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Preface

This class is essentially a survey of two different course – vector analysis and complex analysis – and
the notes strive to follow the two main course texts:

� Calculus: Early Transcendentals by J. Stewart (9th ed)

� Fundamentals of Complex Analysis with Applications to Engineering and Science by E. Saff
and A. Snider (3rd ed)

In an attempt to keep things cohesive, section numbers correspond to those found in the respective
texts. There are some discrepancies, however, which I will outline below.

� Theorem numbers are internally consistent, but may not align with the numbers found in the
course texts. If a theorem in the text is named, I’ve done my best to retain that naming.

� Some notation may differ from the textbook.

Every effort has been made in these notes to pick examples different from those in the text so that
students may have a cornucopia of worked examples to look at. I will reiterate the old adage,
however, that “math is not a spectator sport” and that the real learning comes from working
through an example, not just reading it over.

The target audience for this course is largely senior undergraduate engineering students, who would
likely be perfectly content to never see the word “proof” ever again. However, this is still a
mathematics class and proofs can absolutely contribute to understanding the abstract concepts, and
so I’ve tried to strike a balance and include only proofs (or sketches) which I find relatively simple,
clever, or in some way illuminating. Many of these proofs can be found in full in the course text.

These notes are ever-evolving, and I welcome any feedback or corrections from my students.
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Part I

Vector Analysis (from Stewart)

16 Vector Calculus

Preliminary Notation

In the first part of this class, it will be important to differentiate between points in space and
vectors. As such, we use the following notation

� R – short-hand for the real numbers/scalars

� Xn – these are n-tuples of real numbers p = (x1, . . . , xn), representing points in space.
This is nonstandard notation.

� Rn – these are n-element arrays of real numbers, v =
[
x1, . . . , xn

]
or

x1
...
xn

, representing

vectors. Square brackets replace the angle bracket notation used in the book.
Square bracket notation is consistent with our treatment of vectors in Math 2114. As well, the math majors will more commonly

reserve angle brackets for inner products/quadratic forms and physics majors will reserve them for bra-ket notation.

� e1, e2, . . . , en – these are the standard basis vectors for Rn. These replace the ı̂, ̂, k̂ notation
found in the book.
Part of this class involves the imaginary unit i and I’m worried that ı̂ will be hard to distinguish when handwritten.

16.1 Vector Fields

Definition

Let U be some region in Xn. A vector field on U is a function F : U → Rn. The component
functions of F, denoted F1, . . . , Fn, are just the functions in each of the entries of the output
vector. That is, we can write

F(x1, . . . , xn) = F1(x1, . . . , xn)e1 + · · ·+ Fn(x1, . . . , xn)en

=


F1(x1, . . . , xn)
F2(x1, . . . , xn)

...
Fn(x1, . . . , xn)


Remark. Since this course is taking place exclusively in dimensions n = 2 and n = 3, in practice we
will follow your book’s convention and use P,Q,R for the component functions instead ofF1, F2, F3.

One can visualize a vector field by placing a vector in the direction F(x1, . . . , xn) emanating from the
point (x1, . . . , xn)

6



Example 16.1.1

Find the component functions of the vector field below and plot it.

F : X2 → R2

F(x, y) = −ye1 + xe2

The component functions are P (x, y) = −y and Q(x, y) = x. To visualize this vector field, we
compute some values of F.

(x, y) F(x, y)

(1,0) [0,1]
(0,1) [-1,0]
(-1,0) [0,-1]
(0,-1) [1,0]
(2,2) [-2 2]
(-2,2) [-2,-2]
(-2,-2) [2,-2]
(2,-2) [2,2]
(3,0) [0,3]
(0,3) [-3,0]
(-3,0) [0,-3]
(0,-3) [3,0]

−5 −4 −3 −2 −1 1 2 3 4 5
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(2, 2)

F
(2, 2)

x

y

Mathematica (as well as MATLAB, Octave, etc.) can plot an entire vector field to give a more
complete ideas as to what’s happening.

F[x_, y_] := {-y, x};

VectorPlot[ F[x,y], {x,-5,5}, {y,-5,5}, Frame->False, Axes->True]

The arrows in the vector field plot above kind of look like they follow along circles.
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Exercise 16.1.2

If F : Xn → Rn is a vector field on Xn and σ(t) = (x1(t), . . . , xn(t)) is a smooth parameterized
curve in Xn, then σ is called an integral curve (or a flow line or a streamline) for F if, for
every parameter value t, we have that

F(σ(t)) = [ẋ1(t), . . . , ẋn(t)].

In other words, σ is an integral curve if the vector field arrows along the curve are precisely the
tangent vectors of σ.

(a) Show that the circle σ(t) = (cos(t), sin(t)) is an integral curve for the vector field F in
Example 16.1.1.

(b) Find all possible integral curves for the vector field F in Example 16.1.1.

Exercise 16.1.3

Let F : X2 → R2 be the vector field F(x, y) = [−x, y]. Find all possible parameterized integral
curves for this vector field.
Hint: It may be useful to recall that d

dt
et = et.

Example 16.1.4

Find the component functions of the vector field below and plot it.

