Motivic Chern classes of Schubert cells: applications and experiments

Leonardo Mihalcea (Virginia Tech) based on joint work with P. Aluffi, A. Knutson, J. Schürmann, C. Su, P. Zinn-Justin

Workshop: Representation theory and flag or quiver varieties Paris, France

slides available at: https://personal/math.vt.edu/lmihalce/slides

June 20, 2022

イロト イヨト イヨト

Schubert Calculus

Schubert Calculus is the study of cohomology theories of flag manifolds (cohomology, K theory, equivariant versions, quantum versions, **cotangent** version etc). Denote such a theory by $\mathcal{H}(G/P)$.

Schubert basis: $\{\sigma_I\} \subset \mathcal{H}(G/P)$, giving structure constants:

$$\sigma_I \cdot \sigma_J = \sum c_{I,J}^K \sigma_K.$$

Positivity of $c_{I,J}^{K}$ is a central theme. Roughly, positivity is (provably/conjecturally) a consequence of:

- transversality (cohomology);
- sheaf cohomology vanishing (K theory);
- vector bundle positivity (cotangent).

Log concavity was virtually not encountered, until recently, and it seems to appear in K-Cotangent Schubert Calculus ...

イロト 不得 トイヨト イヨト

K theory

X complex projective manifold. The K-theory

$$\mathcal{K}(X) = \frac{\{[E] : E \to X \text{ vector bundle }\}}{[E] = [F] + [G]},$$

for any short exact sequence $0 \rightarrow F \rightarrow E \rightarrow G \rightarrow 0$. Addition and multiplication are given by

$$[E] + [F] := [E \oplus F]; \quad [E] \cdot [F] := [E \otimes F].$$

There is a pairing $\langle \cdot, \cdot
angle : \mathcal{K}(X) imes \mathcal{K}(X)
ightarrow \mathbb{Z}$ defined by

$$\langle [E], [F] \rangle = \int_X E \otimes F = \sum (-1)^i \dim H^i(X; E \otimes F).$$

If $Y \subset X$ closed subvariety, \mathcal{O}_Y has a **finite** resolution by vector bundles, thus

 $[\mathcal{O}_Y] \in K(X).$

イロト イヨト イヨト イヨト

The Grothendieck group of varieties

Let X algebraic variety.

$$G_0(var/X) = \frac{\{[f: Y \to X]: Y - scheme\}}{[Y \to X] = [Z \to X] + [Y \setminus Z \to X]},$$

for $Z \subset Y$ a closed subvariety. For any $f : X_1 \to X_2$ have a push-forward:

 $f_!: G_0(\textit{var}/X_1) \rightarrow G_0(\textit{var}/X_2); \quad [g: Y \rightarrow X_1] \mapsto [f \circ g: Y \rightarrow X_2].$

< □ > < □ > < □ > < □ > < □ >

Motivic Chern classes

Theorem (Brasselet-Schürmann-Yokura, 2010)

There exists a unique natural transformation

 $\mathrm{MC}_y: G_0(var/X) \to K(X)[y]$

commuting with proper morphisms such that when X is smooth,

$$\operatorname{MC}[\operatorname{id}_X : X \to X] = \lambda_y(T^*X) := \sum [\wedge^i T^*(X)] y^i$$

is the Hirzeburch λ_y class of X. Further, if X = pt, then MC is a ring homomorphism.

Notation: if $Z \subset X$, denote by $MC_y(Z) := MC_y[Z \hookrightarrow X]$. Initial goal: Calculate

$$\operatorname{MC}(X_w^\circ) := \operatorname{MC}[X_w^\circ \hookrightarrow G/B] \in K(G/B),$$

where X_w° is a Schubert cell in a flag manifold G/B. (Feher-Rimányi-Weber, AMSS)

Flag manifolds

X = G/B, the flag manifold, where G is complex semisimple and B is a Borel subgroup (e.g. upper triangular matrices). Let T be the maximal torus (diagonal matrices). For $G = SL_n$,

$$G/B = \operatorname{Fl}(n) = \{F_{\bullet} : F_1 \subset F_2 \subset \ldots \subset F_n = \mathbb{C}^n\}.$$

