Motivic Chern classes of Schubert cells: applications and experiments

Leonardo Mihalcea (Virginia Tech) based on joint work with P. Aluffi, A. Knutson, J. Schürmann, C. Su, P.
Zinn-Justin

Workshop:
Representation theory and flag or quiver varieties
Paris, France
slides available at:
https://personal/math.vt.edu/lmihalce/slides

June 20, 2022

Schubert Calculus

Schubert Calculus is the study of cohomology theories of flag manifolds (cohomology, K theory, equivariant versions, quantum versions, cotangent version etc). Denote such a theory by $\mathcal{H}(G / P)$.

Schubert basis: $\left\{\sigma_{l}\right\} \subset \mathcal{H}(G / P)$, giving structure constants:

$$
\sigma_{I} \cdot \sigma_{J}=\sum c_{l, J}^{K} \sigma_{K}
$$

Positivity of $c_{I, J}^{K}$ is a central theme. Roughly, positivity is (provably/conjecturally) a consequence of:

- transversality (cohomology);
- sheaf cohomology vanishing (K - theory);
- vector bundle positivity (cotangent).

Log concavity was virtually not encountered, until recently, and it seems to appear in K-Cotangent Schubert Calculus ...

K theory

X complex projective manifold. The K-theory

$$
K(X)=\frac{\{[E]: E \rightarrow X \text { vector bundle }\}}{[E]=[F]+[G]},
$$

for any short exact sequence $0 \rightarrow F \rightarrow E \rightarrow G \rightarrow 0$. Addition and multiplication are given by

$$
[E]+[F]:=[E \oplus F] ; \quad[E] \cdot[F]:=[E \otimes F] .
$$

There is a pairing $\langle\cdot, \cdot\rangle: K(X) \times K(X) \rightarrow \mathbb{Z}$ defined by

$$
\langle[E],[F]\rangle=\int_{X} E \otimes F=\sum(-1)^{i} \operatorname{dim} H^{i}(X ; E \otimes F)
$$

If $Y \subset X$ closed subvariety, \mathcal{O}_{Y} has a finite resolution by vector bundles, thus

$$
\left[\mathcal{O}_{Y}\right] \in K(X) .
$$

The Grothendieck group of varieties

Let X algebraic variety.

$$
G_{0}(\operatorname{var} / X)=\frac{\{[f: Y \rightarrow X]: Y-\text { scheme }\}}{[Y \rightarrow X]=[Z \rightarrow X]+[Y \backslash Z \rightarrow X]},
$$

for $Z \subset Y$ a closed subvariety. For any $f: X_{1} \rightarrow X_{2}$ have a push-forward:

$f_{!}: G_{0}\left(v a r / X_{1}\right) \rightarrow G_{0}\left(\operatorname{var} / X_{2}\right) ; \quad\left[g: Y \rightarrow X_{1}\right] \mapsto\left[f \circ g: Y \rightarrow X_{2}\right]$.

Motivic Chern classes

Theorem (Brasselet-Schürmann-Yokura, 2010)

There exists a unique natural transformation

$$
\mathrm{MC}_{y}: G_{0}(\operatorname{var} / X) \rightarrow K(X)[y]
$$

commuting with proper morphisms such that when X is smooth,

$$
\operatorname{MC}\left[i d_{X}: X \rightarrow X\right]=\lambda_{y}\left(T^{*} X\right):=\sum\left[\wedge^{i} T^{*}(X)\right] y^{i}
$$

is the Hirzeburch λ_{y} class of X.
Further, if $X=p t$, then $M C$ is a ring homomorphism.
Notation: if $Z \subset X$, denote by $\mathrm{MC}_{y}(Z):=\mathrm{MC}_{y}[Z \hookrightarrow X]$. Initial goal: Calculate

$$
\operatorname{MC}\left(X_{w}^{\circ}\right):=\operatorname{MC}\left[X_{w}^{\circ} \hookrightarrow G / B\right] \in K(G / B),
$$

where X_{w}° is a Schubert cell in a flag manifold G / B. (Feher-Rimányi-Weber, AMSS)

