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1. Preliminaries

Throughout the notes, G := GLn denotes the complex general linear group, B,B−

a pair of opposite Borel subgroups, e.g. the upper/lower triangular matrices. The as-
sociated Weyl group is W = Sn, the symmetric in n letters. It is generated by simple
reflections si = (i, i+1) where 1 ≤ i ≤ n− 1. Denote by ℓ : W → N the length function
and the longest element by w0. A sequence I = (1 ≤ i1 < . . . < ik ≤ n− 1) determines
a collection of simple roots si, i ∈ I. and a parabolic subgroup P ⊂ G. The partial
flag manifold Fl(i1, i2, . . . , is;n) is the homogeneous space

G/P = {Fi1 ⊂ Fi2 ⊂ . . . ⊂ Cn : dimFis = is}.

Of particular interest will be the Grassmannians and the flag manifolds:

Gr(k, n) = {V ⊂ Cn : dimV = k}

and the flag manifold by

Fl(n) = {F1 ⊂ F2 ⊂ . . . ⊂ Cn : dimFi = i}.

The first example corresponds to I = {k} and the second to I = {1, 2, . . . , n− 1}.
These are homogeneous spaces for G.1 For a sequence I of simple roots, define WP to

be the subgroup generated by the simple reflections si = (i, i + 1) where i /∈ I, and set
W P := W/WP , the set of minimal length representatives. One can check that

W P = {w ∈ W : w has descents at most in positions i1, . . . , is}.

If P is a maximal parabolic, i.e. G/P = Gr(k, n) is a Grassmann manifold, then W P

is in bijection with partitions λ = (λ1, . . . , λk) with 0 ≤ λk ≤ . . . ≤ λ1 ≤ n − k. The
weight of such a partition is |λ| = λ1 + . . .+ λk.
Fix {e1, . . . , en} the standard basis of Cn. The maximal torus of diagonal matrices

T ⊂ G acts on G/P and the T -fixed points are coordinate flags {Ew : w ∈ W P} where

Ew := ⟨ew(1), . . . , ew(i1)⟩ ⊂ ⟨ew(1), . . . , ew(i2)⟩ ⊂ . . . ⊂ ⟨ei1 , . . . , ew(ik)⟩ ⊂ Cn.

To each w ∈ W P there are two Schubert varieties:

Xw = B.Ew; Xw = B−.Ew,

where B,B− ⊂ GLn are opposite Borel subgroups. The orbits

X◦
w = B.Ew; Xw,◦ = B−.Ew

are called Schubert cells. With these conventions,X◦
w ≃ Aℓ(w) andXw,◦ ≃ AdimFl(i)−ℓ(w).

In particular,

dimXw = codim Xw = ℓ(w); Xw ∩Xw = {Ew}; Xw = w0Xw0wwλ

1A cognizant reader may replace G by any complex semisimple Lie group, Fl(n) by any G/B, and
Grassmannians by any cominuscule Grassmannian.
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where wP ∈ WP is the longest element. With these definitions, the Bruhat order on
W P is defined by

v < w in W P ⇔ Xv ⊂ Xw ⇔ Xv ⊃ Xw.

The partial flag manifolds have a stratification by Schubert cells:

G/P =
⊔

w∈WP

X◦
w =

⊔
w∈WP

Xw,◦.

For further use we also recall that a partial flag variety Fl(i1, . . . , is;n) is equipped
with a tautological sequence of vector bundles:

0 → Si1 ↪→ Si2 ↪→ . . . ↪→ Sis ↪→ Cn ↠ Qn−i1 ↠ Qn−i2 ↠ . . . ↠ Qn−is ↠ 0,

where the subscripts denote the ranks.

1.1. Goal. The goal of these lectures is to introduce the quantum K theory ring, some
of its basic properties, and computational techniques, mainly for Grassmannians. Before
we proceed, we represent schematically the relationships between various (classical and
quantum) intersection rings which are available in the literature.

QH∗
T (X) QK∗

T (X)

QH∗(X) QK∗(X)

H∗
T (X) KT (X)

H∗(X) K(X)

t7→0

q 7→0

gr

et 7→1

q 7→0

q 7→0

gr

t7→0

gr

et 7→1

gr

We will not discuss much about the equivariant version of all these rings, but most
techniques discussed below extend to the equivariant situation, and we will attempt to
point out if any changes are needed to make statements in that generality.

A (way too early) example2 in QK(Gr(3, 6)) (here deg q = 6):

O(3,2,1) ◦ O(2,1) = qO(3) + 2qO(2,1) − 2qO(2,2)

− 2qO(3,1) + qO(3,2) + qO(1,1,1) − 2qO(2,1,1) + qO(2,2,1) + qO(3,1,1)

− qO(3,2,1) +O(3,3,3).

Note a positivity statement: the sign of the coefficient of qdOν is given by the parity of

|(3, 2, 1)|+ |(2, 1)| − d · deg q − |ν| = 6 + 3− 6d− |ν|.
2The example was obtained utilizing A. Buch’s Equivariant Schubert Calculator available at

https://sites.math.rutgers.edu/ asbuch/equivcalc/
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2. K theory

Good sources for the material included in this section are Brion’s ‘Lectures on flag
manifolds’ and Chriss and Ginzburg’s ‘Representation theory and complex algebraic
geometry’.

2.1. Generalities. Let X be any algebraic variety. The (Grothendieck) K theory ring,
denoted by K(X), is defined as the ring generated by symbols [E] for (algebraic) vector
bundles E → X, modulo the relations [E2] = [E1] + [E3] for any short exact sequence of
vector bundles 0 → E1 → E2 → E3 → 0. The addition and multiplication are given by

[E1] + [E2] = [E1 ⊕ E2]; [E1] · [E2] = [E1 ⊗ E2].

Then K(X) becomes a commutative ring with identity the (class of the) trivial, rank 1
vector bundle, which we often denote by O. If X is complete (e.g., projective), this ring
is equipped with an intersection pairing

⟨[E], [F ]⟩ =
∫
X

[E] · [F ] = χ(X,E ⊗ F ).

If X is further assumed to be a (complex, quasi-projective) manifold, then one can
construct ‘Poincaré dual classes to line bundles.

Theorem 2.1 (Resolutions of coherent sheaves). Let X be a smooth, quasi-projective
variety and let F be a coherent sheaf on X. Then F has a finite resolution by locally
free sheaves (aka, vector bundles) on X:

0 → En → En−1 → . . . → E1 → F → 0.

Furthermore, one may assume that n ≤ dimX.

A proof can be found on [Chriss-Ginzburg, Prop. 5.1.29]. The theorem allows us to
define the class of any coherent sheaf as an element in K theory:

[F ] =
n∑

i=1

(−1)i−1[Ei] ∈ K(X).

Of course, the most interesting coherent sheaves are the structure sheaves of subvarieties
of X. If the subvarieties in question have nice singularities, then the product of classes
becomes especially nice. For the following see [Brion, Lemmas 4.1.1 and 4.1.2], who
further refers to a lemma of Fulton and Pragacz.

Lemma 2.2. Let Y, Z be equidimensional Cohen-Macaulay subvarieties of a nonsingular
variety X. Assume that the intersection Y ∩Z is proper, i.e., it has the expected dimen-
sion dimY +dimZ−dimX. Then each component of the scheme theoretic intersection
Y ∩ Z has the expected dimension and Y ∩ Z is Cohen-Macaulay. Furthermore,

[OY ] · [OZ ] = [OY ∩Z ] ∈ K(X).

Example 2.3. • Any smooth variety is Cohen-Macaulay.
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• Any Schubert variety is Cohen-Macaulay.
• More generally, we have a Kleiman’s transversality statement: if Y ⊂ X, then
for general g1, . . . , gk ∈ G, Y ∩ g1X

w1 ∩ g2X
w2 ∩ . . . ∩ gkX

wk is either empty or
purely-dimensional, of expected dimension, and Cohen-Macaulay.

• (To be defined later.) The moduli space of stable maps M0,n(G/P, d) is Cohen-
Macaulay, because it is locally a smooth variety modulo a finite group.

• Smooth pull-backs preserve the Cohen-Macaulay property.

2.1.1. Functoriality. In the literature, the Grothendieck ring of vector bundle is some-
times denoted by K◦(X), while the Grothendieck group of coherent sheaves is denoted
by K◦(X). Regarding a vector bundle as a locally free sheaf, then taking tensor prod-
ucts gives K◦(X) a structure of K◦(X)-module. (Note the strong similarities to coho-
mology/homology versions!) In particular, for any morphism f : X → Y , there is a
pull-back ring homomorphism f ∗ : K◦(Y ) → K◦(X) given by [E] 7→ [f ∗E]. If f
is flat and Z ⊂ X is a subvariety, then f ∗[OZ ] = [Of−1(Z)]. For a proper morphism
f : X → Y , the push-forward f∗ : K◦(X) → K◦(Y ) is defined by

f∗[F ] =
∑
i≥0

(−1)i[Rif∗F ].