Let W be the Weyl group. For each $w \in W$ we have Schubert cells and varieties:

$$\begin{split} X^{\circ}_{w} &:= BwB/B \simeq \mathbb{A}^{\ell(w)}; \quad X^{w,\circ} := B^{-}wB/B \simeq \mathbb{A}^{\binom{n}{2}-\ell(w)}; \\ X_{w} &:= \overline{X^{\circ}_{w}}; \quad X^{w} := \overline{X^{w,\circ}}. \end{split}$$

Let

$$\mathcal{O}_w := [\mathcal{O}_{X_w}]; \quad \mathcal{O}^w := [\mathcal{O}_{X^w}] \in K(G/B),$$

the Schubert classes. Then

$$K(G/B) = \oplus_w \mathbb{Z} \mathcal{O}_w = \oplus_w \mathbb{Z} \mathcal{O}^w.$$

the Schubert basis.

イロト イヨト イヨト

Examples

- $MC(\mathbb{P}^1) = \lambda_y(T^*_{\mathbb{P}^1}) = (1+y)\mathcal{O}_{\mathbb{P}^1} 2y\mathcal{O}_{pt}.$
- Objective and the second se

$$\operatorname{MC}(\mathbb{A}^1 \subset \mathbb{P}^1) = \lambda_y(\mathcal{T}^*_{\mathbb{P}^1}) - \lambda_y(\mathcal{T}^*_{pt}) = (1+y)\mathcal{O}_{\mathbb{P}^1} - (1+2y)\mathcal{O}_{pt}.$$

So For y = -q, the Hirzebruch χ_y -genus of a Schubert cell is:

$$\int_{\mathrm{Fl}(n)} \mathrm{MC}(X^\circ_w) = \mathrm{MC}[X^\circ_w \to \rho t] = \mathrm{MC}[\mathbb{A}^1 \to \rho t]^{\ell(w)} = q^{\ell(w)} = \#_{\mathbb{F}_q} X^\circ_w.$$

• The χ_y -genus of Fl(n):

$$\int_{\mathrm{Fl}(n)} \mathrm{MC}_{-q}[id:\mathrm{Fl}(n) \to \mathrm{Fl}(n)] = \sum_{w \in W} \mathrm{MC}[X_w^{\circ} \to pt]$$
$$= \sum_{w \in W} q^{\ell(w)}$$
$$= [n]_q!$$

(the q-analogue of the factorial.)

イロト イヨト イヨト イヨト

How to calculate ?

 Interpolation/Equivariant localization methods: Fehér, Rimányi, Tarasov, Varchenko, Weber, ..., in relation to stable envelopes (Aganagic, Maulik, Okounkov).

Resolution of singularities: AMSS (flag manifolds), Maxim - Schürmann (toric varieties). For flag manifolds, this leads to Demazure-Lusztig operators in Hecke algebras.

イロト イヨト イヨト

Cotangent Schubert classes

Theorem

(Fehér-Rimányi-Weber). Let stab(w) ∈ K_{T×C*}(T*G/B) be the (appropriately normalized) stable envelope. Then

 $\iota^*(\mathrm{stab}(w)) = \mathrm{MC}(X^\circ_w).$

$$(\star)\iota^*(gr(i_w!\mathbb{Q}^H_{X^\circ_w}))\otimes [\omega^{\bullet}_{G/B}] = \mathrm{MC}(X^\circ_w),$$

where $gr(i_{w!}\mathbb{Q}^{H}_{X_{w}^{o}})$ is the associated graded sheaf on $T^{*}(G/B)$ determined by the 'constant' mixed Hodge module $\mathbb{Q}^{H}_{X_{w}^{o}}$ (cf. Tanisaki, Saito).

