complete ideal of relations. E.g., for $X=\operatorname{Gr}(k ; n)$ equipped with the tautological sequence $0 \rightarrow \mathcal{S} \rightarrow \mathbb{C}^{n} \rightarrow \mathcal{Q} \rightarrow 0$,

$$
\lambda_{y}(\mathcal{S}) \cdot \lambda_{y}(\mathcal{Q})=\lambda_{y}\left(\mathbb{C}^{n}\right)=(1+y)^{n}
$$

- Polynomial representatives. The Grothendieck polynomials represent Schubert classes.
- Functoriality. Let $P \subset Q$ be two parabolic subgroups and $\pi: G / P \rightarrow G / Q$ the projection. Then for any $v \in W^{P}$ and $w \in W^{Q}$,

$$
\pi_{*} \mathcal{O}_{v}=\mathcal{O}_{v w_{Q}} ; \quad \pi^{*} \mathcal{O}^{w}=\mathcal{O}^{w}
$$

To emphasize that we utilize a Poincaré dual class rather than its precise formula, we will use the notation $\left(\mathcal{O}_{w}\right)^{\vee}=\mathcal{I}^{w},\left(\mathcal{O}^{w}\right)^{\vee}=\mathcal{I}_{w}$.

Topological filtration

Recall that if $Y \subset X$ is irreducible, then

$$
\operatorname{ch}\left(\left[\mathcal{O}_{Y}\right]\right)=[Y]+\text { h.o.t. }
$$

This gives a decreasing (codimension) filtration

$$
K(X)=\mathcal{K}^{0}(X) \supset \mathcal{K}^{1}(X) \supset \ldots
$$

which gives $K(X)$ a structure of filtered ring, in the sense that $\mathcal{K}^{i}(X) \cdot \mathcal{K}^{j}(X) \subset \mathcal{K}^{i+j}(X)$.

Example

In $K(\operatorname{Gr}(2,4)$,

$$
\mathcal{O}^{\square} \cdot \mathcal{O}^{\square}=\mathcal{O}^{\square}+\mathcal{O} \boxminus-\mathcal{O} \square
$$

Why ? Because the short exact sequence

$$
0 \rightarrow \mathcal{O}_{x \square \cup x 甘} \rightarrow \mathcal{O}_{x \square} \oplus \mathcal{O}_{x \boxminus} \rightarrow \mathcal{O}_{x \square \cap x} \rightarrow 0
$$

Ideal sheaves and Schubert classes

Theorem

(a) Let $X=\operatorname{Fl}(n)$. Then

$$
\mathcal{I}_{w}=\sum_{v \leq w}(-1)^{\ell(w)-\ell(v)} \mathcal{O}_{v} ; \quad \mathcal{O}_{w}=\sum_{v \leq w} \mathcal{I}_{w}
$$

(b) Let $X=\operatorname{Gr}(k, n)$. Then for any partition $\lambda \subset k \times(n-k)$,

$$
\mathcal{I}^{\lambda}=\sum_{\lambda \subset \mu}(-1)^{|\mu / \lambda|} \mathcal{O}^{\mu} ; \quad \mathcal{O}^{\lambda}=\sum_{\lambda \subset \mu} \mathcal{I}^{\mu}
$$

where the sums are over partitions $\mu \supset \lambda$ such that μ / λ is a rook strip, i.e. the skew shape does not have two boxes in the same row or column.

Example

In $\operatorname{Gr}(3,7)$,

Note that for Grassmannians this is equivalent to a Chevalley formula:

$$
\mathcal{I}^{\lambda}=\mathcal{O}(-1) \cdot \mathcal{O}^{\lambda}=\left(1-\mathcal{O}^{\square}\right) \cdot \mathcal{O}^{\lambda}
$$

Positivity

Recall Buch/Brion's positivity theorem in $K(G / P)$: if $\mathcal{O}^{u} \cdot \mathcal{O}^{v}=\sum c_{u, v}^{w} \mathcal{O}^{w}$, then $(-1)^{\ell(u)+\ell(v)-\ell(w)} c_{u, v}^{w} \geq 0$.
The proof relies on a more a general result proved by Brion. A variety X has rational singularities if it has a proper resolution of singularities $\pi: X^{\prime} \rightarrow X$ such that (as sheaves)

$$
\pi_{*} \mathcal{O}_{X^{\prime}}=\mathcal{O}_{X} \text { and } R^{i} \pi_{*} \mathcal{O}_{X^{\prime}}=0, \quad i>0
$$

A variety with rational singularities must be normal and Cohen-Macaulay. Schubert varieties have rational singularities, and so have general intersections of them.

Theorem (Brion.)

Let $X=G / P$ and $Y \subset X$ be a subvariety with rational singularities. Consider the expansion

$$
\left[\mathcal{O}_{Y}\right]=\sum a_{w} \mathcal{O}_{w}
$$

Then $(-1)^{\ell(w)-\operatorname{dim} Y} a_{w} \geq 0$.
To prove positivity, apply the theorem to Y equal to the Richardson variety

$$
\mathcal{O}_{x^{u} \cap x_{v}}=\mathcal{O}^{u} \cdot \mathcal{O}_{v v}=\mathcal{O}^{u} \cdot \mathcal{O}^{v}
$$

Idea of proof

Assume Y is smooth and $X=\mathbb{P}^{n}$. Then

$$
\left.a_{w}=\chi\left(Y \cdot\left(\mathcal{O}^{w}\right)^{\vee}\right)\right)=\chi\left(\left[\mathcal{O}_{Y}\right] \cdot \mathcal{O}_{\mathbb{P}^{i}} \cdot \mathcal{O}(-1)\right)
$$

If nonempty, the general intersection is a (possibly disconnected) union of smooth varieties. The Kodaira vanishing theorem applied to each component of this intersection implies that

$$
\chi\left(\left[\mathcal{O}_{Y}\right] \cdot \mathcal{O}_{\mathbb{P}^{i}} \cdot \mathcal{O}(-1)\right)=(-1)^{\operatorname{dim} Y-n-i} H^{\operatorname{dim} Y-n-i}\left(Y \cap \mathbb{P}^{i} ; \mathcal{O}(-1)\right)
$$

proving the claim.

THANK YOU

Cominuscule spaces

The node k is cominuscule if the simple root α_{k} appears with multiplicity 1 in the highest root.

