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1. Preliminaries

Throughout the notes, G := GLn denotes the complex general linear group, B,B−

a pair of opposite Borel subgroups, e.g. the upper/lower triangular matrices. The as-
sociated Weyl group is W = Sn, the symmetric in n letters. It is generated by simple
reflections si = (i, i+ 1) where 1 ≤ i ≤ n− 1. Denote by ` : W → N the length function
and the longest element by w0. A sequence I = (1 ≤ i1 < . . . < ik ≤ n− 1) determines
a collection of simple roots si, i ∈ I. and a parabolic subgroup P ⊂ G. The partial
flag manifold is the homogeneous space

G/P = {Fi1 ⊂ Fi2 ⊂ . . . ⊂ Cn : dimFis = is}.
Of particular interest will be the Grassmannians and the flag manifolds:

Gr(k, n) = {V ⊂ Cn : dimV = k}
(for I = {k}) and the flag manifold by

Fl(n) = {F1 ⊂ F2 ⊂ . . . ⊂ Cn : dimFi = i}
1
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(for I = [1, n−1]). These are homogeneous spaces for G. (For those who know, you may
replace Fl(n) by any G/B, and Grassmannians by any cominuscule Grassmannians.) For
a sequence I, define WP to be the subgroup generated by the simple reflections si =
(i, i + 1) where i /∈ I, and set W P = W/WP , the set of minimal length representatives.
One can check that

W P = {w ∈ W : w has descents at most in positions i1, . . . , is}.
Fix {e1, . . . , en} the standard basis of Cn. The maximal torus of diagonal matrices

T ⊂ G acts on G/P and the T -fixed points are coordinate flags {Ew : w ∈ W P} where

Ew := 〈ew(1), . . . , ew(i1)〉 ⊂ 〈ew(1), . . . , ew(i2)〉 ⊂ . . . ⊂ 〈ei1 , . . . , ew(ik)〉 ⊂ Cn.

To each w ∈ W P there are two Schubert varieties:

Xw = B.Ew; Xw = B−.Ew,

where B,B− ⊂ GLn are opposite Borel subgroups. The orbits

X◦w = B.Ew; Xw,◦ = B−.Ew

are called Schubert cells. With these conventions, X◦w ' A`(w) andXw,◦ ' Adim Fl(i)−`(w).
In particular,

dimXw = codimXw = `(w); Xw ∩Xw = {Ew}; Xw = w0Xw0wwλ

where wP ∈ WP is the longest element. With these definitions, the Bruhat order on W P

is defined by
v < w in W P ⇔ Xv ⊂ Xw ⇔ Xv ⊃ Xw.

The partial flag manifolds have a stratification by Schubert cells:

G/P =
⊔

w∈WP

X◦w =
⊔

w∈WP

Xw,◦.

Consider now the K-theory ring K(G/P ); an excellent source for learning about this
is Brion’s notes [Bri05]. This is a ring under the addition and tensor product of vector
bundles. It has a nondegenerate intersection pairing

〈E,F 〉 =

∫
Fl(i)

E · F = χ(Fl(i), E ⊗ F ).

Denote the classes in K-theory of the partial flag manifolds by

Ow = [OXw ], Ow = [OXw ] ∈ K(G/P ) w ∈ W P .

These classes form a Z-basis called the Schubert basis:

K(G/P ) = ⊕ZOw = ⊕ZOw.
Plan:

(1) Definitions of QK theory, of curve neighborhoods, and applications;
(2) ‘Quantum = classical’ , structure theorems, two presentations;
(3) Positivity.
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2. Definition of quantum K theory and first properties

2.1. The moduli space. Let X be a projective manifold - very soon X = G/P . For
an effective degree d ∈ H2(X;Z), denote byM0,n(X, d) the Kontsevich moduli space of
(genus 0, n pointed) stable maps of degree d. This is a projective scheme, with points
stable maps:

f : (C, p1, . . . pn)→ X; f∗[C] = d.

Here C is a tree of P1’s, and f satisfies a stability condition: if C ′ is a component such
that f(C ′) = cst, then C ′ must have at least three marked points. A marked point
is either a node or a marking pi. There is a natural equivalence relation on this data.
The moduli space comes equipped with evaluation maps evi :M0,n(X, d)→ X, sending
f 7→ f(pi). If n ≥ 3 and d = 0, then M0.n(X, 0) = X ×M0,n, the product of X with
the Mumford moduli space of stable curves. The evaluation maps are all equal to the
projection to X.

