F(n + 5) | = F(n + 4) + F(n + 3) = 2F(n + 3) + F(n + 2) | |
= 3F(n + 2) + 2F(n + 1) = 5F(n + 1) + 3F(n). |
p | = - 1/t - 2 cot t, | |
q | = 1 - p cot t = 1 + (cot t)/t + 2 cot2t, | |
f | = t2sin t. |
(AB + AC)/BC | = (sin 2β + sin 2γ)/(sin(2β +2γ)) = (2 sin(β + γ)cos(β - γ))/(2 sin(β + γ)cos(β + γ)) | |
= (cosβcosγ + sinβsinγ)/(cosβcosγ - sinβsinγ) = (1 + tanβtanγ)/(1 - tanβtanγ). |
By symmetry, the mass of M is 12zdV. Also above QRX, the mass M is bounded above by the A, which has equation z = √1-x2-(y-√3/2)2, and the equation of the line XR in the xy-plane is x + √3y = 1/2. Therefore the mass of M is
12∫01/(2√3)∫01/2-√3y∫0√1-x2-(y-√3/2)2z dzdxdy | ||
= 6∫01/(2√3)∫01/2-√3y(1 - x2 - (y - √3/2)2) dxdy | ||
= 2∫01/(2√3)[3x - x3 -3x(y - √3/2)2]01/2-√3ydy | ||
= ∫01/(2√3)(1 - 2√3y)(1/2 + 4√3y - 6y2) dy | ||
= ∫01/(2√3)(12√3y3 -30y2 +3√3y + 1/2) dy | ||
= [3√3y4 -10y3 +3√3y2/2 + y/2]0√3/6 | ||
= √3(1/48 - 5/36 + 1/8 + 1/12) = 13/(48√3). |