Flag manifolds

$X=G / B$, the flag manifold, where G is complex semisimple and B is a Borel subgroup (e.g. upper triangular matrices). Let T be the maximal torus (diagonal matrices). For $G=\mathrm{SL}_{n}$,

$$
G / B=\operatorname{Fl}(n)=\left\{F_{\bullet}: F_{1} \subset F_{2} \subset \ldots \subset F_{n}=\mathbb{C}^{n}\right\} .
$$

Let W be the Weyl group. For each $w \in W$ we have Schubert cells and varieties:

$$
\begin{gathered}
X_{w}^{\circ}:=B w B / B \simeq \mathbb{A}^{\ell(w)} ; \quad X^{w, o}:=B^{-} w B / B \simeq \mathbb{A}^{\binom{n}{2}-\ell(w)} ; \\
X_{w}:=\overline{X_{w}^{\circ}} ; \quad X^{w}:=\overline{X^{w, o}} .
\end{gathered}
$$

Let

$$
\mathcal{O}_{w}:=\left[\mathcal{O}_{X_{w}}\right] ; \quad \mathcal{O}^{w}:=\left[\mathcal{O}_{x^{w}}\right] \in K(G / B),
$$

the Schubert classes. Then

$$
K(G / B)=\oplus_{w} \mathbb{Z} \mathcal{O}_{w}=\oplus_{w} \mathbb{Z} \mathcal{O}^{w}
$$

the Schubert basis.

Examples

(1) $\operatorname{MC}\left(\mathbb{P}^{1}\right)=\lambda_{y}\left(T_{\mathbb{P}^{1}}^{*}\right)=(1+y) \mathcal{O}_{\mathbb{P}^{1}}-2 y \mathcal{O}_{p t}$.
(2) By the motivic property:

$$
\operatorname{MC}\left(\mathbb{A}^{1} \subset \mathbb{P}^{1}\right)=\lambda_{y}\left(T_{\mathbb{P}^{1}}^{*}\right)-\lambda_{y}\left(T_{p t}^{*}\right)=(1+y) \mathcal{O}_{\mathbb{P}^{1}}-(1+2 y) \mathcal{O}_{p t} .
$$

(3) For $y=-q$, the Hirzebruch χ_{y}-genus of a Schubert cell is:

$$
\int_{\mathrm{Fl}(n)} \mathrm{MC}\left(X_{w}^{\circ}\right)=\mathrm{MC}\left[X_{w}^{\circ} \rightarrow p t\right]=\mathrm{MC}\left[\mathbb{A}^{1} \rightarrow p t\right]^{\ell(w)}=q^{\ell(w)}=\#_{\mathbb{F}_{q}} X_{w}^{\circ}
$$

(1) The χ_{y}-genus of $\mathrm{Fl}(n)$:

$$
\begin{aligned}
\int_{\mathrm{Fl}(n)} \mathrm{MC}_{-q}[i d: \mathrm{Fl}(n) \rightarrow \mathrm{Fl}(n)] & =\sum_{w \in W} \mathrm{MC}\left[X_{w}^{\circ} \rightarrow p t\right] \\
& =\sum_{w \in W} q^{\ell(w)} \\
& =[n]_{q}!
\end{aligned}
$$

(the q-analogue of the factorial.)

How to calculate?

(1) Interpolation/Equivariant localization methods: Fehér, Rimányi, Tarasov, Varchenko, Weber,, in relation to stable envelopes (Aganagic, Maulik, Okounkov).
(2) Resolution of singularities: AMSS (flag manifolds), Maxim - Schürmann (toric varieties). For flag manifolds, this leads to Demazure-Lusztig operators in Hecke algebras.