More generally, for a sequence of effective degrees d1, . . . , dr ∈ H2(X), we can consider
the fibre product

M0,n1+...nr(X, (d1, . . . , dr)) :=M0,n1+1(X, d1)×X . . .×XM0,nr+1(X, dr)

This may be identified with a boundary component insideM0,n1+...nr)(X, (d1 + . . .+dr)).
We list some important properties of the Kontsevich moduli space.

Theorem 2.1. Let X = G/P be a flag manifold. Then the following hold:

• M0,n(X, d) has finite quotient singularities, hence rational singularities - this
follows from construction, see e.g. [FP97]
• M0,n(G/P, d) is a connected, thus irreducible variety (Thomsen [Tho98]);
• M0,n(X, d) is a rational variety (Kim and Pandharipande ADDREF)

2.2. Definition of quantum K theory (after Givental and Lee [Giv00, Lee04]).
From now on we will take X = G/P to be any partial flag manifold, or any homoge-
neous space. This results in fewer technicalities, such as the replacement of the ‘virtual
fundamental sheaves’ of Kontsevich moduli spaces by structure sheaves. For the general
construction, consult [Lee04].

We define next the K-theoretic Gromov-Witten invariants (KGW). Let a1, . . . , an ∈
K(X) and d ∈ H2(X). The KGW invariant is

(2.1) 〈a1, . . . , an〉d =

∫
M0,n(X,d)

ev∗1(a1) · . . . · ev∗n(an).

In general the moduli space is not smooth, but since X is, one may write each of the
classes ai as a finite alternating sum of classes of vector bundles. Then (2.1) may be
written as a finite alternating sum of sheaf Euler characteristics of vector bundles. In
the latter case, the product · is the tensor product ⊗.
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Example 2.1. Consider X = G/P a partial flag manifold. Then

〈1, . . . , 1〉d = 1

for any degree d. Indeed, from Theorem 2.1 we deduce that H i(OM0,n
(X, d)) = 0 for

i > 0, hence χ(OM0,n
(X, d)) = 1.

Recall that H2(X) has a basis of effective curve classes, say [C1], . . . , [Cr]. Consider
the sequence of Novikov variables q = (q1, . . . , qr). For d = d1[C1] + . . . + dr[Cr], set
qd = qd11 · . . . · qdrr . Define the Z[[q]]-module

QK(X) = K(X)⊗ Z[[q]].

Assume also that K(X) has a finite basis O0 = 1, . . . ,On, and denote by Oi,∨ the dual
basis with respect to the intersection pairing.

Definition 2.1. The (small) QK pairing is defined by

((a, b)) = 〈a, b〉+
∑
d>0

〈a, b〉dqd.

Here q stands for the sequence of Novikov variables indexed by a basis of H2(X), and
qd = qd11 · . . . · qdrr . The QK pairing is a nondegenerate pairing with values in the formal
power series Z[[q]].

The quantum K product is the unique product ◦ which satisfies

((a ◦ b, c)) =
∑
d≥0

〈a, b, c〉dqd.

Theorem 2.2 (Givental, Lee). The product ◦ equips QK(X) with a structure of a
commutative, associative ring with identity 1 = [OX ].

From definition it follows that K(X) ' QK(X)/〈q〉. Since K(X) is filtered algebra,
it induces a filtration on QK(X), with deg qi =

∫
X
c1(TX)∩ [Ci]. The associated graded

algebra is Gr QK(X) = QH∗(X), the quantum cohomology of X.
Next we unravel the definition of the QK product and we discuss two equivalent

formulations of the definition.

Lemma 2.1. Consider the product

Oi ◦ Oj =
∑

Nk,d
i,j q

dOk.

Then we have the following equivalent formulae for the structure constants Nk,d
i,j :

(a)

Nk,d
i,j = 〈Oi,Oj, (Ok)∨〉d −

∑
d′>0,s

N s,d−d′
i,j 〈Os, (Ok)∨〉d′ .
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(b)

Nk,d
i,j =〈Oi,Oj, (Ok)∨〉d

+
∑

(−1)s〈Oi,Oj, (Oi0)∨〉d0 · 〈Oi0 , (Oi1)∨〉d1 · . . . · 〈Ois , (Ok)∨〉ds ;

here the sum is over effective degrees d0, . . . , ds such that d0 + . . . + ds = d and dp > 0
if p > 0.

(c) Let D ⊂ M0,3(X, d) be the boundary divisors consisting of maps with reducible
domain where markings 1, 2 are on the first component, and marking 3 on the last.
Then

Nk,d
i,j = χ(OM0,3(X,d)(−D) · ev∗1(Oi) · ev∗2(Oj) · ev∗1((Ok)∨)).