F : X3 → R3

F (x, y, z) = ye1 + ze2 + xe3

The component functions are P (x, y, z) = y, Q(x, y, z) = z, and R(x, y, z) = x. Visually (using
Mathematica),
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F[x_, y_, z_] := {y, z, x};

VectorPlot3D[F[x,y,z], {x,-5,5}, {y,-5,5}, {z,-5,5}, Axes->True]

16.1.1 Gradient Fields

Recall that a scalar function is a function f : Xn → R and the gradient of f at the point
(x1, . . . , xn) is the vector (denoted either ∇f or grad f) in Rn given by

∇f(x1, x2, . . . , xn) =
∂

∂x1

f(x1, . . . , xn)e1 + · · ·+ ∂

∂xn
f(x1, . . . , xn)en

=


∂
∂x1
f(x1, . . . , xn)

...
∂
∂xn

f(x1, . . . , xn)


This means that ∇f is a function whose inputs are in Xn and whose outputs are in Rn, i.e., is a
vector field!

Definition

Given a scalar function f : Xn → R, the corresponding gradient field is ∇f : Xn → Rn. The
component functions are the partial derivatives ∂f

∂x1
, . . . , ∂f

∂xk
.

Example 16.1.5

Find the corresponding gradient field for the function f(x, y) = x2 − y2.
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∇f(x, y) =
∂f

∂x
e1 +

∂f

∂y
e2 = 2xe1 − 2ye2

When plotting the gradient field and the contour lines, one sees that the vectors are perpendicular
to the contour lines, and the longer arrows occur when contour lines are close together. This
makes sense as close contour lines imply that the corresponding surface is steeper at that point.

−5 −4 −3 −2 −1 1 2 3 4 5
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y

Definition

A vector field F is conservative if we can write F = ∇f for some scalar function f . In this
case, f is called the potential function for V.

Remark. Not every vector field is conservative.

If a vector field is conservative, we can find the potential function.

Example 16.1.6

The vector field F given by F(x, y) = [2x, 2y] is conservative. Find a potential function f .

By definition of a conservative vector field, we should have that[
2x, 2y

]
= F(x, y) = ∇f(x, y) =

[
∂f
∂x
, ∂f
∂y

]
So

∂f

∂x
= 2x =⇒ f(x, y) = x2 +K(y)

where K is a single-variable function solely in terms of y. From the other partial derivative, we
get

2y =
∂f

∂y
=

∂

∂y

(
x2 +K(y)

)
= K ′(y) =⇒ K(y) = y2 + Const.

and therefore any function f(x, y) = x2 + y2 + Const. is a potential function for F.
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Exercise 16.1.7

Using the technique outlined in Example 16.1.6, show that the vector field in Example 16.1.1 is
not conservative.

We’ll come back to find that there are easier ways to test whether a vector field is conservative.
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16.2 Line Integrals

For simplicity, suppose Σ is a surface in X3 given by z = f(x, y) and σ is a smooth curve in the
xy-plane. Then z = f(σ) is a parameterized curve in the surface lying above σ.

σ

Σ

f(σ)

The compute the area under the curve f(σ(t)) for a ≤ t ≤ b, we’ll begin by partitioning [a, b] into k
subintervals, [t0, t1], . . . , [tk−1, tk] which divides σ into k arcs of varying lengths ∆s1,∆s2, . . . ,∆sk.
This also divides the area under the curve f(σ) into k regions R1, . . . , Rk.

(xj−1, yj−1) = σ(tj−1) σ(tj) = (xj , yj)

∆sj

Rj

Since region Rj is approximately a rectangle of height f(xj, yj) (where (xj, yj) = σ(tj)) and width
∆sj, the area of the jth region is approximately f(xj, yj) ∆sj, hence the region under the curve f(σ)
has area approximately

k∑
j=1

f(xj, yj)∆sj.

This is a Riemann sum, and so we can turn it into an integral by taking a limit as n→∞. This
gives us the following general definition.

Definition: Line integral with respect to arc length

Suppose σ is a smooth curve in Xn and f is a scalar function defined on σ. Then the line
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integral (or path integral) of f along σ is given by∫
σ

f(x1, . . . , xn) ds = lim
k→∞

k∑
j=1

f(x1,j, x2,j, . . . , xn,j)∆sj,

provided this limit exists.

Recall that, for a parameterized smooth planar curve σ(t) = (x(t), y(t)) where a ≤ t ≤ b, the arc
length of σ is given by ∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt

Intuitively the integrand here is the infinitesimal change in arc length of σ, and that’s exactly what
ds is in the definition of a line integral. One reasonably expects, then, that we can rewrite the line
integral as ∫

σ

f(x, y) ds =

∫ b

a

f(x(t), y(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt

or more generally,

Proposition 16.2.1

Suppose σ : [a, b] → Xn is a parameterized smooth curve and f : Xn → R is a scalar function
that is continuous on σ. Then∫

σ

f(x1, . . . , xn) ds =

∫ b

a

f(x1(t), . . . , xn(t))

√(
dx1

dt

)2

+ · · ·+
(
dxn
dt

)2

dt.

Let’s check that all of this agrees with our intuition.