This sum is finite, as the higher direct images vanish beyond the dimension of X. The
push-forward and pull-back satisfy the usual projection formula:

f∗(f
∗[E]⊗ [F ]) = [E]⊗ f∗[F ] ∈ K(Y ).

2.1.2. The topological filtration and the Chern character. For simplicity, assume that X
is smooth, so we identify K◦(X) ≃ K◦(X). One big difference between K theory and
(co)homology theory is that the K theory is not graded. However, one can define a
topological filtration by defining Ki(X) to be the subgroup of K◦(X) generated by
sheaves [F ] ∈ K◦(X) which have support in codimension ≥ i. Then

K◦(X) = K0(X) ⊃ K1(X) ⊃ . . .

is a decreasing filtration, and K(X) becomes a filtered ring, in the sense that Ki(X) ·
Kj(X) ⊂ Ki+j(X).

Let A∗(X) denote the Chow group, generated by classes [Z] of irreducible subvari-
eties Z ⊂ X modulo rational equivalence, see [Fulton, Intersection Theory]. Let also
Gr(K(X)) =

⊕
Ki(X)/Ki+1(X) be the associated graded to the topological filtration.

The class of a structure sheaf passes through rational equivalence, and one obtains a
ring homomorphism

Ψ : A∗(X) → Gr(K(X)); [Z] 7→ [OZ ].

In cases such as the flag manifolds (or, more generally, in the presence of a paving by
affines), this is an isomorphism.



6 LEONARDO CONSTANTIN MIHALCEA

Furthermore, there is always a Chern character ch : K(X) → A∗(X)Q defined by
sending the class of a line bundle [L] to

ch[L] = ec1(L) = 1 + c1(L) + c1(L)
2/2! + . . .

For a general vector bundle E → X one uses the splitting principle to define ch(E). If
X is smooth, it is shown e.g. in [Ful84] that if Z ⊂ X is closed and irreducible, then

ch(Z) = [Z] + l.o.t.

where l.o.t. are terms in homological degree strictly less than dimZ. In other words
ch([OZ ]) ∈ ⊕j≤iAj(X), where subscripts denote dimension. The Chern character is
always a ring isomorphism, if one works over Q.

2.1.3. The Hirzebruch λy class. For a rank e vector bundle E → X, the Hirzebruch
λy class of E is defined by

λy(E) = 1 + y[E] + y2[∧2E] + . . .+ ye[∧eE] ∈ K(X)[y].

This class is multiplicative: if 0 → E1 → E2 → E3 → 0 is a short exact sequence then

λy(E1) · λy(E3) = λy(E2).

The class λ−1(E
∗) is sometimes called the K-theoretic Chern class of E, denoted by

cK(E). This is justified by the observation that if L is a line bundle with first Chern
class c1(L), then

ch(λ−1(L
∗)) = 1− e−c1(L) = c1(L) + h.o.t..

Furthermore, the identity

(1− ex)(1− ey) = (1− ex) + (1− ey)− (1− ex+y)

implies that if L′ is another line bundle, then

cK(L⊕ L′) = cK(L) + cK(L′)− cK(L⊗ L′),

recovering the formal group law for K theory.
Finally, note that the class λ−1(E) appears geometrically as an Euler class: if E → X

is a vector bundle with a general section s : X → E, then the zero locus of s has class

[OZ(s)] = λ−1(E
∗) ∈ K(X).

Virtually everything we stated above extends to the equivariant case. In that case one
works with equivariant vector bundles and equivariant coherent sheaves. Informally, if
X admits a G-action, an equivariant vector bundle π : E → X is a vector bundle such
that its total space admits a G-action, π is G-equivariant, and that the restriction to
fibers induces a linear map. On flag manifolds G/P , such vector bundles are induced by
representations: if V is a representation of the parabolic group P ⊂ G, define

V = G×P V = {[g, v] : [g, v] ≡ [gp, p−1v]}
This is equipped with a projection map π : V → G/P, [g, v] 7→ gP , giving it a structure of
a G-equivariant bundle. We refer again to Chriss and Ginzburg book for an introduction
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in equivariant K theory and to the recent book by Anderson and Fulton for more on
equivariant intersection theory.

2.2. K theory of flag manifolds. For now we let X to be any flag manifold. For
any Schubert variety Ω ⊂ X with Schubert cell Ω◦, define the boundary of Ω to be
∂Ω = Ω \ Ω◦. This is a (Cohen-Macaulay) Weil divisor in Ω.

Remark 2.4. Assume that G/P = Gr(k, n) is a Grassmann manifold and let ι :
Gr(k, n) → P = P(∧kCn) be the Plücker embedding. Then the boundary of Schubert
varieties are also Cartier divisors, corresponding to the restriction of the line bundle
OP(1) to Xw. More precisely, for any partition λ ⊂ k × (n− k),

Iλ = Oλ · OGr(k,n)(−1).

2.2.1. The Schubert package. The (Grothendieck) classes of the structure sheaves of
Xw, X

w (for w ∈ W P ) are denoted by Ow,Ow respectively. Consider the ideal sheaf of
the boundary ∂Xw. This fits into an exact sequence

0 → I∂Xw → OXw → O∂Xw → 0.

We denote the classes of I∂Xw and I∂Xw by Iw, Iw respectively. Note that

Ow = Ow∨
and Ow = Ow∨

where w∨ = w0wwP is the minimal length representative for w0w in W P .

Theorem 2.5. Let X = G/P . Then the following hold:
(a) The Grothendieck classes {Ow}w∈W form a Z-basis of K(X), i.e.,

K(X) =
⊕

w∈WP

ZOw =
⊕

w∈WP

ZOw.

(b) The dual of the Schubert classes are the (opposite) boundary classes, i.e., for any
v, w ∈ W P ,

⟨Ov, Iw⟩ = ⟨Ov, Iw⟩ = δv,w.

(c) Let P ⊂ Q be two parabolic subgroups and π : G/P → G/Q the projection. Then
for any v ∈ W P and w ∈ WQ,

π∗Ov = OvWQ
; π∗Ov = Ov.

For proofs of parts (a), (b) we refer to [Bri05, Thm. 3.4.1]. The pull back statement in
(c) follows because π is flat, and the push-forward from the Frobenius splitting properties
of Schubert varieties, see e.g. [BK05, Thm. 3.3.4(a)].

To emphasize that we utilize a Poincaré dual class rather than its precise formula, we
will use the notation

(Ow)
∨ = Iw; (Ow)∨ = Iw.
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Remark 2.6. This theorem implies a recursive formula to generate any Schubert class
from the class of a point. Let Fl(̂i, n) denote the partial flag manifold parametrizing

F1 ⊂ . . . ⊂ F̂i ⊂ . . . ⊂ Cn, and let pi : Fl(n) → Fl(̂i;n) be the natural projection. Then
∂i = p∗i (pi)∗ is an endomorphism of K(Fl(n)) called the Demazure operator. From
the formulae above one can show that

∂i(Ow) =

{
Owsi if wsi < w;

Ow otherwise

We leave this as an exercise, together with the fact that the Demazure operators satisfy
∂2
i = ∂i, and he usual commutation and braid relations.

Remark 2.7. One can use part (c) in the above theorem to show that for w ∈ W P ,

π∗Iw =

{
Iw if w ∈ WQ;

0 otherwise .

(This is another exercise.)

Using these formulae and the Möbius inversion one can write the ideal sheaf basis in
terms of the Schubert classes and viceversa. Below we record two important situations
(cf. [Bri05, Prop. 4.3.2], and [BCMP18, Lemma 3.5]).

Proposition 2.8. (a) Let X = Fl(n). Then

Iw =
∑
v≤w

(−1)ℓ(w)−ℓ(v)Ov; Ow =
∑
v≤w

Iw.

(b) Let X = Gr(k, n). Then for any partition λ ⊂ k × (n− k),

Iλ =
∑
λ⊂µ

(−1)|µ/λ|Oµ; Oλ =
∑
λ⊂µ

Iµ,

where the sums are over partitions µ ⊃ λ such that µ/λ is a rook strip, i.e. the skew
shape does not have two boxes in the same row or column.

Example 2.9. In K(Gr(2, 4)) we have

I(1) = O(1) −O(2) −O(1,1) +O(2,1).