Cotangent Schubert classes

Theorem

(1) (Fehér-Rimányi-Weber). Let $\operatorname{stab}(w) \in K_{T \times \mathbb{C}^{*}}\left(T^{*} G / B\right)$ be the (appropriately normalized) stable envelope. Then

$$
\iota^{*}(\operatorname{stab}(w))=\operatorname{MC}\left(X_{w}^{\circ}\right)
$$

(2) (AMSS, in preparation) Let $i_{w}: Y(w)^{\circ} \rightarrow G / B$ be the inclusion. Then:

$$
(\star) \iota^{*}\left(\operatorname{gr}\left(i_{w!} \mathbb{Q}_{X_{w}^{\bullet}}^{H}\right)\right) \otimes\left[\omega_{G / B}^{\bullet}\right]=\operatorname{MC}\left(X_{w}^{\circ}\right),
$$

where $\operatorname{gr}\left(i_{w}!\mathbb{Q}_{X_{w}}^{H}\right)$ is the associated graded sheaf on $T^{*}(G / B)$ determined by the 'constant' mixed Hodge module $\mathbb{Q}_{X_{w}^{\circ}}^{H}$ (cf. Tanisaki, Saito).

Demazure-Lusztig operators

Fix $1 \leq i \leq n-1$, and let $s_{i}=(i, i+1) \in W$ (simple transposition). Consider the projection: $p_{i}: G / B \rightarrow G / P_{i}$, with P_{i}-minimal parabolic. The Demazure operator is

$$
\begin{gathered}
\partial_{i}:=\left(p_{i}\right)^{*}\left(p_{i}\right)_{*}: K(G / B) \rightarrow K(G / B) . \\
\partial_{i} \mathcal{O}_{w}= \begin{cases}\mathcal{O}_{w s_{i}} & w s_{i}>w \\
\mathcal{O}_{w} & w s_{i}<w .\end{cases}
\end{gathered}
$$

The Demazure-Lusztig operators are:

$$
\mathcal{T}_{i}=\lambda_{y}\left(T_{p_{i}}^{*}\right) \partial_{i}-i d ; \quad \mathcal{T}_{i}^{\vee}=\partial_{i} \lambda_{y}\left(T_{p_{i}}^{*}\right)-i d .
$$

Lemma (Lusztig)

The operators \mathcal{T}_{i} satisfy the following properties:
(1) (commutativity) $\mathcal{T}_{i} \mathcal{T}_{j}=\mathcal{T}_{j} \mathcal{T}_{i}$ if $|i-j| \geq 2$;
(2) (braid relations) $\mathcal{T}_{i} \mathcal{T}_{i+1} \mathcal{T}_{i}=\mathcal{T}_{i+1} \mathcal{T}_{i} \mathcal{T}_{i+1}$;
(0) (quadratic relations): $\left(\mathcal{T}_{i}+y\right)\left(\mathcal{T}_{i}+i d\right)=0$.

Same properties are satisfied by \mathcal{T}_{i}^{\vee} and $\left\langle\mathcal{T}_{i}(a), b\right\rangle=\left\langle a, \mathcal{T}_{i}^{\vee}(b)\right\rangle$.

Theorem (MC classes and their family: mostly AMSS '19, M-Su '19)

(1) (Hecke recursions) Let $w \in W$ and assume that $w s_{i}>w$. Then

$$
\operatorname{MC}\left(X\left(w s_{i}\right)^{\circ}\right)=\mathcal{T}_{i}\left(\operatorname{MC}\left(X(w)^{\circ}\right)\right.
$$