Example 16.2.2

Let f(x, y) = 1 and let σ be the unit circle. Evaluate
∫
σ
f ds.

In this case, f(σ) is also the unit circle, but sitting at height z = 1, so the area under this curve
is just the surface area of a cylinder of height 1. Thus it should be that

∫
σ
f(x, y) ds = 2πrh =

2π(1)(1) = 2π.

σ

f(σ)
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Writing σ(t) = (cos(t), sin(t)), this parameterization traverses the unit circle one time counter-
clockwise when 0 ≤ t ≤ 2π and applying Proposition 16.2.1, we have

∫
σ

f(x, y) ds =

∫ 2π

0

f(cos(t), sin(t))

√(
d

dt
cos(t)

)2

+

(
d

dt
sin(t)

)2

dt

=

∫ 2π

0

(1)

√
(− sin(t))2 + (cos(t))2 dt

=

∫ 2π

0

(1)
√

1 dt = 2π.

Remark. The value of a line integral is independent of the particular parameterization of σ.

Exercise 16.2.3

The planar curve σ(t) = (sin(7t), cos(7t)) traverses the unit circle one time clockwise when
0 ≤ t ≤ 2π

7
. Show that

∫
σ
f(x, y) ds = 2π using this different parameterization of σ.

Definition

A curve σ : [a, b] → Xn is called piecewise smooth if it is the union of a finite number of
smooth curves whose endpoints agree. Explicitly, σ is piecewise smooth if we can find smooth
curves σ1, . . . , σk so that

σ(t) =


σ1(t) when a ≤ t < t1

σ1(t) when t1 ≤ t < t2
...

σk(t) when tk−1 ≤ t ≤ b

Example 16.2.4

The planar curve σ : [0, 4]→ X2 is piecewise smooth and traverses the square in the figure below
counter-clockwise, starting at the point (1, 1).

σ(t) =


σt(1) = (1− 2t, 1) when 0 ≤ t < 1,

σ2(t) = (−1,−2t+ 3) when 1 ≤ t < 2,

σ3(t) = (2t− 5,−1) when 2 ≤ t < 3,

σ3(t) = (1, 2t− 7) when 3 ≤ t ≤ 4.

σ1

σ2

σ3

σ4

We can also evaluate line integrals along piecewise smooth curves by evaluating along each smooth
piece separately and then summing them.
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Proposition 16.2.5

Suppose σ : [a, b]→ Xn is a piecewise smooth curve comprised of the smooth curves σ1, . . . , σk.
Suppose also that f : Xn → R is a scalar function that is continuous on σ. Then∫

σ

f(x1, . . . , xn) ds =

∫
σ1

f(x1, . . . , xn) ds+ · · ·+
∫
σk

f(x1, . . . , xn) ds

Note that, in practice, we’ll have to apply Proposition 16.2.1 to each smooth piece. Let’s check to see
that this proposition agrees with our intuition.

Example 16.2.6

Let f(x, y) = 2 and let σ be the square in the plane with endpoints (1, 1), (−1, 1), (−1,−1),
and (1,−1) (that, is, the curve from Example 16.2.4). Compute

∫
σ
f(x, y) ds.

Intuitively, this line integral is computing the surface area of four sides of a cube (with side
length 2), so the value should be 4(2)(2) = 16.
Using the same parameterization as in Exercise 16.2.4, we compute∫

σ

f(x, y) ds =

∫
σ1

f(x, y) ds+

∫
σ2

f(x, y) ds+

∫
σ3

f(x, y) ds+

∫
σ4

f(x, y) ds

=

∫ 1

0

f(1− 2t, 1)

√(
d

dt
(1− 2t)

)2

+

(
d

dt
(1)

)2

dt

+

∫ 2

1

f(−1,−2t+ 3)

√(
d

dt
(−1)

)2

+

(
d

dt
(−2t+ 3)

)2

dt

+

∫ 3

2

f(2t− 5,−1)

√(
d

dt
(2t− 5)

)2

+

(
d

dt
(−1)

)2

dt

+

∫ 4

3

f(1, 2t− 7)

√(
d

dt
(1)

)2

+

(
d

dt
(2t− 7)

)2

dt

=

∫ 1

0

2
√

(−2)2 + 0 dt

+

∫ 2

1

2
√

0 + (−2)2 dt
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+

∫ 3

2

2
√

(2)2 + 0 dt

+

∫ 4

3

2
√

0 + (2)2 dt

= 2(2) + 2(2) + 2(2) + 2(2) = 16.

16.2.1 A Word About Parameterizations

For us, probably the two most important types of planar curve pieces you’ll want to parameterize are
line segments and arcs of circles.

The line segment from A(x1, y1) to B(x2, y2) is given by

σ(t) = ((1− t)x1 + tx2, (1− t)y1 + ty2) .

(The obvious extension works to parameterize line segments between points in Xn.)

The circle of radius r centered at (x0, y0), traversed counter-clockwise, is parameterized by

σ(t) = (x0 + r cos(t), y0 + r sin(t)) .