Part of the advertised Schubert package are the structural theorems: how to multiply
Ow by a divisor class (the Chevalley formula), or by a generating set of K(G/P ) (a
Pieri formula). Such formulae have been found in various situations by Lenart, Sottile
and Robinson, Buch, Thomas and Yong, Buch and Ravikumar . . .. In fact, Buch (for
Grassmannians) and Thomas and Yong (for minuscule Grassmannians) found (positive)
Littlewood-Richardson rules. A discussion on these would take us too far afar.
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2.2.2. Positivity. Any (equivariant, quantum, K) cohomology theory of a flag manifold
is expected to satisfy a positivity property. For K theory, this was discovered by Buch for
Grassmannians, then proved by Brion for any flag manifold; see below. An equivariant
version was proved by Anderson, Griffeth and Miller [AGM11].

Theorem 2.10 (Positivity theorem; Buch [Buc02], Brion [Bri02]). Consider the Schu-
bert expansion in K(G/P ):

Ou · Ov =
∑

cwu,vOw.

Then (−1)ℓ(u)+ℓ(v)−ℓ(w)cwu,v ≥ 0.

The proof relies on a more general result proved by Brion, stated next, which relies
on the Kawamata-Viehweg vanishing theorem.

Definition 2.11. A variety X has rational singularities if has a proper resolution
of singularities π : X ′ → X such that (as sheaves) π∗OX′ = OX and Riπ∗OX′ = 0 for
i > 0.

A variety with rational singularities must be normal and Cohen-Macaulay. Schubert
varieties have rational singularities, and so have general intersections of them.

Brion proved the following general positivity statement.

Theorem 2.12. Let X = G/P and Y ⊂ X be a subvariety with rational singularities.
Consider the expansion

[OY ] =
∑

awOw.

Then (−1)ℓ(w)−dimY aw ≥ 0.

Proof. We give the proof in the case Y is smooth and X = Pn. Then

aw = χ(Y · (Ow)∨)) = χ([OY ] · OPi · O(−1)).

If nonempty, the general intersection is a (possibly disconnected) union of smooth va-
rieties. The Kodaira vanishing applied to each component of this intersection implies
that

χ([OY ] · OPi · O(−1)) = (−1)dimY−n−iHdimY−n−i(Y ∩ Pi;O(−1))

proving the claim. □

2.2.3. Presentations. We give (Whitney) presentations of the K theory rings in two
extremal cases: X = Gr(k;n) and X = Fl(n). The proofs are left as exercises. (See also
[Las90] and for Grassmannians [GMSZ22].)

Proposition 2.13. Let X = Gr(k;n) equipped with the tautological sequence 0 → S →
Cn → Q → 0. Then

λy(S) · λy(Q) = λy(Cn)

and a formal version of this leads to the full ideal of relations in KT (Gr(k;n)).



10 LEONARDO CONSTANTIN MIHALCEA

Proposition 2.14. Let X = Fl(n) equipped with the tautological sequence 0 ⊂ S1 ⊂
S2 ⊂ . . . ⊂ Sn−1 ⊂ Cn. Then

λy(S1) · λy(S2/S1) · . . . · λy(Cn/Sn−1) = λy(Cn).

A formal version of these equations leads to the full ideal of relations in KT (Fl(n)).
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3. Definition of quantum K theory and first properties

Plan:

(1) Definitions of QK theory, of curve neighborhoods, and applications;
(2) ‘Quantum = classical’ , structure theorems, presentations.

3.1. The moduli space. Let X be a projective manifold - very soon X = G/P . For
an effective degree d ∈ H2(X;Z), denote by M0,n(X, d) the Kontsevich moduli space of
(genus 0, n pointed) stable maps of degree d. This is a projective scheme, with points
stable maps:

f : (C, p1, . . . pn) → X; f∗[C] = d.

Here C is a tree of P1’s, and f satisfies a stability condition. f C ′ is a component
such that f(C ′) = cst, then C ′ must have at least three mariked points. A marked
point is either a node or a marking pi. There is a natural equivalence relation on this
data ensuring that there are finitely many automorphisms. The moduli space comes
equipped with evaluation maps evi : M0,n(X, d) → X, sending f 7→ f(pi). If n ≥ 3 and
d = 0, then M0.n(X, 0) = X ×M0,n, the product of X with the Mumford moduli space
of stable curves. The evaluation maps are all equal to the projection to X.

More generally, for a sequence of effective degrees d1, . . . , dr ∈ H2(X), we can consider
the fibre product

M0,n1+...+nr(X, (d1, . . . , dr)) := M0,n1+1(X, d1)×X . . .×X M0,nr+1(X, dr)

This may be identified with a boundary component inside M0,n1+...nr)(X, (d1+ . . .+dr)).
We list some important properties of the Kontsevich moduli space.

Theorem 3.1. Let X = G/P be a flag manifold. Then the following hold:

• M0,n(X, d) has finite quotient singularities, hence rational singularities - this
follows from construction, see e.g. [FP97]

• M0,n(G/P, d) is a connected, thus irreducible variety (Thomsen [Tho98]);
• M0,n(X, d) is a rational variety (Kim and Pandharipande).

3.2. Definition of quantum K theory (after Givental and Lee [Giv00, Lee04]).
From now on we will take X = G/P to be any partial flag manifold, or any homoge-
neous space. This results in fewer technicalities, such as the replacement of the ‘virtual
fundamental sheaves’ of Kontsevich moduli spaces by structure sheaves. For the general
construction, consult [Lee04].

We define next the K-theoretic Gromov-Witten invariants (KGW). Let a1, . . . , an ∈
K(X) and d ∈ H2(X). The KGW invariant is

(3.1) ⟨a1, . . . , an⟩d =
∫
M0,n(X,d)

ev∗1(a1) · . . . · ev∗n(an).

In general the moduli space is not smooth, but since X is, one may write each of the
classes ai as a finite alternating sum of classes of vector bundles. Then (3.1) may be
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written as a finite alternating sum of sheaf Euler characteristics of vector bundles. In
the latter case, the product · is the tensor product ⊗.

Example 3.2. Consider X = G/P a partial flag manifold. Then

⟨1, . . . , 1⟩d = 1

for any degree d. Indeed, from Theorem 3.1 we deduce that H i(OM0,n
(X, d)) = 0 for

i > 0, hence χ(OM0,n
(X, d)) = 1. More generally, as explained in [Giv00, Cor. 1], if

π : M0,n+1(X, d) → M0,n(X, d), then π∗[OM0,n+1(X,d)] = [OM0,n(X,d)] since all the fibers
are rational curves. This implies that

(3.2) ⟨a1, . . . , an, 1⟩d = ⟨a1, . . . , an⟩d,
which is the simplest case of the string equation; see also Lee’s paper [Lee04, §4.4].

Recall that H2(X) has a basis of effective curve classes, say [C1], . . . , [Cr]. Consider
the sequence of Novikov variables q = (q1, . . . , qr). For d = d1[C1] + . . . + dr[Cr], set
qd = qd11 · . . . · qdrr . Define the Z[[q]]-module

QK(X) = K(X)⊗ Z[[q]].
Assume also that K(X) has a finite basis O0 = 1, . . . ,On, and denote by Oi,∨ the

dual basis with respect to the intersection pairing.
(For X = G/P a flag variety, one may take Schubert classes {Ow}w∈WP , with the

dual basis given by the boundary classes Iw.)

Definition 3.3. The (small) QK pairing is defined by

((a, b)) = ⟨a, b⟩+
∑
d>0

⟨a, b⟩dqd.

Here q stands for the sequence of Novikov variables indexed by a basis of H2(X), and
qd = qd11 · . . . · qdrr . The QK pairing is a nondegenerate pairing with values in the formal
power series Z[[q]].

The quantum K product is the unique product ◦ which satisfies

((a ◦ b, c)) =
∑
d≥0

⟨a, b, c⟩dqd.

Example 3.4. It follows from Example 3.2 that if X = Gr(k, n) then

((1, 1)) = 1 + q + q2 + . . . =
1

1− q
.

More generally, if X = G/P , then

((1, 1)) =
1∏rank H2(G/P )

i=1 (1− qi)
,

As a fun exercise, one can use the string equation (3.2) to check that a ◦ 1 = a.
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Theorem 3.5 (Givental, Lee). The product ◦ equips QK(X) with a structure of a
commutative, associative ring with identity 1 = [OX ].

From definition it follows that K(X) ≃ QK(X)/⟨q⟩. Since K(X) is filtered algebra,
it induces a filtration on QK(X), with deg qi =

∫
X
c1(TX)∩ [Ci]. The associated graded

algebra is
GrQK(X) = QH∗(X),

the quantum cohomology of X.
Next we unravel the definition of the QK product and we discuss two equivalent

formulations of the definition.

Lemma 3.6. Consider the product

Ou ◦ Ov =
∑

Nw,d
u,v q

dOw.

