Applications of characteristic classes

Leonardo Mihalcea (Virginia Tech) with P. Aluffi, H. Naruse, J. Schürmann, C. Su

Structures on singular spaces through the lens of characteristic classes Heidelberg, Germany

https://personal.math.vt.edu//lmihalce/Heidelberg.pdf 🚊 🗸

Leonardo Mihalcea

Characteristic classes

September 20, 2024

1/27

What we (can) do

We study characteristic classes coming from two sources:

• MacPherson's transformation:

 $c_*:\mathcal{F}(X)\to H_*(X).$

• Motivic Chern class transformation (Brasselet-Schürmann-Yokura):

$$MC: G_0(var/X) \rightarrow K(X)[y].$$

(The unnormalized Hirzerbruch transformation $Td_y = td_* \circ MC$, where td_* is the Todd transformation.)

In our case X is a **flag manifold** G/P, such as the Grassmannian Gr(k; n) and the complete flag manifold Fl(n). These are homogeneous spaces, and their study leads to applications such as:

- Formulae in combinatorics and rep. theory;
- Constructing polynomials associated to characteristic classes;
- Solutions of (some!) multiplicities in microlocal geometry;
- (Cotangent) Schubert Calculus / Calculus of (Okounkov's) stable envelopes.

イロト イポト イヨト イヨト

Number of reduced expressions (Peterson)

Let $\lambda \subset k \times (n-k)$ be a partition, e.g.

$$\lambda = \square \longrightarrow \text{simple reflections} : \begin{bmatrix} s_2 & s_3 & s_4 \\ s_1 & s_2 & s_3 \end{bmatrix} \rightsquigarrow \text{heights} : \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix}$$

Define $w_{\lambda} := s_3 s_2 s_1 s_4 s_3 s_2 \in S_5$.

Theorem

(Frame-Robinson-Thrall, ..., Proctor, Stembridge, Peterson) Let $\lambda \subset k \times (n-k)$. Then the number of reduced decompositions of w_{λ} is equal to

$$\operatorname{Red}(w_{\lambda}) = rac{|\lambda|!}{\prod_{\Box \in \lambda} \operatorname{ht}(\lambda)}$$

Leonard	o M	ibal	lean

Image: A math the second se

Example

We take $\lambda = (3,3)$ and we place simple reflections on its boxes:

<i>s</i> ₂	s 3	<i>s</i> 4
<i>s</i> ₁	<i>s</i> ₂	s 3

giving $w_{\lambda} = s_3 s_2 s_1 s_4 s_3 s_2$. Then

$$\operatorname{Red}(w_{(3,3)}) = \frac{6!}{1 \times 2 \times 3 \times 2 \times 3 \times 4} = 5.$$

One may check directly that the 5 reduced decompositions of w are:

 $s_3s_2s_1s_4s_3s_2, \quad s_3s_2s_4s_1s_3s_2, \quad s_3s_2s_4s_3s_1s_2, \quad s_3s_4s_2s_1s_3s_2, \quad s_3s_4s_2s_3s_1s_2.$

They correspond to the (reverse) standard Young tableaux:

6	5	4	
3	2	1	

6	5	3
4	2	1

6	4	
5	2	

6	5
4	3

2

6	4	2
5	3	1

イロト イポト イヨト イヨト

э

MacPherson's transformation

Let $\mathcal{F}(X)$ be the group of constructible functions.

Theorem (Deligne - Grothendieck Conjecture; MacPherson '74, M. H. Schwartz '65)

There exists a unique natural transformation $c_* : \mathcal{F}(X) \to H_*(X)$ such that:

- If X is projective, non-singular, $c_*(\mathbb{1}_X) = c(T_X) \cap [X]$.
- **2** c_* is functorial with respect to proper push-forwards $f: X \to Y$.