In particular, $\operatorname{MC}\left(X(w)^{\circ}\right)=\mathcal{T}_{w^{-1}}\left(\mathcal{O}_{i d}\right)$.
(2) (Poincaré duality) Let $\mathcal{D}: K(\mathrm{Fl}(n))[y] \rightarrow K(\mathrm{Fl}(n))[y]$ be defined by $\mathcal{D}[E]=E^{\vee} \otimes \omega_{G / B}[\operatorname{dim} G / B]$ and $\mathcal{D}[y]=y^{-1}$. Then

$$
\left\langle\operatorname{MC}\left(X_{w}^{\circ}\right), \frac{\mathcal{D M C}\left(X^{v, o}\right)}{\lambda_{y}\left(T^{*}(G / B)\right)}\right\rangle=(\star) \delta_{v, w} .
$$

(3) (Hecke / Serre duality) If $\overline{\mathcal{T}_{w}}:=\mathcal{T}_{w^{-1}}^{-1}, \bar{y}:=y^{-1}$ is the Hecke involution, then

$$
\mathcal{D M C}\left(X_{w}^{\circ}\right)=\overline{\mathcal{T}_{w^{-1}}}\left(\mathcal{O}_{i d}\right)
$$

- (Segre classes) We have

$$
\operatorname{SMC}\left(X^{w, o}\right):=\frac{\operatorname{MC}\left(X^{w, o}\right)}{\lambda_{y}\left(T^{*}(G / B)\right)}=(\star) \mathcal{T}_{w^{-1} w_{0}}^{\vee}\left(\mathcal{O}_{p t}\right)
$$

Big cell in $\mathrm{Fl}(3)$

The motivic class for the open cell in $\mathrm{Fl}(3)$ is:

$$
\begin{aligned}
\operatorname{MC}\left(X\left(s_{1} s_{2} s_{1}\right)^{\circ}\right)= & (1+y)^{3} \mathcal{O}_{s_{1} s_{2} s_{1}}-(1+y)^{2}(1+2 y)\left(\mathcal{O}_{s_{1} s_{2}}+\mathcal{O}_{s_{2} s_{1}}\right)+ \\
& (1+y)\left(5 y^{2}+4 y+1\right)\left(\mathcal{O}_{s_{1}}+\mathcal{O}_{s_{2}}\right) \\
& -\left(8 y^{3}+11 y^{2}+5 y+1\right) \mathcal{O}_{i d}
\end{aligned}
$$

Observe (AMSS, in progress):
(1) Divisibility by $(1+y)^{\ell(v)}$;
(2) Specialize: $y=-1 \rightsquigarrow \mathcal{O}_{i d}$;
(0) Specialize: $y=0 \rightsquigarrow \mathcal{O}_{X_{s_{1} s_{1}}}\left(-\partial X_{s_{1} s_{2} s_{1}}\right)$ (ideal sheaf of the boundary);
(1) Coefficient of $y^{\text {top }}=y^{3}: K_{{s_{1} s_{2} s_{1}}}$ (the dualizing sheaf).

Let $\operatorname{DMC}\left(X^{w, o}\right)$ denote the Poincaré dual of $\operatorname{MC}\left(X_{w}^{\circ}\right)$.

Positivity and log concavity I: transition matrices

$$
\begin{aligned}
\operatorname{MC}\left(X\left(s_{1} s_{2} s_{1}\right)^{\circ}\right)= & (1+y)^{3} \mathcal{O}_{s_{1} s_{2} s_{1}}-(1+y)^{2}(1+2 y)\left(\mathcal{O}_{s_{1} s_{2}}+\mathcal{O}_{s_{2} s_{1}}\right)+ \\
& (1+y)\left(5 y^{2}+4 y+1\right)\left(\mathcal{O}_{s_{1}}+\mathcal{O}_{s_{2}}\right) \\
& -\left(8 y^{3}+11 y^{2}+5 y+1\right) \mathcal{O}_{i d}
\end{aligned}
$$

Consider the Schubert expansion:

$$
\operatorname{MC}\left(X_{w}^{\circ}\right)=\sum_{v} c_{v, w}(y) \mathcal{O}_{v}
$$

Conjecture

(AMSS (all Lie types), Fehér-Rimanyi-Weber (type A))
(1) (Positivity):

$$
(-1)^{\ell(w)-\ell(v)} c(v ; w)(q) \in \mathbb{Z}_{\geq 0}[y] .
$$

(2) (Log concavity) The polynomial $(-1)^{\ell(w)-\ell(v)} c_{v ; w}(q)$ has no internal zeros and it is log concave.

