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Preliminary Notions

0.1 Notation

Most introductory vector calculus books use the same vector notation for referencing both points in
space and tangent vectors emanating from a point. While there are perfectly valid reasons to abuse
notation in this way (some formulas are considerably more tractible), I remember having a
particularly tough time learning this material and keeping track of what each object was supposed
to mean in context. For this reason, I’m going to use some nonstandard notation at the beginning to
differentiate between points in n-dimensional space Xn, and vectors in n-dimensional space, Rn; we
will revert to the usual formulas only after building the necessary intuition.

� R – short-hand for the real numbers/scalars

� C – short-hand for the complex numbers/scalars

� Xn – these are n-tuples of real numbers p = (x1, . . . , xn), representing points in space.
This is nonstandard notation.

� Rn – these are n-element arrays of real numbers, v =
[
x1, . . . , xn

]
or

x1
...
xn

, representing
vectors. Square brackets replace the angle bracket notation used in the book. We will not
draw a disctinction between row vectors and column vectors, and simply use whichever is
visually better.
Square bracket notation is consistent with our treatment of vectors in Math 2114. As well, the math majors will more commonly

reserve angle brackets for inner products/quadratic forms and physics majors will reserve them for bra-ket notation.

� e1, e2, . . . , en – these are the standard basis vectors for Rn. These replace the ı̂, ȷ̂, k̂ notation
found in the book.
Part of this class involves the imaginary unit i and I’m worried that ı̂ will be hard to distinguish when handwritten.

0.2 Background Deficiencies

Many of the students who take this class have not had a mutlivariable calculus class in multiple
semesters. As a result, there are some concepts that are forgotten and are particularly useful for us.
I will do my best to record them here as I remember them.

0.2.1 Parameterizing Curves

A parameterization of a curve C in the plane is a function γ : [t0, t1] → X which traces out the
curve where [t0, t1] is some interval of real numbers. The particular t-value in this interval is called
the parameter. Whether or not the endpoints t0 and t1 are included in the domain interval is a
choice one makes in context (for example, if γ(t0) = γ(t1), one might choose to omit the endpoint so
that the curve doesn’t cross itself). Two common (and arguably, the most important)
parameterizations are circles and line segments.

i



ii PRELIMINARY NOTIONS

Parameterizing Circles

A circle C of radius r, centered at (x0, y0) is usually parameterized by

γ :[0, 2π] → C

γ(t) = (x0, y0) + (r cos(t), r sin(t))

where here we’re using (x0, y0) + (r cos(t), r sin(t)) to mean
(
x0 + r cos(t), y0 + r sin(t)

)
Parameterizing Line Segments

A line segment ℓ from a point p0(x0, y0) to a point p1(x1, y1) is usually parameterized by

γ :[0, 1] → ℓ

γ(t) = (1− t)p0 + tp1

wnere here we’re using (1− t)p0 + tp1 to mean
(
(1− t)x0 + tx1, (1− t)y0 + ty1

)
.

0.2.2 Reparameterizations

Given a parameterization γ of a curve C , a reparameterization of C is a precomposition of γ by
an invertible function (usually smooth or differentiable)

φ : [s0, s1] → [t0, t1]

so that
γ ◦ φ : [s0, s1] → C

is the reparameterization of C .
Discuss common paramterizations – endpoint-only, unit speed, etc.

0.2.3 Power Series, Intervals of Convergence, Etc.

It’s probably best to discuss this in the context of some simple real-valued functions first.
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Chapter 6

Vector Calculus

6.1 Vector Fields

Definition: vector field, component functions

Let U be some region in Xn. A vector field on U is a function F : U → Rn. The component
functions of F, denoted F1, . . . , Fn, are just the functions in each of the entries of the output
vector. That is, we can write

F(x1, . . . , xn) = F1(x1, . . . , xn)e1 + · · ·+ Fn(x1, . . . , xn)en

=


F1(x1, . . . , xn)
F2(x1, . . . , xn)

...
Fn(x1, . . . , xn)


Remark. Since this course is taking place exclusively in dimensions n = 2 and n = 3, in practice we
will follow your book’s convention and use P,Q,R for the component functions instead of F1, F2, F3.

One can visualize a vector field by placing a vector in the direction F(x1, . . . , xn) emanating from
the point (x1, . . . , xn)

3



4 CHAPTER 6. VECTOR CALCULUS

Example 6.1.1

Find the component functions of the vector field below and plot it.