Constructible functions ~> characteristic classes of singular varieties:

• $\varphi = \mathbb{1}_U (U \subset X \text{ constructible}) \rightsquigarrow \text{Chern-Schwartz-MacPherson (CSM) class}$

 $c_{\mathsf{SM}}(U) \in H_*(X).$

• If X-smooth, the Segre-MacPherson class is:

$$s_{\mathsf{M}}(U) = rac{c_{\mathsf{SM}}(U)}{c(T_X)}$$

э

イロト イポト イヨト イヨト

Flag manifolds

X = G/B, the flag manifold, where G is complex semisimple and B is a Borel subgroup (e.g. upper triangular matrices). Let T be the maximal torus (diagonal matrices). For $G = SL_n$,

$$G/B = \operatorname{Fl}(n) = \{F_{\bullet} : F_1 \subset F_2 \subset \ldots \subset F_n = \mathbb{C}^n\}.$$

Let W be the Weyl group. For each $w \in W$ we have Schubert cells and varieties:

$$\begin{split} X^{\circ}_{w} &:= BwB/B \simeq \mathbb{A}^{\ell(w)}; \quad X^{w,\circ} := B^{-}wB/B \simeq \mathbb{A}^{\binom{n}{2}-\ell(w)}; \\ X_{w} &:= \overline{X^{\circ}_{w}}; \quad X^{w} := \overline{X^{w,\circ}}. \end{split}$$

Let

$$[X_w], [X^w] \in H_*(G/B); \quad \mathcal{O}_w := [\mathcal{O}_{X_w}], \mathcal{O}^w := [\mathcal{O}_{X^w}] \in \mathcal{K}(G/B),$$

the Schubert classes. Then

$$H_*(G/B) = \oplus_w \mathbb{Z}[X_w] = \oplus_w \mathbb{Z}[X^w]; \quad \mathcal{K}(G/B) = \oplus_w \mathbb{Z}\mathcal{O}_w = \oplus_w \mathbb{Z}\mathcal{O}^w.$$

gives the (cohomological/K-theoretic) Schubert basis.

6/27

(日) (四) (日) (日) (日)

Equivariant multiplicities

It is known that

$$(G/P)^T = \bigsqcup_{w \in W^P} e_w \quad \rightsquigarrow \quad H^T_*(G/P)_{loc} = \oplus_{w \in W^P} H^*_T(pt)_{loc}[\mathbf{e}_w]_T.$$

Let $\kappa \in H^*_T(G/P)$. The **equivariant multiplicity** of κ at e_w is the coefficient m_w^{κ} in the expansion

$$\kappa = \sum m_w^\kappa [\mathbf{e}_w]_T$$

Of course,

$$m_w^{\kappa} = \frac{\kappa|_w}{c_{top}^{\mathsf{T}}(\mathsf{T}_w(G/P))},$$

but the notion makes sense for more general (singular) spaces (Brion).

	Leor	iardo	Miha	Icea
--	------	-------	------	------

(日) (四) (日) (日) (日)

Equivariant multiplicities of Richardson varieties

Let $R_u^v := X_u \cap X^v$ be a **Richardson variety**. From Schürmann's transversality formula we obtain:

$$c_{\mathsf{SM}}(R_u^v) = s_{\mathsf{M}}(X^v) \cdot c_{\mathsf{SM}}(X_u)$$

which implies that

$$m_u^{c_{\mathsf{SM}}(R_u^v)} = \frac{s_{\mathsf{M}}(X^v)|_u \cdot c_{\mathsf{SM}}(X_u)|_u}{c^T(T_u(G/P))} = \frac{s_{\mathsf{M}}(X^v)|_u}{s_{\mathsf{M}}(X_u)|_u}.$$

IF R_u^v is smooth at e_u , then X^v is smooth at e_u and

$$\frac{s_{\mathsf{M}}(X^{\vee})|_{u}}{s_{\mathsf{M}}(X_{u})|_{u}} = \prod_{\alpha: \nu \leq s_{\alpha}u < u} (1 + \frac{1}{\alpha}).$$

• • • • • • • • • • •

Nakada's formula

Let \mathcal{L} be an ample line bundle on G/P. The Chevalley formula for $s_{\mathsf{M}}(X_u) \cdot c_1^{\mathsf{T}}(\mathcal{L})$ (Su) and the associativity

$$(s_{\mathsf{M}}(X_u) \cdot s_{\mathsf{M}}(X^v)) \cdot c_1^{\mathsf{T}}(\mathcal{L}) = s_{\mathsf{M}}(X_u) \cdot (s_{\mathsf{M}}(X^v) \cdot c_1^{\mathsf{T}}(\mathcal{L}_{\lambda}))$$

gives

$$\frac{s_{\mathsf{M}}(X^{\mathsf{v}})|_{u}}{s_{\mathsf{M}}(X_{u})|_{u}} = \sum \frac{m_{1}}{\beta_{1}} \cdot \frac{m_{2}}{\beta_{1} + \beta_{2}} \cdots \frac{m_{r}}{\beta_{1} + \beta_{2} + \ldots + \beta_{r}}$$

where the sum is over certain chains $v \to u$ in the Bruhat order, with weights given by roots β_1, \ldots, β_r .