Note that, unlike in quantum cohomology, both 2 and 3-point invariants are needed
to calculate a single structure constants. However, the proof of the associativity is es-
sentially the same as in the cohomological case: it is obtained from equalities obtained
by pulling back points in P1 'M0,4. The pull-backs are simple normal crossing bound-
ary divisors in M0,4(X, d); while in cohomology the class of such a reducible divisor
D =

⋃
Di is the sum if its components [Di], in K-theory this is an alternating sum

[OD] =
∑

(−1)k−1[ODi1∩...∩Dik ].

This explains the shape of the formula in part (c).
The formulae in the lemma suggest that in general the QK multiplication may not

be finite. Indeed, Example 2.1 shows that the KGW invariants are in general nonzero
for any degree d. It is not even clear why 1 = [OX ] is the identity in the QK ring! In
fact, the QK multiplication is finite for flag manifolds [BCMP13, Kat18, ACTI18].

At least for Grassmannians, we will explain this and more as an application of curve
neighborhoods of Schubert varieties, and of the ‘quantum=classical’ statement.

Informally, many calculations of KGW invariants can be traced to two facts:

• (Transversality) If Ω1, . . . ,Ωn satisfy a K-theoretic transversality property, then

[OΩ1 ] · . . . · [OΩn ] = [OΩ1∩...∩Ωn ];

• (Rational connectedness + mild singularities) IfX is a rational/unirational/rationally
connected projective variety which has rational singularities, then χ(OX) = 1.

The following result provides an important tool for proving that a variety is rationally
connected.

Theorem 2.3 (Graber, Harris, Starr). Let f : X → Y be any dominant morphism of
complete irreducible complex varieties. If Y and the general fiber of f are rationally
connected, then X is rationally connected.
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2.3. Curve neighborhoods and first applications. Throughout this section X =
G/P is a partial flag manifold. To perform the calculations required in formulae from
Lemma 2.1, we need formulae for the two-point KGW invariants of the form 〈Oi, (Oj)∨〉d.
For flag manifolds, this was obtained in a series of papers BCMP, BM, and utilize the
notion of curve neighborhoods. We present next the basic facts.

Definition 2.2. Let Ω1, . . . ,Ωn ⊂ X be closed subvarieties and fix an effective degree
d ∈ H2(X).

(a) The (n-point) Gromov-Witten variety is the intersection

GWd(Ω1, . . . ,Ωn) = ev−1
1 (Ω1) ∩ . . . ∩ ev−1

n (Ωn) ⊂M0,n+a(X, d).

If Ω2 = . . . = Ωn = X we will simply use the notation GWd(Ω1) = GWd(Ω1, X, . . . , X).
(b) The (n-point) curve neighborhood of Ω1, . . . ,Ωn is defined as the image of the

corresponding Gromov-Witten variety:

Γd(Ω1, . . . ,Ωn) = evn+1(GWd(Ω1, . . . ,Ωn)).

As before, Γd(Ω) := evn+1(GWd(Ω)).
All these may be extended to the case when one has a sequence of degrees d1, . . . , dk,

by replacing the moduli space with an appropriate stratum in the boundary.

Example 2.2. (a) If d = 0, then Γ0(Ω1,Ω2) = Ω1 ∩ Ω2.
(b) Take X = Pn and d > 0. Then Γd(pt) = Pn and

Γd(pt, pt) =

{
line d = 1

Pn d ≥ 2.

We also need the notion of cohomological triviality.

Definition 2.3. Let f : X → Y be a morphism of algebraic varieties. We say that f is
cohomologically trivial if f∗OX = OY and Rif∗OX = 0 for i> 0.

Most (all ?) non-trivial examples of cohomologically trivial maps arise from special
cases of a theorem of Kollár:

Theorem 2.4 (Kollár). Let f : X → Y be a surjective morphism of projective varieties
with rational singularities. If the general fibers of f are rationally connected, then f is
cohomologically trivial.

Initial versions of this result can be traced to work by ADDREF Chaput, Manivel
and Perrin. This version can be extracted from [BCMP13].

Theorem 2.5. Let Ω1, . . . ,Ωn be general translates of Schubert varieties in X. Then
the following hold:

(a) The GW variety GWd(Ω1, . . . ,Ωn) is either empty, or locally irreducible of expected
dimension, and with rational singularities. Furthermore,

〈[OΩ1 ], . . . , [OΩn ]〉d = χ([OGWd(Ω1,...,Ωn)]).
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(b) The non-empty Gromov-Witten varieties GWd(Ω1,Ω2) are irreducible and ratio-
nally connected.