Then we have the following equivalent formulae for the structure constants Nw,d
u,v :

(a)

Nw,d
u,v = ⟨Ou,Ov, (Ow)∨⟩d −

∑
d′>0,κ

Nκ,d−d′

u,v ⟨Oκ, (Ow)∨⟩d′ .

(b)

Nw,d
u,v =⟨Ou,Ov, (Ow)∨⟩d

+
∑

(−1)s⟨Ou,Ov, (Oκ0)∨⟩d0 · ⟨Oκ0 , (Oκ1)∨⟩d1 · . . . · ⟨Oκs , (Ok)∨⟩ds ;

here the sum is over effective degrees d0, . . . , ds such that d0 + . . . + ds = d and dp > 0
if p > 0.

(c) Let D ⊂ M0,3(X, d) be the boundary divisors consisting of maps with reducible
domain where markings 1, 2 are on the first component, and marking 3 on the last.
Then

Nw,d
u,v = χ(OM0,3(X,d)(−D) · ev∗1(Ou) · ev∗2(Ov) · ev∗1((Ow)∨)).

Note that, unlike in quantum cohomology, both 2 and 3-point invariants are needed
to calculate a single structure constants. However, the proof of the associativity is es-
sentially the same as in the cohomological case: it is obtained from equalities obtained
by pulling back points in P1 ≃ M0,4. The pull-backs are simple normal crossing bound-
ary divisors in M0,4(X, d); while in cohomology the class of such a reducible divisor
D =

⋃
Di is the sum if its components [Di], in K-theory this is an alternating sum

[OD] =
∑

(−1)k−1[ODi1
∩...∩Dik

].

This explains the shape of the formula in part (c).
The formulae in the lemma suggest that in general the QK multiplication may not

be finite. Indeed, Example 3.2 shows that the KGW invariants are in general nonzero
for any degree d. It is not even clear why 1 = [OX ] is the identity in the QK ring! In
fact, the QK multiplication is finite for flag manifolds [BCMP13, Kat18, ACTI18].
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At least for Grassmannians, we will explain this and more as an application of curve
neighborhoods of Schubert varieties, and of the ‘quantum=classical’ statement.

Informally, many calculations of KGW invariants can be traced to two geometric facts:

• (Transversality) If Ω1, . . . ,Ωn satisfy a K-theoretic transversality property, then

[OΩ1 ] · . . . · [OΩn ] = [OΩ1∩...∩Ωn ];

• (Rational connectedness + mild singularities) IfX is a rational/unirational/rationally
connected projective variety which has rational singularities, then χ(OX) = 1.

The following result provides an important tool for proving that a variety is rationally
connected.

Theorem 3.7 (Graber, Harris, Starr). Let f : X → Y be any dominant morphism of
complete irreducible complex varieties. If Y and the general fiber of f are rationally
connected, then X is rationally connected.

4. Some theorems

In this section we give informal statements of theorems we will talk about in these
lectures, and directly related to Schubert Calculus. Quantum K theory draws from many
areas, and obviously this list only scratches the surface of what has been done.

Theorem 4.1 (2-point KGW invariants). (a) Let X = G/P and let u, v ∈ W P . Then
for each d there is an explicitly defined element u(d) ∈ W P and the 2-point K theoretic
GW invariants are given by

⟨Ou, Iv⟩d = δu(d),v.

The Schubert variety Xu(d) is the curve neighborhood of Xu.
(b) The QK metric may be calculated by

((Ou,Ov)) =
qdmin(u,v)∏
(1− qi)

where qdmin(u,v) is the minimum power of q in the quantum cohomology product [Xu]⋆
[Xv].

Theorem 4.2 (Finiteness). Let X = G/P . The quantum K product is finite, i.e., for
any u, v ∈ W P , Ou ◦ Ov ∈ K(X)⊗ Z[q].

Theorem 4.3 (‘Quantum = classical’). Assume X = Gr(k, n) is a Grassmannian.
Consider the incidence diagram

Zd := Fl(k − d, k, k + d;n)
pd //

qd
��

X := Gr(k, n)

Yd := Fl(k − d, k + d;n)
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Here, if d ≥ k then we set Yd := Fl(k+d;n) and if k+d ≥ n then we set Yd := Gr(k−d;n).
In particular, if d ≥ min{k, n−k}, then Yd is a single point. Then for any a, b, c ∈ K(X)
and any effective degree d

⟨a, b, c⟩d =
∫
Yd

(qd)∗p
∗
d(a) · (qd)∗p∗d(b) · (qd)∗p∗d(c).

The ‘quantum = classical’ theorem has many applications, including:

• explicit combinatorial Pieri/Chevalley formulae for any (co)minuscule Grass-
mannians X;

• Presentations of QK(Gr(k, n)) by generators and relations which quantize the
Whitney presentation.

• An extension of Seidel representation and combinatorics of quantum shapes,
generalizing Postnikov’s cylinder.

The ‘quantum = classical’ also made it possible to prove the following:

Theorem 4.4 (Positivity). Let X = Gr(k, n) and consider

Ou ◦ Ov =
∑

Nw,d
u,v q

dOw.

Then (−1)ℓ(w)+nd−ℓ(u)−ℓ(v)Nw,d
u,v ≥ 0.

As the reader will observe, we are not saying much about the quantum K ring of
(partial) flag manifolds, beyond Grassmannians. For this, recent results by Syu Kato
establish a ring isomorphism between a localization of QK(Fl(n)) (and more generally
QK(G/B)) and the K-theory of ‘semi-infinite flag manifolds’. Under this isomorphism,
multiplications by (antidominant) line bundles in the QK ring correspond to certain line
bundle multiplications on the semi-infinite side. In papers by Lenart, Maeno, Naito,
Sagaki, it is built a combinatorial model to multiply by line bundles in QK(Fl(n)).
In addition, this leads to presentations of QK(Fl(n)), and to proofs that the (double)
quantum Grothedieck polynomials represent Schubert classes in the quantum K ring.

Another direction we do not cover is the relation to integrable systems, either via the
Bethe Ansatz (as in Gorbounov-Korff), or generalizations of Toda lattice (Koroteev et
al). Related to this is an area with a high level of activity, that of quantum K theory of
cotangent bundles of flag manifolds, or of Nakajima quiver varieties.

5. Curve neighborhoods and first applications

Throughout this section X = G/P is a partial flag manifold. To perform the calcula-
tions required in formulae from Lemma 3.6, we need formulae for the two-point KGW
invariants of the form ⟨Oi, (Oj)∨⟩d. These rely on the notion of curve neighborhoods.
For flag manifolds, this was obtained in a series of papers [BCMP13, BM15], and earlier
version also appeared in papers by Chaput, Manivel, and Perrin. We present next the
basic facts.
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Definition 5.1. Let Ω1, . . . ,Ωn ⊂ X be closed subvarieties and fix an effective degree
d ∈ H2(X).

(a) The (n-point) Gromov-Witten variety is the intersection

GWd(Ω1, . . . ,Ωn) = ev−1
1 (Ω1) ∩ . . . ∩ ev−1

n (Ωn) ⊂ M0,n+a(X, d).

If Ω2 = . . . = Ωn = X we will simply use the notation GWd(Ω1) = GWd(Ω1, X, . . . , X).
(b) The (n-point) curve neighborhood of Ω1, . . . ,Ωn is defined as the image of the

corresponding Gromov-Witten variety:

Γd(Ω1, . . . ,Ωn) = evn+1(GWd(Ω1, . . . ,Ωn)).

As before, Γd(Ω) := evn+1(GWd(Ω)).
All these may be extended to the case when one has a sequence of degrees d1, . . . , dk,

by replacing the moduli space with an appropriate stratum in the boundary.

Example 5.2. (a) If d = 0, then Γ0(Ω1,Ω2) = Ω1 ∩ Ω2.
(b) Take X = Pn and d > 0. Then Γd(pt) = Pn and

Γd(pt, pt) =

{
line d = 1

Pn d ≥ 2.

We also need the notion of cohomological triviality.

Definition 5.3. Let f : X → Y be a morphism of algebraic varieties. We say that f is
cohomologically trivial if f∗OX = OY and Rif∗OX = 0 for i> 0.

Most non-trivial examples of cohomologically trivial maps arise from special cases of
a theorem of Kollár:

Theorem 5.4 (Kollár). Let f : X → Y be a surjective morphism of projective varieties
with rational singularities. If the general fibers of f are rationally connected, then f is
cohomologically trivial.

Initial versions of the next result can be traced to work byw Chaput, Manivel and
Perrin. This version can be extracted from [BCMP13].