Theorem (M.-Naruse-Su)

 R_u^v is smooth at u iff a generalization of Nakada's formula holds:

$$\sum \frac{m_1}{\beta_1} \cdot \frac{m_2}{\beta_1 + \beta_2} \cdots \frac{m_r}{\beta_1 + \beta_2 + \ldots + \beta_r} = \prod_{\alpha: v \leq s_\alpha, u < u} (1 + \frac{1}{\alpha}).$$

イロト イポト イヨト イヨト

The number of reduced decompositions

In the previous formula specialize as follows:

- G/P = Gr(k; n);
- take terms of minimal (negative) degree;
- specialize $\beta \mapsto height(\beta)$.

The Weyl group elements correspond to partitions $u = w_{\lambda}$, $v = w_{\mu}$. In this case one obtains that all chains are maximal, each $m_i = 1$, each β_i is a simple root, and each chain has length exactly $|\lambda/\mu| = |\lambda| - |\mu|$. Therefore one obtains:

$$\#(ext{chains}) imesrac{1}{(|\lambda|-|\mu|)!}=\prod_{w_\mu\leq s_lpha w_\mu< w_\lambda}rac{1}{ ext{height}(lpha)}$$

This may be interpreted as

$$\# \mathrm{Red}(w_{\mu}^{-1}w_{\lambda})\frac{1}{(|\lambda|-|\mu|)!} = \prod_{\square \in \lambda/\mu} \frac{1}{\mathrm{ht}(\square)}$$

Remark: This is more general than the earlier formula, which is only for $\mu = \emptyset$, i.e., when $X^{\nu} = G/P$, thus $R_{\mu}^{\nu} = X_{\mu}$.

10/27

Motivic Chern classes

Theorem (Brasselet-Schürmann-Yokura, 2010)

There exists a unique natural transformation

 $\mathrm{MC}_y: G_0(var/X) \to K(X)[y]$

commuting with proper morphisms such that when X is smooth,

$$\operatorname{MC}[\operatorname{id}_X : X \to X] = \lambda_y(T^*X) := \sum [\wedge^i T^*(X)] y^i$$

is the Hirzeburch λ_y class of X. Further, if X = pt, then MC is a ring homomorphism.

Notation: if $Z \subset X$, denote by $MC_y(Z) := MC_y[Z \hookrightarrow X]$. Initial goal: Calculate

$$\operatorname{MC}(X_w^\circ) := \operatorname{MC}[X_w^\circ \hookrightarrow G/B] \in K(G/B),$$

where X_w° is a Schubert cell in a flag manifold G/B. (Feher-Rimányi-Weber, AMSS)

Examples

- $MC(\mathbb{P}^1) = \lambda_y(T^*_{\mathbb{P}^1}) = (1+y)\mathcal{O}_{\mathbb{P}^1} 2y\mathcal{O}_{pt}.$
- Object to the second second

$$\operatorname{MC}(\mathbb{A}^1 \subset \mathbb{P}^1) = \lambda_y(\mathcal{T}^*_{\mathbb{P}^1}) - \lambda_y(\mathcal{T}^*_{pt}) = (1+y)\mathcal{O}_{\mathbb{P}^1} - (1+2y)\mathcal{O}_{pt}.$$

So For y = -q, the Hirzebruch χ_y -genus of a Schubert cell is:

$$\int_{\mathrm{Fl}(n)} \mathrm{MC}(X^\circ_w) = \mathrm{MC}[X^\circ_w \to \rho t] = \mathrm{MC}[\mathbb{A}^1 \to \rho t]^{\ell(w)} = q^{\ell(w)} = \#_{\mathbb{F}_q} X^\circ_w.$$

• The χ_y -genus of Fl(n):

$$\int_{\mathrm{Fl}(n)} \mathrm{MC}_{-q}[id:\mathrm{Fl}(n) \to \mathrm{Fl}(n)] = \sum_{w \in W} \mathrm{MC}[X_w^{\circ} \to pt]$$
$$= \sum_{w \in W} q^{\ell(w)}$$
$$= [n]_q!$$

(the q-analogue of the factorial.)

