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What we (can) do
We study characteristic classes coming from two sources:

MacPherson’s transformation:

c∗ : F(X ) → H∗(X ).

Motivic Chern class transformation (Brasselet-Schürmann-Yokura):

MC : G0(var/X ) → K (X )[y ].

(The unnormalized Hirzerbruch transformation Tdy = td∗ ◦MC , where td∗ is
the Todd tranformation.)

In our case X is a flag manifold G/P, such as the Grassmannian Gr(k; n) and
the complete flag manifold Fl(n). These are homogeneous spaces, and their study
leads to applications such as:

1 Formulae in combinatorics and rep. theory;

2 Constructing polynomials associated to characteristic classes;

3 Calculations of (some!) multiplicities in microlocal geometry;

4 (Cotangent) Schubert Calculus / Calculus of (Okounkov’s) stable envelopes.
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Number of reduced expressions (Peterson)

Let λ ⊂ k × (n − k) be a partition, e.g.

λ = ⇝ simple reflections : s2 s3 s4

s1 s2 s3
⇝ heights : 1 2 3

2 3 4

Define wλ := s3s2s1s4s3s2 ∈ S5.

Theorem

(Frame-Robinson-Thrall, . . . , Proctor, Stembridge, Peterson) Let λ ⊂ k × (n− k).
Then the number of reduced decompositions of wλ is equal to

Red(wλ) =
|λ|!∏

2∈λ ht(λ)
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Example

We take λ = (3, 3) and we place simple reflections on its boxes:

s2 s3 s4

s1 s2 s3

giving wλ = s3s2s1s4s3s2. Then

Red(w(3,3)) =
6!

1× 2× 3× 2× 3× 4
= 5.

One may check directly that the 5 reduced decompositions of w are:

s3s2s1s4s3s2, s3s2s4s1s3s2, s3s2s4s3s1s2, s3s4s2s1s3s2, s3s4s2s3s1s2.

They correspond to the (reverse) standard Young tableaux:

6 5 4

3 2 1

6 5 3

4 2 1

6 4 3

5 2 1

6 5 2

4 3 1

6 4 2

5 3 1
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MacPherson’s transformation

Let F(X ) be the group of constructible functions.

Theorem (Deligne - Grothendieck Conjecture; MacPherson ’74,
M. H. Schwartz ’65)

There exists a unique natural transformation c∗ : F(X ) → H∗(X ) such that:

1 If X is projective, non-singular, c∗(11X ) = c(TX ) ∩ [X ].

2 c∗ is functorial with respect to proper push-forwards f : X → Y .

Constructible functions ⇝ characteristic classes of singular varieties:

φ = 11U (U ⊂ X constructible) ⇝ Chern-Schwartz-MacPherson (CSM) class

cSM(U) ∈ H∗(X ).

If X -smooth, the Segre-MacPherson class is:

sM(U) =
cSM(U)

c(TX )
.
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Flag manifolds

X = G/B, the flag manifold, where G is complex semisimple and B is a Borel
subgroup (e.g. upper triangular matrices). Let T be the maximal torus (diagonal
matrices). For G = SLn,

G/B = Fl(n) = {F• : F1 ⊂ F2 ⊂ . . . ⊂ Fn = Cn}.

Let W be the Weyl group. For each w ∈ W we have Schubert cells and varieties:

X ◦
w := BwB/B ≃ Aℓ(w); Xw ,◦ := B−wB/B ≃ A(

n
2)−ℓ(w);

Xw := X ◦
w ; Xw := Xw ,◦.

Let
[Xw ], [X

w ] ∈ H∗(G/B); Ow := [OXw ],Ow := [OXw ] ∈ K (G/B),

the Schubert classes. Then

H∗(G/B) = ⊕wZ[Xw ] = ⊕wZ[Xw ]; K (G/B) = ⊕wZOw = ⊕wZOw .

gives the (cohomological/K-theoretic) Schubert basis.
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Equivariant multiplicities

It is known that

(G/P)T =
⊔

w∈W P

ew ⇝ HT
∗ (G/P)loc = ⊕w∈W PH∗

T (pt)loc [ew ]T .

Let κ ∈ H∗
T (G/P). The equivariant multiplicity of κ at ew is the coefficient mκ

w

in the expansion

κ =
∑

mκ
w [ew ]T .