F : X2 → R2

F(x, y) = −ye1 + xe2

The component functions are P (x, y) = −y and Q(x, y) = x. To visualize this vector field, we
compute some values of F.

(x, y) F(x, y) (x, y) F(x, y)

(1,0) [0,1] (-2,-2) [2,-2]
(0,1) [-1,0] (2,-2) [2,2]
(-1,0) [0,-1] (3,0) [0,3]
(0,-1) [1,0] (0,3) [-3,0]
(2,2) [-2,2] (-3,0) [0,-3]
(-2,2) [-2,-2] (0,-3) [3,0]

−5 −4 −3 −2 −1 1 2 3 4 5
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(2, 2)

F
(2, 2)

x

y

1 # Import required modules

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 # Meshgrid

6 x, y = np.meshgrid(

7 np.linspace (-5,5,10), #min value , max value , number of sample points

8 np.linspace (-5,5,10))

9

10 # Directional vectors

11 P = -y

12 Q = x

13

14 # Plotting Vector Field with QUIVER

15 plt.quiver(x, y, P, Q)

16 plt.title(’Vector Field’)

17 plt.grid()

18 plt.show()

Listing 6.1: Python Code
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Example 6.1.2

Find the component functions of the vector field below and plot it in your favorite software.

F : X3 → R3

F (x, y, z) = ye1 + ze2 + xe3

The component functions are

P (x, y, z) = y,

Q(x, y, z) = z, and

R(x, y, z) = x.

Figure 6.1: The vector field F output using the Python code
below.

1 # Import required modules

2 import matplotlib.pyplot as plt

3 import numpy as np

4 from mpl_toolkits.mplot3d import axes3d

5

6 # Creating instance of the figure and setting the axes to 3D

7 fig = plt.figure ()

8 ax = plt.axes(projection="3d")

9

10 # Mesh grid

11 x, y, z = np.meshgrid(

12 np.linspace (-5,5,6), #min value , max value , number of sample points

13 np.linspace (-5,5,6),

14 np.linspace (-5,5,6))

15

16 # Component Functions

17 P = y

18 Q = z

19 R = x

20

21 # Plotting Vector Field with Quiver

22 ax.quiver(x, y, z, P, Q, R, length =0.15) #length =... scales the vector

lengths

23 ax.set_title(’Vector Field’)

24 plt.show()

Listing 6.2: Python Code
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The arrows in the vector field plots kind of look like they follow along curves.

Definition: integral curve, flow line, streamline

If F : Xn → Rn is a vector field on Xn and σ(t) = (x1(t), . . . , xn(t)) is a smooth parameterized
curve in Xn, then σ is called an integral curve (or a flow line or a streamline) for F if, for
every parameter value t, we have that

F(σ(t)) =

[
dx1(t)

dt
. . . ,

dxn(t)

dt

]
.

In other words, σ is an integral curve if the vector field arrows along the curve are precisely the
tangent vectors of σ. Note that finding σ requires solving a system of first-order differential
equations. We will not be covering differential equations in this course, so all of our solutions will be
handled ‘by inspection’; the reader is encouraged to consult standard materials on differential
equations to solve such systems.
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Example 6.1.3

Consider the vector field from Example 6.1.1.

F : X2 → R2

F(x, y) = −ye1 + xe2

(a) Show that the circle σ(t) = (cos(t), sin(t)) is an integral curve for F.

(b) Find all possible integral curves for F.

−5 −4 −3 −2 −1 1 2 3 4 5
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x

y

Figure 6.2: The vector field F. Vectors have been scaled down by 15% to make them appear nicer in the image. Integral curves
have been drawn for integer radii.

(a) Given σ(t) = (x(t), y(t)) = (cos(t), sin(t)) we simply verify that

dx

dt
= −y(t) and

dy

dt
= x(t).

Indeed,

dx

dt
= − sin(t) = −y(t) and

dy

dt
= cos(t) = x(t)

and therefore σ(t) is an integral curve for F.