э

イロト 不得 トイヨト イヨト

How to calculate ?

 Interpolation/Equivariant localization methods: Fehér, Rimányi, Tarasov, Varchenko, Weber, ..., in relation to stable envelopes (Aganagic, Maulik, Okounkov).

Resolution of singularities: AMSS (flag manifolds), Maxim - Schürmann (toric varieties). For flag manifolds, this leads to Demazure-Lusztig operators in Hecke algebras.

(日) (四) (日) (日) (日)

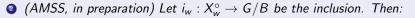
Intermezzo: Cotangent Schubert classes

$$\begin{array}{ccc} \mathbb{C}^* & \sim & & T^*G/B \\ & & \iota \stackrel{\uparrow}{\left(\begin{array}{c} \downarrow \\ \pi \end{array}\right)} \\ \mathbb{C}^* & \sim & & G/B \end{array}$$

Theorem

(Fehér-Rimányi-Weber, AMSS '19). Let stab(w) ∈ K_{T×C*}(T*G/B) be the (appropriately normalized) stable envelope. Then

 $\iota^*(\mathrm{stab}(w)) = \mathrm{MC}(X^\circ_w).$



 $(\star)\iota^*(gr(i_{w!}\mathbb{Q}^H_{X^\circ_w}))\otimes [\omega^{\bullet}_{G/B}] = \mathrm{MC}(X^\circ_w),$

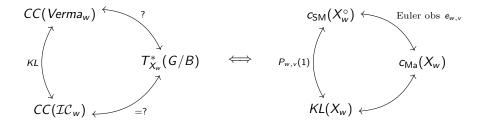
where $gr(i_{w!}\mathbb{Q}^{H}_{X_{w}^{o}})$ is the associated graded sheaf on $T^{*}(G/B)$ determined by the 'constant' mixed Hodge module $\mathbb{Q}^{H}_{X_{w}^{o}}$ (cf. Tanisaki, Saito).

The Lagrangian model for MacPherson's transformation

Theorem (Sabbah '85, Ginzburg '86, AMSS '17)

Let T be a torus and X a T-manifold, and let $T \times \mathbb{C}^*$ act on T^*X , where \mathbb{C}^* acts by dilation induced by the character \hbar^{-1} . Consider $c_* : \mathcal{F}_T(X) \to H^T_*(X)$ to be the MacPherson transformation, extended equivariantly by Ohmoto. Then for any constructible function $\varphi \in \mathcal{F}(X)$,

$$\iota^*[\mathcal{CC}(\varphi)]_{\mathcal{T}\times\mathbb{C}^*}=c_*(\varphi)_{\hbar}.$$



< ロ > < 同 > < 回 > < 回 >

Remarks.

If $P_{w,v}(q)$ is the Kazhdan-Lusztig polynomial, then

$$\mathit{KL}(X_w) = \sum P_{w,v}(1)c_{\mathsf{SM}}(X_v^\circ).$$

- CC(IC_w) = T^{*}_{Xw}(G/P) iff c_{Ma}(X_w) = KL(X_w). This holds for all minuscule Grassmannians (type A: Bressler-Finkelberg-Lunts; types A,D: Boe-Fu; types E₆, E₇: M.-Singh).
- CC(IC_w) is reducible in general (Kashiwara-Saito, Tanisaki, Boe-Fu, Braden, Williamson, ...)
- Equivalently, let $c_{Ma}(X_w) = \sum e_{w,v} c_{SM}(X_v^\circ)$. Then

$$CC(\mathcal{IC}_w)$$
 irreducible $\iff e_{w,v} = P_{w,v}(1).$

Bold conjecture : $e_{w,v} \ge 0$. (True for all cominuscule G/P's: see above for types A,D,E; Levan-Raicu in type C.)