16.2.2 Line Integrals of Vector Fields; Work

A slight abuse of notation: Suppose σ is a smooth curve in Xn given by σ(t) =
(x1(t), x2(t), . . . , xn(t)) and let r be the vector r(t) = [x1(t), . . . , xn(t)]. It is common to write
r(t) refer to the curve itself. This will give us some intuitive notational benefit and allow us to
write things like r′(t0) for the tangent vector of the curve r(t) at the point r(t0).

Recall that if F is a constant force vector and D is a displacement vector, then the work in moving
an object along D is given by W = F ·D.

Suppose F is a continuous vector field on Xn and σ(t) is a smooth parameterized curve. Consider the
arc along σ from (xj, yj, zj) to (xj+1, yj+1, zj+1) with arc length ∆sj. Let T(xj, yj, zj) be the unit
tangent vector of σ at (xj, yj, zj).

r′(tj)

F(tj)

Then, the work done in moving an object along this arc is approximately

Wj = F(xj, yj, zj) · (∆sjT(xj, yj, zj)) = (F(xj, yj, zj) ·T(xj, yj, zj)) ∆sj
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hence the work done in moving along the whole curve is approximately

W =
∑
j

(F(xj, yj, zj) ·T(xj, yj, zj)) ∆sj

This looks like a Riemann sum, so the following should be of no surprise

Definition

Let σ be a smooth curve in Xn, let T(x1, . . . , xn) be the unit tangent vector at each point
(x1, . . . , xn) on σ, and let F be a vector field on Xn. Then the work W done by F along σ is

W =

∫
σ

F ·T ds

We give the curve via a parameterized vector r(t) for a ≤ t ≤ b, then ds = |r′(t)| dt and T(t) = r′(t)
|r′(t)| ,

hence the work equation above becomes∫
σ

F ·T ds =

∫ b

a

F(r(t)) · r′(t) dt

and this is often shortened to

∫
σ

F · dr.

Definition

Let σ be a smooth curve in Xn defined by the vector function r(t), a ≤ t ≤ b and let F be a
vector field that is continuous on σ. Then the line integral of F along σ is∫

σ

F · dr =

∫ b

a

F(r(t)) · r′(t) dt =

∫
σ

F ·T ds.

Example 16.2.7

Evaluate the line integral of F along σ where F(x, y) =

[
xy
−4x

]
and σ is the line segment from

(1, 0) to (3, 1).

Notice that we can parameterize σ via the vector equation

r(t) =

[
1 + 2t
t

]
and thus r′(t) =

[
2
1

]
where 0 ≤ t ≤ 1. We then have that∫

σ

F · dr =

∫ 1

0

F(r(t)) · r′(t) dt

=

∫ 1

0

[
(1 + 2t)t
−4(1 + 2t)

]
·
[
2
1

]
dt

=

∫ 1

0

(4t2 − 6t− 4) dt = −17

3
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Example 16.2.8

Evaluate
∫
σ

F · dr where F(x, y, z) = 8x2yze1 + 5ze2 − 4xye3 and σ is the curve given by
r(t) = te1 + t2e2 + t3e3 for 0 ≤ t ≤ 1.

We have that

r′(t) = e1 + 2te2 + 3t2e3,

F(r(t)) = 8t7e1 + 5t3e2 − 4t3e3,

F(r(t)) · r′(t) = 8t7 + 2t(5t3)− 3t2(4t3)

= 8t7 + 10t4 − 12t5.

It follows that ∫
σ

F · dr =

∫ 1

0

F(r(t)) · r′(t) dt

=

∫ 1

0

8t7 + 10t4 − 12t5 dt = 1.

16.2.3 Line Integrals with respect to x, y, z

When defining the line integral, we integrated with respect to arc length. One may encounter
integrals that are not with respect to arc length. Recalling the basic theory of differentials, that if
x = x(t), then dx = x′(t) dt, the following definition occurs.

Definition

Let σ : [a, b]→ Xn be a (piecewise) smooth curve in space given by σ(t) = (x1(t), x2(t), . . . , xn(t))
and let f : Xn → R be a scalar function that is continuous on σ. Then, for j = 1, . . . , n, the
line integral of f along σ with respect to xj is∫

σ

f(x1, . . . , xn) dxj =

∫ b

a

f(x1(t), . . . , xn(t))x′j(t) dt

Example 16.2.9

Evaluate

∫
σ

(
x2y + sin(x)

)
dy where σ is the arc of the parabola y = x2 from (0, 0) to (π, π2)

First we note that we can parameterize σ as follows:

σ(t) = (x(t), y(t)) =
(
x(t), (x(t))2

)
= (t, t2) where 0 ≤ t ≤ π

Now, ∫
σ

(
x2y + sin(x)

)
dy =

∫ π

0

(
t2(t2) + sin(t)

)
(2t) dt

18



=

∫ π

0

2t5 + 2t sin(t) dt

=
t6

3
− 2t cos(t) + 2 sin(t)

∣∣∣∣π
0

=
π6

3
+ 2π.

If two line integrals occur along the same path, it is common to simplify notation a bit. Explicitly,
one might write

∫
σ

P (x, y) dx+

∫
σ

Q(x, y) dy =

∫
σ

P (x, y) dx+Q(x, y) dy, and∫
σ

P (x, y, z) dx+

∫
σ

Q(x, y, z) dy +

∫
σ

R(x, y, z) dz =

∫
σ

P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz.