Demazure-Lusztig operators

Fix $1 \le i \le n-1$, and let $s_i = (i, i+1) \in W$ (simple transposition). Consider the projection: $p_i : G/B \to G/P_i$, with P_i -minimal parabolic. The Demazure operator is

$$egin{aligned} \partial_i &:= (p_i)^* (p_i)_* : \mathcal{K}(G/B) o \mathcal{K}(G/B). \ \partial_i \mathcal{O}_w &= egin{cases} \mathcal{O}_{ws_i} & ws_i > w \ \mathcal{O}_w & ws_i < w. \end{aligned}$$

The Demazure-Lusztig operators are:

$$\mathcal{T}_i = \lambda_y(\mathcal{T}_{p_i}^*)\partial_i - id; \quad \mathcal{T}_i^{\vee} = \partial_i\lambda_y(\mathcal{T}_{p_i}^*) - id.$$

Lemma (Lusztig)

The operators T_i satisfy the following properties:

• (commutativity) $T_iT_j = T_jT_i$ if $|i - j| \ge 2$;

(braid relations)
$$\mathcal{T}_i \mathcal{T}_{i+1} \mathcal{T}_i = \mathcal{T}_{i+1} \mathcal{T}_i \mathcal{T}_{i+1};$$

• (quadratic relations): $(T_i + y)(T_i + id) = 0$.

Same properties are satisfied by \mathcal{T}_i^{\vee} and $\langle \mathcal{T}_i(a), b \rangle = \langle a, \mathcal{T}_i^{\vee}(b) \rangle$.

Theorem (MC classes and their family: mostly AMSS '19, M-Su '19)

(Hecke recursions) Let $w \in W$ and assume that $ws_i > w$. Then

$$\operatorname{MC}(X(ws_i)^\circ) = \mathcal{T}_i(\operatorname{MC}(X(w)^\circ).$$

In particular, $MC(X(w)^{\circ}) = \mathcal{T}_{w^{-1}}(\mathcal{O}_{id}).$

 (Poincaré duality) Let D : K(Fl(n))[y] → K(Fl(n))[y] be defined by D[E] = E[∨] ⊗ ω_{G/B}[dim G/B] and D[y] = y⁻¹. Then

$$\langle \operatorname{MC}(X_w^\circ), \frac{\mathcal{D}\operatorname{MC}(X^{v,\circ})}{\lambda_y(T^*(G/B))} \rangle = (\star) \delta_{v,w}$$

③ (Hecke / Serre duality) If $\overline{\mathcal{T}_w} := \mathcal{T}_{w^{-1}}^{-1}$, $\overline{y} := y^{-1}$ is the Hecke involution, then

$$\mathcal{D}\mathrm{MC}(X_w^\circ) = \overline{\mathcal{T}_{w^{-1}}}(\mathcal{O}_{id}).$$

(Segre classes) We have

$$\mathrm{SMC}(X^{w,\circ}) := \frac{\mathrm{MC}(X^{w,\circ})}{\lambda_y(T^*(G/B))} = (\star)\mathcal{T}_{w^{-1}w_0}^{\vee}(\mathcal{O}_{pt}).$$

Big cell in Fl(3)

The motivic class for the open cell in Fl(3) is:

$$\begin{split} \mathrm{MC}(X(s_1s_2s_1)^\circ) = & (1+y)^3 \mathcal{O}_{s_1s_2s_1} - (1+y)^2 (1+2y) (\mathcal{O}_{s_1s_2} + \mathcal{O}_{s_2s_1}) + \\ & (1+y) (5y^2 + 4y + 1) (\mathcal{O}_{s_1} + \mathcal{O}_{s_2}) \\ & - (8y^3 + 11y^2 + 5y + 1) \mathcal{O}_{id} \end{split}$$

Observe (AMSS, in progress):

- Divisibility by $(1 + y)^{\ell(v)}$;
- **2** Specialize: $y = -1 \rightsquigarrow \mathcal{O}_{id}$;
- Specialize: $y = 0 \rightsquigarrow \mathcal{O}_{X_{s_1s_2s_1}}(-\partial X_{s_1s_2s_1})$ (ideal sheaf of the boundary);
- So Coefficient of $y^{top} = y^3$: $K_{X_{s_1s_2s_1}}$ (the dualizing sheaf).

