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ot et 1 GSRBET

Conventions Throughout, G dénotes a finite group, p a prime; k will be 7 or a field.
All modules will bé finitely generated. Usually, mappings.are on the right (if on the left
they will be bracketed) and modules are right modules.

W={0,1,2,..} and P={1;2,.}.

1. Intfoduction.

1.1. Defipitions arid Notation A sequence of kG-modules

K —— Ay P p O 2 K00

is 4 chain complex wher 6:1 » Oa=0Vnel.
B0l g, d,p b,p
is"a cochain ¢omplex when: §,. & =0 Vne N . The Oy are termed boundary maps,
the 8, coboundary maps. Say £ iy projective (respectively free) if each Ai is projec-
tive (respectively free). _

The o' homology group of A is ker 0 /im 8, andisdenoted by Hn(A).

The 1" cohomology group of B is ker §_ Ly/im 8, denoted HP(B).

Let M be a-kG-module. A resolution (P, €) of M (as a kG-module) is an exact

sequence of kG-modules

(Pye): ..——Pp-dayp O p e g, )
Write P for the chain complex

Pyl yp Oy g @
(Thus Hn(P) = 0 for n'> 0, Ho(P) = M . Also we still write P for (2) even if (1) is

only a chain complex.)
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If N is a kG-module, write HomkG(P, N) for the cochain complex (of k-modules)
* a*
- 0 —— Hom, (P, N) -2y Tom, ((Py, N) 22 Hom, o (Py, N) — .

where q{8%(f)) = (q 8n)f, € Pn,f€ Hom, (P, N}.

Lemmal2 Let M, N be kG-modules and {§ :M—— N bea kG-homomorphism.
Let (P, ag): ... —— P2 22 ,p M ,p, -8 , M —— 0 be a chain complex of
) Q) e ;

kG-modules with P projective, and
(Q, Bo): .. — Q2 b, Q1 B, Qo Bol,N—— 0 be a resolution of N as a
kG-module. )
(1) There exist kG—homomorphisms f; 1 Py — Qi such that o4 9i—1 =0; G

VieWl. (Say 0:P_—>Q is a chain map where a=i2INHi.)'

(i) H ¢i:P;— Qi are kG-homomorphisms such that i @_; = @i Bi (iel)

and v, = 0_1 then there exist kG-homomorphisms hj : Py —— Qi+1 R

' h_1 =0, such that
0i';¢Pi=(!ihi_1+hiﬂi+1 Viel.

(Say @ and y are chain homotopic.)

Lemma 1.2 can be thought of as a generalisation of Schanuel’s Lemma. An important

application of Lemma 1.2 occurs when (P, ch) and (Q, ,60) are projective resolutions

of M . This yields

Lemma 1.3 Let M, N be kG-modules. Let
(P, ag) . —— P32 PSPy XM —— 0

(Q, o) o —— Qo L QL g P —— 0

be projective resolutions of M (as a kG-module). Then there exist kG-homomorphisms

— 3 -
0i:Pi— Qi, 9i: Qi =— Py, i€ N, such that 6 vi and ¢; 0; induce the identity
map on {lie ithcohomolbgy group of the cochdin complexes Hom, ,(P, N) and

Homké(Q,N) respectively.
Leming 1.3 allows u§ to miake the following définition.

Definition 1.4 Let M, N be kG-miodules. Let
(P,: do’):- s =y P2 Q2 g Pl ML Po ———Dad M —— 0

be & projective résolution of M . Fof n € I, Ext?

(M, N i thié 0™ cohomology group

of the éochain complex Ho‘iﬁk (‘;'(:P" N):

Remarks L5 (i) Extl (M, Nj & Hom, (M, N) .

(iij' By Lemma 1.3, Extl (M, N) is well defified i.c. it is independent of the choice of
projective résolution for M. .

(ii) 7 Using Lemma 1.2 we see that ExtﬂG(M, —) is & covariant functor aﬁd
Exti‘é(% N) is & cofitravariant finctor i.e. if 8: U< V is a KG—homonior-
phist;, there exist natural hombrﬁorphis_m's V

g, ExtﬂG(:M‘, U)— ExtEG(M‘, V)
aid 0%+ Extl (V, M) — Extl (U, M) .

(iv) I M is a projective kG-tliodule then (P, oig) in Definitioti 1.4 is split exact i.c.
there exist kG-homoitiorphisms’ B : P, —Pi(i€P) and fy: M =P,
suchithat' §i ay'=id’ It follows that the sequence

0'—— Hom, (M, N)’i. Hom, ,(Pq, N) i,

is also split exact. Hence if M is projective ExtﬂG(M, N)=0 VYnelP.
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Exercise 1.6  Use 1.5 to show

Ext? (M, Ue V) ¢ Ext? (M, U) @ Exi2 (M, V)

and  Ext? (U eV, M) 2 Extl (U, M) o Ext%(V, M),

U, V,M kG-modules.

Definition 1.7 Let M, N be kG-modules. l;VIG is thé k-module Hom ,(k, M).
Me, N is the kG-module with (m ®n)g = ’mg ®ng .

Hom, (M, N) is the kG-module with m(6 g) = m g 0 g (0 € Hom (M, N)).

M* is the kG-module Hom, (M, k) . A
If a¢€ HomkG(M, N), define o* ¢ HomkG(N*, M*) by m(tx*(u)) =(ma)v, ve N¥.

Say M is a kG-lattice when M is free as a k-module.

. ! X . *
So M®={meM | mg=m YgeG}, Hom, (M, N)°» Hom, (M, N) andfor € M",
m(f g) = (m g_l)a . Alsoif H is a group and L is a kH-module then M e L is the

K[G x H]-module with (m & J)(g, h) = mge lh.

Lemma 1.8 Let L, M, N be kG-modules. Then there exist natural kG-isomorphisms
(i) M"e NyHom (M, N) if M is a kG-lattice.

(ii) Homk(L 8 M, N) ¢ Hom, (L, Hom, (M, N)).

(i) MpyM** if M is a kG-attice.

(i) kG e kG
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Proof We give the isomorphisms in each case.

(@) Por feM',meM,neN define T6n e Hom (M, N) by m(T®un)
=n(mf) . Then f@®n+— T n induces a kG—isomorphism from M* o N
onto Hom, (M, N) . ‘

(i) For.feHom(Le M,N),lc¢L,meM define ¢ Hom,(L, Hom (M, N)) by
m(l¥) = (lem)d.

For ¢ € Hom, (L, Hom, (M, N)) define ¢ € Hom, (L 8, M, N) by (/e m)p =
m(l p) .
Then = and  are kG-homomorphisms, inverse to each other.

(i) For meM define meM™ by pm=mpu,peM". Then m+— m induces

a kG-isomorphism from M onto M**.

(V) Ha=3 aggekG,agek,define iro= ;. Now define & € kG* by go =
e 4 8
g

tr g—Iu ,E€G . Then ar—s o induces a kG-isomorphism of kG onto kG*.

Corollary 1.9 Let P be a projective kG~module.

(i)  P* isa projective kG-module (not true if G is infinite).

(i) If 0—P-—M— N-—0 isan exact sequence ofrkG—lattices then it splits
i.e. P isinjective in the category of kG-lattices.

(i) H o —»7 L—M— N - 0 is an exact sequence of kG-lattices then

0 — Hom, (N, P) — Hom, (M, P) — Hom, (L, P) — 0 is exact ie.

HomkG(—, P) is exact on the category of kG-lattices.

Proof (i) Follows from Lemma 1.8 (iv).
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(ii) The exact sequence yields an exact sequence of kG-lattices
0—N'—M—P'—o0.
This splits by (i). Hence
00— P M*™ — N** — 0 splits. Now apply Lemma 1.8 (iii).

(iii) Follows from (ii).

Corollary 1.10 Let P be a projective|kG-module and L be a kG-lattice. Then
EXtic(L’ P)=0 VneP|

Proof Let Q:.. — Qa— Q;— Q¢ — L — 0 be a projective resolution of L .

By Corollary 1.9 (ili) 0 — HomkG(L, P) — HomkG(Qo, P)— HomkG(Ql, P)— ...

is exact.

Lemma 1.11  Let L be a kG-lattice and P a projective kG-module. Then L e, P is

projective.
Proof Let M be a kG-module. By Lemma 1.8 (ii) and the remarks after Definition 1.7

there is a natural isomorphism

Hom, (P &, L, M) ¥ Hom, (P, Hom,(L, M)) .
Since L is-a lattice, Homk(L, ~) is exact. Since P is a projective kG-module
HomkG(P, -) is exact. It follows that HomkG(P e L, -) isexactie P o L is a projec-

tive kG~module.
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Lemma 1.12  (Mayer—Vietoris sequence) Let 0 —— A f,pe, C-——0 bean

exact sequence of chain complexes i.e. a commutative diagram with exact rows

Lol

00— A]L B;-—QL) C,-——»O

|| A

0— A28 By 9% gy —ap

[

0 0 0

Then there exists a long exact sequence (natural)

L H(C) S | (A) 25 H (B) Ef“)—*» H(C)—2—H_ (A)—

4 HQ(C) ‘ » 0 .

Sketch Proof (Hn) . and ((pn)* are induced by g, and @ 1espectively. o define
d , suppose a € Hn(C) =ker 7 [im q 41 - Choose bekery CC  representing a, 5o
by, =0.Choose ce€ B such that ¢ o =b (gon is onto) . Then ¢ ﬂn pa=ce. T

=b 'yn'= 0 . Therefore ¢ ,Bn =d 0n_ for some d € An_ . Now check that a+— d

1 1

induces a well-defined homomorphism 8 +H (C)— H__,(A) and that the resulting

sequence is exact.

Mayer—Vietoris sequence for cochain complexes.

Let 0 — A — B — C — 0 be an exact sequence of cochain complexes i.e. a

commutative diagram with exact rows




W‘ SRS Y 5
dg- —9-
[ I ] 0 0 0 0 0
. 0 — Al ﬁ' Bl -—‘&b Cl —-' 0 ) 1 l l 1 A 1
‘ : e =e— P . — 3 P — — Py — Py — L — 0
; Otxl ﬂll "/1] n+l n ,
: A Bo B 0, ¢ 0 i 1 1 l l l
P, 0y —s ‘
00— Io—»Io Io Qn+l Qn + Q) —— Qo £ M— 0
0 0 0 — R . — R y Ry —= Ry %5 N -— 0
| n+1 n
Then there exists a long exact sequence (natural) l l l l 1
: (60), (90), o 09, - o 0 o 0 0
0 —— HO(A) HO(B) HY(C) -2 Hi(A) —2» HY(B)
Corollary 113 Let 0—L—M— N—0 bean exact sequence of kG-modules. Since 0 P Q, R_ 0 is split exact for all n € N it follows that
Let U be a kG-module. Then there exist (natural) exact sequences 00— HomkG(R, U) — Homkg(Q, U) — HomkG(P’ U)— 0 isan éxact sequence
(i)  0-— Ext).(U,L) — Ext}, (U, M) — Ext.(U, N) — Ext} (U, L) — ...

) of cochain complexes. Now apply Lemma 1.12.
(ii) 0— ExtﬁG(N, U)— Ext]‘:G(M, U) — ExtﬂG(L, U)— Ext]iG(N-, U)— ..

. — Ext;G(N, U)— Ext;:G(M, U) — Eth}:G(L’ U)— .. . : Inflation and Restriction maps

Proof (i) Let (P, €) be a projective resolution of U . Then we have an exact sequence
! . .
of cochain complexes -0 — HomkG(P, L) ——v HomkG(P, M) — Hom, (P, N) — 0. . Let a: H—— G be a homomorphism of groups and let M, N be kG-modules. Then

M, N are also kH-modules by defining mh = m(ha) for me¢ M or N and he H .
Now apply Lemma 1.12. ’ . .

. S ’ - Let (P, é) be a projective resolution of M with kH-modules. Let (Q, v) be a projec-
(ii) Let (P, €), (R, v) be projective resolutions for L, N respectively. By the Horse-

_ . L tive resolution of M with kG-modules. Viewing (Q, v) as a resolution with kH-mo-
shoe Lemma there is a projective resolution (Q, ) of M and a commutative diagram ‘

dules (now not necessarily projective), Lemma 1.2 (i) shows that there exists a kH—chain
with exact rows and columns :

map §:P —— Q extending the identity map on M . This gives a chain map
6" : Hom, ((Q, N) — Hom, (P, N)

defined by 8*(f) =01 for f¢ Hom, .(Q, N) .

“This induces a natural homomorphism of k-modules

o) Ext] (M, N)— Ext? (M,N) Vnel.

By Lemma 1.2 (ii), (x: does not depend on #.