Of course,

mκ
w =

κ|w
cTtop(Tw (G/P))

,

but the notion makes sense for more general (singular) spaces (Brion).

Leonardo Mihalcea Characteristic classes September 20, 2024 7 / 27



Equivariant multiplicities of Richardson varieties

Let Rv
u := Xu ∩ X v be a Richardson variety. From Schürmann’s transversality

formula we obtain:
cSM(R

v
u ) = sM(X

v ) · cSM(Xu)

which implies that

m
cSM(Rv

u )
u =

sM(X
v )|u · cSM(Xu)|u

cT (Tu(G/P))
=

sM(X
v )|u

sM(Xu)|u
.

IF Rv
u is smooth at eu, then X v is smooth at eu and

sM(X
v )|u

sM(Xu)|u
=

∏
α:v≤sαu<u

(1 +
1

α
).
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Nakada’s formula

Let L be an ample line bundle on G/P. The Chevalley formula for sM(Xu) · cT1 (L)
(Su) and the associativity

(sM(Xu) · sM(X v )) · cT1 (L) = sM(Xu) · (sM(X v ) · cT1 (Lλ))

gives
sM(X

v )|u
sM(Xu)|u

=
∑ m1

β1
· m2

β1 + β2
· · · mr

β1 + β2 + . . .+ βr

where the sum is over certain chains v → u in the Bruhat order, with weights
given by roots β1, . . . , βr .

Theorem (M.-Naruse-Su)

Rv
u is smooth at u iff a generalization of Nakada’s formula holds:∑ m1

β1
· m2

β1 + β2
· · · mr

β1 + β2 + . . .+ βr
=

∏
α:v≤sαu<u

(1 +
1

α
).
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The number of reduced decompositions
In the previous formula specialize as follows:

G/P = Gr(k ; n);

take terms of minimal (negative) degree;

specialize β 7→ height(β).

The Weyl group elements correspond to partitions u = wλ, v = wµ. In this case
one obtains that all chains are maximal, each mi = 1, each βi is a simple root,
and each chain has length exactly |λ/µ| = |λ| − |µ|. Therefore one obtains:

#(chains)× 1

(|λ| − |µ|)!
=

∏
wµ≤sαwµ<wλ

1

height(α)

This may be interpreted as

#Red(w−1
µ wλ)

1

(|λ| − |µ|)!
=

∏
2∈λ/µ

1

ht(2)

Remark: This is more general than the earlier formula, which is only for µ = ∅,
i.e., when X v = G/P, thus Rv

u = Xu.

Leonardo Mihalcea Characteristic classes September 20, 2024 10 / 27



Motivic Chern classes

Theorem (Brasselet-Schürmann-Yokura, 2010)

There exists a unique natural transformation

MCy : G0(var/X ) → K (X )[y ]

commuting with proper morphisms such that when X is smooth,

MC[idX : X → X ] = λy (T
∗X ) :=

∑
[∧iT ∗(X )]y i

is the Hirzeburch λy class of X .
Further, if X = pt, then MC is a ring homomorphism.

Notation: if Z ⊂ X , denote by MCy (Z ) := MCy [Z ↪→ X ].
Initial goal: Calculate

MC(X ◦
w ) := MC[X ◦

w ↪→ G/B] ∈ K (G/B),

where X ◦
w is a Schubert cell in a flag manifold G/B. (Feher-Rimányi-Weber,

AMSS)
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Examples
1 MC(P1) = λy (T

∗
P1) = (1 + y)OP1 − 2yOpt .

2 By the motivic property:

MC(A1 ⊂ P1) = λy (T
∗
P1)− λy (T

∗
pt) = (1 + y)OP1 − (1 + 2y)Opt .

3 For y = −q, the Hirzebruch χy -genus of a Schubert cell is:

∫
Fl(n)

MC(X ◦
w ) = MC[X ◦

w → pt] = MC[A1 → pt]ℓ(w) = qℓ(w) = #FqX
◦
w .

4 The χy -genus of Fl(n):∫
Fl(n)

MC−q[id : Fl(n) → Fl(n)] =
∑
w∈W

MC[X ◦
w → pt]

=
∑
w∈W

qℓ(w)

=[n]q!