Let $DMC(X^{w,\circ})$ denote the Poincaré dual of $MC(X_w^\circ)$.

イロト 不得 トイヨト イヨト

Positivity and log concavity I: transition matrices

$$\begin{split} \mathrm{MC}(X(s_1s_2s_1)^\circ) = & (1+y)^3 \mathcal{O}_{s_1s_2s_1} - (1+y)^2 (1+2y) (\mathcal{O}_{s_1s_2} + \mathcal{O}_{s_2s_1}) + \\ & (1+y) (5y^2 + 4y + 1) (\mathcal{O}_{s_1} + \mathcal{O}_{s_2}) \\ & - (8y^3 + 11y^2 + 5y + 1) \mathcal{O}_{id} \end{split}$$

Consider the Schubert expansion:

$$\operatorname{MC}(X_w^\circ) = \sum_v c_{v,w}(y) \mathcal{O}_v.$$

Conjecture

(AMSS (all Lie types), Fehér-Rimanyi-Weber (type A))

(Positivity):

$$(-1)^{\ell(w)-\ell(v)}c(v;w)(q)\in\mathbb{Z}_{\geq 0}[y].$$

(Log concavity) The polynomial (-1)^{l(w)-l(v)}c_{v;w}(q) has no internal zeros and it is log concave.

Examples and non-examples

Example

Take flag manifold of Lie type G_2 (dimension 6). Then:

$$c_{id;w_0}(y) = 64y^6 + 141y^5 + 125y^4 + 69y^3 + 29y^2 + 8y + 1 = (\star) \int_{\mathcal{G}_2/B} \text{DMC}(X^{id,\circ}).$$

Example

The λ_y class of Fl(3) is:

$$\begin{split} \sum_{w} \mathrm{MC}(X_{w}^{\circ}) &= \lambda_{y}(\mathrm{Fl}(3)) = (1+y)^{3} \mathcal{O}_{\mathrm{Fl}(3)} - 2y(1+y)^{2} (\mathcal{O}_{\mathfrak{s}_{1}\mathfrak{s}_{2}} + \mathcal{O}_{\mathfrak{s}_{2}\mathfrak{s}_{1}}) \\ &+ y(1+y)(5y-1)(\mathcal{O}_{\mathfrak{s}_{1}} + \mathcal{O}_{\mathfrak{s}_{2}}) - y(8y^{2}+y-1)\mathcal{O}_{pt}. \end{split}$$

Not positive!

< □ > < □ > < □ > < □ > < □ >

CSM specialization

The cohomological analogues of the motivic Chern classes are called the **Chern-Schwartz-MacPherson** classes. Consider the expansion

$$\operatorname{csm}(X(w)^{\circ}) = \sum c'(v;w)[X(v)].$$

Then

$$c'(v;w) = rac{c(v;w)}{(1+y)^{\ell(v)}}|_{y=-1}$$

Example

 $\operatorname{csm}(X(s_1s_2s_1^\circ) = [X(s_1s_2s_1)] + [X(s_1s_2)] + [X(s_2s_1)] + 2([X(s_1)] + [X(s_2)]) + [pt].$

Theorem (J. Huh (Grassmannians); AMSS (all G/P)) The coefficients $c'(v; w) \ge 0$.

< □ > < □ > < □ > < □ > < □ >

Intermezzo: A transversality formula and point counting

Theorem (Schürmann)

Let $X_1, X_2 \subset X$ intersecting appropriately transversal. Then

 $\operatorname{MC}(X_1 \cap X_2) = \operatorname{SMC}(X_1) \cdot \operatorname{MC}(X_2).$

Example

Take $Fl(2) = \mathbb{P}^1$. Then

$$\int_{\mathbb{P}^1} \mathrm{MC}_{-q}(\mathbb{A}^1 \cap g_1 \mathbb{A}^1 \cap g_2 \mathbb{A}^1) = q-2 = \#_{\mathbb{F}_q}(\mathbb{A}^1 \cap g_1 \mathbb{A}^1 \cap g_2 \mathbb{A}^1).$$

Example

For $u \leq v$, define $R_v^u := X_v^\circ \cap X^{u,\circ}$, the Richardson 'cell'. Then

$$\int_{\mathrm{Fl}(n)}\mathrm{MC}_{-q}(R^u_{v})=R_{v,u}(q)=\#_{\mathbb{F}_q}R^u_{v},$$

where $R_{v,u}$ is the Kazhdan-Lusztig *R*-polynomial.