A
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Special Cases (i) o isinclusionie. H < G . Then o is the restriction map from G

to H, denoted resc,u .

(i) o is an epimorphism. Then o isithe inflation map from G to H, denoted
\

mfG,H .

Transfer map Let H< G,let M, N be kG-modules and let (P, €) be a projective
resolution of M . Let {xi,.., xa}-be a rigpt transversal for H in G,s0 G=HxU
Hxy U ... U Hx, . We have a natural map% of cochain complexes HomkH(P, N) —

1

n -
HomkG(P, N) defined by §+—— % x 0 x, , which is independent of the choice of

1
transversal. This induces a natural homomorphism of k-modules

Ext} (M, N) —— Exty (M, N)

denoted by the transfer map from H to| G .

Lemma 1,14 Tet H< G ,let £=[G:H],let M, N be kG-modules,let n'¢ N and

let ae Ext']:G(M, N). Then tr",c(resu).c a)l=fo .

Proof Let (P,e€) be a projective resolution of M andlet {x,....x,} be aright trans-

versal for H in G .If o is represented by € HomkG(Pn, N) then trH’GresG’K is

induced by
HomkG(Pn, N)— HomkH(Pn, N} — HomkG(Pn, N).

¢
f—s0r— % xjaxi=w
i=1

since ¢ commutes with the x's .

~11—

Corollary 1.15  Suppose k is Z or a finite field, M is a kG-lattice and - N is a
kG-module. Then Exti:G(M, N) is a finite group with exponent dividing |G| for

all neP.

Proof Since Ext] (M, N) =0 “for all n € P, Lemma 1.14 shows that
|G| ExtL‘G(M, N) = 0 . Also it is clear from the definition of Ext in terms of resolu-

tions that Ext;:G(M, N) is finitely generated as a k-module. The result follows.

Exercise ~ Suppose k is I or a finite field and M, N are kG;modules. Show that
Ethc(M’ N} is a finite group for all n € P and that its exponent divides |G| for all

n>2.

Lemma 1.16 Let H< G,let M be é, kH-module and let N be a kG-module. Then
there exist natural isomorphisms

()  Hom (N, M) 2 Hom, (N, M e, kG)

(i) Hom (M, N) HomkG(Mék){ kG, N).

Lemma 117 Tet H < G,let M be a kH-module, let N be a kG-module andilet

n € N . Then there exist natural isomorphisms

() Bxtyy(N, M) 2 Exif (N, Mo, kG)

(i)  Ext) (M, N)» Ext] (M 8, kG, N).

Proof (i) Let (P,¢) bea projective resolution of N as a kG-module. Then

n
Ext, (N, M e, kG) = H"(Hom, (P, M &, kG))
v H"(Hom, (P, M)) by Lemma 1.16 (i)

= Ext) (N, M) .




(i)  Exercise (similar to (i)).

Lemma 1.18 Let K be a field containing k,let M, N be kG-modules and let nel.
Then
Ext} (M, N)e K2 Ext) (Ms K,Ne K).

Proof Let (P, ¢) be a projective resolution of M . The result follows from the natural

isomorphism
Hom, (P, N) & K — Hom, (P ¢, K ,Ne,K)

R

——qfevu

defined by sending fou (f€ HomkG(P, N)iueK) tothemap qov

(aeP,veK).

Definition Let M be a ZG-module and n 16 N . Then

|
HY(G, M) := Tz)xt;;c(ﬂ, M) .
\
i
Remarks 1.19 (i) HY(G, M) = M® . | 7 v
(i) HY(G, M) is a finite group with exponent dividing the order of G Vn € P (use
Corollary 1.15).
(i) If K is a field containing k then H"(G,M e K)» H"(G,M)e K VneMN (use
Lemma 1.18) .
(iv) ¥ M is a kG-module then M is also & ZG-module (at least if we drop the
requirement that all modules are finitely generated) and we have H™(G, M) ¥
Extic(k, M) Vn e (exercise).
(v) Let M be a kGaitice, let N be a kG-module and let n € N . Then there is a

natural isomorphism

*
Ext;G(M, N) ¥ HY(G, M & N).

—13—

To prove this, use Hom, (P8 M, N) 2 Hom, (P, M* ®_N) which follows from Lem-
ma 1.8 (ii), and Lemma 1.11 which tells us that P projective implies P ® M is

projective.

Proposition 1.20
HY(G, M) » Hom (G, M) naturally.

Let M be a ZG-module with trivial G-action i.e. M = M® . Then

Remarks Hom(G, M) = Hom(G/G’ , M) . Thus
HY(G, I/pI) = G/G’ GPHYG,I) =0 .
If G=G’, HYG,M) =0 (if M=ME).

Proof ~ Let g be the augmentationideal of G , the ideal with Z-basis
{6-1]14#geG}.
Then we have an exact sequence 0 —— g ——» IG— 11— 0
hence by Corollary 1.13 (ii) an exact sequence
0 — ExtﬁG(ﬂ, M) — EXtﬁ(}(lG: M) — ExtﬁG(g , M) — ExtulG(ﬂ, M) —
Ext”‘G(lG, M) :
Therefore we have an exact sequence
g
Homy(IG, M) — Homy (g , M) — HY(G, M) — 0

Note that im § = 0 (because M _#= 0) . The result follows because G/G’ v g /g2 (as

I-modules) via G'gr—r g2+ g-1.

Lemma 1.21 Let A be a chain complex of k-modules and T, be a k-lattice. Then
H(Ae L)» H(A)e L.

Proof  Exercise. If o are the boundary maps of A then A &, L denotes the chain

complex (A ® L), = A& L with boundary maps o ol.




— 15—
14—

Bockstein map Let k = I/p I . We have|a short exact sequence
0 K . ny X 0 2. Kiinneth Formula This will be especially important when cup products are introduced.

—_— ks D —So—; -—_— 0. )
Therefore by Corollary 1.13 (i) there is a long exact sequence

Definiti L
. — B, k) Py BY(G, 7/p2 1) 224 (G, k) B BTG k) — Definition  Let

AZ...—-—’AgﬂbAI&DAO&DO

i- B:..—B, B2, B, P

Use Remark 1.19 (iii) to define ﬂn' for an airbitra.ry field of characteristic p .

ﬂn is the Bockstein map.

be chain complexes of kG-modules. Then A 8 B is the chain complex of kG—modules with

(Ag B) = o AeB
. . n 1t ks
1.22 Description of ﬁu Let r+s=n

and boundary map Bn defined by

...—an—»Pn_l—————»...—» PlﬁPo—»H—oO

L a®b)d =aa b+ (-1) aebf for acA ,beB .
be a projective resolution of Z . Let u € H'(G, k) . Then u is represented by ( )9, % 1) B, 3 s

f € Homy (P, k) . Lift f to { € Homy(P , I/p’T) . Then h The (-1)" ensures 8, 9 =0.

H ined i /4 zll =k (b 6 f=0 Similarly if H is a group, A is a chain complex of kG~modules and B is a chain (:()mplex of
P — 7 p2 I has image contained in = ecause . o Yy g p pic >
an +1 f: ntl / ) g \ 1 b /p ( n-1 ) ! ;
kH-modules then A @1 B is a chain complex of k[G x H]—modules.

Then 8, T€ Homy (P k) represents B (u).

n+1’
Similarly if ~ A:0-—— Ag-2L A -S4,
and B:0—B,- LB, BB,

Lemma 123 (i) B ;8 =0 (because @ 5 0,1 =0)."
S e : are cochain complexes then A B is a cochain complex with
(ii) Bo=0 (exercise).

(aap)6n=aar+1®b+(—1)ra®bﬂs+1 for a€A ,beB, .

Theorem 2.1 (Kiinneth Formula) Let A be a chain complex of k-lattices, let B be a complex
of k-modules and let n € N . Define '

w: o H(A)e H(B})— H (Ae B)

r+s=n
as follows. If u € Hr(A) and ve HS(B) are represented by a € A and b€ B_ respectively
then (u ® v)x is represented by a®be (A ®, B) . Then there is a natural short exact

sequence of k—-modules

k
0— @ ) H(A)e H(B)-"~H(Ae B)—s o . Tor (H, (A), H(B)) — 0

T+s8= r+s=n




s
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which splits, but not naturally.

2.2 Remarks on Tor Let R be aring,let 0 — L —— F —— M —— 0 be an exact se-

quence of R—-modules where F is a free R~module, andlet N be an R~module.

(i)  There is an exact sequence
0~ Tor}(M,N) —Le N—sFe N— Me, N—0.

(i)  Tor}(M, N) & Tor}(N, M) .

iii) Tor™(M, P)=0 if P is projective.

1

(iv) Tor(Z/p', 1/p°T) 2 1/p™E)1 . Thus for I-modules A, B with |A], |B| <,

Tor/(A, B)¥ A B andalso Ext}(A,B)2AeB. '

(v) A homomorphism M —— N induces homomorphisms

Tor];‘(L, M) — Tor_];(L, N) and Torllt(M, L) — Tor}ll(N, L).

2.3 Remarks on Theorem 2.1 (i) If k is a field, then )

H(Ae B)y o H(A)e H(B).
I+s=n

(ii)Let M and N be kG-modulés with projéctive resolutions (P, €) and (Q, v) respectively.
Then (P 8 Q,¢c® v) is a projective resolution of the kG-module M o N. (That P 91; Q is

projective follows from Lemma 1.11; that P 8, Q 1is a resolution follows from the Kiinneth for-

mula). This result is used in the construction of cup products.

(iii)  Consider the special case B =0 forallt > 0. Write M = Bo andlet n € N. Then we

have a natural exact sequence which splits (but not naturally)

k
0— Hn(A) & M— Hn(A 8, M) — Torl(Hn_l(A) y M) — 0.

(Remeimber that M can be arbitrary, but A needs to be a chain complex of k-lattices.) This

is often referred to as the "Universal Coefficient Theorem",

(iv) Kiinneth Formula for cochain complexes Let A be a cochain complex of k-lattices, let

—17—

B be a cochain complex of k—modules and let n € N . Then there is a natural short exact se-

quence of k-modules which splits (but not naturally)

0— e HY(A)e HB)—H'(Ae B)— o Tor(HYA),H{(B))—0.
+s8=n ’ r+s=n+1 .

2.4 Computation of H*(G x H , k) Let H be a group and let (P, ¢) and (Q, v) be projec-

tive resolutions of k with kG and kH-modules respectively. Then (P ®, Q,c®v) isapro-
Jective resolution of k & k with k[G x Hl-modules by the Kiinneth formula and k ® k is
naturally isomorphic to k via the map ‘ky @ kg k; ko . Let &= (e ® v)p so that (P e Q,
%) is a projective resolution of k with k[G x H]-modules. Since Hom, (P, k) is a cochain

complex of kG-lattices the Kiinneth formula yields a natural exact sequence of k-modules
which splits
0— o H’(HomkG(P,k)) 8, H(Hom, ,(Q, k)) —

r+s=n

H"(Hom, (P, k) 8, Hom, (Q,k)) —

k
® Torl(H’(HomkG(P, k)), HS(Homk][(Q, k))) — 0.
1+s=n+1 }

Now we have a natural isomorphism of cochain complexes
g :-HpmkG(P, k) e Hom, (Q, k} — Homk[Gx“](P 8 Q, k)
defined by sending f® g to themap nevi— ufvg (fe¢ Hom, (P, k), g € Hom, (Q; k),

u€ PI, VE Qs). No sign is needed here even though it is in the definition of the tensor product

of complexes.

Now H'(HomkG(P, k)) = H'(G, k) etc, hence the above exact sequence yields a natural exact

sequence of k—-modules which splits

0— o H(Gk e H(HK-H(GxHK— o Tok(H(G, k), BYIL k) — 0.
r+s=n r+s=n+1

Thus once H(G, k) has been calculated for G cyclic it can be calculated when G is any abe-
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lian group. If k is a field then H(G x H,[k)* o HY(G,k) o H'(H, k).

r+s=n

Later we will show that if n € P and G =|I/nl then Hy(G,I)=1,H'(G, 1) =0 if 1 is odd
and HY(G,T) = I/l if risevenand #0|. '
Example: H*(Zs x I3, I) . We have a split exact sequence

0~ © (T, 1) H(Us, ) ~ Hi(Esx I5,1) = © Tork(H'(Ls, 1), BY(Ts, 1)) — 0
1+s=4 : r4s=5

Therefore H4(ﬂs x I3, ﬂ) vl;el;elg.

Bxercise H*(Tqx I3 x Iy, I) & Lols.