Examples and non-examples

Example

Take flag manifold of Lie type G_{2} (dimension 6). Then:
$c_{i d ; w_{0}}(y)=64 y^{6}+141 y^{5}+125 y^{4}+69 y^{3}+29 y^{2}+8 y+1=(\star) \int_{G_{2} / B} \operatorname{DMC}\left(X^{i d, 0}\right)$.

Example

The λ_{y} class of $\mathrm{Fl}(3)$ is:

$$
\begin{aligned}
\sum_{w} \mathrm{MC}\left(X_{w}^{\circ}\right)=\lambda_{y}(\mathrm{Fl}(3))= & (1+y)^{3} \mathcal{O}_{\mathrm{Fl}(3)}-2 y(1+y)^{2}\left(\mathcal{O}_{s_{1} s_{2}}+\mathcal{O}_{s_{2} s_{1}}\right) \\
& +y(1+y)(5 y-1)\left(\mathcal{O}_{s_{1}}+\mathcal{O}_{s_{2}}\right)-y\left(8 y^{2}+y-1\right) \mathcal{O}_{p t}
\end{aligned}
$$

Not positive!

CSM specialization

The cohomological analogues of the motivic Chern classes are called the Chern-Schwartz-MacPherson classes. Consider the expansion

$$
\operatorname{csm}\left(X(w)^{\circ}\right)=\sum c^{\prime}(v ; w)[X(v)]
$$

Then

$$
c^{\prime}(v ; w)=\left.\frac{c(v ; w)}{(1+y)^{\ell(v)}}\right|_{y=-1}
$$

Example

$$
\operatorname{csm}\left(X\left(s_{1} s_{2} s_{1}^{\circ}\right)=\left[X\left(s_{1} s_{2} s_{1}\right)\right]+\left[X\left(s_{1} s_{2}\right)\right]+\left[X\left(s_{2} s_{1}\right)\right]+2\left(\left[X\left(s_{1}\right)\right]+\left[X\left(s_{2}\right)\right]\right)+[p t] .\right.
$$

Theorem (J. Huh (Grassmannians); AMSS (all G/P))
The coefficients $c^{\prime}(v ; w) \geq 0$.

Intermezzo: A transversality formula and point counting

Theorem (Schürmann)
Let $X_{1}, X_{2} \subset X$ intersecting appropriately transversal. Then

$$
\operatorname{MC}\left(X_{1} \cap X_{2}\right)=\operatorname{SMC}\left(X_{1}\right) \cdot \operatorname{MC}\left(X_{2}\right)
$$

Example
Take $\mathrm{Fl}(2)=\mathbb{P}^{1}$. Then

$$
\int_{\mathbb{P}^{1}} \mathrm{MC}_{-q}\left(\mathbb{A}^{1} \cap g_{1} \mathbb{A}^{1} \cap g_{2} \mathbb{A}^{1}\right)=q-2=\#_{\mathbb{F}_{q}}\left(\mathbb{A}^{1} \cap g_{1} \mathbb{A}^{1} \cap g_{2} \mathbb{A}^{1}\right) .
$$

Example
For $u \leq v$, define $R_{v}^{u}:=X_{v}^{\circ} \cap X^{u, \circ}$, the Richardson 'cell'. Then

$$
\int_{\mathrm{Fl}(n)} \mathrm{MC}_{-q}\left(R_{v}^{u}\right)=R_{v, u}(q)=\#_{\mathbb{F}_{q}} R_{v}^{u},
$$

where $R_{v, u}$ is the Kazhdan-Lusztig R-polynomial.