(the q-analogue of the factorial.)
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How to calculate ?

1 Interpolation/Equivariant localization methods: Fehér, Rimányi, Tarasov,
Varchenko, Weber, . . ., in relation to stable envelopes (Aganagic, Maulik,
Okounkov).

2 Resolution of singularities: AMSS (flag manifolds), Maxim - Schürmann
(toric varieties). For flag manifolds, this leads to Demazure-Lusztig operators
in Hecke algebras.

Leonardo Mihalcea Characteristic classes September 20, 2024 13 / 27



Intermezzo: Cotangent Schubert classes

C∗ ↷ T ∗G/B

C∗ ↷ G/B

πι

Theorem
1 (Fehér-Rimányi-Weber, AMSS ’19). Let stab(w) ∈ KT×C∗(T ∗G/B) be the

(appropriately normalized) stable envelope. Then

ι∗(stab(w)) = MC(X ◦
w ).

2 (AMSS, in preparation) Let iw : X ◦
w → G/B be the inclusion. Then:

(⋆)ι∗(gr(iw !QH
X◦
w
))⊗ [ω•

G/B ] = MC(X ◦
w ),

where gr(iw !QH
X◦
w
) is the associated graded sheaf on T ∗(G/B) determined by

the ‘constant’ mixed Hodge module QH
X◦
w
(cf. Tanisaki, Saito).
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The Lagrangian model for MacPherson’s transformation

Theorem (Sabbah ’85, Ginzburg ’86, AMSS ’17)

Let T be a torus and X a T -manifold, and let T × C∗ act on T ∗X , where C∗

acts by dilation induced by the character ℏ−1. Consider c∗ : FT (X ) → HT
∗ (X ) to

be the MacPherson transformation, extended equivariantly by Ohmoto. Then for
any constructible function φ ∈ F(X ),

ι∗[CC (φ)]T×C∗ = c∗(φ)ℏ.

CC (Vermaw )

T ∗
Xw

(G/B)

CC (ICw )

KL

?

=?

⇐⇒

cSM(X
◦
w )

cMa(Xw )

KL(Xw )

Pw,v (1)

Euler obs ew,v
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Remarks.

1 If Pw ,v (q) is the Kazhdan-Lusztig polynomial, then

KL(Xw ) =
∑

Pw ,v (1)cSM(X
◦
v ).

2 CC (ICw ) = T ∗
Xw

(G/P) iff cMa(Xw ) = KL(Xw ). This holds for all minuscule
Grassmannians (type A: Bressler-Finkelberg-Lunts; types A,D: Boe-Fu; types
E6,E7: M.-Singh).

3 CC (ICw ) is reducible in general (Kashiwara-Saito, Tanisaki, Boe-Fu, Braden,
Williamson, . . .)

4 Equivalently, let cMa(Xw ) =
∑

ew ,vcSM(X
◦
v ). Then

CC (ICw ) irreducible ⇐⇒ ew ,v = Pw ,v (1).

Bold conjecture : ew ,v ≥ 0. (True for all cominuscule G/P’s: see above for
types A,D,E; Levan-Raicu in type C.)
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Demazure-Lusztig operators
Fix 1 ≤ i ≤ n− 1, and let si = (i , i + 1) ∈ W (simple transposition). Consider the
projection: pi : Fl(n) → Fl(î ; n). The Demazure operator is

∂i := (pi )
∗(pi )∗ : K (Fl(n)) → K (Fl(n)).

∂iOw =

{
Owsi wsi > w

Ow wsi < w .

The Demazure-Lusztig operators are:

Ti = λy (T
∗
pi )∂i − id ; T ∨

i = ∂iλy (T
∗
pi )− id .

Lemma (Lusztig)

The operators Ti satisfy the following properties:

1 (commutativity) TiTj = TjTi if |i − j | ≥ 2;

2 (braid relations) TiTi+1Ti = Ti+1TiTi+1;

3 (quadratic relations): (Ti + y)(Ti + id) = 0.

Same properties are satisfied by T ∨
i and ⟨Ti (a), b⟩ = ⟨a, T ∨

i (b)⟩.
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Theorem (MC classes and their family: mostly AMSS ’19, M-Su ’19)

1 (Hecke recursions) Let w ∈ W and assume that wsi > w . Then

MC(X (wsi )
◦) = Ti (MC(X (w)◦).