(c) If Ω is any Schubert variety, then Γd(Ω) is again a Schubert variety and the
evaluation map evi : GW(Ω)→ Γd(Ω) is cohomologically trivial.

Idea of proof. We may assume Ω1 = Xu,Ω2 = Xv. The first statement follows from
applying a K-theoretic version of Kleiman-Bertini, due to Sierra. The evaluation map
ev1 : M(X, d) → X is a G-equivariant locally trivial fibration in Zariski topology.
Its fibre F is irreducible and unirational. By base-change, ev−1

1 (Xu) → Xu is also
locally trivial, showing GW(Xu) is irreducible and rationally connected. The image
Γd(Xu) = ev2(GW(Xu)) is irreducible and B-stable, thus a B-stable Schubert variety.
Then GWd(Xu) has an open dense set which is a locally trivial fibration over the cell
Γd(Xu)

◦. The intersection ev−1
1 (Xu)∩ ev−1

2 (Xv) is locally irreducible and it has an open
dense set which is a locally trivial fibration over Γd(Xu)

◦ ∩Xv. If non-empty, the latter
is irreducible and rational. Since all these varieties have rational singularities, and the
(general) fibers of these maps are unirational, the statement follows from Theorem 2.4
and Theorem 2.3. �

An immediate consequence is:

Corollary 2.1. Let Ω be any Schubert variety. Then the 1 and 2-point curve neighbor-
hoods are irreducible.

Proof. The curve neighborhoods in question are images of GW varieties, which are irre-
ducible by Theorem 2.5. �

For u ∈ W P and d an effective degree, define the elements u(d), u(−d) ∈ W P by

Xu(d) = Γd(Xu); Xu(−d) = Γd(X
u).

Using these elements one can immediately calculate any 2-point GW invariant.

Corollary 2.2. Let u, v ∈ W i be two Weyl group elements and d an effective degree.
Then

〈Ou, (Ov)∨〉d = δu(−d),v,

(the Kronecker delta symbol).

For u, v ∈ W P , define dmin(u, v) the minimum degree d for which GWd(Xu, X
v) 6= ∅.

Equivalently, this is the minimal degree of a rational curve joining the fixed points
Eu, Ew0vwP . By results of Postnikov and Fulton-Woodward ADDREF this is the same
as the minimum degree of q in the quantum cohomology product of [Xu] ? [Xv]. In
particular, it is well defined. Using this degree, one can calculate the QK pairing
between any two Schubert classes:

(2.2) ((Ou,Ov)) =
∑

d≥dmin(u,v)

〈Ou,Ov〉d qd =
qdmin(u,v)∏

(1− qi)
.
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Example 2.3. Assume that X = P2. In this case K(X) has a basis 1 = O0,O1,O2,
where Oi is the K-theoretic class representing the hyperplane of (complex) codimension
i. With respect to this basis, the Poincaré metric gij =

∫
X
Oi · Oj is given by the matrix

(gij) =

1 1 1
1 1 0
1 0 0


The QK metric is obtained by adding q

1−q :

((Oi,Oj)) = (gi,j) +
q

1− q
Id.

Corollary 2.3 ([BCLM20]). Assume that the QK product is finite, and consider the
specialization at qi 7→ 1 for all i of the usual pairing χ : QK(X) → QK(pt) = Z[q].
Then this is a ring homomorphism.

Proof. Write Ou ◦ Ov =
∑
Nw,d
u,v q

dOw. By the Frobenius property of the QK pairing,∑
Nw,d
u,v q

d 1∏
(1− qi)

= ((Ou ◦ Ov, 1)) = ((Ou,Ov)) =
qdmin(u,v)∏

(1− qi)
.

It follows that
∑
Nw,d
u,v = 1. Then the statement follows from the fact that χ(Ou) = 1

for any u. �

Note that χ is not a ring homomorphism for any specialization of QK(X) (the K-
theory specialization, the quantum cohomology specialization etc).

Example 2.4. Take a = b = [pt] in P1. Then

χ(a · b) = 0 6= χ(a) · χ(b) = 1 · 1 = 1.

We will show later that in QK(P1), [pt] ◦ [pt] = q and we can already prove that
(([pt], [pt])) = q

1−q .

There is a more general, and rather surprising statement, due to Kato.

Theorem 2.6 (Kato ADDREF). Let π : G/P → G/Q be the natural projection for
P ⊂ Q. Consider the Z[[q]]-module projection π∗ : QK(G/P ) → QK(G/Q) defined by
extending the usual projection π∗ : K(G/P ) → K(G/Q) and specializing qi 7→ 1 for all
i such that si ∈ Wj \Wi. Then this is a ring homomorphism.