(b) To find all possible integral curves, we need to solve the following system of differential
equations: {

x′(t) = −y(t)
y′(t) = x(t)

This can be solved in your favorite way. What we observe is that, for any real number r,

σ(t) = (x(t), y(t)) = (r cos(t), r sin(t))

is a solution (and standard theory of differential equations implies that all solutions have
this form). Thus the integral curves for F are circles centered at (0, 0).
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Example 6.1.4

Let F : X2 → R2 be the vector field F(x, y) = [−x, y]. Find all possible parameterized integral
curves for this vector field.
Hint: It may be useful to recall that d

dt
ekt = ket.
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Figure 6.3: The vector field F. Vectors have been scaled down by about 75% to make them appear nicer in the image.

Let σ(t) = (x(t), y(t)) be a parameterized curve. We solve the system of differential equations:
dx

dt
= −x(t)

dy

dt
= y(t)

This can be solved in your favorite way. What we observe is that, for any real numbers r1 and
r2, we have

σ(t) = (x(t), y(t)) =
(
r1e

−t, r2e
t
)

is a solution. Thus the integral curves for F are hyperbolas.

This can be seen more easily by observing that, for r1 ̸= 0 and letting k = r1r2, we exactly have

that y(t) = k
1

x(t)
, which is the familiar equation of a hyperbola.
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6.1.1 Gradient Fields

Recall that a scalar function is a function f : Xn → R and the gradient of f at the point
(x1, . . . , xn) is the vector (denoted either ∇f or grad f) in Rn given by

∇f(x1, x2, . . . , xn) =
∂

∂x1

f(x1, . . . , xn)e1 + · · ·+ ∂

∂xn

f(x1, . . . , xn)en

=


∂

∂x1
f(x1, . . . , xn)

...
∂

∂xn
f(x1, . . . , xn)


This means that ∇f is a function whose inputs are in Xn and whose outputs are in Rn, i.e., is a
vector field!

Definition: gradient field

Given a scalar function f : Xn → R, the corresponding gradient field is

∇f : Xn → Rn.

The component functions are the partial derivatives

∂f

∂x1

, . . . ,
∂f

∂xk

.
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Example 6.1.5

Let f be the following scalar function

f : X2 → R
f(x, y) = x2 − y2.

Find the gradient field ∇f , and plot a few contour lines for f (that is, for a few values of c,
plot all points (x, y) so that f(x, y) = c.)

∇f(x, y) =
∂f

∂x
e1 +

∂f

∂y
e2 = 2xe1 − 2ye2

When plotting the gradient field and the contour lines, one sees that the vectors are perpen-
dicular to the contour lines, and the longer arrows occur when contour lines are close together.
This makes sense as close contour lines imply that the corresponding surface is steeper at that
point.
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Figure 6.4: The vector field F = ∇f . Vectors have been scaled down by about 85% to make them appear nicer in the image.

Definition: conservative vector field, potential function

A vector field F is conservative if we can write F = ∇f for some scalar function f . In this
case, f is called the potential function for V.

Remark. Not every vector field is conservative.

If a vector field is conservative, we can find the potential function.



6.1. VECTOR FIELDS 11

Example 6.1.6

The vector field F given by F(x, y) = [2x, 2y] is conservative. Find a potential function f .
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Figure 6.5: The vector field F. Vectors have been scaled down by about 85% to make them appear nicer in the image.

By definition of a conservative vector field, we should have that[
2x, 2y

]
= F(x, y) = ∇f(x, y) =

[
∂f
∂x
, ∂f
∂y

]
So

∂f

∂x
= 2x =⇒ f(x, y) = x2 +K(y)

where K is a single-variable function solely in terms of y. From the other partial derivative,
we get

2y =
∂f

∂y
=

∂

∂y

(
x2 +K(y)

)
= K ′(y) =⇒ K(y) = y2 + Const.

and therefore any function f(x, y) = x2 + y2 + Const. is a potential function for F.
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Example 6.1.7

Using the technique outlined in Example 6.1.6, show that the vector field in Example 6.1.1 is
not conservative.

F : X2 → R2

F(x, y) = −ye1 + xe2
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Figure 6.6: The vector field F. Vectors have been scaled down by about 75% to make them appear nicer in the image.

Assume that f is some potential function for F. Then we must have that[
−y, x

]
= F(x, y) = ∇f(x, y) =

[
∂f
∂x
, ∂f
∂y

]
Then

∂f

∂x
= −y =⇒ f(x, y) = −xy +K(y)

where K(y) is a single-variable function solely in terms of y. From the other partial derivative,
we get

x =
∂f

∂y
=

∂

∂y
(−xy +K(y)) = −x+K ′(y) =⇒ K ′(y) = 2x

and this is clearly problematic as K(y) (and thus K ′(y) as well) is not a function of x.