In particular, MC(X (w)◦) = Tw−1(Oid).

2 (Poincaré duality) Let D : K (Fl(n))[y ] → K (Fl(n))[y ] be defined by
D[E ] = E∨ ⊗ ωG/B [dimG/B] and D[y ] = y−1. Then

⟨MC(X ◦
w ),

DMC(X v ,◦)

λy (T ∗(G/B))
⟩ = (⋆)δv ,w .

3 (Hecke / Serre duality) If Tw := T −1
w−1 , y := y−1 is the Hecke involution, then

DMC(X ◦
w ) = Tw−1(Oid).

4 (Segre classes) We have

SMC(Xw ,◦) :=
MC(Xw ,◦)

λy (T ∗(G/B))
= (⋆)T ∨

w−1w0
(Opt).
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Big cell in Fl(3)

The motivic class for the open cell in Fl(3) is:

MC(X (s1s2s1)
◦) =(1 + y)3Os1s2s1 − (1 + y)2(1 + 2y)(Os1s2 +Os2s1)+

(1 + y)(5y 2 + 4y + 1)(Os1 +Os2)

− (8y 3 + 11y 2 + 5y + 1)Oid

Observe (AMSS ’23):

1 Divisibility by (1 + y)ℓ(v);

2 Specialize: y = −1⇝ Oid ;

3 Specialize: y = 0⇝ OXs1s2s1
(−∂Xs1s2s1) (ideal sheaf of the boundary);

4 Coefficient of y top = y3: KXs1s2s1
(the dualizing sheaf).

Remark. The specialization y = 1 in MC (IC(Xw )) is (expected to be) related to
the L-class (Banagl-Schürmann-Wrazidlo ’23).
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Positivity I: transition matrices

MC(X (s1s2s1)
◦) =(1 + y)3Os1s2s1 − (1 + y)2(1 + 2y)(Os1s2 +Os2s1)+

(1 + y)(5y 2 + 4y + 1)(Os1 +Os2)

− (8y 3 + 11y 2 + 5y + 1)Oid

Consider the Schubert expansion:

MC(X ◦
w ) =

∑
v

cv ,w (y)Ov .

Conjecture

(AMSS (all Lie types), Fehér-Rimanyi-Weber (type A))

1 (Positivity):
(−1)ℓ(w)−ℓ(v)c(v ;w)(y) ∈ Z≥0[y ].

2 (Log concavity) The polynomial (−1)ℓ(w)−ℓ(v)cv ;w (y) has no internal zeros
and it is log concave.
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An example and one non-example

Example

Take flag manifold of Lie type G2 (dimension 6). Then:

cid ;w0(y) = 64y6 + 141y5 + 125y4 + 69y3 + 29y2 + 8y + 1.

Example

The λy class of Fl(3) is:∑
w

MC(X ◦
w ) = λy (Fl(3)) =(1 + y)3OFl(3) − 2y(1 + y)2(Os1s2 +Os2s1)

+ y(1 + y)(5y − 1)(Os1 +Os2)− y(8y 2 + y − 1)Opt .

Not positive!
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CSM specialization

The cohomological analogues of the motivic Chern classes are called the
Chern-Schwartz-MacPherson classes. Consider the expansion

csm(X (w)◦) =
∑

c ′(v ;w)[X (v)].

Then

c ′(v ;w) =
c(v ;w)

(1 + y)ℓ(v)
|y=−1

Example

csm(X (s1s2s1)
◦) = [X (s1s2s1)]+[X (s1s2)]+[X (s2s1)]+2([X (s1)]+[X (s2)])+[pt].

Theorem (J. Huh (Grassmannians); AMSS ’17 (all G/P))

The coefficients c ′(v ;w) ≥ 0.
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Intermezzo 2: A transversality formula and point counting

Theorem (Schürmann)

Let X1,X2 ⊂ X intersecting appropriately transversal. Then

MC(X1 ∩ X2) = SMC(X1) ·MC(X2).

Example

Take Fl(2) = P1. Then∫
P1

MC−q(A1 ∩ g1A1 ∩ g2A1) = q − 2 = #Fq (A1 ∩ g1A1 ∩ g2A1).