2.5 Universal Coefficient Theorem Here we relate H'(G, Z) and H™(G, k) . Let (P;¢) bea
projective resolution of 7 with ZG-modules. Then we have a split exact sequence

)
0 — H'(Homy (P,1)) @ k — H"(Homy,(B,1) © k) — Torj (H"* (HomZZG(P,ZI)),k) —0

forall n €W, because Homy(P, 7) is 3 I-lattice (see 2.3 (iii)). But ‘HomZZG(P, Nnek is

naturally isomorphic to Hom, (P @k, k) and (P ek, e®1) is a projective resolution of k

with kG-modules. Thus H"(HomﬂG(P, 7) e k) ¥ HY(G, k) (cf. 1.19) and we have a split exact

sequence

I

H(H(G, 1), k) — 0.

0 — HY(G, I) @ k — H™(G, k) —> Tot
Exercises (i) Show HX(G, ) G/G’ .
(i) Let M bea ZG-lattice and let n € M. Show
HY(G, M e k) 2 H'(G, M) e k o Tor (H"*1(@, M), k) .

Proof of Theorem 2.1 Let o and ﬂs denote the boundary maps of A and B respectively.

We begin by considering a special case. Suppose A is a chain complex X with trivial

boundary (so X ¥ H(X) forall re€W). Then X ®, B is the chain complex with (X 8, B)n =

< ~ 19—
© X e B and boundary e {(=1)" i ® 8, where i is the identity map on X_. Thus
r+s=n T 8 t+s=n T 8 r r

H(Xe B)r e H(X e B) andsince H(X e B) X o H(B) by Lemma 1.21 we

r<4s=n

deduce that =: e H(X)e, H(B)—H (X ®_B) is an isomorphism. In general write

r4s=n
C =kero :A —A
n T n n n—1
D =ima :A — A .
n n n n—1 )
Note that Cn and Dn are projective k-modules. Regard .C and D as'chain complexes with
trivial boundary. Then 0 — C — A — D —— 0 is-an exact sequence of chain complexes

and hence sois 0— Ce B — A @ B—sDe_B-— 0 because D is projective (use 2.2).

Now apply Lemma 1:12 to obtain an.exact sequence

w—H (Do, B) 0"—“, H (Ce, B)— H (A6 B) —?L H (Do B)— ...
We also have an exact sequence 0 —— D_ a—Cc— H(A) =0 forall reN and
hence an exact sequence .
0 —s Tork(H (A), H,(B)) — D,,, ® H(B)— C e H(B)— H(A)e H(B)-—0
by 2:2 (i). Therefore we have a commutative diagram with exact rows

0— © Tor{(H(A)H(B)— o D
T s rhs=n

r+s=n

" lekHs(B)—»r+c::nCr®kHs(B)—-»r+:=nHr(A)®kHs(B) —0

O

?, @
+1 1
Hn+1(A 8 B) _ntl, Hn+1(D 8 B) ol H(CeB)— H (A & B) — .

where § and v are isomorphisms by the special case when A has trivial boundary. A routine
. : k

diagram chase shows that ker x =0, im w=ker ¢ and ker 0 41 g‘r+?~nTor1(Hr(A), H (B)). ‘

But we haye an exact sequence 0.— ker 9 — Hn(A 8 B) — ker 6 —+ 0, and the

required natural exact sequence follows easily.

It remains to show that the sequence splits. First consider the case when B (aswellas A) is
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a lattice. Write E =ker§ : B — B
i n n n n—.

4 - Since submodules of k-lattices are projective we

may write Al1 =C oC/ and B =E eE’ for some k—sublattices C; and E’, but not

naturally. It follows that the natural epimorphisms G — H (A) and B — H (B) can be~

extended to epimorphisms v : A — H (A) and § : B — H (B) respectively, and hence
n n n n n n

to an epimorphism (ye38) :(Ae B) —: & H(A)s HS(B) N

r+s=n

Ha€A and beB then (ac ®b + (-1)'a®bg)(ve 8),4st

=bpg 5 _, . Therefore (7@ 8)  induces a homomorphism

(7@6)*:HH(A@kB)—. o H|(A)e H(B).

r+s=n

It is clear that w(7®§), is theidentityon | @ H (A)e® H(B),ie. the sequence splits. -

r+s=n

When B is not a lattice we need the following result.

Lemma 26 Let B be a complex of k-modules. Then there exists a complex C of free

k-modules and a chain map #: C— B such that the induced map 0, : H(C) — H(B) is an

isomorphism.

(Problem: can 6 always be taken to be onto?)

We prove this by establishing Lemmas 2.7 and 2.8.

Lemma 2.7 Let B be a complex of k-modules. Then there exists a complex C of free .

k-modules such that H (C) v H (B) forall nelN.
n . n

Lemma 2.8 Let B be a complex of k-modules, let C be a complex of free k-modules and let

¢ : H (C) — H (B) be a homomorphism for each n € N . Then there exists a chain map

9:C— B suchthat ¢ =0 forall nel.

=0, because a o= 0
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Proof The proof of Lemma 2.7 is very easy so we leave it as an-exercise. We prove Lemma, 2.8
by induction on n . Let ﬂr and 7, denote the boundary maps of B and C respectively. For
n € N, having constructed ¢ : C — ],3’ such that ¢ = 0r » 0 B = Y, Py
(ker 'yr)<pr o ker B, (im 'yH_l)tpr g im ,6;+1 for r < n, we construct (pn.: C, — B having the

same properties (where ¢ L= 0).

. 'Yn+1 I ’yn C ’yn-—l C

i n n—1 n~2
J‘pn—l J‘pn—2
Hn+1 ' B ﬂn B B n—1 B
n n-1 n—2

Now Hn is a homomorphism 0n: ker 7n/im Tog1 ker ﬂn/im ﬁn+1 . Since ker 7, is a free
k-module, Hn lifts to a homomorphism ¢ : ker 7, ker ﬂn . Also im 1, is a free k-module,
50 we may write Cn = ker 7,9 D for some k-sublattice D of Cn . Since Yy g TADS D
into im ﬂn there is a homomorphism §: D — Bn such that d & ﬂn =d Yy Poca for all
deD . We may now set § = ¢ @38 : ker 7, ®D =C_ — B and the induction step is

complete.

We now show that the sequence of Theorem 2.1 splits when B is an arbitrary chain complex.
By Lemma 2.6 we may choose a complex C of free k-modules and a chain map 0 : C— B

such that the induced map 0* is an isomorphism. We now have a commutative diagram with
exact rows in which the top row splits and the two outside vertical maps are isomorphisms.

0— © H(A)e H(C)—H(As C)— o Tor(H(A),H(C))~—0

r+s=n r+s=n—1

l1* ®0, ‘(1 ®0), 1,,e,)

0-— o H(A)e H(B)—H (Ao B)— o Tor(H(A),H(B))—0
1

rs=n r4s=n—
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The Five Lemma shows that the middle yertical map is an isomorphism and a routine diagram

chase now shows that the bottom row splits, as required.

Exercise Let A be a chain coxhplex of k-lattices and let B, C be chain complexes of

k-modules. Suppose #: B — C is a chain map such that the induced map ¢ . Hn(B) —

i

H_(C) is an isomorphism for all n € . Prove that (1ed),

an isomorphism for all ne .

H (Ae B)~— H(Ae C)is

~923—

3. Cup Products
Notation I M is a kG-module, write H (G M) = o H(G,M).
rel

Aim To make H (G k) into a graded anticommutative k——algebra and H*(G, M) into a
graded H'(G, k)-module. This means that if u e HY(G, M), x € H(G, k), y € H(G, k) then
wx € ™G, M) and xy = (-1)"yx ¢ B**Y(G, k) . (Thusif p and s are odd and k is a field

of characteristic p then x2=0.)

Let (P,e):..— PI e A, Py £ 3k —a0 bea projective resolutioh of k with i{G—mo—
dules. Then (P & P, € ®¢) is a projective resolution of k o k ‘with kG-modules (Remark

2.3 (ii)). Also we have a natural lSOInOI‘phlSIIl of kG-modules p:kek —k where (aeb)p

=ab for a,bek.Thusif n=(c® e)u then (P e P ®) is a projective resolution of k with

kG-modules. By Lemma 1.2 there exists a chain map

31 to 0:P—»P®kP

extending the identity map on k.

Suppose u € H'(G, M) , x € H¥(G, k) . Choose f¢€ HomkG(Pr,,M) and ge€ HomkG(Ps, k)
representing u and x respectively. Then fe g e Hom (P o P, M), where (a @ b)(f'e g) =

(af)(bg) for a € P ,be P_ . Therefore ' teg) =0feg) e Hom, (P , , M) . Since

145’

aff =0= 6:g , we ha,ve) .arf =0=0g and hence 6f+s(0*(f ®g) =20 Jeg)=000feg+
r - ’

(-1f fedg) =0.

Therefore §¥(f® g) represents an element of H'™(G, M): it is denoted ux , the cup—product

of u and x . Lemma 1.2 (ii) shows that ux does not depend on ¢ . We shall use the notation-

vi to denote the i® component of an element v in H(G, M) : thus v = % v; where

vi€ H{(G, M) . Xf u and x are arbitrary clements of H¥(G, M) and H*(G, k) we can now
define ux ¢ H*(G, M) by
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()= % uixj.
i4j=r

Remark We could also define the cup product by letting (P, €) be a projective resolution of

I with IG-modules and 0: P — P ®y b be a chain map exténding the identity on Z . This

1

would give the same result: cf. Remark 1.19 (iv).
. . ‘ !

Lemma 3.2 H*(G, k) is a graded anticommutative fing witha 1 and H*(G, M) is a graded
H*(G, k)-module. If (P, ¢) isa projective resolution for k then 1€ H*(G, k) is represented

by €€ HOIHkG(Po, k). . {

[
Proof . Al is clear except for the anticommutativity: we must prove that if x € H'(G, k) and
y € H¥(G, k) then xy = (-1)"yx. l

il

| .
ge€ HomkG(Ps, k) represent y .ILet 0:P — P L P be a chain map extending the identity

|

|
Let (P, €) be a projective resolution of k , let fe HomkG(Pr, k) represent X and let

map on k (see 3.1). Then by definition ¢(f e g) , f(g ® ) ¢ Homl’(G(PHs, k) represent
|

xy, yx € H™Y%(G, k) respeciively. By Lemma 1.2 @ ,
0* : H™*(Hom, (P e, P, k))’_. H™*(Hom, (P, k)
is an isomorphism, so we want to show that feg and (~1)" g @ f represent the same elemenf
in H™*(Hom, (P e, P, k). '
Define a chain map 7: P 8, P— P @kP by
’ (aeb)yr=(-1)*(bea) for acP ,beP .
Then the induced map *: H™**(Hom, (P ¢, P, k)) — H"*(Tlom, (P ® P, k)) is the iden-

tity by Lemma 1.2 (ii) and the result follows.

Let A, B be anticommutative graded k-algebras, say A = ® An s
n=0

Definition 3.3

«

'B=z & B . Then ae€ A is homogeneous means a € A for some n € and then we write
n=0

dega=n (if a#0). Wemake A ® B intoan anticommutative graded k—algebra by defining
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(A ® B)n = +e Ar 8 Bs , and for homogeneous elements ay, a;€ A and by, bye B,
I+s=n

(a1®by) (a2 by) = (—1)deg by deg a; ajas®b by.

Theorem 3.4 Let H be a group. Then there is a natural monomorphism of anticommutative
k-algebras : H*(G x H, k) — H*(G, k) ®, H¥(H, k) .If k is a field, then = is an ‘epimor-
phism.

Proof This is just 2.4; all that needs to be checked is that « respects multiplication as well as

addition.

Lemma 3.5  Let L, M, N be kG-modules, let H be a group, let u € H*(G, M) and
yeHYG, k) . '
(i) ¥ 0:H-— G is a homomorphism then 6%(u) 6%(y) = 0*(uy) .

(1) If ¢: M-— N is a kG-homomorphism then v ()y = ¢ (uy) .

(ii) M 0—L-—M-——N-—0 isexactand &: H*G, N) — H¥(G, L) is the connec-
ting homomorphism (cf. 1.13 (i)) then §(vy) = (bv)y for ve H*(G,VN). .
(iv) X H<G then trH,G(resG,H(u)z) =utly s for z € H¥(H, k).

(v) I k isafield, chark = p, and x € H'(G, k), then A(xy) = (Bx)y + (1) x (By) .

Proof We prove (v), leaving the other parts as exercises. We may assume that k = Zl/ﬂ by
Remark 1.19 (iii), and y is homogeneous of degree s for some s ¢ . ‘

. il Lo )
Let (P,e):...— P -2 P, E—v I —— 0 be a projective resolution of 7 with ZG-mo-

dules, let f€ Homy (P, k) and ge HomZZG(Ps’ k) represent x and y respectively, and let
0:P— P ®y P be a chain map extending the identity map on ¥ (cf. 3.1). Then xy is repre-
sented by d(feg) € HomZIG(Pr+s’ k).