More refined applications require more refined knowledge of the Weyl group elements
giving curve neighborhoods.

2.4. Calculation of curve neighborhoods. The goal is to give an algorithm to cal-
culate the elements u(d) and u(−d). To start,

Xu(−d)WP = Γd(X
uWP ) = Γd(w0Xw0uWP

) = Γd(w0XuWP
) = w0Xu(d)WP

.

This reduces the calculation of u(−d) to that of u(d). For ‘small’ degrees d, a practical
method to do this calculation is based on the moment graph of G/P .
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Example 2.5. TODO: Add example for Γ(1,0)(pt) = Xs1,Γ(0,1)(pt) = Xs2,Γ(1,1)(pt) =
Xs1s2s1 in Fl(3).

For a general combinatorial procedure, we need two ingredients. The Demazure
product · of two Weyl group elements is defined as follows. If u ∈ W and si ∈ W is a
simple reflection,

u · si =

{
usi `(usi) > `(u)

u `(usi) < `(u).

If v = si1 . . . sik is a reduced decomposition, then u · v = (((u · si1) · si2) . . .) · sik . This
equips (W, ·) with a structure of an associative monoid. Let also zd ∈ W be the unique
element defined by

Xu(d) = Γd(pt) ⊂ Fl(n).

The following combinatorial algorithm to calculate u(d) for any flag manifold has been
proved in [BM15].

Theorem 2.7. The following hold:
(a) In Fl(n), Γd(Xu) = Xu·zd.
(b) Take α > 0 be the largest positive root such that d− α∨ ≥ 0 in H2(Fl(n)). Then

zd = zd−α∨ · sα = sα · zd−α∨ .
(c) Same procedure applies to any G/P : take α ∈ R+\R+

P maximal such that d−α∨ ≥
0 in H2(Fl(i)). Then

zdWP = sα · zd−α∨WP .

If one works in the Grassmannian Gr(k, n) (or more generally in cominuscule homo-
geneous spaces), the theorem above was proved earlier in [BCMP13]. In this case the
Schubert classes are indexed by Young diagrams λ included in the k× (n−k) rectangle,
and the curve neighborhoods have particularly nice combinatorial descriptions:

• λ(d) is obtained from λ by adding d rim hooks of maximal length;
• λ(−d) is obtained from λ by removing d rim hooks of maximal length.

Example 2.6. The Schubert classes are indexed by Young diagrams λ included in the
k × (n− k) rectangle. The curve neighborhoods have nice combinatorial descriptions:

• λ(d) is obtained from λ by adding d rim hooks of maximal length;
• λ(−d) is obtained from λ by removing d rim hooks of maximal length.
• In particular, zd = ∅(d) is obtained by adding d rim hooks.

α5 α6 α7 α8 α9 α10 α11

α4 α5 α6 α7 α8 α9 α10

α3 α4 α5 α6 α7 α8 α9

α2 α3 α4 α5 α6 α7 α8

α1 α2 α3 α4 α5 α6 α7
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On the left: z1, z2, . . .; on the right: λ(2), for λ = (3, 2, 1).

Corollary 2.4 ([BCMP13]). Let X be a (cominuscule) Grassmannian. Then

Γd(Xu) = Γ1(Γ1(. . . (Γ1(Xu)))).

In other words, if one point may be joined to Xu using a rational curve of degree d, then
it may also be joined by a sequence of d lines.

This is special for (cominuscule) Grassmannians. It fails for example for IG(2, 7) or
for adjoint varieties. The corollary implies the following important simplification of the
formulae from Lemma 2.1 for the QK product of Schubert classes in QK(Gr(k;n)).

Corollary 2.5. Consider the QK product Oλ ◦ Oµ =
∑
Nν,d
λ,µq

dOν in QK(Gr(k;n)).
Then

Nν,d
λ,µ = 〈Oλ,Oµ, (Oν)∨〉d −

∑
η

〈Oλ,Oµ, (Oη)∨〉d−1 · 〈Oη, (Oν)∨〉1.

Proof. We need to show that for λ, µ fixed and fixed d− d0 := d1 + . . .+ dr ≥ 2, then∑
d1+...+dr=d−d0

(−1)r〈Oλ, (Oκ1)∨〉d1 · . . . · 〈Oκr , (Oν)∨〉dr = 0.