In fact, the above occur quite naturally

Example 16.2.10

Here we see the relationship between line integrals with respect to arc length and x, y, z.

Suppose you are given a vector field

F(x, y) =

[
P (x, y)
Q(x, y)

]
and a (piecewise) smooth curve σ determined by the vector equation

r(t) =

[
x(t)
y(t)

]

with a ≤ t ≤ b. Writing

r′(t) =

[
x′(t)
y′(t)

]
it follows that ∫

σ

F · dr =

∫ b

a

F(r(t)) · r′(t) dt

=

∫ b

a

[
P (x(t), y(t))
Q(x(t), y(t))

]
·
[
ẋ(t)
ẏ(t)

]
dt

=

∫ b

a

P (x(t), y(t))ẋ(t) + Q(x(t), y(t))y′(t) dt

=

∫
σ

P (x, y) dx+Q(x, y) dy

A similar computation holds in the 3-dimensional case.
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Example 16.2.11

Evaluate

∫
σ

y dx+ z dy + x dz where x =
√
t, y = t, z = t2 and 1 ≤ t ≤ 4.

∫
σ

y dx+ z dy + x dz =

∫ 4

1

y(t)x′(t) dt + z(t)y′(t) dt + x(t)z′(t) dt

=

∫ 4

1

[
(t)

(
1

2
√
t

)
+
(
t2
)

(1) +
(√

t
)

(2t)

]
dt

=

∫ 4

1

1

2
t1/2 + t2 + 2t3/2 dt

=

[
1

3
t3/2 +

1

3
t3 +

4

5
t5/2
]4

1

=
722

15
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16.3 The Fundamental Theorem for Line Integrals

Recall the following

Theorem 16.3.1: Fundamental Theorem of Calculus, pt II

If F is differentiable and F ′ is continuous on [a, b], then∫ b

a

F ′(x) dx = F (b)− F (a)

In short, the value of the integral only depended on the endpoints of the interval. It would be nice if
there was some equivalent version for line integrals, where the value of the integral was determined
only by the path’s endpoints and not the particular path taken. Indeed, this is sometimes the case.

Example 16.3.2

Let F be the vector field on X2 from Example 16.1.6:

F(x, y) = [2x, 2y]

Evaluate

∫
σ

F · dr for two different paths, σ1 and σ2, from (1,−1) to (1, 5).

σ1 σ2

x

y

Take σ1 to be the straight line defined by the vector equation r1(t) = [1, t] for −1 ≤ t ≤ 5. We
then have that ∫

σ1

F · dr1 =

∫ 5

−1

F(r1(t)) · r′1(t) dt

=

∫ 5

−1

[2, 2t] · [0, 1] dt

=

∫ 5

−1

2t dt
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= t2
∣∣∣∣5
−1

= 24

Now take σ2 to be the circular arc defined by the vector equation r2(t) = [1+3 cos(t), 2+3 sin(t)]
for −π

2
≤ t ≤ π

2
.∫
σ1

F · dr2 =

∫ π/2

−π/2
F(r(t)) · r′(t) dt

=

∫ π/2

−π/2
[2 + 6 cos(t), 4 + 6 sin(t)] · [−3 sin(t), 3 cos(t)] dt

=

∫ π/2

−π/2
12 cos(t)− 6 sin(t) dt

= 12 sin(t) + 6 cos(t)

∣∣∣∣π/2
−π/2

= 24

Recall that the vector field in this last example is special – it’s a conservative vector field. This leads
one to conjecture the following:

Theorem 16.3.3: Fundamental Theorem for Line Integrals

Let σ be a smooth curve in Xn given by the vector equation r(t), where a ≤ t ≤ b. Lert f be
a scalar function that is differentiable and whose gradient vector field ∇f is continuous on σ.
Then ∫

σ

∇f · dr = f(r(b))− f(r(b)).

Proof. Let r(t) = [x1(t), · · · , xn(t)] and write r′(t) = [dx1
dt
, · · · , dxn

dt
]. Then∫

σ

∇f · dr =

∫ b

a

∇f(r(t)) · r′(t) dt

=

∫ b

a


∂f
∂x1

∣∣∣
r(t)

...
∂f
∂xn

∣∣∣
r(t)

 ·

dx1(t)
dt
...

dxn(t)
dt

 dt

=

∫ b

a

∂f

∂x1

∣∣∣∣
r(t)

dx1

dt
+ · · · +

∂f

∂xn

∣∣∣∣
r(t)

dxn
dt

dt

=

∫ b

a

d

dt
f(r(t)) dt (multi-variate chain rule)

= f(r(b))− f(r(a))

Dot products generally describe “how much” of one vector lies in the direction of another vector, so
the quantity F · dr describes how much of the tangent vector to r(t) lies in the direction of F(r(t)).
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The integral is then a total of how much this occurs along the curve. What this theorem says is that
any curve measures the same total amount.