イロト 不得 トイヨト イヨト

Demazure-Lusztig operators

Fix $1 \le i \le n-1$, and let $s_i = (i, i+1) \in W$ (simple transposition). Consider the projection: $p_i : \operatorname{Fl}(n) \to \operatorname{Fl}(\hat{i}; n)$. The Demazure operator is

$$egin{aligned} &\partial_i := (p_i)^*(p_i)_* : \mathcal{K}(\mathrm{Fl}(n)) o \mathcal{K}(\mathrm{Fl}(n)). \ &\partial_i \mathcal{O}_w = egin{cases} &\mathcal{O}_{ws_i} & ws_i > w \ &\mathcal{O}_w & ws_i < w. \end{aligned}$$

The Demazure-Lusztig operators are:

$$\mathcal{T}_i = \lambda_y(\mathcal{T}_{p_i}^*)\partial_i - id; \quad \mathcal{T}_i^{\vee} = \partial_i\lambda_y(\mathcal{T}_{p_i}^*) - id.$$

Lemma (Lusztig)

The operators T_i satisfy the following properties:

- (commutativity) $T_iT_j = T_jT_i$ if $|i j| \ge 2$;
- (braid relations) $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$;
- (quadratic relations): $(T_i + y)(T_i + id) = 0$.

Same properties are satisfied by \mathcal{T}_i^{\vee} and $\langle \mathcal{T}_i(a), b \rangle = \langle a, \mathcal{T}_i^{\vee}(b) \rangle$.

Theorem (MC classes and their family: mostly AMSS '19, M-Su '19)

(Hecke recursions) Let $w \in W$ and assume that $ws_i > w$. Then

$$\operatorname{MC}(X(ws_i)^\circ) = \mathcal{T}_i(\operatorname{MC}(X(w)^\circ).$$

In particular, $MC(X(w)^{\circ}) = \mathcal{T}_{w^{-1}}(\mathcal{O}_{id}).$

 (Poincaré duality) Let D : K(Fl(n))[y] → K(Fl(n))[y] be defined by D[E] = E[∨] ⊗ ω_{G/B}[dim G/B] and D[y] = y⁻¹. Then

$$\langle \operatorname{MC}(X_w^\circ), \frac{\mathcal{D}\operatorname{MC}(X^{v,\circ})}{\lambda_y(T^*(G/B))} \rangle = (\star) \delta_{v,w}$$

③ (Hecke / Serre duality) If $\overline{\mathcal{T}_w} := \mathcal{T}_{w^{-1}}^{-1}$, $\overline{y} := y^{-1}$ is the Hecke involution, then

$$\mathcal{D}\mathrm{MC}(X_w^\circ) = \overline{\mathcal{T}_{w^{-1}}}(\mathcal{O}_{id}).$$

(Segre classes) We have

$$\operatorname{SMC}(X^{w,\circ}) := \frac{\operatorname{MC}(X^{w,\circ})}{\lambda_y(T^*(G/B))} = (\star)\mathcal{T}_{w^{-1}w_0}^{\vee}(\mathcal{O}_{pt}).$$

Big cell in Fl(3)

The motivic class for the open cell in Fl(3) is:

$$\begin{aligned} \mathrm{MC}(X(s_1s_2s_1)^\circ) = & (1+y)^3 \mathcal{O}_{s_1s_2s_1} - (1+y)^2 (1+2y) (\mathcal{O}_{s_1s_2} + \mathcal{O}_{s_2s_1}) + \\ & (1+y) (5y^2 + 4y + 1) (\mathcal{O}_{s_1} + \mathcal{O}_{s_2}) \\ & - (8y^3 + 11y^2 + 5y + 1) \mathcal{O}_{id} \end{aligned}$$

Observe (AMSS '23):

- Divisibility by $(1 + y)^{\ell(v)}$;
- **2** Specialize: $y = -1 \rightsquigarrow \mathcal{O}_{id}$;
- **③** Specialize: $y = 0 \rightsquigarrow \mathcal{O}_{X_{s_1s_2s_1}}(-\partial X_{s_1s_2s_1})$ (ideal sheaf of the boundary);

• Coefficient of $y^{top} = y^3$: $K_{X_{s_1s_2s_1}}$ (the dualizing sheaf).

Remark. The specialization y = 1 in $MC(IC(X_w))$ is (expected to be) related to the L-class (Banagl-Schürmann-Wrazidlo '23).