From Corollary 2.2 it follows that this equals to∑
d1+...+dr=d−d0

(−1)rδλ(−d1),κ1 · . . . · δκ(−dr),ν =
∑

(−1)rδλ(−d1−d2−...−dr),µ

=

d−d0∑
r=1

(−1)r
(
d− d0 + r − 1− r

r − 1

)
= 0.

�

This formula may be interpreted as

N ν,d
λ,µ = 〈(ev3)∗[GWd(g1X

λ, g2X
µ)]− (ev3)∗[GWd−1,1(g1X

λ, g2X
µ)], (Oν)∨〉〉

= 〈OΓd(λ,µ) −OΓd−1,1(λ,µ), (Oν)∨〉,

where g1, g2 are general in G. In fact, the second equality is slightly incorrect, and
we will see the correct form when we prove positivity theorem for QK(Gr(k;n)). This
expression will be the starting point of that proof.

3. The quantum=classical statement and first applications

3.1. The statement. We start with Buch’s notion of kernel and span of a rational
curve.



LECTURES ON QUANTUM K THEORY FOR FLAG MANIFOLDS (PARIS, JUNE 2022) 11

Definition 3.1. Let f : P1 → Gr(k;n) be a morphism of degree d. The kernel and
span of f are the linear subspaces of Cn defined by

ker(f) =
⋂
x∈P1

f(x); span(f) = span{f(x) : x ∈ P1}

Proposition 3.1 (Buch, Buch-Kresch-Tamvakis). (a) If f : P1 → Gr(k;n) is of degree
d then dim ker(f) ≥ k − d and dim spanf ≤ k + d. Furthermore, for a general map f ,
equalities occur.

(b) Let U, V,W ⊂ Gr(d, 2d) be three general spaces. Then there exists a unique mor-
phism f : P1 → Gr(n, 2n) of degree d such that f(0) = U, f(1) = V, f(∞) = W .

Proof. Let S be the tautological bundle on Gr(k;n). Then f ∗(S) ⊂ Cn, thus f ∗S =⊕k
i=1OP1(−ai) where ai ≥ 0 and

∑
ai = d. Therefore at least k − d of these integers

equal to 0; if one writes the coordinates of f(x), all the zero contributions will be in the
kernel. A similar idea works for the span.

Regarding part (b), observe that C2d = U ⊕ W . Take a basis v1, . . . , vd of V and
project to U,W : vi = ui + wi. Define f [s : t] = [su1 + tw1 : . . . : sud + twd]. �

Consider the ‘kernel-span incidence’:

Zd := Fl(k − d, k, k + d;n)
pd //

qd
��

X := Gr(k, n)

Yd := Fl(k − d, k + d;n)

Here, if d ≥ k then we set Yd := Fl(k+d;n) and if k+d ≥ n then we set Yd := Gr(k−d;n).
In particular, if d ≥ min{k, n− k}, then Yd is a single point.

Theorem 3.1 (Quantum = classical [BM11]). Let a, b, c ∈ KT (Gr(k;n)) and d ≥ 0 a
degree. If d ≥ k then we set d− k := 0 and if k + d ≥ n then we set k + d := n. Then
the following equality holds in KT (pt):

〈a, b, c〉d =

∫
Yd

(qd)∗(p
∗
da) · (qd)∗(p∗db) · (qd)∗(p∗dc).

The cohomological version of this theorem was obtained by Buch, Kresch and Tam-
vakis [BKT03].

Idea of proof. The proof of this is based on the ‘quantum = classical’ diagram which we
explain below. Let Md :=M0,3(X, d),

Bld = {((K,S), f) ∈ Yd ×Md, K ⊂ ker(f), span(f) ⊂ S}

Z
(3)
d = {K ⊂ V1, V2, V3 ⊂ S : (K,Vi, S) ∈ Zd}
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There is the following commutative diagram from [BM11]:

(3.1) Bld
π //

φ
��

Md

evi

��
Z

(3)
d

ei // Zd
pd //

qd

��

X

Yd

The map π : Bld → Md is birational, and if d ≤ min{k, n − k} then φ : Bld → Z
(3)
d

is also birational. A diagram chase proves the theorem in this case. The key point for
general d is that the general fibre of φ is rationally connected, thus φ is cohomologically
trivial. This is proved in type A in [BM11] by putting local coordinates, and in other
cominuscule types in ADDREF [Chaput-Perrin]. �

There is a version of the ‘quantum=classical’ which goes from a Grassmannian to
another Grassmannian. Form the following incidence diagram:

(3.2)

Zd := Fl(k − d, k, k + d;n)
p′d−−−→ Fl(k − d, k;n)

p′′d−−−−−→ X := Gr(k;n)

qd

y q′d

y
Yd := Fl(k − d, k + d;n)

pr−−−→ Gr(k − d;n)

Here all maps are the natural projections. As before, denote by pd : Fl(k−d, k, k+d;n)→
Gr(k;n) the composition pd := p′′d ◦ p′d.