Definition

Let D be some region in Xn and let F : D → Rn be a continuous vector field on D. We say that

the line integral

∫
σ

F · dr is independent of path if

∫
σ1

F · dr =

∫
σ2

F · dr for any two smooth

curves σ1, σ2 in D with the same initial and terminal points.

Corollary 16.3.4

If F is a conservative vector field and σ is a smooth curve, then

∫
σ

F ·dr is independent of path.

Definition

A curve σ : [a, b]→ Xn is said to be
� closed if σ(a) = σ(b) (that is, if the initial and terminal points are the same).

� simple if σ(t1) 6= σ(t2) whenever a < t1 < t2 < b (that is, the curve doesn’t intersect itself
except possibly at the endpoints).

Example 16.3.5

The following figures show examples of curves in the various combinations of closed/simple.

Figure 16.3.1: Not closed, not simple Figure 16.3.2: Not closed, simple
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Figure 16.3.3: Closed, not simple Figure 16.3.4: Closed, simple

Suppose A, B are two fixed points in D (some region in Xn), and suppose that
∫
σ

F · dr is
independent of path in D. Then we can come up with two piecewise-smooth curves, σ1 and σ2 from
A to B and from B to A (respectively) that form a closed path. Let γ be the name of this closed
path from A to A.

σ1

σ2

D

x

y

Figure 16.3.5: Two paths

γ

D

x

y

Figure 16.3.6: One closed path

By independence of path, we know that∫
σ1

F · dr = −
∫
σ2

F · dr

which rearranges to

0 =

∫
σ1

F · dr +

∫
σ2

F · dr =

∫
γ

F · dr.

This proves the following
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Theorem 16.3.6∫
γ
F · dr is independent of path in D if and only if

∫
γ
F · dr = 0 for every closed path γ in D.

What we generally have is that line integrals evaluate to zero on loops in conservative vector fields.
The following tells us that this actually uniquely classifies whether or not a vector field is
conservative.

Definition

A region D in Xn is said to be open if, for every point x = (x1, . . . , xn) in Xn, we can draw a
small ball/disk around x that is entirely contained in D. A region D is said to be connected if
any two points in D can be joined by a path in D. A region D is said to be simply-connected
if it is connected and has no “holes” in it.

Remark. Simple connectedness is actually quite tedious to define rigorously (because “hole” is hard
to define rigorously), although fairly intuitive as a concept.

Example 16.3.7: Open Region, non-Open Region

D1 = is an open region in X2. D2 = is not an open region in X2.

Figure 16.3.7: Open Region Figure 16.3.8: Not an Open Region

Example 16.3.8: Connected Region, Disconnected Region

D1 = is a connected region in X2. D2 = is a disconnected region in X2.
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Figure 16.3.9: Connected Region Figure 16.3.10: Disconnected Region

Example 16.3.9: Simply-Connected Region, non-Simply-Connected Region

D1 = is a simply-connected region in X2. D2 = is not a simply-connected region in X2.

Figure 16.3.11: Connected Region Figure 16.3.12: Disconnected Region

Theorem 16.3.10

Suppose F is a vector field that is conservative on some open connected region D in Xn. If∫
σ

F · dr is independent of path in D, then F is a conservative vector field on D.

(or equivalently)

Suppose F is a vector field that is conservative on some open connected region D in Xn. If∫
γ
F · dr = 0 for any closed path γ in D, then F is a conservative vector field on D.

The proof works by explicitly cooking up the scalar function f for which F = ∇f . We’ll only give the
proof in the 2-dimensional case, but it should be clear that the process can extend to the
n-dimensional case.
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Proof. INSERT PROOF SKETCH HERE

It should be noted that Theorem 16.3.10 is a good tool from a theoretical perspective, but isn’t really
useful in practice to check if a vector field is conservative (because you would have to check EVERY
possible path or closed curve). In practice, given a vector field
F(x1, . . . , xn) =

∑n
j=1 Fj(x1, . . . , xn)en, we’d like a simple condition on the component functions.

We restrict to the 2-dimensional case, X2, for the time being.

Suppose that F = Pe1 +Qe2 is a conservative vetor field. Then there’s a potential function f for
which P = ∂f

∂x
and Q = ∂f

∂y
. But then

∂P

∂y
=

∂2f

∂y∂x
=

∂2f

∂x∂y
=
∂Q

∂x
.

So conservative vector fields satisfy this relatively simple relationship on their component functions.
And it turns out (as a consequence of the next section) that this is actually sufficient to determine if
a vector field is conservative.

Theorem 16.3.11

Let F = Pe1 +Qe2 be a vector field on an open simply-connected region D. Suppose P and Q

have continuous first-order partial derivatives. Then F is conservative if and only if
∂P

∂y
=
∂Q

∂x
throughout D.

Example 16.3.12

Let F be the vector field from Example 16.1.6:

F(x, y) = 2xe1 + 2ye2

Verify that it is conservative using Theorem 16.3.11.

27



Since

∂P

∂y
=

∂

∂y
[2x] = 0

∂Q

∂x
=

∂

∂x
[2y] = 0

then F is conservative.

Example 16.3.13

Let F be the vector field from Example 16.1.1:

F(x, y) = −ye1 + xe2

Verify that it is not conservative using Theorem 16.3.11.