We’ll come back to find that there are other (sometimes easier) ways to test whether a vector field is
conservative.
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6.2 Line Integrals

For simplicity, suppose that f is a scalar function on the xy-plane and Σ is a surface in X3 given by
z = f(x, y). Let C be a (smooth) curve in the xy-plane. Then z = f(C ) is simply a curve in the
surface lying above C . Visually,

C

Σ

f(C )

Figure 6.7: On the left, a curve C in the plane. On the right, a curve f(C ) in the surface Σ, lying above C in the plane.

We imagine that there is a “curtain” between C and f(C ). This “curtain” should have some area,
and so it is natural to try to compute this area.

To do so, we implement some notation. Suppose that σ is the parametric function defining C ; that
is, suppose C = σ(t) for a ≤ t ≤ b. By partitioning [a, b] into k subintervals, [t0, t1], . . . , [tk−1, tk],
then we can approximate C by using line segments sj between each pair of points σ(tj−1) and σ(tj)
along the curve. (We note that the lengths of each line sigment sj will almost certainly be different,
as the lengths depend on the particular parameterization of C ). In turn, these line segments give rise
to rectangular regions Rj in X3 with base length ∆sj and height f(σ(tj)).

σ(a) = σ(t0)

σ(b) = σ(tk)

σ(tj) σ(tj−1)

sj

Rj

Taken together, these rectangular regions approximate the area of this “curtain”:

k∑
j=1

f(σ(tj))∆sj.
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Or, if we prefer to write (xj, yj) = σ(tj), the area is approximately

k∑
j=1

f(xj, yj)∆sj.

We have constructed a Riemann sum, and thus we define the following:

Definition: Line integral

Suppose C is a smooth curve in Xn and f is a scalar function defined on C . Let p0, . . . , pk be
a collection of points along C and let sj be the line segment from pj−1 to pj. Then the line
integral (or path integral or contour integral) of f along C is given by∫

C

f ds = lim
k→∞

k∑
j=1

f(pj)∆sj,

provided this limit exists.

Remark. If f and C are sufficiently nice (which they always will be in this class), then then limit
above always exists.
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Example 6.2.1

Let f(x, y) = 1 and let C be the unit circle. Evaluate
∫

C
f ds.

In this case, f(C ) is also the unit circle, but sitting at height z = 1, so the area under this
curve is just the surface area of a cylinder of height 1. Thus it should be that

∫
C
f ds =

2πrh = 2π(1)(1) = 2π.

C

f(C )

We first parameterize C via σ(t) = (cos(t), sin(t)), which traverses the unit circle one time
counterclockwise when 0 ≤ t ≤ 2π. We partition this interval into k subintervals, each of

length 2π
k
. For each j = 1, . . . , k, the line segment sj will thusly have endpoints σ

(
2π(j−1)

k

)
and σ

(
2πj
k

)
, and has length determined by the usual distance formula:

∆sj =

√(
cos

(
2πj

k

)
− cos

(
2π(j − 1)

k

))2

+

(
sin

(
2πj

k

)
− sin

(
2π(j − 1)

k

))2

= 2
∣∣∣sin(π

k

)∣∣∣ ,
where the second step follows from applications of various trigonometric identities. Therefore∫

C

f ds = lim
k→∞

k∑
j=1

f

(
σ

(
2πj

k

))
∆sj

= lim
k→∞

k∑
j=1

(1) 2
∣∣∣sin(π

k

)∣∣∣
= lim

k→∞
2k

∣∣∣sin(π
k

)∣∣∣
= 2π

(where the limit calculation follows quickly from a familiar calculus 1 limit: limx→∞ x sin(1/x) =
1).

Theorem 6.2.2

Suppose C is a smooth curve in Xn parameterized by σ : [a, b] → Xn, and let f : Xn → R be
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a scalar function that is continuous on σ. Then∫
C

f ds =

∫ b

a

f(x1(t), . . . , xn(t))

√(
dx1

dt

)2

+ · · ·+
(
dxn

dt

)2

dt.
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6.3 Conservative Vector Fields
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6.4 Green’s Theorem
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6.5 Divergence and Curl
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6.6 Surface Integrals
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6.7 Stokes’ Theorem
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6.8 The Divergence Theorem



Part II

Complex Analysis (from Asmar–Grafakos)

23





Chapter 1

Complex Numbers and Functions

1.1 Complex Numbers

Definition: ciomplex number

A complex number is a symbol x+ iy or x+ yi, where x, y are real numbers and i satisfies
i2 = −1. The collection of complex numbers is denoted C. Writing z = x+ yi, we say that x
is the real part of z, denoted Re(z), and we say that y is the imaginary part of z, denoted
Im(z). A nonzero complex number z is said to be (purely) real if Im(z) = 0, and (purely)
imaginary if Re(z) = 0.