Corollary 3.1. Let a, b, c ∈ KT (Gr(k;n)) and d ≥ 0 a degree. Assume that (qd)∗(p
∗
d(a)) =

pr∗(a′) for some a′ ∈ KT (Gr(k − d;n). Then

〈a, b, c〉d =

∫
Gr(k−d;n)

a′ · (q′d)∗(p′′∗d (b)) · (q′d)∗(p′′∗d (c)).

3.2. Pieri rule. One can prove that q′dp
′′
d(Oλ) = Oλd , where λd is the result if removing

the top d rows of λ. Similarly, if one uses Gr(k+ d;n) instead of Gr(k− d;n), one needs
to remove the leftmost d columns. Therefore one has explicit explicit calculations of the
coefficients in the products

Oi ◦ Oλ =
∑

Nµ,d
i,λ q

dOµ

in terms of the classical coefficients for Oi ◦ Oλ, found by Lenart ADDREF.
Recall that the outer rim of a partition λ consists of the set of boxes which do not

have any box strictly SE. One obtains the following formula:

Theorem 3.2 (Pieri rule). The constants Nµ,d
i,λ = 0 for d ≥ 2. Furthermore, Nµ,1

i,λ is
nonzero only if `(λ) = k, and µ can be obtained from λ by removing a subset of the
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boxes in the outer rim of λ, with at least one box removed from each row. When these
conditions hold, we have

Nµ,1
i,λ = (−1)e

(
r

e

)
where e = |µ| + n − i − |λ| and r is the number of rows of µ that contain at least one
box from the outer rim of λ, excluding the bottom row of this rim.

Example 3.1. On X = Gr(3, 6) we have N
(2,1),1
2,(3,2,1) = −2, with e = 1 and r = 2.

3.3. A presentation of QK(Gr(k;n)). Let 0 → S → Cn → Q → 0 be the tautolog-
ical sequence, where rk(S) = k. An influential result by Witten [Wit95] proves that
( QH∗(Gr(k;n)), ?), the quantum cohomology ring of the Grassmannian, is determined
by the ‘quantum Whitney relations’:

(3.3) c(S) ? c(Q) = c(Cn) + (−1)kq,

where c(E) = 1 + c1(E) + . . . + ce(E) is the total Chern class of the rank e bundle E.
This equation leads to a presentation of QH∗(Gr(k;n)) by generators and relations:

(3.4) QH∗(Gr(k;n)) =
Z[q][e1(x), . . . , ek(x); e1(x̃), . . . , en−k(x̃)]〈(∑k

i=0 ei(x)
)(∑n−k

j=0 ej(x̃)
)

= 1 + (−1)kq
〉 .

The idea if proof is explained in [FP97] (and it is originally due to Ruan-Tian) and it
goes as follows.

Proposition 3.2. Consider a ring R := Z[q][e1, . . . , ek, e1(x̃), . . . , en−k(x̃)]/〈P1, . . . , Pn〉
where Pi’s are polynomials in ei’s, ẽj’s, and q. Assume that:

• The specializatons Pi|q=0 generate the ideal of relations for H∗(X);
• Each Pi = 0 in QH∗(X).

Then R ' QH∗(X).

The idea is to extend this to QK theory. For that we start by writing down the rela-
tions in QK(Gr(k;n)). One can show that λy(S)·λy(Q) = λy(Cn) in the (equivariant) K-
theory ring of Gr(k;n). They utilize the Hirzebruch λy-class λy(E) = 1+yE+. . .+ye∧eE
of a vector bundle E. Our first theorem is an analogue of the quantum Whitney relations
(3.3).

Theorem 3.3 (Gu-M-Sharpe-Zou). The following equality holds in QKT (X):

(3.5) λy(S) ? λy(Q) = λy(Cn)− q

1− q
yn−k(λy(S)− 1) ? detQ.
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Corollary 3.2. Let X = (X1, . . . , Xk) and X̃ = (X̃1, . . . , X̃n−k). The quantum K theory
ring QK(Gr(k;n)) has a presentation with generators and relations

Z[[q]][e1(X), . . . , ek(X), e1(X̃), . . . , en−k(X̃)]

〈
∏k

i=1(1 + yXi)
∏n−k

j=1 = (1 + y)n − q
1−qy

n−kX̃1 · . . . · X̃n−k(
∏k

i=1(1 + yXi)− 1)〉

While in cohomology Chern classes of a vector bundle and its dual differ by a sign,
the relation is more subtle in K-theory. For example

∧i(S) · det(S∗) = ∧k−i(S∗).
(Take Chern character.) The quantum analogue of this is the following.