Lift f and g to f and g, elements of HomZIG(Pr’ I/p) and HomﬂG(Ps’, H/pm) respec-

tively. Then 6(f ® g) ¢ HomTZG(Pr 1o l/pﬁl) lifts O(f ® g) and so fB(xy) is represented by
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at+s+1 f(feg)e HomﬂG(Pr+s+1’ I/p?) (see 1.22). But this is

03r+s+1(f ®g)= 0(('J1l_l_1 fog)+ (-1) 0(fe 6s+1 g).

Since 6r 41 f represents fx and 65 418 tepresents Oy the result follows.

3.6 Cohomology of the Cyclic Group
Let G = < g > bea cyclic group and let| g be the augmentation ideal of kG ,so g is a free

k-module with basis {g — 1|g € G\1}| . Define kG-homomorphisms ¢ : kG — k and
v:kG-—g by le=1 and lv=g—1. Then we have the exact sequences
0—g—kG—k—0

00—k —kG—g— 0.

Since H™(G,kG) =0 forall neP by Corollary 1.10, the long exact sequences for cohomology
(Corollary 1.13 (i)} show\that the connecting homomorphisms give isomorphisms

i BY(G, k) 2 BTG, g) and §:HYGQ,g) < B"(G, k) forall neP. (i)
7 Thus B**%(G, k) ¥ B*(G, k) for n € P . Let us consider two special cases. i
Case 1  k is a field of characteristic |p and p| |G| (1f p does not divide |G| then
H™(G, k) = 0 for all n € P — exercise). The exact sequence 0 — g — kG — k— 0 yields
an exact sequence _ ‘

0— HY(G, g ) — BY(G, XG) — HY(G, k) L H'(G,5) — 0.
‘Since HY(G, g) & HY(G, k@) ¥ H(G, k) ¥ k it follows that
y BY(G, k) -2 HY G, g) (i)

is an isomorphism and HI(G, g)ok. Also HI(G,'k) ¥ Hom(G, k) ¥ k by Proposition 1.20. It
now follows from (i) that HY(G, k)2 k for all n e M. Thus we have the additive structure of
H*(G, k) and we now calculate the multiplicative structure.

By (i) and (ii) 87 : HYG, k) — H**%(@, k) is an isomorphism for all n € W . Also if
xe HYG, k) and y € H(G, k) , m Ei N ,then 89(xy) = (84x)y by Lemma 3.5 (iii). Now
ly =y where 1€ HO(G, k) is the identi‘j;y. It follows that if n is even and x ¢ 0 then

y— xy is a bijective map from H™(G, k} to ﬁm+“(G, k) . This shows that

o HYG, k)2 kv,
n even
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a polynomial ring where u can be taken to be any nonzero element of Hz(G, k) . If p isodd
and ve HI(G, k) then v2=0 because H*(G, k) is anticommutative and

H*(G, k) ¥k [u,v] / (v2,uv = vu)  (iii)
where degu=2,v#0,degv=1.
On the other hand if p =2 we need a further subdivision of cases. First supposé |G| =2.
Then k2 g as kG-modules, hence from (i) and (ii) we have an isomorphism 7 : H“(G\, k) —
H“+1(G, k) for all ne N, It follows that H*(G, k) ¥ k [v] , a polynomial ring where v can be
taken to be any nonzero element of HI(G, k).
In general let H' = < h > be the subgroup of order .2 in G . Identifsring HO(H, g) and
HO(G, g ) with the fixed points of g under the action of ‘ H and G respectively, 1 + he
H'(H, g) and try o(1+1) - gge g e HYG, g) vk, so try o H(H, g) — HG, 6) is

onto. Moreover the exact sequence 0 — k — kG — g— 0 yields (by Corollary 1.13 (i))ya

commutative diagram with exact rows

H(H, g ) —— HY(H, k) —— 0
trH,Gl : ltrH’G

(G, g) — HY(G, k) — 0
and we deduce that try - HY(H, k) — HYG, k) is an .isomorphis;n. Let £=[G : H]. Using
Uy g q = { (Lemma 1.14) we see that Upg: HZ(H, k) — H2(G,' k) is an isomorphism
if 2 does not divide ¢ and resg : Hi(G, k) — HY(H, k) is zero if 2 | £. Now let
0#ueHYG, k) and z € HléH, k) such that trH,G(z) =1u. Then
u =u trH’G(z) = trH,G(resG,H u)z by Lemma 3.5 (iv)

=0 ifandonlyif 2| ¢..
We conclude that

H¥(G, k) k[v] if 4 does not divide |G| (a polynomial ring where v € HY(G, k),

HY(G, k) 2k [u,v] / (v4 uv~vu) if 4| |G| (where veHY(G, k) and ue HYG,K)).




P
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Next we calculate the Bockstein map £ : H(G, k) — (G, k) .

As above,

HY(G, I/p?) 8 I/p?l forall i€ W if p?| |G}, _
Hi(G, I/p2) 8 U [pl forall i€ I]" if p? does not divide |G| . (i)
The exact seﬁuenée 0 — Ifpll — ﬂ/p2ll — Ifpl —0 yields (see Corollary 1.13 (i) and
1.22) an exact sequence -
0 — HY(G, 1/pll) —» HO(G, 1/p?) — RY(G, 1/pT) A, HYG, I/pl) — ... .

Using (iv) we deduce

|
B,=0 forall il if p| |G|

B..=0,p0, . isanisomorphism for all i€ R if p? does not divide |G] ..
2i 2141 N _

(
|
Thus if p? does not divide |G| we can rewrite (iii) as (p odd, p | |G])
(G, k) 2k [v, Be] [ (v2, v~ (Bv)v)

where v is any nonzero element of HI(G, i‘c) .

|

|
Case2 k=1.Let {=|G|.By Prop?sition 1.20 and Exercise 2.5 (i), HI(G, I) = 0 and
HX(G, T) ¥ G/G’ and it now follows from (i) that

(G, )8 1, BH2(G, ) v 1/ , B NG, 1) =0 (neP).
Also 7: HO(G, ) — HI(G, g ) is onto because HI(G,‘ IG) = 0 . By a similar argument to
Case 1 we now see that if m, ne P and x is a generator of Hzm(G, I) then y—— xy isa
bijective map from HYG, I) to H™ (G, T) . Therefore
HY(G, 1) 2 T [u]/(t)

where u is any generator of H2(G, 0. 7

Notation Let Ek[ul,...,u d] denote the exterior algebra on d generators, an anticommutative

graded k-algebra which as a k-module is free of rank 29, Thus B [u] ¢ k[u]/(u?) =keku

where u has degree 1 and u2=0, and

E [u,., uj 2 B fu] e B fu]e .0 E [u].

We can now state

Lemma 3.7 Let k be a field of characteristic p ,let |G| =p andlet 0 #ue HY(G, k).
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Then
(i) I p is odd then H*(G, k)~ k[fu] ® E, fu].

(i) H p=2 then H*G, k)2 ku].

Cohomology of an elementary abelian p—group Let k be a field of characteristic p ,let d € P
and let G be the elementary abelian p—group of rank d (so |G| = pd) . Let (ul,...,u d) be a

k—basis for HI(G, k) (= Hom(G, k) by Proposition 1.20). By Theorem 3.4 and Lemma 3.7 we
now have

Theorem 3.8 (i) If p isodd then H¥(G, k) » k[ﬂﬁl,..., ﬂud] ® Ek[ul""’ ud] .

(ii) If p=2 then H(G,k) 2k[u,..,u].

Cohomology with coefficients in I Let G be an elementary abelian p—group. Then we need

Lemma3.9 I nelP and x € HYG, ), then px=0.

Proof Exercise using 2.4 (Kiinneth formula) and 3.6.

Let k = Z/pll . Then we have an exact sequence
0—I-571-%Kk—0
where p is "multiplication by p", and hence an exact sequence
G, I) 2 HY(G, 1)~ HN(G, 1) S BTG, 1) — BTG, 1) —

by Corollary 1.13 (i), and #, is "multiplication by p". Using Lemma 3.9, im p =0 for all

n € P so we have an exact sequence

' 0 — HY(G, 1) —%» HY(G, k) 5 B™Y(Q, 1) —— 0 .
Define ﬁ"(G, N =HYG, I n>0
G, T) =k,

s0 ﬁ*(G, 1) ¥ H¥(G, 1)/(p) as anticommutative graded rings and ¢, induces a ring mono-




s §. i

—30—

morphism ﬁ*(G, 1) — HY(G, k) . Therefore I:I*(G, Tyvker 8§ =ker p §.Now ¢ b8=0:

HY(G, k) — H*(G, k) (exercise), so
E~[*(G, Iy~ ker 8

Example G =1I/pl x I/pl , p odd. Th

fo=x,pv=y.
Now A(f, +fu +fv+fuv)=0 (fek

& (using 3.5 (v) and 3.6) f,x + £,y

BYG, k) — BYG, k) .
en (Theorem 3.8) H*(G, k) & k[x, y] ® E,[u, v],

i[x, )

and f,(xv-yu)=0

& =01 Eyf,f3=—xf some {€k[x,y].

Therefore ﬁ*(G, 1) ¥ [x, y] ® E,[uy - vx]|.

. .
Exercise If p=2 show H (G, T)» k[x",

2 2 2
v Xy +xy].
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4. The Evens Norm Map Let H < G . Recall the transfer map
try o+ HY(H, k) — HY(G, )

is a map satisfying try (x +y) = tfH ol®) + try G(y) Le. try . respects the additive struc-

ture. The Evens norm map is a map

normy . : H*(H, k) — H*(G, k)

which respects the multiplicative structure. To define this map, we need to consider tensor in-

duction. Write G =x, HU ... Ux i andlet M be a kH-module. For g € G write

gX, =X g (1)
gl

where g € H (i=1,..,£) and é € %, . Define a kG-module by

£ N
M'=Me ..8 M ({times),

(m1®...®ml)g=m;1 g1®...®m;lgl . (2)

It is easy to check that this gives a well defined kG—module whose isomorphism type is indepen-

dant of the choice of transversal {x,...,x,}, and Kok (naturally).

However P’ is not a projective kG-module in general when P is a projective kH--module.

Similarly if P is a chain complex of kH-modules then P! is a chain complex of kG—mo-
dules, but we need a sign in (2) (so that the G-action commutes with the boundary maps),

namely (when the m, are homogeneous)
TT (_l)deg m, deg m, @)
1<)
g i
However we must check that (3) gives a G-action, and that the action commutes with the
boundary map: i.e. for f,ge€ G and ue Pl, u homogeneous,
(uf)g = u(fg) and (ud)g = (ug)d.

To do this directly is technically unpleasant, especially the sign in the latter equality, so we pro-
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ceed differently and first use (1) to embed G in the Wreath product %, 2 H . Recall that
%, L H consists of elements (b, h) [(meZ, b e H) with multiplication '

(w; hy,.., k) (o5 €50, e) = (wo;h e, b, et) .

Clearly (w; 1,..., 1)_1 = (1:'1; 1,..., 1) and (3; e hz)—l = (1; h;l,..., hzlj . For convenience
we shall let sign (w; b,k l) denote the %ign of the permutation = . Using the notation of (1),
define 0: G — 3,2 H by '

g0= (g By By) -

Then we have

Lemma 4.1 (i) ¢ is a monomorphism.

(if) Suppose {yl,,.., yt} is another left transversal for H in G and ¢:G— 3,2 H is the
corresponding monomorphisin. Then there exists w € 3,2 H such that. g p = w (g O)w for
all ge G, andsign (w) = sign of the permutation xH+— y.H on the left cosets of H in G.

Proof (i) This is routine checking.

(ii) It will be sufficient to consider the following two cases:

Case 1 There exist h,,..., h, € H such that y, = xh, . Here we choose w = (1 hisoy hz) .

Case 2 There exists o € El such that y, = x_, . Here we choose w = (0} 1,..., 1} .

We now need to discuss differential graded algebras as described in VI 7 of [S. MacLane,
Homology, Springer—Verlag, Berlin—New York 1975]. Section 4.2 is no more than a summary of

portions of Chapter VI of MacLane’s book.

4.2 Definitions Let K be a commutative ring with a 1, andlet A = 6?’:0 Ai be a graded
K-module. An element a in A is homogenéous means a € Ai for some iel.

(i) Suppose A isa K-algebra. Then A is a graded K—algebra means AiAj CA, e
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(ii) If there is a K-module homomorphism 8: A — A such that AGCA | forall ieP,

—1
Ad=0 and 9% = 0, then A is called a DG-module.