Remark. Some authors use R(z) and I(z) to denote the real and imaginary parts of z, respectively.

Definition

Two complex numbers a+ bi and c+ di are said to be equal if and only if both a = c and
b = d.

1.1.1 Algebraic Properties of Complex numbers

If we take the perspective that the complex numbers are polynomials with indeterminate i with an
additional simplification of i2 = −1, then there are natural arithmetic operations one can define.

Definition

Suppose z = a+ bi and w = c+ di are two complex numbers. We have the following algebraic
operations:

� Addition: z + w = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

� Addition: z − w = (a+ bi)− (c+ di) = (a− c) + (b− d)i

� Multiplication: zw = (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

Proposition 1.1.1: Properties of Complex Arithmetic

Complex arithmetic has the following familiar properties from arithmetic of the real numbers.
For all u, v, w ∈ C, we have

� Associative addition: u+ (v + w) = (u+ v) + w

� Commutative addition: u+ v = v + u

� Associative multiplication: u(vw) = (uv)w

� Commutative multiplication: uv = vu

� Distributive law: u(v + w) = uv + uw

� w + 0 = w

25
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� 1w = w

Exercise 1.1.2

Prove Proposition 1.1.1.

Definition: complex conjugation

Given a complex number z = x + yi, the complex conjugate is the complex number
z = x− yi.

Remark. Complex conjugation changes the sign of the imaginary part and the real part is
unaffected. That is,

Re(z) = Re(z) and Im(z) = − Im(z).

Observe that zz is always a real number:

(x+ yi)(x− yi) = x2 + xyi− xyi− (yi)2 = x2 − (−1)y2 = x2 + y2

and since x2, y2 ≥ 0, this number is zero precisely when x = y = 0.
MULTIPLICATIVE INVERSE, DIVISION, EXAMPLES, PERIODICITY OF i, INTERPLAY OF
ALGEBRAIC OPERATIONS AND CONJUGATION
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1.2 The Complex Plane
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1.3 Polar Form
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1.4 Complex Functions
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1.5 Sequences and Series of Complex numbers
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1.6 The Complex Exponential
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1.7 Trigonometric and Hyperbolic Functions
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1.8 Logarithms and Powers
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Analytic Functions

2.1 Regions of the Complex Plane
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2.2 Limits and Continuity
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2.3 Analytic Functions
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2.4 Differentiation of Functions of Two Real Variables
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2.5 The Cuachy–Riemann Equations
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Complex Integration

3.1 Paths (Contours) in the Complex Plane
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3.2 Complex Integration
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3.3 Independence of Path
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3.4 Cauchy’s Integral Theorem for Simple Paths
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3.5 The Cauchy–Goursat Theorem
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3.6 Cauchy’s Integral Theorem for Simply Connected Re-

gions
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3.7 Cauchy’s Integral Theorem for Multiply Connected

Regions
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3.8 Cauchy’s Integral Formula
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Series of Analytic Functions and Singular-
ities

4.1 Sequences and Series of Functions
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4.2 Power Series
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4.3 Taylor Series
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4.4 Laurent Series
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4.5 Zeros and Singularities



54 CHAPTER 4. SERIES OF ANALYTIC FUNCTIONS AND SINGULARITIES



Chapter 5

Residue Theory

5.1 Cauchy’s Residue Theorem
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5.2 Definite Integrals of Trigonometric Functions
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5.3 Improper Integrals Involving Rational and Exponential

Functions
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5.4 Products of Rational and Trigonometric Functions
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5.5 Summing Series by Residues
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Chapter 6

Harmonic Functions and Applications

6.1 Harmonic Functions
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6.2 Dirichlet Problems
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Conformal Mappings

7.1 Basic Properties
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7.2 Fractional Linear Transformations
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7.4 The Schwarz–Christoffel Transformation
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