Since

∂P

∂y
=

∂

∂y
[−y] = −1

∂Q

∂x
=

∂

∂x
[x] = 1

then F is not conservative.
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16.4 Green’s Theorem

?? is the crucial element in proving that conservative vector fields on X2 are characterized by some
first partial derivatives.

Theorem 16.4.1: Green’s Theorem

Let σ be a parameterized piecewise-smooth, simple closed curve in X2 and let D be the open
simply-connected region bounded by σ. If P (x, y), Q(x, y) are scalar functions with continuoous
partial derivatives on (an open region containing) D, then∫

σ

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA

Remark. When σ is a parameterized simple closed curve, it’s common to use the symbol

∮
σ

instead

of just

∫
σ

. Furthermore, if σ is the boundary of a region D (as above), one may write ∂D instead of

σ. In this way, the crux of Green’s Theorem is often written∮
∂D

P dx+Qdy =

∫∫
D

(
∂P

∂y
− ∂Q

∂x

)
dA

Proof. Sketch?

Example 16.4.2

Evaluate
∫
σ
x4 dx + xy dy where σ traverses counter-clockwise the triangle with vertices (0, 0),

(1, 0), (0, 1).
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(1, 0)

(0, 1) y
=
1−

x

Figure 16.4.1: Triangular path

Path Integral

Homework Exercise

Surface Integral

Notice that the region D bounded by the triangle is open and simply-connected, hence σ = ∂D.
Letting P (x, y) = x4 and Q(x, y) = xy we have∮

σ

x4 dx− xy dy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA

=

∫ 1

0

∫ 1−x

0

(y − 0) dy dx

=

∫ 1

0

[
1

2
y2

]1−x

0

dx

=

∫ 1

0

1

2
(1− x)2 dx

=
1

2

∫ 1

0

1− 2x+ x2 dx

=
1

2

[
x− x2 1

3
x3

]1

0

=
1

6
.

16.4.1 Green’s Theorem to Find Area

Recall that for an open, simply-connected region, D, the area of D is given by

Area(D) =

∫∫
D

dA

Notice that if we P (x, y) and Q(x, y) so that
∂Q

∂x
− ∂P

∂y
= 1, then the above becomes

Area(D) =

∫∫
D

dA =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∮
∂D

P dx+Qdy

which reduces potentially complicated area computations to a single-variable integral. To make life
even easier, there are several usefully simple choices of P and Q, namely
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P (x, y) Q(x, y) Area(D)

−y 0 −
∮
∂D
y dx

0 x
∮
∂D
x dy

−1
2
y 1

2
x 1

2

∮
∂D
x dy − y dx

Example 16.4.3

Find the area of the ellipse given by
x2

a2
+
y2

b2
= 1.

We can parameterize the boundary of the ellipse via

σ(t) = (x(t), y(t)) = (a cos(t), b sin(t)), 0 ≤ t ≤ 2π.

Using the third equation from the table above, we get

Area(ellipse) =
1

2

∮
σ

x dy − y dx

=
1

2

∫ 2π

0

x(t)y′(t) dt− y(t)x′(t) dt

=
1

2

∫ 2π

0

ab cos2(t) + ab sin2(t) dt

=
ab

2

∫ 2π

0

dt = abπ.

16.4.2 Extended Version of Green’s Theorem

It turns out that we can also use Green’s Theorem to find areas of regions that are connected, but
not simply-connected (or, more specifically, a connected union of finitely-many simply-connected
regions). For simplicity, we introduce the following (non-standard) notation to use with our integrals:
let σ1, σ2 : [0, 1]→ Xn be parameterized (piecewise) smooth curves. Then

� σ1 ⊕ σ2 denotes the piecewise curve obtained from traversing σ1 and then traversing σ2.

σ1 ⊕ σ2(t) =

{
σ1(2t) when 0 ≤ t ≤ 1

2

σ2(2t− 1) when 1
2
< t ≤ 1

� −σ1 denotes the curve obtained from traversing σ1 backwards.

−σ1(t) = σ1(−t).
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In this way we have the following ∫
σ1⊕σ2

f =

∫
σ1

f +

∫
σ2

f

and

∫
(−σ1)

f = −
∫
σ1

f.

Remark. When it comes to regions with multiple boundary curves, one has to take care that their
orientations agree. Our standard has been to traverse the outer boundary counter-clockwise, which
means that the bounded region is to the left (if traveling along the curve). As a result, any inner
boundary curves have to be traversed clockwise to keep the bounded region to the left.