(iii) Suppose A is a graded K-algebra which is also a DG-module. Then A is a DG-algebra
means (ab)d = (ad)b + (—-1.)Gleg ®a(bd) for all homogeneous elements a, b in A .

(iv) If A and B are graded K-algebras, then A ® B is a graded K-algebra with multiplica-
3

tion and degree

(aeb)(a’ ®b’) = aa’ @ bb’(-1)4% D dega’

deg(a®b) =dega+degh
(a, 2’ € A, b, b’ € B homogeneous). Note that forming tensor products of graded algebrﬁs is
associative: i.e. we get the same sign in the above whether we consider

Ae (B L C) or (A &, B) ®, C, and in both cases
(aebec)a’ ®b’ ®c’) =aa’ 8 bb’ ®cc’ (-1)°
where o = deg a’ deg b + deg a’ deg ¢ + deg b’ deg ¢ . Thus we can write unambiguous1‘y
A & Be C. ' |
(v) ¥ A and B are DG-modules, then "A o, B is a DG-module with deg(a & b) =
dega + deg b and
(a®b)d=2adeb + (-1)*E*20bd
for homogeneous a € A, b € B . As in (iv) forming tensor products is associative i.e we get the
same sign in the above whether we consider A o, (B &y C) or (A &, B) e, C, and in both
cases
(a®bec)d=adebec+ (-1)*8>aebiec+ (-1)*E2F4Eb 00y,
Thus again we can write unambiguously A & B L C.-
(vi) Suppose A is a DG-module which is also a graded K-algebra. Ther A is a DG-algebra.
means
(ab)d = (a8)b + (~1)%°8 * a(bd)
for all homogeneous a, b€ A . If A, B, C are DG-algebras, then A ®, B is a DG-algebra and

by parts (iv) and (v) and we can write unambiguously A e, Bo, C.
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(vil) The tensor algebra
T(A):l(eAeaA@KAe...

is a graded K—algebra with deg(a,1 ®.8a3,)=dega + ..+ dega g and

(a,8..@a3)(aj®..023),)=2 ®..93,0a]®..92a), .

If A is a DG-module, then T(A) becomes a DG-algebra with

[
o
(2,0..02)0= igl (-1)""a e..ea 08..0a,
where o, = dega; + .. + deg a,_, . Note that the natural injection A — T(A) is a chain

map.

Recall the following elementary result:
Lemma 4.3 TLet A, R be K-algebras, let 6 : A — R be a K-module homomorphism, and
let X CA suchthat X generates A as a K-module. If (xy)d =xfy 6 forall x,y € X, then

¢ is a K—algebra homomorphism.

We now have |

Proposition 4.4 TLet a:A— R, f: B— R be homomorphisms of graded K-algebras, let
X, Y be the homogeneous elements of A, B respectively, and let X’ C X be a subset which
generates A asa K-algebra. If

_1)deg x deg y B xo.

xayf=(
for all x € X’ , y € Y , then there is a unique graded K-algebra homomorphism

:Ae, B-—R such that (a®b)f=aabp forall aeA,beB.
Proof  Certainly there is a unique K-module homomorphism 6 : A & B — R such that

(a®b)f =aabf forall a€ A,beB,soweneed to prove that ¢ respects multiplication. Let

X’/ be the multiplicative semigroup generated by X’ .If x = x x, with x, x;, x, € X’/

'

and

xayf= (1)1 48 yax o (i=1,2),
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then
xa yf = (xl xz)a yB = X0 X0 yB
= (-1)dee x2 deg y x,ayfx,0
= (c1ydeB xadegy (_pydeg xi deg y g x 00
= (1) 4B yhx, o= ()% X B ypxa ‘
and we deduce that
xa yf = (1)1 * BT ypxo
for all x € X7, y € Y . An easy calculation now shows that ((n, ® v )(u, @ v,))0 =

(v, ®v,)0 (u, ®v,)0 forall u,u,eX", V., Vy € Y . Since the elements {uev | ue X,

vEeY} generate A 8, B as a K-module, the result follows from Lemma 4.3.

Corollary 4.5 Let o : A, — R (i=1,.,n) be homomorphisms of graded K-algebras such
that
— (_1)d¢8 2i deg aj PR
3 0 a5 0 (-1) 2, 0,3 o forall i¢#j
(ai € Ai’ homogeneous). Then there is a unique gradéd K-algebra homomorphism

g:A 0 .0 A — R such that (310.:.®a.n)0=a<x a o .

171 "n"n

Proof Certainly there is a unique K-module homomorphism 4 : A1 8y . Oy A — R such
n

that (a,1 ®..® an)0 =2, .. 8 Q50 we need to prove that 0 respects ﬁmltiplication.

We shall use induction on n , soif ¢: Al Oy e O An_1 —— R is defined by (a,1 ®..@ a,n__l)tp

=a @ ..a ;0 .,wemayassume that ¢ is a K-algebra homomorphism. In view of Pro-
position 4.4 we need to prove
_ deg aj deg a
(le..eae..01)pa o =(-1)"E™ "a o(le..eae. . 8l)p

which is true because (1®..®a, 0. .01)p=a, a
1 I §
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(4.6) Let A bea graded K-algebra,let e P,let w€ »'t , and let Al= A & 8y A (Lfac-
~tors). For i=1,.., ¢ define o, : A—s Al by

a(xi=1@...®a®...®1

where the a on the right is in the w_li—position. Since

aogbo, = (-1)degadeg by oac forall 1],

it follows from Corollary 4.5 that =« induces a unique graded K-algebra homomorphism
n: Al — AL Clearly this defines an action of %, on Al i(i.e. of(r o) = (aw)o for e Al, T,
o €3), and 7 satisfies for homogeneous a, € A,

(a,@..0a)n=a_ 0. 08, %

where y is a sign (depending on = and the degrees of the| a, ).

(47) Let A beaDG-algebra and let %, act on A! by the rule

(a,@..0a)n=0a_06.93a, ¥

as described in (4.6). We want to show that the action com‘mutes with the boundary map, i.e.

adx=cnd forall aeA;ney,. i : )
Note that if «, 8 are homogeneous elements of A and adn= awd,fdx=LF~«d, then
(a+P)dx=(o+ P)x d and
(ap)dn=(adf+ (1) apo)r
=ou'31rﬁ1\'+(——1)dega“(x1rﬂ¢')1r
=aw Bﬂﬂ+(—1)dega1‘(x1rﬂ1r3
—(anfn)d=(afxd.
It follows that we need only check (4) when o is of theform 1@ ..®a® .. @1, and thisis

obvious.

(4.8) Let P= e?:o P, be a DG-module and let %, act on p! a.ccdrding to the formula

(pl ®... ®pt)1t: P ® 8D, X
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as described in (4.6). We want to show that this is an action and that it commutes with the
boundaTy map i.e.
anp=apw and axrd=adx

for all o€ P! and ™ pE %, . By (4.7) this is certainly true if € T(P)l (where T(P) is the

tensor algebra of Definition 4.2 (vii)). But the natural injection P — T(P) is a chain map,

and the natural injection Pl — T(P)l commutes with the action of ¥, , and the result

follows.

Note that in the special case =« -is a transposition (n n + 1), it is easy to see that

X= (_l)deg p degp ., Consequently y = sign (w) when all the deg p, are equal and odd.

(4.9) Let H bea group, let P be a complex of KH-modules, let £¢ P, andlet W = %, H

denote the Wreath product. We make P¢intoa complex of KH%modules by defining
(p1 ®..® pz)(hl’“" ht) =p, h1 ®..ep,h,

and into a complex of KX -modules (using (4.8)) by defining for homogeneous b, € P,

(p1 8.8 pl)'tr =D ® 8D, X

~ We claim that Plisa complex of KW~modules with

(py@..®p)(nh)=((p, ®..ep)n)h
(we El, he H‘). To establish this claim, we must verify
(i) (p, @208, 8)=((P;®.-2p)8,)8,
(ii) ((p, ® .. # p)g)0 = ((p, ® .. ® p,))g
forall g,, 8, g€ W . Since W is generated by ¥ , and H we need only check (i) and for this

we use

Lemma Let G be a semidirect product-of A and H,so H4 G and every-elemeht of G

can be written uniquely in the form ah (a € A, h € H), and let X be a commutative ring with
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a 1. Suppose M is both a KA-module and a KH-module, Define m(a h) = (m a)h for m €
M.
(1) f (mhla=m a(a_lh a) forall meM,a€A ,heH,then M is a KG-module.
(2) A=K Ay>,H=< H, >, M is generated as a K-module-by M, , and

(mhja=maa™'ha) forall meM,aeA ,heH,

then M is a KG-module.

We omit the elementary proof. Thus to verify (i), we need only show
—1
((p,®...9p,)(h,... h))w=(p, @...8pn(x (h,..., h))x)
for b€ H and ~ a transposition (nn + 1), which is obvious (recall w"l(hl,..., h ) =

(B B 1o B )

(4.10) Now let us return to the situation at the beginning of this chapter,so H < G,

G= X, Hy..U¥ x, H, g X=X 8, and P is a chain complex of kH-modules. Let W be the
gi

Wreath product 5,7 H,andlet §: G— W be the monomorphism of Lemma 4.1. Then (4.9)

shows that P% isa complex of kW-modules, hence P! becomes a complex of kG-modules with
G-action given by qg=q(g0) for qe€ P¢ and g € G . Explicitly the G-action is given by

(m1 ®..om)g=m. g ®..®m.g x
gl 14

for homogeneous m, € P, where x is a sign (depending on g and the degrees of the mi): it is

easy to see that when all the deg m, are equal y is given by (3) (see 4.8); we leave it as an

exercise to check that x is always given by (3), since we do not need the general case in the
|

sequel.
Suppose {yl,..., y t} is another set of left coset representatives, so that G = y, H¥.. vy, H,

|
and let ¢: G — W be the corresponding monomorphism}. Then Lemma 4.1 shows that there

exists we¢ W such that g p = w_l(g 0)w and sign(w) = sign of the permutation xH— yH,
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and we now have a chain isomorphism ¢ : Pt —, pt extending the identity defined by
¥ =qw which satisfies q(g0)¢=q ¢(g ) forall q¢ P! In particular the different chain

complexes arising from different left coset representatives of H in G are chain isomorphic.

We can now define the Evens norm map. Let

P — P1 — P0 —+k — 0 be a projective resolution with kH-modules,

Vio— V, — V-S4 k— 0 be a resolution with kG-modules.

Then P* ék V is a resolution of k With kG-modules (by the Kiinneth formula), not in general
projective. So we choose V to vmake pt 8, V projective (eg. bif V is projective, then P & v
is projective by Lemma 1.11). Let kn aenote the kG-module which is the sign of the pefm’uta—
tion representation of G on {XIH’"" le} for n odd, and is the trivial module k for n
even. Thus k =Xk as k-modules and for ) € k ,8€G »

Ag=2Xif n iseven,

Ag= TT (-1).
PR

g i

Write

H(Q)

.mmHi(G, k) if k is a field of characteristic two,
1€ P :

o H2(G, k) otherwise.
ielN

Let ue H¥(H, k) andlet fe Hom, (P, k) represent u .

(i) I ueHH), then feo. ofecec HomkG(Pl e, W, k) represents an element
normH,G(u) € H(G) . If u is homogeneous with degree n , then normH’G(u) is homogeneous
with degree nf.

(it) If fe Hom, (P , k) (so u is homogeneous with degree n ,h possibly odd), then

;
fe..efeceHom, ((P"e W) , k)
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and represents an element norm, G‘[(u) € H“t(G, k).

Note If n is odd, we need k_ (not k). Also if g € }‘IomkH(Pn, k) represents u , then
g®..®g®¢ represents normH’G(u) (i-e. normH,G(u) d!oes not depend on the choice of f).
To see this, write { =g+ 8§ h where h € HpmkH(Pn_l, ki (so & is the coboundary map and
§g=0). Then fe . ®f®c—ge..®g®ec isasum of elements of the form
g, ®..2g @ dhe By ®-® g,®c¢ v'vhere each §=8 oér § h , which up to sign is

8(gl .. é & 4 @h@gi_H 6.0 g,® €)

“because g =0 for all i.

Lemma 4.11 Tet H< G and {=[G:H].
(i) I Aek=HH, k), then normy ,(A) ="

(i) If u,v € H¥(H, k) are homogeneous, then

deg u deg v 4
normH’G(u v) = normH,G(u) normH,G(v) (—1) T

(i) If w, v € H(H), then normH}G(u v) = normH,G(u) norinH,G(v) .