Theorem 5.5. Let Ω1, . . . ,Ωn be general translates of Schubert varieties in X. Then
the following hold:

(a) The GW variety GWd(Ω1, . . . ,Ωn) is either empty, or locally irreducible of expected
dimension, and with rational singularities. Furthermore,

⟨[OΩ1 ], . . . , [OΩn ]⟩d = χ([OGWd(Ω1,...,Ωn)]).

(b) The non-empty Gromov-Witten varieties GWd(Ω1,Ω2) are irreducible and ratio-
nally connected. In particular, the 2-point curve neighborhood Γd(Ω1,Ω2) is also irre-
ducible and rationally connected.

(c) If Ω is any Schubert variety, then Γd(Ω) is again a Schubert variety and the
evaluation map evi : GW(Ω) → Γd(Ω) is cohomologically trivial.
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Idea of proof. Part (a) follows from a K-theoretic Kleiman-Bertini type statement, due to
Sierra. For (b) we may assume Ω1 = Xu,Ω2 = Xv. The evaluation map ev1 : M(X, d) →
X is a G-equivariant locally trivial fibration in Zariski topology. Its fibre F is irre-
ducible and unirational. By base-change, ev−1

1 (Xu) → Xu is also locally trivial, showing
GW(Xu) is irreducible and rationally connected. The image Γd(Xu) = ev2(GW(Xu))
is irreducible and B-stable, thus a B-stable Schubert variety. Then GWd(Xu) has an
open dense set which is a locally trivial fibration over the cell Γd(Xu)

◦. The intersection
ev−1

1 (Xu)∩ev−1
2 (Xv) is locally irreducible and it has an open dense set which is a locally

trivial fibration over Γd(Xu)
◦ ∩Xv. If non-empty, the latter is irreducible and rational.

Since all these varieties have rational singularities, and the (general) fibers of these maps
are unirational, the statement follows from Theorem 5.4 and Theorem 3.7. □

Part (c) of the theorem implies that for any u ∈ W P and d an effective degree one
may define the elements u(d), u(−d) ∈ W P by

Xu(d) = Γd(Xu); Xu(−d) = Γd(X
u).

Using these elements one can immediately calculate any 2-point GW invariant.

Corollary 5.6. Let X = G/P and let u, v ∈ W P be two Weyl group elements and d an
effective degree. Then

⟨Ou, (Ov)∨⟩d = δu(−d),v,

(the Kronecker delta symbol).

Proof. From definition,

⟨Ou, (Ov)∨⟩d = χ(M0,3(X, d); ev∗1(Ou) · ev∗2((Ov)∨))

= χ(G/P ; (ev2)∗(ev
∗
1(Ou) · ev∗2((Ov)∨)))

= χ(G/P ; [OΓd(Xu) · (Ov)∨)

= χ(G/P );Ou(−d) · (Ov)∨)

= δu(−d),v.

Here the third equality follows from the projection formula, and the last from the duality.
□

Definition 5.7. For u, v ∈ W P , define dmin(u, v) the minimum degree d for which qd

appears in the quantum cohomology product [Xu] ⋆ [Xv].

This minimum degree is obviously well defined if Pic(G/P ) ≃ Z (i.e., when P is a
maximal parabolic), and more generally it is well defined by results of Postnikov and
Fulton-Woodward [FW04]. One can prove that this is the same as the minimum degree
d of q such that GWd(X

u, w0X
v) ̸= ∅.

Using this degree, one can calculate the QK pairing between any two Schubert classes:

(5.1) ((Ou,Ov)) =
∑

d≥dmin(u,v)

⟨Ou,Ov⟩d qd =
qdmin(u,v)∏
(1− qi)

.
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(This generalizes equivariantly, but one needs to use opposite classes ((Ou,Ov)). Recall
that non-equivariantly, Ov = Ov∨ .)

Example 5.8. Assume that X = P2. In this case K(X) has a basis 1 = O0,O1,O2,
where Oi is the K-theoretic class representing the hyperplane of (complex) codimension
i. With respect to this basis, the Poincaré metric gij =

∫
X
Oi · Oj is given by the matrix

(gij) =

1 1 1
1 1 0
1 0 0


The QK metric is obtained by adding q

1−q
:

((Oi,Oj)) = (gi,j) +
q

1− q
Id.

Corollary 5.9 ([BCLM20]). Assume that the QK product is finite, and consider the
specialization at qi 7→ 1 for all i of the usual pairing χ : QK(X) → QK(pt) = Z[q].
Then this is a ring homomorphism.

Proof. Write Ou ◦ Ov =
∑

Nw,d
u,v q

dOw. By the Frobenius property of the QK pairing,∑
Nw,d

u,v q
d 1∏

(1− qi)
= ((Ou ◦ Ov, 1)) = ((Ou,Ov)) =

qdmin(u,v)∏
(1− qi)

.

It follows that
∑

Nw,d
u,v = 1. Then the statement follows from the fact that χ(Ou) = 1

for any u. □

Note that χ is not a ring homomorphism for any specialization of QK(X) (the K-
theory specialization, the quantum cohomology specialization etc).

Example 5.10. Take a = b = [pt] in P1. Then

χ(a · b) = 0 ̸= χ(a) · χ(b) = 1 · 1 = 1.

We will show later that in QK(P1), [pt] ◦ [pt] = q and we can already prove that
(([pt], [pt])) = q

1−q
.

There is a more general, and rather surprising statement, due to Kato.

Theorem 5.11 (Kato). Let π : G/P → G/Q be the natural projection for P ⊂ Q.
Consider the Z[[q]]-module projection π∗ : QK(G/P ) → QK(G/Q) defined by extending
the usual projection π∗ : K(G/P ) → K(G/Q) and specializing qi 7→ 1 for all i such that
si ∈ WQ \WP . Then this is a ring homomorphism.

More refined applications require more refined knowledge of the Weyl group elements
giving curve neighborhoods.
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5.1. Calculation of curve neighborhoods. The goal is to give an algorithm to cal-
culate the elements u(d) and u(−d). To start,

Xu(−d)WP = Γd(X
uWP ) = Γd(w0Xw0uWP

) = Γd(w0XuWP
) = w0Xu(d)WP

.

This reduces the calculation of u(−d) to that of u(d). For ‘small’ degrees d, a practical
method to do this calculation is based on the moment graph of G/P .

The moment graph of G/P has vertices corresponding to u ∈ W P and edges u
d(i,j)−−−→ v

if ℓ(v) > ℓ(u) and u · (i, j) = v for i < j. The edge has (multi)degree εi − εj modulo
∆P (the simple roots which are already in P ). Then Γd(Xu) is the (unique!) maximal
element in the Bruhat order obtained from tracing a path from u of degree ≤ d.

Example 5.12. Below is the moment graph for Fl(3). With blue we drew the paths
giving Γ(1,0)(pt) = Xs1,Γ(0,1)(pt) = Xs2,Γ(1,1)(pt) = Xs1s2s1.

(1,1)

w0

s1
s2

2

 id

 
s  s1 s  s2 1

(1,0) (0,1)

(0,1) (1,0)

(1,0) (0,1)

(1,1)

(1,1)

5.1.1. Curve neighborhoods of Grassmannians. We now turn to the calculation of curve
neighborhoods for Grassmannians. In this case, (or more generally in cominuscule
Grassmannians) a formula follows from results in [BCMP13], and a procedure is ex-
plicitly reviewed in [BCMP18]. Recall that in this case the Schubert classes are indexed
by Young diagrams λ included in the k× (n−k) rectangle, and the curve neighborhoods
have particularly nice combinatorial descriptions:

• λ(d) is obtained from λ by adding d rim hooks of maximal length;
• λ(−d) is obtained from λ by removing d rim hooks of maximal length.

Example 5.13.

α5 α6 α7 α8 α9 α10 α11

α4 α5 α6 α7 α8 α9 α10

α3 α4 α5 α6 α7 α8 α9

α2 α3 α4 α5 α6 α7 α8

α1 α2 α3 α4 α5 α6 α7
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On the left: ∅(1), ∅(2), . . .; on the right: λ(2), for λ = (3, 2, 1).

The key geometric fact which explains this formula for Grassmannians is the following:

Corollary 5.14 ([BCMP13]). Let X be a (cominuscule) Grassmannian. Then

Γd(Xu) = Γ1(Γ1(. . . (Γ1(Xu)))).

In other words, if one point may be joined to Xu using a rational curve of degree d, then
it may also be joined by a sequence of d lines.

This is special for (cominuscule) Grassmannians. It fails for example for submaximal
isotropic Grassmanian IG(2, 7) or for adjoint varieties. The corollary implies the fol-
lowing important simplification of the formulae from Lemma 3.6 for the QK product of
Schubert classes in QK(Gr(k;n)).