Example

For u ≤ v , define Ru
v := X ◦

v ∩ X u,◦, the Richardson ‘cell’. Then∫
Fl(n)

MC−q(R
u
v ) = Rv ,u(q) = #FqR

u
v ,

where Rv ,u is the Kazhdan-Lusztig R-polynomial.
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Positivity II: Structure constants
Let DMC(Xw ,◦) denote the Poincaré dual of MC(X ◦

w ). Consider the
multiplication

DMC(X u,◦) ·DMC(X v ,◦) =
∑
w

cwu,v (y)DMC(Xw ,◦).

Observe:

cwu,v (y) =

∫
Fl(n)

DMC(X u,◦) ·DMC(X v ,◦) ·MC(X ◦
w )

̸= χy (X
u,◦ ∩ g1X

v ,◦ ∩ g2X
◦
w ).

Conjecture (Knutson-M.-Zinn-Justin)

The polynomials

(−1)ℓ(u)+ℓ(v)−ℓ(w)cwu,v (−y)

have non-negative coefficients (and are log concave).

The positivity was recently proved for partial flag manifolds with ≤ 4 steps, by
Knutson and Zinn-Justin using integrable systems.
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Example

Consider Fl(5) (dimension 10), and w0 the longest element in S5. Then

cw0

id,id(y) = y10 − 22y9 + 92y8 − 130y7 + 76y6 − 18y5 + 2y4.

Observe:
cw0

id,id(−1) = 341 = χ−1(X
id,◦ ∩ g1X

id,◦ ∩ g2X
id,◦).

(The Euler characteristic of the intersection of 3 translates of open cells in Fl(5).)

Theorem (Simpson - Schürmann - Wang ’23)

Let u, v ,w ∈ W . Then

(−1)ℓ(u)+ℓ(v)−ℓ(w)χ(X u,◦ ∩ X v ,◦ ∩ X ◦
w ) ≥ 0.

These are precisely the structure constants obtained by multiplying Poincaré duals
of CSM classes of Schubert cells, i.e., of Segre-MacPherson classes (cf.
AMSS’17).
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Conclusion

1 Localization properties of characteristic classes, recovers, and sometimes
improves, existing formulae in combinatorics.

2 There are several longstanding problems, such as calculating Mather classes
of Schubert varieties.

3 The study of CSM, Mather, and motivic Chern classes leads to (conjecturally)
positive, and log concave polynomials, coming from two sources:

▶ Transition matrices (MC to Schubert classes);
▶ Structure constants for multiplication.

Question. What (Hodge) geometry determines these properties ?
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Alles Gute zum Geburtstag, Jörg!
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Dimension polynomials (AMSS, M.-Singh ’22)

Assume that X = G/P (e.g., any partial flag manifold). Take κ ∈ H∗(X ) and
expand

κ =
∑
w

aw [X (w)].

The dimension polynomial of κ is defined by

D(κ) =
∑

awx
ℓ(w).

Example

Recall that in H∗(Fl(3)),

κ = csm(X (s1s2s1)
◦) = [X (s1s2s1)]+[X (s1s2)]+[X (s2s1)]+2([X (s1)]+[X (s2)])+[pt] ∈ H∗(Fl(3))

Then D(κ) = x3 + 2x2 + 2x + 1.

We know that if κ = csm(X (w)◦) ∈ H∗(G/P) or κ = cMa(Ωλ) ∈ H∗(Gr(k ; n))
(the Mather class of the Schubert variety), then D(κ) ∈ Z≥0[x ].
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Obligatory conjecture

Conjecture
1 The dimension polynomial for the CSM class of any Schubert cell is

unimodal. If G = GLn (i.e., X is a partial flag manifold) then
D(csm(X (w)◦)) is log concave.

2 Assume that X = Gr(k ; n). Then the dimension polynomial of the Mather
class of any Schubert variety is log concave.

Example

Consider

cMa( ) = + 4 + 4 + 4 + 15 + 15 + 15

+ 17 + 52 + 17 + 54 + 54 + 60 + 24 ∅.

Then

D(cMa

( )
) = x6 + 12x5 + 45x4 + 86x3 + 108x2 + 60x + 24.

Leonardo Mihalcea Characteristic classes September 20, 2024 27 / 27