Positivity and log concavity II: integrals of dual MC classes

Conjecture (Knutson-M.-Zinn-Justin)

The following polynomials have non-negative coefficients and are log concave:

$$(1+y)^{\dim}\int_{\mathrm{Fl}(n)}\mathrm{DMC}(X^{w,\circ});\quad (1+y)^{\dim}\int_{\mathrm{Fl}(n)}\mathrm{DMC}(X^{u,\circ})\cdot\mathrm{DMC}(X^{v,\circ}).$$

Example

$$\begin{split} \int_{\mathrm{Fl}(5)} \mathrm{DMC}(X^{id,\circ}) \cdot \mathrm{DMC}(X^{id,\circ}) &= 59049y^{10} + 120138y^9 + 112132y^8 \\ &+ 66978y^7 + 30120y^6 + 11112y^5 \\ &+ 3427y^4 + 850y^3 + 155y^2 \\ &+ 18y + 1. \end{split}$$

イロト イヨト イヨト イヨト

Positivity and log concavity III: Structure constants Consider the multiplication

$$\mathrm{DMC}(X^{u,\circ})\cdot\mathrm{DMC}(X^{v,\circ})=\sum_w c^w_{u,v}(y)\mathrm{DMC}(X^{w,\circ}).$$

Observe:

$$egin{aligned} & c_{u,v}^w(y) = \int_{\mathrm{Fl}(n)} \mathrm{DMC}(X^{u,\circ}) \cdot \mathrm{DMC}(X^{v,\circ}) \cdot \mathrm{MC}(X^\circ_w) \ &
ot= \chi_y(X^{u,\circ} \cap g_1 X^{v,\circ} \cap g_2 X^\circ_w). \end{aligned}$$

Conjecture (Knutson-M.-Zinn-Justin)

The polynomials

$$(-1)^{\ell(u)+\ell(v)-\ell(w)}c^w_{u,v}(-y)$$

have non-negative coefficients and are log concave.

The positivity was recently proved for partial flag manifolds with ≤ 4 steps, by Knutson and Zinn-Justin using integrable systems.

Leonardo Mihalcea

Example

Consider Fl(5) (dimension 10), and w_0 the longest element in S₅. Then

$$c_{id,id}^{w_0}(y) = y^{10} - 22y^9 + 92y^8 - 130y^7 + 76y^6 - 18y^5 + 2y^4.$$

Observe:

$$c_{id,id}^{w_0}(-1) = 341 = \chi_{-1}(X^{id,\circ} \cap g_1 X^{id,\circ} \cap g_2 X^{id,\circ}).$$

(The Euler characteristic of the intersection of 3 translates of open cells in Fl(5).)

Conjecture

Let $u, v, w \in W$. Then

$$(-1)^{\ell(u)+\ell(v)-\ell(w)}\chi(X^{u,\circ}\cap X^{v,\circ}\cap X^{\circ}_w)\geq 0.$$

This conjecture appears in the context of Segre-MacPherson classes, which are the cohomological analogues of $\rm DMC/SMC$ classes.

< □ > < □ > < □ > < □ > < □ >

Conclusion

The study of motivic Chern and related classes leads to (conjecturally) positive, and log concave polynomials, coming from two sources:

- **1** Transition matrices (*MC* to Schubert classes; *DMC* to *MC* classes);
- Structure constants for multiplication.

In some instances, this theory seems better behaved than the classical KL theory: e.g. the KL-R polynomials are not log concave, but similar 'cotangent' polynomials are expected to be.

Question. Does Hodge geometry determine these properties ?

イロト イヨト イヨト

MERCI À TOUS!

イロト 不良 とくほとくほう