Theorem 3.4 (Gu-M-Sharpe-Zou). The following holds in QKT (Gr(k;n)):

(λy(S)− 1) ? det(Q) = (1− q)((λy(S)− 1) · det(Q)).

Equivalently, for any i > 0,

∧i(S) ? det(Q) = (1− q) ∧k−i (S∗) · det(Cn).

(Here we included detCn, because that’s how this statement generalizes to the equi-
variant setting.)

To prove such statements again one uses the ‘quantum=classical’. We illustrate with
the following corollary.

Corollary 3.3. Fix arbitrary b, c ∈ KT (Gr(k;n)) and any degree d ≥ 0. Then the
equivariant KGW invariant 〈λy(S), b, c〉d satisfies:

〈λy(S), b, c〉d =

∫
Gr(k−d;n)

λy(Sk−d) · q∗p∗(b) · q∗p∗(c).

In particular, the 2-point KGW invariant 〈b, c〉d satisfies:

〈b, c〉d =

∫
Gr(k−d;n)

q∗p
∗(b) · q∗p∗(c).

Based on ideas from physics, one considers the ‘twisted superpotential’ (see Morrison-
Plesser, Closset-Kim and others)

W =
k

2

k∑
a=1

(lnXa)
2 − 1

2

(
k∑
a=1

lnXa

)2

+ ln
(
(−1)k−1q

) k∑
a=1

lnXa + n

k∑
a=1

Li2 (Xa) .(3.6)

Here Li2 is the dilogarithm, and the only thing we need is that it satisfies

(3.7) y
∂

∂y
Li2(y) = − ln(1− y),
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The variables Xi are interpreted as the exponentials of the Chern roots Xi = exi . In
this context, the exterior powers ∧iS,∧jQ arise as certain Wilson line operators
considered in the physics literature (Jockers, Mayr et al, Ueda et al). The Coulomb
branch (or vacuum) equations for W are

(3.8) exp

(
∂W

∂ lnXi

)
= 1, 1 ≤ i ≤ k.

These equations are not Sk × Sn−k symmetric, so one needs to symmetrize them. For
that, it is convenient to work with the ‘shifted Wilson line operators’, or, equivalently,
with variables

zi = 1−Xi, (1 ≤ i ≤ k).

The Coulomb branch equations show that zi are the roots of a ‘characteristic polynomial’:

(3.9) f(ξ, z, q) = ξn +
n−1∑
i=0

(−1)n−iξign−i(z, λ, q),

where gj(z, λ, q) is symmetric in zi’s. (See example below.) This means that f(ξ, zi, q) =
0 for 1 ≤ i ≤ k.

Theorem 3.5 (Gorbounov-Korff, Gu-Sharpe-M.-Zou). The Vieta relations applied to
the characteristic polynomial f(ξ, zi, q) generate an ideal I such that

C[[q]][z1, . . . , zk; ẑ1, . . . , ẑn−k]/I

is isomorphic to QK(Gr(k;n)).

Example 3.2. The Coulomb branch relations for Gr(2; 5) are∑
i+j=`

ei(z)ej(ẑ) = g`(z, q) ,

for 1 ≤ ` ≤ 5, where the polynomials g`(z, λ, q) are given by

g1 = z1z2; g2 = g3 = 0; g4 = g5 = −q.

In fact, One may solve for ei(ẑ) in terms of ei(z) to obtain:

e1(ẑ) = −G1(z);

e2(ẑ) = G2(z);

e3(ẑ) = −G3(z).

Here Gi(z) are the Grothendieck polynomials, given by

G1(z) = z1 + z2 − z1z2;

G2(z) = z2
1 + z1z2 + z2

2 − z2
1z2 − z1z

2
2 ;

G3(z) = z3
1 + z2

1z2 + z1z
2
2 + z3

2 − z3
1z2 − z2

1z
2
2 − z1z

3
2 .
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4. Positivity

Conjecture 1. (Lenart-Maeno, Buch-M., Buch-Chaput-M.-Perrin) Consider the QK

product Oλ ◦ Oµ =
∑
N ν,d
λ,µq

dOν in Gr(k;n). Then

(−1)|λ|+|µ|−|ν|−ndN ν,d
λ,µ ≥ 0.

This conjecture was recently proved in [BCMP], in the general case of minuscule
Grassmannians.
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