イロト 不得 トイヨト イヨト

Positivity I: transition matrices

$$\begin{split} \mathrm{MC}(X(s_1s_2s_1)^\circ) = & (1+y)^3 \mathcal{O}_{s_1s_2s_1} - (1+y)^2 (1+2y) (\mathcal{O}_{s_1s_2} + \mathcal{O}_{s_2s_1}) + \\ & (1+y) (5y^2 + 4y + 1) (\mathcal{O}_{s_1} + \mathcal{O}_{s_2}) \\ & - (8y^3 + 11y^2 + 5y + 1) \mathcal{O}_{id} \end{split}$$

Consider the Schubert expansion:

$$\operatorname{MC}(X_w^\circ) = \sum_v c_{v,w}(y) \mathcal{O}_v.$$

Conjecture

(AMSS (all Lie types), Fehér-Rimanyi-Weber (type A))

(Positivity):

$$(-1)^{\ell(w)-\ell(v)}c(v;w)(y)\in\mathbb{Z}_{\geq 0}[y].$$

(Log concavity) The polynomial (-1)^{l(w)-l(v)}c_{v;w}(y) has no internal zeros and it is log concave.

< □ > < 同 > < 回 > < 回 >

An example and one non-example

Example

Take flag manifold of Lie type G_2 (dimension 6). Then:

$$c_{id;w_0}(y) = 64y^6 + 141y^5 + 125y^4 + 69y^3 + 29y^2 + 8y + 1.$$

Example

The λ_y class of Fl(3) is:

$$\sum_{w} MC(X_{w}^{\circ}) = \lambda_{y}(Fl(3)) = (1+y)^{3} \mathcal{O}_{Fl(3)} - 2y(1+y)^{2} (\mathcal{O}_{s_{1}s_{2}} + \mathcal{O}_{s_{2}s_{1}})$$

$$+ y(1+y)(5y-1)(\mathcal{O}_{s_1}+\mathcal{O}_{s_2}) - y(8y^2+y-1)\mathcal{O}_{pt}.$$

Not positive!

l eor	ardo	Mit	าลได	tea -

э

< □ > < □ > < □ > < □ > < □ >

CSM specialization

The cohomological analogues of the motivic Chern classes are called the **Chern-Schwartz-MacPherson** classes. Consider the expansion

$$\operatorname{csm}(X(w)^{\circ}) = \sum c'(v;w)[X(v)].$$

Then

$$c'(v;w) = rac{c(v;w)}{(1+y)^{\ell(v)}}|_{y=-1}$$

Example

 $\operatorname{csm}(X(s_1s_2s_1)^{\circ}) = [X(s_1s_2s_1)] + [X(s_1s_2)] + [X(s_2s_1)] + 2([X(s_1)] + [X(s_2)]) + [pt].$

Theorem (J. Huh (Grassmannians); AMSS '17 (all G/P)) The coefficients $c'(v; w) \ge 0$.

(日) (四) (日) (日) (日)

Intermezzo 2: A transversality formula and point counting

Theorem (Schürmann)

Let $X_1, X_2 \subset X$ intersecting appropriately transversal. Then

 $\operatorname{MC}(X_1 \cap X_2) = \operatorname{SMC}(X_1) \cdot \operatorname{MC}(X_2).$

Example

Take $Fl(2) = \mathbb{P}^1$. Then

$$\int_{\mathbb{P}^1} \mathrm{MC}_{-q}(\mathbb{A}^1 \cap g_1 \mathbb{A}^1 \cap g_2 \mathbb{A}^1) = q - 2 = \#_{\mathbb{F}_q}(\mathbb{A}^1 \cap g_1 \mathbb{A}^1 \cap g_2 \mathbb{A}^1).$$

Example

For $u \leq v$, define $R_v^u := X_v^\circ \cap X^{u,\circ}$, the Richardson 'cell'. Then

$$\int_{\mathrm{Fl}(n)}\mathrm{MC}_{-q}(R^u_{v})=R_{v,u}(q)=\#_{\mathbb{F}_q}R^u_{v},$$

where $R_{v,u}$ is the Kazhdan-Lusztig *R*-polynomial.