Corollary 5.15. Consider the QK product Oλ ◦ Oµ =
∑

N ν,d
λ,µq

dOν in QK(Gr(k;n)).
Then

Nν,d
λ,µ = ⟨Oλ,Oµ, (Oν)∨⟩d −

∑
η

⟨Oλ,Oµ, (Oη)∨⟩d−1 · ⟨Oη, (Oν)∨⟩1.

Proof. We need to show that for λ, µ fixed and fixed d− d0 := d1 + . . .+ dr ≥ 2, then∑
d1+...+dr=d−d0

(−1)r⟨Oλ, (Oκ1)∨⟩d1 · . . . · ⟨Oκr , (Oν)∨⟩dr = 0.

From Corollary 5.6 it follows that this equals to∑
d1+...+dr=d−d0

(−1)rδλ(−d1),κ1 · . . . · δκ(−dr),µ =
∑

(−1)rδλ(−d1−d2−...−dr),µ

=

d−d0∑
r=1

(−1)r
(
d− d0 + r − 1− r

r − 1

)
= (1− 1)d−d0−1 = 0.

□

This formula may be interpreted as

N ν,d
λ,µ = ⟨(ev3)∗[GWd(g1X

λ, g2X
µ)]− (ev3)∗[GWd−1,1(g1X

λ, g2X
µ)], (Oν)

∨⟩⟩
= ⟨[OΓd(λ,µ)]− [OΓd−1,1(λ,µ)], (Oν)

∨⟩,

where g1, g2 are general in G. In fact, the second equality is slightly incorrect: while
we can prove that (ev3)∗[GWd(g1X

λ, g2X
µ)] = [OΓd(λ,µ)], we do not know whether

(ev3)∗[GWd−1,1(g1X
λ, g2X

µ)] = [OΓd−1,1(λ,µ)]. But this is true in many cases, and an-
alyzing this carefully lies at the heart of the proof of positivity for QK(Gr(k;n)) from
[BCMP].



LECTURES ON QUANTUM K THEORY 21

5.1.2. Curve neighborhoods for arbitrary flag manifolds. For a general combinatorial pro-
cedure, we need two ingredients. TheDemazure product · of two Weyl group elements
is defined as follows. If u ∈ W and si ∈ W is a simple reflection,

u · si =

{
usi ℓ(usi) > ℓ(u)

u ℓ(usi) < ℓ(u).

If v = si1 . . . sik is a reduced decomposition, then u · v = (((u · si1) · si2) . . .) · sik . This
equips (W, ·) with a structure of an associative monoid. Let also zd ∈ W be the unique
element defined by

Xu(d) = Γd(pt) ⊂ Fl(n).

The following combinatorial algorithm to calculate u(d) for any flag manifold has been
proved in [BM15].

Theorem 5.16. The following hold:
(a) In Fl(n), Γd(Xu) = Xu·zd.
(b) Take α > 0 be the largest positive root such that d− α∨ ≥ 0 in H2(Fl(n)). Then

zd = zd−α∨ · sα = sα · zd−α∨ .

(c) Same procedure applies to any G/P : take α ∈ R+\R+
P maximal such that d−α∨ ≥

0 in H2(G/P ). Then
zdWP = sα · zd−α∨WP .

In an exercise you are asked about recovering the formulae for zd using the recursion,
in the case of Fl(3).

The following is conjectural expression for the ‘Chevalley’ KGW invariants of any
partial flag manifold. It can be thought as a replacement for the ‘divisor axiom’ in
quantum K theory.

Conjecture 1. [Buch-M., 2011] Let u, v ∈ W P and let si ∈ W P be a simple reflection.
Then

⟨Osi ,Ou,Ov⟩d =

{
⟨Ou,Ov⟩d if di > 0;

⟨Osi ,Ou(−d),Ov⟩0 if di = 0.

The conjecture was proved for (cominuscule) Grassmannians [BM11] and recently for
incidence flag manifolds Fl(1, n− 1;n) by Weihong Xu [Xu21].
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6. The ‘quantum=classical’ statement and applications

6.1. The statement. We start with Buch’s notion of kernel and span of a rational
curve.

Definition 6.1. Let f : P1 → Gr(k;n) be a morphism of degree d. The kernel and
span of f are the linear subspaces of Cn defined by

ker(f) =
⋂
x∈P1

f(x); span(f) = span{f(x) : x ∈ P1}

Proposition 6.2 (Buch, Buch-Kresch-Tamvakis). (a) If f : P1 → Gr(k;n) is of degree
d then dimker(f) ≥ k − d and dim spanf ≤ k + d. Furthermore, for a general map f ,
equalities occur.

(b) Let U, V,W ⊂ Gr(d, 2d) be three general spaces. Then there exists a unique mor-
phism f : P1 → Gr(n, 2n) of degree d such that f(0) = U, f(1) = V, f(∞) = W .

Proof. Let S be the tautological bundle on Gr(k;n). Then f ∗(S) ⊂ Cn, thus f ∗S =⊕k
i=1OP1(−ai) where ai ≥ 0 and

∑
ai = d. A map f : P1 → Gr(k;n) is then given by

ai∑
j=0

αju
−jvj−ai 7→

ai∑
j=0

αj ⊗ v
(i)
j .

We have
k∑

i=1

(1 + ai) = k + d

v
(i)
j ’s, showing that the span is at most of dimension k + d. But at least k − d of ai’s

equal to 0, giving that (for these ai’s) v
(i)
0 are in the kernel; there are at least k − d of

these.
Regarding part (b), observe that C2d = U ⊕ W . Take a basis v1, . . . , vd of V and

project to U,W : vi = ui + wi. Define f [s : t] = [su1 + tw1 : . . . : sud + twd]. □

Consider the ‘kernel-span incidence’:

Zd := Fl(k − d, k, k + d;n)
pd //

qd
��

X := Gr(k, n)

Yd := Fl(k − d, k + d;n)

Here, if d ≥ k then we set Yd := Fl(k+d;n) and if k+d ≥ n then we set Yd := Gr(k−d;n).
In particular, if d ≥ min{k, n− k}, then Yd is a single point.

Theorem 6.3 (Quantum = classical [BM11]). Let a, b, c ∈ KT (Gr(k;n)) and d ≥ 0 a
degree. If d ≥ k then we set d− k := 0 and if k + d ≥ n then we set k + d := n. Then
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the following equality holds in KT (pt):

⟨a, b, c⟩d =
∫
Yd

(qd)∗(p
∗
da) · (qd)∗(p∗db) · (qd)∗(p∗dc).

The cohomological version of this theorem was obtained by Buch, Kresch and Tam-
vakis [BKT03].

Idea of proof. The proof of this is based on the ‘quantum = classical’ diagram which we
explain below. Let Md := M0,3(X, d),

Bld = {((K,S), f) ∈ Yd ×Md, K ⊂ ker(f), span(f) ⊂ S}

Z
(3)
d = {K ⊂ V1, V2, V3 ⊂ S : (K,Vi, S) ∈ Zd}

There is the following commutative diagram from [BM11]:

(6.1) Bld
π //

ϕ
��

Md

evi

��
Z

(3)
d

ei // Zd
pd //

qd

��

X

Yd

The map π : Bld → Md is birational, and if d ≤ min{k, n − k} then ϕ : Bld → Z
(3)
d

is also birational. A diagram chase proves the theorem in this case. The key point for
general d is that the general fibre of ϕ is rationally connected, thus ϕ is cohomologically
trivial. This is proved in type A in [BM11] by putting local coordinates, and in other
cominuscule types in [CP11]. □

There is a version of the ‘quantum=classical’ which goes from a Grassmannian to
another Grassmannian. Form the following incidence diagram:

(6.2)

Zd := Fl(k − d, k, k + d;n)
p′d−−−→ Fl(k − d, k;n)

p′′d−−−−−→ X := Gr(k;n)

qd

y q′d

y
Yd := Fl(k − d, k + d;n)

pr−−−→ Gr(k − d;n)

Here all maps are the natural projections. As before, denote by pd : Fl(k−d, k, k+d;n) →
Gr(k;n) the composition pd := p′′d ◦ p′d.

Corollary 6.4. Let a, b, c ∈ KT (Gr(k;n)) and d ≥ 0 a degree. Assume that (qd)∗(p
∗
d(a)) =

pr∗(a′) for some a′ ∈ KT (Gr(k − d;n). Then

⟨a, b, c⟩d =
∫
Gr(k−d;n)

a′ · (q′d)∗(p′′∗d (b)) · (q′d)∗(p′′∗d (c)).