Positivity and log concavity II: integrals of dual MC classes

Conjecture (Knutson-M.-Zinn-Justin)

The following polynomials have non-negative coefficients and are log concave:

$$
(1+y)^{\operatorname{dim}} \int_{\mathrm{Fl}(n)} \operatorname{DMC}\left(X^{w, o}\right) ; \quad(1+y)^{\operatorname{dim}} \int_{\mathrm{Fl}(n)} \operatorname{DMC}\left(X^{u, o}\right) \cdot \operatorname{DMC}\left(X^{v, o}\right) .
$$

Example

$$
\begin{aligned}
\int_{\mathrm{Fl}(5)} \mathrm{DMC}\left(X^{i d, \circ}\right) \cdot \operatorname{DMC}\left(X^{i d, \circ}\right) & =59049 y^{10}+120138 y^{9}+112132 y^{8} \\
& +66978 y^{7}+30120 y^{6}+11112 y^{5} \\
& +3427 y^{4}+850 y^{3}+155 y^{2} \\
& +18 y+1 .
\end{aligned}
$$

Positivity and log concavity III: Structure constants

Consider the multiplication

$$
\operatorname{DMC}\left(X^{u, o}\right) \cdot \operatorname{DMC}\left(X^{v, o}\right)=\sum_{w} c_{u, v}^{w}(y) \operatorname{DMC}\left(X^{w, o}\right) .
$$

Observe:

$$
\begin{aligned}
c_{u, v}^{w}(y) & =\int_{\mathrm{Fl}(n)} \operatorname{DMC}\left(X^{u, o}\right) \cdot \operatorname{DMC}\left(X^{v, o}\right) \cdot \operatorname{MC}\left(X_{w}^{\circ}\right) \\
& \neq \chi_{y}\left(X^{u, o} \cap g_{1} X^{v, o} \cap g_{2} X_{w}^{\circ}\right) .
\end{aligned}
$$

Conjecture (Knutson-M.-Zinn-Justin)

The polynomials

$$
(-1)^{\ell(u)+\ell(v)-\ell(w)} c_{u, v}^{w}(-y)
$$

have non-negative coefficients and are log concave.
The positivity was recently proved for partial flag manifolds with ≤ 4 steps, by Knutson and Zinn-Justin using integrable systems.

Example

Consider $\mathrm{Fl}(5)$ (dimension 10), and w_{0} the longest element in S_{5}. Then

$$
c_{i d, i d}^{w_{0}}(y)=y^{10}-22 y^{9}+92 y^{8}-130 y^{7}+76 y^{6}-18 y^{5}+2 y^{4} .
$$

Observe:

$$
c_{i d, i d}^{w_{0}}(-1)=341=\chi_{-1}\left(X^{i d, \circ} \cap g_{1} X^{i d, \circ} \cap g_{2} X^{i d, \circ}\right)
$$

(The Euler characteristic of the intersection of 3 translates of open cells in $\mathrm{Fl}(5)$.)

Conjecture

Let $u, v, w \in W$. Then

$$
(-1)^{\ell(u)+\ell(v)-\ell(w)} \chi\left(X^{u, 0} \cap X^{v, 0} \cap X_{w}^{\circ}\right) \geq 0 .
$$

This conjecture appears in the context of Segre-MacPherson classes, which are the cohomological analogues of DMC/SMC classes.

Conclusion

The study of motivic Chern and related classes leads to (conjecturally) positive, and log concave polynomials, coming from two sources:
(1) Transition matrices (MC to Schubert classes; DMC to MC classes);
(2) Structure constants for multiplication.

In some instances, this theory seems better behaved than the classical KL theory: e.g. the KL-R polynomials are not log concave, but similar 'cotangent' polynomials are expected to be.
Question. Does Hodge geometry determine these properties ?

MERCI À TOUS!