Proof (i) is obvious. (ii) and (iii) are very similar, so we will prove just (ii).
Let P be a projective resolution of k with kH-modules, let (V, ¢) be a projeétive resolu-
tion of k with kG-modules, and let
9:P—vP®kP,¢p:V~—-»V®kV

be chain maps extending the identity map on k (cf. 3.1).

ol ot ’ ¢
Define T:P' o P e Ve V—P o Ve P o V
by (Peqeuev)r =peud®qev (—1)dequegu where p, g€ P’ u, veV and g, u are
homogeneous. Then T is & G-map which is a chain map exiending the identity. Now use (4.8)

to define a chain map ~: (P @ P)l — ! ék pt extending the identity by

(pl®q1®...®pl®qt)‘n’:p1®...@plt&ql@...@qlx
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where x is a sign. Let ;v € %,, be the permutation corresponding to « . Then 1} can be writ-
ten as the product of #£—1)/2 transpositions of the form (n n + 1), each interchanging a P,
and a qj . Soif all the p; have the same degree, and all the qj ha.ve the same degree, then
X = (~1)dB Py deg oy {&1y2
by (4.8).
Finally we claim that « is a G-map. By embedding G in %, H asin Lemma 4.1,vthis
amounts to showing that w commutes with the action of %, . This is a consequence of the fol-

lowing Lemma, whose proof we omit.

Lemma Let ceEl and define o, f¢ Eﬂ by
o(2i ~ 1) = 20i - 1, 02i) = 20i 1 (<i<h
Bi =oi, Bi+O=0citt. I
If ne 221 is defined by
w2 -1)=1i,n(2)=i+¢ (1<i<y

then T =f=x.

Let r=degu,s=degv,andlet fe Hom, (P, k), g € HomkH(Ps,'k) represent 1, v

respectively. Then

(feg)e Hom, (P

r+s’ k)

represents u v € H'V(H, k),
(feg)e..effeg)eec= (0‘@ ¢)*(f®g®... efegococ)e HomkG((Pl@kv)lr+ls’ k+})
I+s
£(r-
represents normy gluv)eH r 5)(G, k, +S),
‘ !
fe..efoee Hom ((P'8 V), k)

represents normp c(w),

, .
ge..egeccHom ((P'8 V), k)
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represents normH,G(v), and
. /4
(¢'e p)*(xeid)*r*(fe . elecoge..o g@c) € Hom (P"e V), .k )
Lr+
represents normH,G(uv) el s)(G, k +s) .

Therefore normH’G(u v) = normH,G(u) normH’G(v) unless both t and s are odd, in which

case they differ by a sign (—1)t(l_1)/ Z,

' !
4.12 Change-of coset representatives Let H < 'G,let re N, and suppose °
G:leU..AleﬁzylHU...UylH.

Define

N, H'(H,%) — 4G, k) tobe normy, . with respect to {x,,..., x,}

N, SHY(H, k) — H‘l(G, k) tobenorm o With respect to {yl,..., v

H,
Then for u € H'(H, k),
N (u) = N,(u)o

where ¢ =1 if 1 iseven,and ¢ = sign of the permutation xiH — yiH on the left cosets of

Hin G.
Proof Let

P:..— P1 — P() — k —-0 bea projective resolutibn with kH-modules

Vi.— V1 — VQ £ k—0 bea projective resolution with kH—moduJes.

Let Q(1) denote P! with kG-module structure with respect to {xl,..., x,}, let -Q(2) denote
P® with kG-module with respect to {yl,..., v andlet fe HomkH(Pr, k) -represent u . Then

fe..efecc HOmkG(Q(i) e V.k)

represents N(u) (i = 1, 2). Using (4.10) there is a chain isomorphism 4 : Q(1) — Q(2)
extending the identity: in the notation of (4.10) q 9= q w where w € 3,0 H and sign(w) =
sign of the permutation xH r— yH . Clearly ¢(fe..of) = (fe ® f)o (use 4.10).and the

result follows.
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Remark If v ¢ H(H), then similarly in the above N, (v) = Ny(v) .

Lemma 4.13 Let #: G — H be a group homomorphism, let B < H,let A=B0g" 1, and let
ue H*(B, k). Suppose u is homogeneous or u € H(B),and G: A =H:B . Then
*
normA'G(u 0%) = (normB,Hu)H .

Note Write G=xAU..4 x,A . Then the hypothesis implies H = (x)BuY..u (xf)B and

we have calculated norm s With respect to {xl,..., xt}’ and norm with respect to

{xlﬂ,l.‘., xf}.

B,H

Proof Let P be a projective resolution of k with kB-modules, and let (V, €) be a projective
resolution of k with kH-modules. We shall just consider the case u is homogeneous, so let

ue H(B, k) andlet ¢ Hom, (P , k) represent u'. Then fe Hom, ,(P , k) represents u 0%,

where P is regarded as a kA-module via q a = q(a 8) for q € P and a€ A . Also

fe..efee ¢ Hom (P’ e V, k) represents  norm and fe..e8fec ¢

Py BH"

HomkG(Pf & v, kr) represents norm I 8%, Regard the kH-module Pf o, V as a
kG-inodule via y g = y(g ) for 7y ¢ Pf ® V and ge G. Then fe..ofec ¢

u)0* with respect to this new kG-module structure

HomkG(Pfcok V,k ) represents (normB‘H

on Pf ®, V. Since the two kG-module structures on Pf 8, V agree, we deduce norm, . (u 0%

_ * s
= (normB’H u)d” as required.

Combining 4.12 and 4.13 we obtain

Corollary 4.14 Let H < G ,let # be an automorphism of G such that H § = H, and let
we HY(H, L) . '
w*.

(i) If u € H(H), then normH)G(u 0% = (normH’G u
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(i) If uwe H(H, k), then normp (u 0% = (normH G u)8%s | where o =1 if r is even and o

= sign of the permutation of ¢ on the cosets of H in' G if r is odd.

Note: we use the same set of coset representatives of H in| G to calculate normy . u and

norm__ _, u §*
H,G .

Mackey Decomposition Let A,B<G,let M bea kA-module, and let x € G~ We define
A= x7"A x and M* to be the kA*_module by M = M' as k-modules and action m.a*

=ma where a* = x ' ax (so M*¥Mex).If N isakG -module, then N[ -denotes the

kB-module obtained by restricting the action to B . Then

Me , kGr o M*[ . x _e. x kB
kA TS T TA%AB A
where @ means the sum is over a set of (A — B) double coset representatives (in the follow-

AxB

ing % and T will likewise mean the sum and product over a st of (A - B) double coset
AxB AxB . .

representatives). There are similar formulae involving res, tr and  norm .

We have a homomorphism it A*— A defined by c‘ix =xcx ' (ce A¥), hence a

homomorphism z; tHY(A, k) — H¥*(A% k) . For ue H*(A, k), we define u* = z:(u) .

Lemma 4.15

Y tr (res )

(i) res « % x
AxB A"~BB  A¥A%B

.8 ac(W) =

(ii) Suppose u is homogeneous or u € H(A, k) . Then

(res *)

res p norm, (u) = T7T norm
G.B AG AxB A~B,B A*A%AB

Remarks If k’, k'’ are kB-modules, then we have a well defined cup product

H\(B, k') 8, H/(B, k' /) — HH(B, k' o k')

where if fe Hoka(Pi, k'), ge Hoka(Pj, k’’) represent u, v, then fe g€ Hoka(Pi+j'
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k” ® k’’) represents uv . This applies when u ¢ H'(A, k) in (ii), with k/ =&’/ = k . Also

when calculating norm A and norm we must choose the coset representative "consist-
1

A*B,B
ently", otherwise (ii) in the case u is homogeneous will be correct only up to sign (cf. 4.12); a

consistent choice of coset representatives will appear in the proof.

Proof Let P bea projective resolution of k with kG-modules, and let f¢ Homk A(P, k)

represent u.If x € G, themap q+— g P (4 € P) is a kA™module homomorphism from

P|,x to P|, regarded as a kA*-module via ¢, - Clearly this is a chain map extending the

identity on k , so x"'f ¢ Hom (P, k) represents u* , and XU =xx because x acts
kA

trivially on k . Write
G=Ax1BU...UAxrB
X, X.v
B=(A'nB)y, u..4A "'nB) v, (=1 .,1).
: i
Then G=uv Axy,,.
irj .

T n ° p.
(i) tr A,G(u) is represented by % ( X yi';(xi'lf Xi)yij and trCAB’B(resC,CAB u ') is represented

i
i=1 j=1
n. a1, -1 - X,
by By (x fx)y. where C=A ',
=1 iV Vij
(ii) We will just do the case u is homogeneous. Let (V, v) be a projective resolution of k
with kG—modules and let t =G : A . Suppose w € H(A, k) and f¢ HomkA(Ps, k) represents
u. Since (V”, o) is a projective resolution of kK ¥k with kG-modules,
foue HomkG(P" ®, Vr)st’ k) represents norm A,G(u)’ hence so does
™ Ty ™ & ’
(f'ev)e.o(f'ev) ¢ Hom, ((P & We, .. e (P & W), k).

We calculate norm with respect to the right transversal

AG

{x1 Yy X yInl P X ymr, . X ymr} .

n, n, X,
1 1 1
We need to show f'e ye¢ Hom, (P ® W, k) represents normCAB’B(resc’cl‘B u ) where
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X. X,
C = A" By a similar argument to the first paragraph, f € Hom, (P ', k) represents

X, X.
u'eHA Y k) and the result follows.

Consequences of Mackey decomposition
Proposition 4.16 Let A < G, let X5y X be a transversal for A in G, andlet ue H(A) or

n p.
homogeneous in H*(A, k) . Then res, ,norm, L u=TTu ' In particular if the x, centra-
Y ’ i=1

n

lize A (ie. ax;=xa forall aeA and i), then res, , norm, ,u=u".

G,A AG

We shall use the notation NG(A) for the normalizer of A in G .

Proposition 4.17 Let A <G with |A| =p,let r=Ny(A): A, and let 0#ueHY(A,K).

Then HZ(G, k) #0.
Proof Lemma 4.15 (ii) yields

TesG 4 MOIm, cl+u)= I}l nOImAI\Ax,AreSAx,AAAx(l + u)*
Since
norm Tes (1+u) =1if AnA*=1 (use Lemma 4.11 (i)),
AnA® A AN ANAT
=1+uif AnA*=A,
we see that

r T . .
TesG o normA’G(l +u)=(1+u) =1+ u" + terms of intermediate degree.

Thus if v is the homogeneous part of norm A,G(l + u) of degree 2r, TesG \V = u#0,in

particular HZI(G, k)#0.

For the rest of § 4, the following notation will be in force: C = I/pll (the cyclic group of order

p),C=<c>,k=1/pl , N =norm and we shall calculate N with respect to the coset

CxG?

representatives {1, c,..., cp_l}. Note in this situation k ¢k for all r € N. Also to construct

— 47—

N, we may assume that W isa proj_ective resolution with kC-modules and then let G act tri-
vially on W (use Lemma 1.11). The next result is like the formula (x + y)* = x® + yP in a
commutative ring of characteristic p . )

Lemma 4.18 If u,v € H(G) or H'(G, k) for some r €N, then N(u + v) = N(u) + N(v).
Proof Let

P:.— P — P, —'k— 0 bea projective resolution with kG-modules

W:.. — Wlf_' W0 —k-540 bea projective resolutionAwith kC—modules.
Let 0, p€ Hom, (P, k) represent u, v rtespectively. Then N(u + v) — N(u) — N(v) is repre-
sentedby (0+ pff eec-0Pec—gPace I-Iornk[CxG](Pp ®, W, k) . This is a sum of elements
of the form

'l’z¢1®"',®1/’p®6+¢2®“‘®¢p®¢1®6+"'+¢p®¢1®'“®¢p—1®€

where 'gl;i =0 or ¢ (i=1,.,p) : Since §0=8¢p=08¢=0 (where § is the coboundary
map), 8(¢1 ®..9 1/;p ®e)=0 so0 P, 0.0 ¢p ® ¢ r1epresents an element x € H(C x G) or
BP(C x G, k) . Let q:PP & W-— PPe W denote "multiplication by c" (i.e. (p,®..@ »,
®w)y = (p,®..0 pp)c ®w). Then 4 isa k[C x G]Qmap extending the identity (because ¢ is
central in C x G),s0 7o (0.0 ¢p ® ¢) also represents x € H(C x G) or HP'(C x G, k)..
But 7o(¢1@...exbp?s)=¢2®¢3®...®1/Jp®¢1®e,hence qbzeq/za&...eqbp@@bl

represents x € H(C x G) or H™(C % G, k) and we deduce that % represents p x = 0 .
Therefore N(u + v) ~N(u) -~ N(v) =0 and the result follows.

Lemma 419 Let ue H¥G,k) be homogeneous. If p #2,then SN(u) =0.