Positivity II: Structure constants

Let $DMC(X^{w,\circ})$ denote the Poincaré dual of $MC(X_w^{\circ})$. Consider the multiplication

$$\mathrm{DMC}(X^{u,\circ}) \cdot \mathrm{DMC}(X^{v,\circ}) = \sum_{w} c^{w}_{u,v}(y) \mathrm{DMC}(X^{w,\circ}).$$

Observe:

$$egin{aligned} c^w_{u,v}(y) &= \int_{\mathrm{Fl}(n)} \mathrm{DMC}(X^{u,\circ}) \cdot \mathrm{DMC}(X^{v,\circ}) \cdot \mathrm{MC}(X^\circ_w) \ &
onumber &= \chi_y(X^{u,\circ} \cap g_1 X^{v,\circ} \cap g_2 X^\circ_w). \end{aligned}$$

Conjecture (Knutson-M.-Zinn-Justin)

The polynomials

$$(-1)^{\ell(u)+\ell(v)-\ell(w)}c_{u,v}^{w}(-y)$$

have non-negative coefficients (and are log concave).

The positivity was recently proved for partial flag manifolds with \leq 4 steps, by Knutson and Zinn-Justin using integrable systems. 24 / 27

Leonardo Mihalcea

Example

Consider Fl(5) (dimension 10), and w_0 the longest element in S_5 . Then

$$c_{id,id}^{w_0}(y) = y^{10} - 22y^9 + 92y^8 - 130y^7 + 76y^6 - 18y^5 + 2y^4$$

Observe:

$$c_{id,id}^{w_0}(-1) = 341 = \chi_{-1}(X^{id,\circ} \cap g_1 X^{id,\circ} \cap g_2 X^{id,\circ}).$$

(The Euler characteristic of the intersection of 3 translates of open cells in Fl(5).)

Theorem (Simpson - Schürmann - Wang '23)

Let $u, v, w \in W$. Then

$$(-1)^{\ell(u)+\ell(v)-\ell(w)}\chi(X^{u,\circ}\cap X^{v,\circ}\cap X^{\circ}_w)\geq 0.$$

These are precisely the structure constants obtained by multiplying Poincaré duals of CSM classes of Schubert cells, i.e., of Segre-MacPherson classes (cf. AMSS'17).

Leonar		

イロト イポト イヨト イヨト

Conclusion

- Localization properties of characteristic classes, recovers, and sometimes improves, existing formulae in combinatorics.
- There are several longstanding problems, such as calculating Mather classes of Schubert varieties.
- The study of CSM, Mather, and motivic Chern classes leads to (conjecturally) positive, and log concave polynomials, coming from two sources:
 - Transition matrices (MC to Schubert classes);
 - Structure constants for multiplication.

Question. What (Hodge) geometry determines these properties ?

(日) (四) (日) (日) (日)

Alles Gute zum Geburtstag, Jörg!

2

イロト イロト イヨト イヨト

Dimension polynomials (AMSS, M.-Singh '22)

Assume that X = G/P (e.g., any partial flag manifold). Take $\kappa \in H_*(X)$ and expand

$$\kappa = \sum_{w} a_{w}[X(w)].$$

The dimension polynomial of κ is defined by

$$D(\kappa) = \sum a_w x^{\ell(w)}$$

Example

Recall that in $H_*(Fl(3))$,

 $\kappa = \operatorname{csm}(X(s_1s_2s_1)^\circ) = [X(s_1s_2s_1)] + [X(s_1s_2)] + [X(s_2s_1)] + 2([X(s_1)] + [X(s_2)]) + [pt] \in \mathbb{R}$

Then $D(\kappa) = x^3 + 2x^2 + 2x + 1$.

We know that if $\kappa = \operatorname{csm}(X(w)^{\circ}) \in H_*(G/P)$ or $\kappa = c_{Ma}(\Omega_{\lambda}) \in H_*(\operatorname{Gr}(k; n))$ (the **Mather class** of the Schubert **variety**), then $D(\kappa) \in \mathbb{Z}_{\geq 0}[x]$.

イロト イボト イヨト イヨト

3

Obligatory conjecture

Conjecture

- The dimension polynomial for the CSM class of any Schubert cell is unimodal. If G = GL_n (i.e., X is a partial flag manifold) then D(csm(X(w)°)) is log concave.
- Assume that X = Gr(k; n). Then the dimension polynomial of the Mather class of any Schubert variety is log concave.