A similar statement holds, relating to the QK(Gr(k + d;n)).
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6.2. A Pieri/Chevalley rule. One can prove that (q′d)∗(p
′′
d)

∗(Oλ) = Oλd , where λd is
the result of removing the top d rows of λ. Similarly, if one uses Gr(k + d;n) instead
of Gr(k− d;n), one needs to remove the leftmost d columns. Therefore one has explicit
explicit calculations of the coefficients in the products

Oi ◦ Oλ =
∑

Nµ,d
i,λ q

dOµ

in terms of the classical coefficients for Oi · Oλ, found by Lenart [Len00]. We illustrate
the calculation for the QK Chevalley formula of Gr(k, n), following mainly [BM11],
see also [BCMP18]. Recall that if λ ⊂ µ are two partitions, the skew shape µ/λ is a
rook strip if the skew shape µ/λ has no two boxes on the same row, and on the same
column.

Theorem 6.5 (The QK Chevalley formula). The following holds in QK(Gr(k, n)):

O1 ◦ Oλ =
∑
µ

(−1)|µ/λ|Oµ +
∑
ν

(−1)ν/λ(−1)Oν ,

where the first sum is over those µ such that µ/λ is a non-empty rook strip; the second
sum is empty unless λ1 = n − k, ℓ(λ) = k, in which case the sum is over ν such that
ν = µ(−1) and µ/λ is a rook strip.

Example 6.6. In QK(Gr(3, 7)) we consider the multiplication O1 ◦ O(4,3,1). Note that

(4, 3, 1)(−1) = (−1) =

O1 ◦ O(4,3,1) = qO2 − qO3 − qO2,1 + qO3,1 +O4,3,2 +O4,4,1 −O4,4,2,

or, in terms of shapes,

O□ ◦ O = qO − qO − qO + qO +O +O −O

Idea of proof for Theorem 6.5. The classical part follows from Lenart’s Pieri rule. For
the quantum part, note that by Corollary 5.15 we have

Nµ,d
λ,(1) = ⟨Oλ,O(1), (Oµ)∨⟩d −

∑
η

⟨Oλ,O(1), (Oη)∨⟩d−1 · ⟨Oη, (Oµ)∨⟩1.

By an exercise in the homework,

⟨Oλ,O(1), (Oµ)∨⟩d = ⟨Oλ, (Oµ)∨⟩d
whenever d > 1. In particular, if d ≥ 2, the right hand side contains the same terms
occurring in 1 ◦ Oλ, therefore it must vanish in this case. Thus only q1 may appear. In
this case, the right hand side is equal to

δλ(−1),ν −
∑
η

⟨Oλ,O(1), (Oη)∨⟩0 · ⟨Oη, (Oµ)∨⟩1 = δλ(−1),ν −
∑
η

Nη,0
λ,(1) · δη(−1),ν

A combinatorial exercise shows that the latter expression is the one claimed. □
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We now give the general Pieri formula. Recall that the outer rim of a partition
λ consists of the set of boxes which do not have any box strictly SE. One obtains the
following formula:

Theorem 6.7 (Pieri rule). The constants Nµ,d
i,λ = 0 for d ≥ 2. Furthermore, Nµ,1

i,λ is
nonzero only if ℓ(λ) = k, and µ can be obtained from λ by removing a subset of the
boxes in the outer rim of λ, with at least one box removed from each row. When these
conditions hold, we have

Nµ,1
i,λ = (−1)e

(
r

e

)
where e = |µ| + n − i − |λ| and r is the number of rows of µ that contain at least one
box from the outer rim of λ, excluding the bottom row of this rim.

Example 6.8. On X = Gr(3, 6) we have N
(2,1),1
2,(3,2,1) = −2, with e = 1 and r = 2.
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7. Presentations of the quantum K ring of flag manifolds

Presentations of the (equivariant) quantum K rings of the complete flag manifold have
been recently obtained by Lenart, Naito and Sagaki (non-equivariantly) and extended
to the equivariant setting by Maeno, Naito and Sagaki. The source of these presentation
is given by the theory of quantum Grothendieck polynomials pioneered by Lenart and
Maeno [LM06]. In what follows we give (sometimes conjectural) presentations, which
aim to generalize the usual (K-theoretic) Whitney relations. These presentations are also
related to the Wilson line operator approach ti quantum K theory, arising in physics.

7.1. A presentation for the QK ring of Grassmannians. Let 0 → S → Cn → Q →
0 be the tautological sequence, where rk(S) = k. An influential result by Witten [Wit95]
proves that (QH∗(Gr(k;n)), ⋆), the quantum cohomology ring of the Grassmannian, is
determined by the ‘quantum Whitney relations’:

(7.1) c(S) ⋆ c(Q) = c(Cn) + (−1)kq,

where c(E) = 1 + c1(E) + . . . + ce(E) is the total Chern class of the rank e bundle E.
This equation leads to a presentation of QH∗(Gr(k;n)) by generators and relations:

(7.2) QH∗(Gr(k;n)) =
Z[q][e1(x), . . . , ek(x); e1(x̃), . . . , en−k(x̃)]〈(∑k

i=0 ei(x)
)(∑n−k

j=0 ej(x̃)
)
= 1 + (−1)kq

〉 .
The idea of proof is explained in [FP97] (and it is originally due to Ruan-Tian) and it
goes as follows.

Proposition 7.1. Consider a graded ring R := Z[q][e1, . . . , ek, e1(x̃), . . . , en−k(x̃)]/⟨P1, . . . , Pn⟩
where Pi’s are polynomials in ei’s, ẽj’s, and q. Assume that:

• The specializatons Pi|q=0 generate the ideal of relations for H∗(X);
• Each Pi = 0 in QH∗(X).

Then R ≃ QH∗(X).

The idea is to extend this to QK theory. For that we start by writing down the rela-
tions in QK(Gr(k;n)). One can show that λy(S)·λy(Q) = λy(Cn) in the (equivariant) K-
theory ring of Gr(k;n). They utilize the Hirzebruch λy-class λy(E) = 1+yE+. . .+ye∧eE
of a vector bundle E. Our first theorem is an analogue of the quantumWhitney relations
(7.1).

Theorem 7.2 (Gu-M-Sharpe-Zou [GMSZ22]). The following equality holds in QKT (X):

(7.3) λy(S) ⋆ λy(Q) = λy(Cn)− q

1− q
yn−k(λy(S)− 1) ⋆ detQ.

Corollary 7.3. Let X = (X1, . . . , Xk) and X̃ = (X̃1, . . . , X̃n−k). The quantum K theory
ring QK(Gr(k;n)) has a presentation with generators and relations

Z[[q]][e1(X), . . . , ek(X), e1(X̃), . . . , en−k(X̃)]

⟨
∏k

i=1(1 + yXi)
∏n−k

j=1 = (1 + y)n − q
1−q

yn−kX̃1 · . . . · X̃n−k(
∏k

i=1(1 + yXi)− 1)⟩
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While in cohomology Chern classes of a vector bundle and its dual differ by a sign,
the relation is more subtle in K-theory. For example

∧i(S) · det(S∗) = ∧k−i(S∗).

(Take Chern character.) The quantum analogue of this is the following.

Theorem 7.4 (Gu-M-Sharpe-Zou). The following holds in QKT (Gr(k;n)):

(λy(S)− 1) ⋆ det(Q) = (1− q)((λy(S)− 1) · det(Q)).

Equivalently, for any i > 0,

∧i(S) ⋆ det(Q) = (1− q) ∧k−i (S∗) · det(Cn).

(Here we included detCn, because that’s how this statement generalizes to the equi-
variant setting.)

To prove such statements again one uses the ‘quantum=classical’. We illustrate with
the following corollary.

Corollary 7.5. Fix arbitrary b, c ∈ KT (Gr(k;n)) and any degree d ≥ 0. Then the
equivariant KGW invariant ⟨λy(S), b, c⟩d satisfies:

⟨λy(S), b, c⟩d =
∫
Gr(k−d;n)

λy(Sk−d) · q∗p∗(b) · q∗p∗(c).

In particular, the 2-point KGW invariant ⟨b, c⟩d satisfies:

⟨b, c⟩d =
∫
Gr(k−d;n)

q∗p
∗(b) · q∗p∗(c).

Once the relations are proved, to show that they form the full set of relations, one
needs a K theoretic generalization of the Proposition 7.1 above. This is based on the
following two results from commutative algebra (see the Appendix of [GMSZ22]).

Proposition 7.6. Let R be a Noetherian integral domain, and let I ⊂ R be an ideal. As-
sume that R is complete in the I-adic topology. Let M,N be finitely generated R-modules.
Assume that the R-module N , and the R/I-module N/IN , are both free modules of

the same rank p < ∞, and that we are given an R-module homomorphism f : M → N
such that the induced R/I-module map f : M/IM → N/IN is an isomorphism of
R/I-modules.

Then f is an isomorphism.