Proof Let P be a projective resolution of Z with ZG-modules, and let (W, €) be a projec-

tive resolution of Z with ZC~modules. Let f¢ HomZZG(Pr’ k) represent u where r = degu .

Then N(u) is represented by
i P
fe..efece HomZZ[CxG]((P oy W)pr, k).

Lift f toa ZG—map h: Pr — Zl/pzll, and € toa #C-map v: W0 — H/pzﬂ . Then
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2
he..eheyg Hom”[CxG](-(Pp oy W) _, 1/p“1)

pr’

lifts fe..efe¢ (note we have used p#2here :if| p = 2, then h @ h commutes with the

action of ¢ only up to sign). Let 7 : PP & W— pP 8y W denote "multiplication by ¢" and ]

let 9 denote the boundary map (on P or PP ®y; W). Then (doh)ehe .. ohey Tepresents

an element x € HP"*Y(C x G, k), 8o (hohe.. ehe v) represents fue HPH(Q « g, k),
and i
Bo(he..eheu)=(1+ 4. + P o((don)6..0h )
(where care is needed over the sign when r is odd).
As in the proof of Lemma 418, 7o ((doh)e..eohey ) also represents x , hence: Bu=px

=0 as required.

420 Remarks If ue H(G) and p#2, then BN(u) =0 . When P=2,let § bethe Bock-

stein (i.e. connecting homomorphism ~ see Corollary 1.13) associated to
00— 7/20 — 1/41 —s 20— 0
where the action of ¢ on I/41 is multiplication by ~1: Thus @ acts trivially on Z/27 and

I/41 , ¢ acts trivially on 7/21 , and we have a long exact|sequence

L= HYC x G, Ij41) — BYC « G | 1/21) &5 wiie . oa ) g

(e @, 1jam)— .

As with the ordinary Bockstein map, we use Remark 1.19 (iii) to define

B HY(Cx G, k) — HYC x G, k) for an arbitrary field k of characteristic two. Then
B Nu)=0 if ue H¥(G, k) is homogeneous of odd degree, while S N(u) =0 if u ¢ H(G)
by a similar argument to that of Lemma 4.19. Also g : H2(C, k) — E**(C k) is an iso-

morphism and §’ : H2“+1(C, k) — H2"+2(C, k) is the zero map ¥ n € I ; this can be seen by

using induction on n and the long exact sequence of Corollary 1.13 (i).

\
Recall from Proposition 1.20 that Hl(C, k) 8 Hom(Z/pI , I/pI) naturally, so let
wE Hl(C, k) correspond to the identity endomorphism of Ifpl.For £eW define

Wop= (ﬂ w)l: w2l+1 = (ﬁ W)lw .
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(Thus if p=2,wl=wl by 3.6; also B’ w2l=w2t+1’ﬂl w2£+1:0)'Let
/...——ov2kC——-’v1kC—ov0kC—~»k—»0

be a free resolution such that for £¢ N

. pjl .
V1, Vorp1 ™ vu(c—— 1), Vorpa ™ v2l+1(1 +c+ ... +c"7) \
For ieN,let x, € Hi(C, k) be represented by fe Homkc(vi k C, k) defined by vi=1.
Then we have
Lemma w,=x forall iel.

Proof We shall use the notation of 3.6, so we have exact sequences

0—g—kC-SHk—0

0—k—skC-g—s0

1 !
where le =1 and lu=g-1. Also 7: Hn(C,k)——»Hn+(C,g) and §:H(C,g)—
. : i
Hn+1(G, k) are the corresponding connecting homomorphisms. For i€ N, let y; € H(G, k) be
represented by the element 3 Homkc(vi kC,g) defined by v, b, =g~ 1. Then by dei?m—
tioﬁ of v and § (see Lemma. 1:12), & straightforward caleulation shows that X =¥, and
i = ipti f the Bock-
8 Vi = X hence § 7 X=X, forall iel. Also X, = 1 and the description o; :
stein map given in 1.22 shows that X, = W, . Therefore for i€ W,
Vi =% W = B rx)w,
=87 (x0 w,) by Lemma 3.5 (i)
=dqw .

Since w, = X, and W, = X ,an easy induction argument completes the proof.
0

. By the Kiinneth formula (Theorem 3.4)
HY(Cx G, k) ¥ HY(C, k) o, HY(G, k),

g
sofor €N and ue H¥G, k) we can write N(u) = Zw,8D,u for some maps D,: HY(G, k)

— Hpq—‘(G, k) . The Steenrod operations are closely related to these maps D , - First we
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obtain some properties of the D /s -

Lemma4.21 If r,ZeN and u, v e H(G) or H(G), then D(u+v)=Dju)+ Dfv)..

Proof We have

Ew,eD(u+v) =Nu+v)

= N(u) + N(v) by Lemma 418 ,
=Xw,(D,u+D,v)

and the fesult follows by comparing the coefficient of w}.

Lemma 4.22 Let 4r,s€l,let ue H(G, k) andlet v e H(G, k) ..
If p=2 then

Df{uv)= 2 D.uD.v,
¢ i+j=t 1 |J

whileif p>2 and €= (p-1)rs/2, then

th(uv)=(—1)€ I DiuD,v.
itj=t

Proof - We will assume that p > 2, since the proof for the case P =2 is very similar. Then

Lw,eDuv) =DN(uv)

=(-1)*NuNv by Lemma 4.11 (i)

= (-1)¢ .E.(wi & D, u) (wj ® Dj V).
1)

By definition of the W, and 3.6,if i and j are odd then W W, = 0, whileif i or j iseven,

then WW =W Thie result follows by taking the coefficient of Wy -

Lemma 4.23. Let £e N andlet ue H¥(G, k).
(i) Suppose p is odd and u is homogeneous. Then

ﬁDZl—l-Zu:_DQH_lu;ﬂDu_HuFU,ﬂDOu'=0,
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(ii) Suppose p = 2 . Then 8 D2z+1 u= th u,f th u=0 if u 1s homogeneous of odd de-

-D ./

gree, while ﬁDzu—z u=-D,,

u,8D u=0,8D u=0 if ve H(G).

241
Proof (i) Since #Nu =0 by Lemma 4.19, application of Lemma 3.5 (v) yields
L
0 =ﬁl§m w,®D, u= lgm(ﬂwlcb D,u+(-1) w,®fD,u).

Equa,tihg the coefficients of w 1 shows that @ Dju=0 and

41
Bw,eD,u+ (-1)* W, 1®6D, u=0 VIeM.

H+1
But ﬁwu =0,8 Worr1 = Wasro Ve N by Lemma 3.5 (v) again and the result follows.
(i) If u has even degree then the proof proceeds exactly as in (i), so assume that u has odd
degree. The proof of Lemma 3.5 (v) shows that
Blxy)=F@y+xp(y).
VY homogeneous x, y € H*(C x G, k) . Using g’ N(u) =0 (see 4.20)
0=0"% w,eD,u =% (" w,eD,u+w,e8 D, u)
£l L ! LeN ¢ ¢ ¢ ¢
=% (f weD,u+w,e8D,u) .
€N 4 4 ¢ ¢z i
because F(lev)=p1ev) for veH*Q, k), so equating eoefficients of Wy, Yields.
B D0 u=0 and
Iid w,®D, u +wl+1®ﬁDlu=0 Viel.
and 3’ w

But 8" w,, =0 (see 4.20) from which the result follows.

=V 2041

Lemma 424 If'r.efiand ue H'(G, k), then Dyu= uP .

Proof Since res

)GNu= Y% res w,8 D, u, we see tha§ Tes

Nu=D_u.The
€l oxa G.G 0

CxG Cx

result follows from Proposition 4.16.
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Lemma 4.25 Let r,f€N andlet u ¢ HY(G, k). Then

(i) If r is even, D,u=0 unless £=2m (p—1) or |2m(p—1)—1 for some m e N.

(i) If r is odd, D,u=0 unless {=(2m + 1)(p 41) or (2m + 1)(p—-1)~1 for some-

meN.
Proof The lemma is vacuous if p = 2, so0 we may assume that p > 2. Let A be the
subgroup of index two in Aut C and let o€ Aut C. Then « is an even permutation on C if

and only if a € A . Let o be the automorphism of C x G whichis « on C and the identity
on G . Then Corollary 4.14 (ii) shows that (Nu)aru = Nu where 0 =1 if r is even or

a€A,and 0 =-1 if r isoddand ag A .

Now Aut C induces automorphisms on H*(C, k) and we have

Aut C fixes w, ¢ £=2m(p~1) or 2m(p 1) -1 for some m e,
A fixes w, and Aut C doesnot & = (2m + 1)(p—|1) or (2m + 1)(p ~1) -1 for some

me:

this can be seen using Proposition 1.20 and 3.6. Note that Aut C fixes w, means that

a*wl= w, YoaeAut C, while A fixes w, and Aut C does not means that a*wl =ew,

where ¢ is the sign of the permutation o on C'. The result now follows by using

(Nu)cxro = Nu from above.

Lemma 4.26 Let §: H — G be a homomorphism, let u ¢ H*(H, k) be homogenecous and let
£eN. Then D (u§") = (Du)o”.

Proof Apply Lemma4.13 with G=CxH and H=C=x G .
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Lemma 4.27 Let reP andlet ue HY(G, k). Then
@) Du=0if £>(p-1)r,

D(p_l)ru =au

where a €k andis independent of G and u.

(i)  The exact value of a is

e A e it 42,

1 fp=2
To establish this, we use the following topological theorem of [D.M. Kan and W.P. Thurston,
"Every connected space has the homology of a K(m, 1)", Topology 15 (1976), 253-258].

Théorem 4.28 For every path connected space X , there exists a space TX and a map
t: TX — X, natural for maps of X, such that

(i) ¢ : HY(X, k) — H*(TX, k) is an isomorphism.

(ii) R(TX)=0if i#1,and £, :m(TX) — ™ (X) is onto.

A proof of this is given in [C.R.F Maunder, "A short proof of a theorem of Kan and Thurston", '

Bull. London Math. Soc. 13 (1981), 325-327].
Now let X be a K(G, 1), s0 X is a connected CW-=complex with wl‘(X) =G and

w(X)=0 for i >1,andlet Y bethe r skeleton of X . Thus H*(G, k) ¥ H¥(X, k). If

H = = (TY), then Theorem 4.28 shows that Hi(H, k) =0 fof i > r, and thete exists a

homomorphism 8 : H — G such that

g% HY(G, k) — Hi(H, k)
is an isomorphism for i < r, and a monomorphism for i = r (note that even if G is finite, H
may be infinite.). Let v € H'(TY, k) correspond to uf* and write w = v(t"‘);1 € H'(Y, k).
Let Y, denote the (r — 1)-skeleton of Y ,let x:Y — Y/Y1 denote the natural
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surjection, and let =" : H'(Y/Y,, k) =— HY(Y, k) denote the homomorphism induced by = .

Then we have an exact sequence.

S BNY ), k) — B(Y/Y,, k) —p B(Y, k) — 0

because H'(YI, k) = 0 , so we can choose f¢€ HY(Y/Y p k) such that (1) = w . Let

{e o | € £} denote the r—cells of Y/Y1 ,let S* denote an 1-sphere with basepoint b, and
for each o€ 4 let S& denote an r—sphere with base point b , . Since Hr(Y/Yl, k) can be

th

identified with Hom(C (Y/Y,), k) where C_ denotes.the r cellular chain group, we can

. i .
view f as an element of Hom(C (Y/Y,), k). Furthermore C (Y/Y,) = u:‘,g(zo‘)* Cr(S(‘;)
where
) .
(i), C(82) — c,(m[l)
denotes the homomorphism induced by 4 . For o€ £ let z  bea generator for Cr(S &) v,
and let z be a generator for C (S%) . Also choose maps v : S; — S" such that v (b.) =b
and (v ) (z,) = (i), 2,)5 . Then the v inducea ma'p v:Y/Y, — 8 such that vi =
Uy (maps written on left). Define x € Hom(C (S%), k) by x(z) =1, and
v" : Hom(C (§"), k) — Hom(C (Y/Y ), k)
to be the map induced by v. Then
(v*(X)) ((3) 4 2) = x(v, (1, 7)) = x (v, 7)) = x({(i, 2 )2) = {((3),, z,)
so v¥(x) =1, hence (vw)*(x) = w . Since we can identify Hom(C,_ (87, k) with Hr(Sr k),

this means there exists ¢: Y — S* such that ¢*(x) =w.