Proposition 7.7. Let M be an R-module complete with respect to an ideal I. Assume
that M is equipped with decreasing filtration (Mn) such that I.Mn ⊂ Mn+1, it is separated
(i.e.,

⋂
nMn = 0) and it is good (i.e., the associated graded grM =

⊕
iMi/Mi+1 is a

finitely generated grR-module). Then M is a finitely generated R-module.
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In our case, R = KT (pt)[[q]], I = ⟨q⟩, M is the conjectured presentation and N =
QKT (X). The fact that the relations hold implies that there is a well defined ring
homomorphism f : M → N , and the naturality of the construction implies that f
is compatible with the corresponding filtrations. Note that R is I-complete and that
f : M/IM → QH∗(X) gives a known presentation of the non-quantum ring KT (X).

7.2. The Coulomb branch presentation. The study of presentations generated by
bundles (rather than Schubert classes) was actually inspired by results in physics [JM20,
JMNT20, JM19, UY20], see also the recent [DN, §5]. Informally, the (Schur) bundles
correspond to ‘Wilson line operators’ and the QK ring arises as

QK(X) = algebra of Wilson operators / relations .

In the physics literature (cf. e.g. [MP95, CK16]), one considers the ‘twisted superpo-
tential’

W =
k

2

k∑
a=1

(lnXa)
2 − 1

2

(
k∑

a=1

lnXa

)2

+ ln
(
(−1)k−1q

) k∑
a=1

lnXa + n
k∑

a=1

Li2 (Xa) .(7.4)

Here

Li2(z) =

∫ 1−z

1

ln(t)

1− t
dt

is the dilogarithm, and the only thing we need is that it satisfies

(7.5) y
∂

∂y
Li2(y) = − ln(1− y),

The variables Xi are interpreted as the exponentials of the Chern roots Xi = exi . In
this context, the exterior powers ∧iS,∧jQ are the aforementioned Wilson line operators
considered in the physics literature. The Coulomb branch (or vacuum) equations for W
are

(7.6) exp

(
∂W

∂ lnXi

)
= 1, 1 ≤ i ≤ k.

This implies that

(7.7) (−1)k−1q (Xa)
k =

(
k∏

b=1

Xb

)
(1−Xa)

n .

These equations turn out to be equal to the Bethe Ansatz equations in an integrable
system studied by Gorbounov and Korff [GK17]. There is also an equivariant version
of these identities. Let Ti ∈ KT (pt) denote equivariant parameters. These appear in
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the pertinent physical theories as exponentials of “twisted masses.” Concretely, in cases
with twisted masses, the superpotential (7.4) for Gr(k;n) generalizes to [UY20]

W =
k

2

k∑
a=1

(lnXa)
2 − 1

2

(
k∑

a=1

lnXa

)2

+ ln
(
(−1)k−1q

) k∑
a=1

lnXa +
n∑

i=1

k∑
a=1

Li2
(
XaT

−1
i

)
.

Simplifying

(7.8) exp

(
∂W

∂ lnXa

)
= 1

for each 1 ≤ a ≤ k, we find

(7.9) (−1)k−1q(Xa)
k

n∏
j=1

Tj =

(
k∏

b=1

Xb

)
·

n∏
i=1

(Ti −Xa).

The equations are not Sk×Sn−k symmetric, so one needs to symmetrize them. For that,
it is convenient to work with the ‘shifted Wilson line operators’, or, equivalently, with
variables

zi = 1−Xi, (1 ≤ i ≤ k).

The Coulomb branch equations show that zi are the roots of a ‘characteristic polynomial’:

(7.10) f(ξ, z, q) = ξn +
n−1∑
i=0

(−1)n−iξign−i(z, λ, q),

where gj(z, λ, q) is symmetric in zi’s. (See example below.) This means that f(ξ, zi, q) =
0 for 1 ≤ i ≤ k.

Theorem 7.8 (Gorbounov-Korff, Gu-Sharpe-M.-Zou). The Vieta relations applied to
the characteristic polynomial f(ξ, zi, q) generate an ideal I such that

C[[q]][z1, . . . , zk; ẑ1, . . . , ẑn−k]/I

is isomorphic to QK(Gr(k;n)).

Example 7.9. The Coulomb branch relations for Gr(2; 5) are∑
i+j=ℓ

ei(z)ej(ẑ) = gℓ(z, q) ,

for 1 ≤ ℓ ≤ 5, where the polynomials gℓ(z, λ, q) are given by

g1 = z1z2; g2 = g3 = 0; g4 = g5 = −q.
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In fact, One may solve for ei(ẑ) in terms of ei(z) to obtain:

e1(ẑ) = −G1(z);

e2(ẑ) = G2(z);

e3(ẑ) = −G3(z).

Here Gi(z) are the Grothendieck polynomials, given by

G1(z) = z1 + z2 − z1z2;

G2(z) = z21 + z1z2 + z22 − z21z2 − z1z
2
2 ;

G3(z) = z31 + z21z2 + z1z
2
2 + z32 − z31z2 − z21z

2
2 − z1z

3
2 .

7.3. A Whitney presentation for QK of partial flag manifolds. Consider now
the partial flag manifold X = Fl(i1, . . . , ik;n) equipped with the tautological sequence
0 = S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ Sk+1 = Cn where Sj has rank rj.

Conjecture 2 (Gu-M-Sharpe-Xu-Zhang-Zou). For j = 1, . . . , k, the following relations
hold in QKT (X):

λy(Sj) ⋆ λy(Sj+1/Sj) = λy(Sj+1)− yrj+1−rj
qj

1− qj
det(Sj+1/Sj) ⋆ (λy(Sj)− λy(Sj−1)).

Note that this generalizes the presentation from Theorem 7.2 above. This presentation
is currently being proved in the case Fl(1, n − 1;n) and for Fl(n), the latter being
conditional on the validity of Conjecture 1. There is also an analogue of the twisted
superpotential from (7.4), see [GMS+23].
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8. Open problems

8.0.1. Structural theorems, polynomial representatives. In short, there have been rules
to multiply by generators in quantum K theory, obtained either as a ‘quantum=classical’
statement (for cominuscule Grassmannians), or, more recently in QK(G/B) from con-
nections to the K theory of semi-infinite flag manifolds (Kato, Lenart, Maeno, Naito,
Sagaki, . . .). Besides extending the scope of these rules to as many flag manifolds as
possible, we would also like to obtain explicit combinatorial rules to multiply by λy

classes of tautological bundles. For example, we would like to have rules in QK(Gr(k, n)
to multiply by ∧iS,∧jQ for any i, j.

8.0.2. Divisor axiom. Prove Conjecture 1. This conjecture is known for (cominuscule)
Grassmannians (Buch-Chaput-M.-Perrin) and for incidence varieties (W. Xu).

8.0.3. Positivity. Prove:

Conjecture 3. (Lenart-Maeno, Buch-M., Buch-Chaput-M.-Perrin) Consider the QK
product Ou ◦ Ov =

∑
Nw,d

u,v q
dOw in QK(G/P ). Then

(−1)ℓ(w)+deg qd−ℓ(u)−ℓ(v)Nw,d
u,v ≥ 0.

This conjecture was recently proved in [BCMP], in the general case of (minuscule)
Grassmannians, but the general case is wide open.

8.0.4. Is there a maximum quantum degree ? It is known that the quantum degrees
form integer intervals in the multiplication in QK(Gr(k, n)) and more generally for the
quantum K ring of cominuscule Grassmannians. Examples show that the quantum
(multi) degrees appearing in QK(Fl(n)) do not form convex sets. However, it is known
that a unique minimum quantum degree exists (Postnikov, Buch-Chung-Li-M.), and
examples suggest that for any u, v ∈ W , Ou ◦ Ov has a unique maximum degree.

8.0.5. Relation to integrable systems and other QK theory theories (cotangent bundles,
quasimap QK theory, quantum K theory with level). There are many questions here:

• It is expected that ‘Givental QK theory’ and ‘quasimap QK theory’ agree for
flag manifofds. Can one make precise the connection ?

• Integrable systems such as the Bethe Ansatz (or nested version thereof) appear
in the study of quantum cohomology and quantum K theory. Various objects in
the integrable system (spin basis, on/off-shell Bethe vectors, transfer matrices)
are known, or expected to have geometric meaning in terms of (Schubert classes,
fixed points, multiplication operators). Building a dictionary (integrable system)
↔ geometry should benefit both areas, and may shed light on deeper phenomena.

For example, the ‘row-to-row’ transfer matrix from the study of the QH∗
T (Gr(k;n))

Gorbounov and Korff [GK17] are quantum multiplication operators by cT (Q),
the equivariant total Chern class of the tautological quotient bundle.
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