Wiite F = (T §"). Then H(F, k) = H(T §", k) = H(S", k). Also ¢ yields by naturality

amap ty:.TY — T §', hence it induces a map ¢ : H = m(TY) — = (T §) = F K

y € H'(F, k) corresponds to t*x € H'(T $', k), then y ¢* corresponds to

(to)t*x =o' x=t'w=v
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and we see that y ¢ = u 6*. Using Lemma 4.26 we have a commutative diagram
w(c, k) L wem, 1) <L we, k)
[, [, [,
B4, 1) & B, k) 4T, X)
Since HI(F, k) =0 for i#0,r and H'(F, k) ¥ k , we see that D,y=0 when £>(p—1)

and D(p_l)ry =ay for some a_ €k ; of course a_ does not depend on G or u . Examination

of the commutative diagram now yields (i).
- To prove (ii), we can choose G to suit our needs best, so we begin with G = I/pl . If

r =2, then (i) and Lemma 4.25 (i) show that Dpu =0 unless £=0,2(p-1) or 2(p~1)-1.

Since £ is zero on Hz(G, k) by 3.6, we see that D u =0 by Lemma 4.23. Thus we

2(p--1)~1
can write

N(u) = w, 8 uP ta,w, @

Let g bea generator for G and identify Hl(G k) with Hom(G k) (Proposmon 120)
Define g eH (G k) by g(g) =1 andlet u= ,H g Usmg Corollary 4.14 with H = G,

 G=CxG and  the automorphism of C G which is the identity on G and sends (c, 1)

to (c, g), we deduce that N(u)8* = N(u) . It is not difficult to see that (w, @ we* = WO ®u+
w,®1 and (w,® 1)8* = w, @1, 50 we have

w@up+aw ®u

0 2 Wap o =(w0@u+w2®1) +a,w, ,®u+a,w @1

2 Wap-o 2 Yap

p
®u” + ®1+ +
w,eu Wap 1 a, Wou o %u+a, w2p ®1,

= = P_ :
hence a, =-1 and N(u) =W eu~w, ,8u.

Lemma 4.11 now shows that for s € P,
N(©®) = (wg® P - w

8
2p—2 e 11)

=(-1)w Was(o-1) ® u” + terms of the form w_, ® u’ where s’ < 2s(p-1) (1)

: 2
and we conclude that B, = (-1)° . From elementary number theory, [P—EL]l

= ~-1)® /2 (1 0dd) and so (ii) is proven for even 1.
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Now let us suppose r is odd. If r =1, then (i) and Lemma 4.25 (ii) show that

N(u)=/\wp_2®ﬂu+a.lwp_1®u (2)

for some A € k.

Using (1) and Lemma 4.11, we see that for s € P,

N@u®) = a,(-1)* ® u -+ terms of the form W, eu’

¥(2s+1)(p-1)

— _ 5
‘where, 8’ < (2s+1)(p-1) and we deduce that a, ., =a (-1)".

Let us now choose G and u,, u, € Hl(G, k) .such that u, u,

4.11 (ii) show that a? = az(—l)p(p_l)/ 2 | and it follows that a, = [p;—l“ ()P g

=1 for p=2. The

2

p odd (bécailse [u——] |2 = (1) /2 4ng 3, == -1) and a,

+ sign yields the result. A proof that the + sign holds; is given in VII § 5 of [Cohomology
Operations by N.E. Steenrod, written by D.B.A Epste%n, Annals of Math. Studies no. 50,
" Princeton Univ. Press '1962], and we assume this. Unfortunately there does not seem to be an
easy way to establish this‘. Alternatively one could use a‘f different set of coset representatives
(i.e {c, 1, c2, f.., cp_l}) if necessary when calculating N which in view of Lemma 4.12 would

give the correct result.

# 0 . Then (2) and Lemma
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5. Steenrod Operations In this section k = Z/pZ . For i,r € Nand u € H'(G, k), define
i _ —
Squ=D_.u (p=2)

i i(p-r(e+1)/4 [p = 1 3|
Plu = (_1)‘ (p-1)r(r+1)/ [p 2 ] | D(r—2i)(p—1)u (p # 2)
(where Dj =0 for j<0). The Sqi and P! ase called the Steenrod operations. We use the

results of section 4 to obtain

Theorem 5.1

()  Sq':HY(G, k) — HY(G, k) is a natural homomorphism.
(i) S®=1.
(i) Sq'u= v,

(iv) Sq'u=0 unless 0 <i<r.

(v) Sql(u v)= % Sq'u Sqv-.
it+j=t ’

(vi) qui*fl = ,BSqu and Sq1 =8.

Theorem 5.2

(i) Pt H(G, k) — Hr+2i(p—l)(G, k) is a natural homomorphism.
@ pP'=1

(iii) If ris even, say I = 2q, then P% =uP.
(iv) Pu=0 unless 0<% <r.

(vV Puv)= = Pluply.
i+j=l
Proof of Theorems 5.1'and 5.2 In both Theorems, use Lemmas 4.21 and 4.26 for (i), Lemma

4.27 for (ii), Lemma 4.24 for (jii), Lemma 4.27 (i) for (iv) and Lemma 4.22 for (v). Finally use

Lemma 4.23 (ii) for Theorem 5.1 (vi).
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The Steenrod operations also satisfy the Adem relations of Theorems 5.3 and 5.4 below. To
state these theorems, we let [x] denote the greatest in eger < x, and thie binomial coéfficients

are taken modulo p.

Theorem 5.3 If a,beP and a < 2b, then i
' 2] bt
aq b b-1-j] o a¥b~jq.j
8¢~ Sq” = z [a—23 ] Sq Sq’.
=0
Theorem 54 Let a,beMN.If 4 < p°, then

Yy [/ D il ki
P Pb= 5 (_1)a+t [(pai)l()lt) t) 1] pa?-l-b-—t &

A o
t=0
If a<b,then ‘
[2 .
PP ApY = )/:Pl (1) [(p 1)(b—t)] B R
i t;O , i
((a=1)/p] L
% _pptt (- 1)(b—t)—1 atbot ot
t=0 1) [ a—pt -+ ] Bp".

_ The Adem relations are proved by obtaining further prof)er'ties- of the norm map:

Lemma 5.5 Let H <E <G and wiite E = U X H,G= U ¥ E . Suppose the kE—module’

i=lL i=

k (as definedin the Evens norm: map) is isomorphicto k. If r € N and: we HY(G; k) thiet:

norm:, . norin;

E,G U = norin

HE me
wlhiere: we: have calculated’ normH E normE G and normy, e with respect to- {xl, 5 X },
{¥ye ¥} and g Xy X Yo Xpn ¥y X 0¥, X} Tespectively.

We omit the easy poof.

Lemma 5.6 Let # be the automorphism of G x G defined by (h, g)0 = (g, h), let ;5.€ IV,
andlet u € H'(G; k), v.e HY(G, k). Then by Theorem'3.4 we may view ueveH ™G x G, k)

and 'we have (u ev)*=(-1)"veu.
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The proof of this is very similar to Lemma 3.2: we omit the details.

Now let B = C = 1/pl, and define v, € H'(B, k), w, € H'(C, k) in the same way as the w,

in Section 4. Let b and ¢ be generators for B and C -respectively. By the Kiinneth formula
(Theorem 3.4) '
H'(B x C x G, k) 2 H'(B, k) o, H'(C, k) o, H*(G, k),

sofor g €M and ue HYG, k), we can imitate Section 4 and write
normG’BxCxG u= EJ v, ® LS ® D u

2 ..
for some maps Dij s HYG, k) — HP 977G, k), where we have calculated norm with respect

to {1, ¢,..., L, b, be,..., bPL P2, Pt P71} (this choice of coset representatives is to con-

form with Lemma 5.5: see the proof of Theorem 5.3). We now have

Lemma 5.7 If u € HYG, k), then
D.u=D u. (~1)5tP(P-1)a/2
ij- T

Proof Define an automorphism 6§ of B x Cx G by (b, ¢, g)0 = (c*,.b", g). Then Lemma
4.13 shows

norm u 6% = (norm wi's

G,BxCxG G,BxCxG

where ¢ =1 if q iseven, and o = sign of the permutation of § on B x C if q isv odd, i.e.
(-1)P®P~/2 Therefore’

u= 3 (v °w, 8D, u)g* (- 1)p(p—1)q/2
i,j
=3 (v, ®w)0 °D, u. (=1yple—)a/2
i,j

‘normG,BxCxG

Now use Lemma 5.6,
Lemma 5.8 Let r e N andlet ue H(G, k).

i If p=2, then norm u=3w .®Sqiu.
i —

G,0xG
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(i) If p>2,then (1) Dr(r+l)/4 [PG—] IrnormG éxc =
)i: 1) (¥ eaiyp1)® Plu- (e 2i)(p-1)-1 ® BP'u).

Proof (i) This follows immediately from the definition/of Sq'.

(ii) By definition normé)CxG u= El}wle D,u. But E‘l w=0 unless £=(r-2i)(p~ lj or (r

-2i)(p—1)-1 for some i€ I by Lemma 4.25, and

D giyp1ya 8= D(r%2i)(p—1) v

by Lemma 4.23(i). The result follows from the definition of P

The Adem relations are no more than interpreting|Lemma 5.7 (correctly!) ini terms of the
Steenrod operations. However this is not ea.éy and we shall only deal with the case p = 2 ; the

case p > 2 issimilar but more complicated.

Assume that p=2. Let x = vl and y=1e W{l . Note the}t nOMM G g o Wy
=xy+y® by Lemmas 424 and 4.27. f u ¢ H(G, k), then -

Yv.ew @D u
LR A i

i, ,
= 10IMG b o by definition
= norm.(ij,BxCxGr DO g U by Lemma 5.5
= BOTG, Gy BxCx @ j)gm W;_j eSq’u by Lemma 5.8-(3)
= jé‘m ROM G, 4 Bun w;’—j eSgu by Lemma. 4.18
=3 ( x ¥+ yz)r~j ®lnom, oo l® qu u by Lemma 4.11 and: Corollary -
jEN !

4.14

=¥ (xy+ yz)r’_j el vlr-”._i@léi’Sqi quu

) by Lemma 5.8 (1) and Corollary
i,jel .

4.14

2 (xy+ Pt esgisgiu. (1)
i,jeN
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By Lemma 5.7 this expression is symmetric in x and y , and the resulting equality is the
Adem relations. However the combinatorics involved to get it in the form of Theorem 5.3 is
difficult. We shall follow the treatment of [S.R. Bullett and I.G. Macdonald, On the Adem rela-
tions, Topology 21 (1982), 329-332].

Let k(s, t) denote the field of fractions of the polynomial ring k[s, t] in the indeterminants
s and t.Let F(t) denote the formal power series

% tisq.
-iel

One can view F(t) as an element of k(t)[[SqO, Sql,...]], the power series ring in the non-
commuting variables Sqi quotiented out by all the relations satisfied by the Sqi. Similarly one
can view expression (1) as an element of k(x, y)[[Sq’, S, ]I-

We rewrite expression (1) as

Yy By +x T y T e8g S u=x" Y + ) PO F((y + x Ly Y.
i,j .

Since this is symmetricin x and y, we see that F(x )F((y + x yz)—l)u
=Fy YP((x +y <% )uVr and Vu, hence F(x"F((y + x * y2)™)
= F(y_l)F((x +yt x2)—1). If we perform the endomorphism

. x—x xty) Ly oy x b y)
of k(x,y), then y + Xt y2 — y_2 and we deduce that

F(x(x + y))F(y’) = F(y(x + y))F(?).

Setting y =1 yields F(x(x+ 1))F(1) = F(x 4+ 1)P(x’). Equating the terms which increase the
cohomological degree by n (in other words the terms involving Sq* qu where a + b = n)
yields

n . . . .
% (x2 + x)* Sq® qu =2 (x4 1™+ xH $q" 7 8¢,
a+b=n j=0

Now Sq* qu is the coefficient of (x2 + x)‘l in

2, a1 g n—j % g n—j i
=" +x) I (x+ 1)"x¥ 89" 8¢,
=0
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which is the same as the coefficient of x ! in

a+b. .. .
P (x + l)b—_]—l X2J—a—1 Sq
i=0

a+b . . .
Therefore Sq® Sq°= % [b ;Egjl] Sq**P 3 §¢). This is
j=0

or i—j<o0.

b= g )

Theorem 5.3: note that [3] =0 if j

—63 -

6. Further Reading The classic books [5], [8] and [9] are recommended for nonrecent work on
homological algebra. Presently the best account of the cohomology of finite groups is [2]; this is
very comprehensive and up-to-date, and is an outgrowth of [1] (though [2] does not completely
supercede [1]). Less comprehensive, though more detailed, is [6]. The classic work [11] remains
an excellent exposition of the Steenrod operations. For the important topic of si)ectral
sequences, not covered in these notes, [10] is recommended. The books [3], [4] and [7] contain
much valuable information and are similar in spirit to these notes, but with the emphasis on

infinite groups.
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