D
∂outD

∂innD

Figure 16.4.2: Non-simply connected region

σ4

σ2

D1

D2

σ1

σ3

σ5

σ6

Figure 16.4.3: Decomposition into simply-connected re-
gions

We will apply Green’s Theorem to these regions separately.∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
D1

(
∂Q

∂x
− ∂P

∂y

)
dA+

∫∫
D2

(
∂Q

∂x
− ∂P

∂y

)
dA

=

(∮
σ1⊕σ2⊕σ3⊕σ4

P dx+Qdy

)
+

(∮
σ6⊕(−σ4)⊕σ5⊕(−σ2)

P dx+Qdy

)
=

∫
σ1

P dx+Qdy +

∫
σ2

P dx+Qdy +

∫
σ3

P dx+Qdy +

∫
σ4

P dx+Qdy

+

∫
σ6

P dx+Qdy −
∫
σ4

P dx+Qdy +

∫
σ5

P dx+Qdy −
∫
σ2

P dx+Qdy

=

∫
σ1

P dx+Qdy +

∫
σ6

P dx+Qdy +

∫
3

P dx+Qdy +

∫
4

P dx+Qdy

=

∮
σ1⊕σ6

P dx+Qdy +

∮
σ3⊕σ4

P dx+Qdy

=

∮
∂outD

P dx+Qdy +

∮
∂inD

P dx+Qdy.

And this last term is sometimes just written as
∮
∂D
P dx+Qdy with the implication that it

potentially has multiple boundary components and they are summed in this way.
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Example 16.4.4

Compute the area of the annulus Ar1,r2 , the open region bounded between the circles x2 +y2 = r2
1

and x2 + y2 = r2
2 with r2 > r1.

16.4.3 A Deformation Theorem

The same diagram as before gives us something else here. Suppose F is a continuous vector field on
D and is conservative on D1 and D2 (it may be conservative on all of D too, but that’s not strictly
necessary).

D
∂outD

∂inD

Figure 16.4.4: Non-simply connected region

D1

D2

Figure 16.4.5: Decomposition into simply-connected re-
gions

Noting that we have reversed the natural orientation of ∂inD above, the previous computations
yielded ∮

∂outD

F · dr−
∮
∂inD

F · dr =

∮
∂D1

F · dr +

∮
∂D2

F · dr (16.4.1)

Since F is assumed to be conservative on both D1 and D2, then
∮
∂D1

F · dr = 0 and
∮
∂D2

F · dr = 0.
Hence Equation ?? becomes ∮

∂outD

F · dr =

∮
∂inD

F · dr

So evaluating the line integral around the outer loop is the same as integrating the line integral
around the inner loop; we can pick whichever one is easier! This gives us the following

Proposition 16.4.5: A One-Holed Deformation Theorem

With D and F as above, if σ is any closed curve enclosing the hole and is traversed in the same
direction as ∂D, then

∫
∂inD

F · dr =
∫
σ

F · dr.

The name comes from this visualization
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Figure 16.4.6: Step-by-step, the outer path loop is being “deformed” and shrinking into the inner loop

In practice, what this means is that you can always pick the most convenient curve possible!

Example 16.4.6

Let F(x, y) =
1

x2 + y2

[
−y
x

]
and let σ be any closed curve that encloses the origin. Evaluate∫

σ
F dr.

F(x, y) is not defined at the origin, but it is quick to check that
∂Q

∂x
=
∂P

∂y
, hence F is conservative

on any simply-connected region NOT containing the origin.
Since σ is any closed curve enclosing the origin, we can find a small circle of radius r > 0 around
the origin that is entirely enclosed by σ; call this σ̃ and parameterize it in the usual fashion:
r(t) = [r cos(t), r sin(t)]. Letting γ1, γ2 be lines along the x-axis adjoining σ and σ̃, we create
two simply-connected regions on which F is conservative. By the Deformation theorem, we have
that ∫

σ

P (x, y) dx+Q(x, y) dy =

∫
σ̃

P (x, y) dx+Q(x, y) dy

=

∫ 2π

0

−r sin(t)

r2
(−r sin(t)) dt+

r cos(t)

r2
(r cos(t)) dt

=

∫ 2π

0

dt = 2π.

Remark. It’s worth noting that, even though F above is conservative on any simply-connected region
not containing the origin, that’s not enough for it to be conservative on all of X2 minus the origin.
As an exercise, show that f(x, y) = arctan(x/y) is a potential function for F which defined on the
whole plane except along the x-axis). Moreover, for every nonzero x-value,
limy→0+ f(x, y) 6= limy→0− f(x, y), so this potential function cannot be extended to a differentiable
function on all of X2 minus the origin.
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16.5 Curl and Divergence

Definition 16.5.1: Del Operator

The del operator, ∇, is the differential operator

∇ =
∂

∂x
e1 +

∂

∂y
e2 +

∂

∂z
e3

At this point we’ve only thought of this operator as a function from 3-variable scalar functions to
vectors in R3 (the gradient), but given its vector form, we can also think about its behavior with
vector fields on X3.

Definition 16.5.2

Let F = Pe1 + Qe2 + Re3 be a vector field on (a region in) X3. If the partial derivatives of
P,Q,R exist, then we define the curl of F to be

curl(F) = ∇× F =

(
∂R

∂y
− ∂Q

∂z

)
e1 +

(
∂P

∂z
− ∂R

∂x

)
e2 +

(
∂Q

∂x
− ∂P

∂y

)
e3

and the divergence of F to be

div(F) = ∇ · F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

Remark. Since the cross product is special to 3 dimensions (and 7, weirdly), curl is only defined for
vectors on X3. The definitions of ∇ and div extend naturally to all dimensions.

Example 16.5.3: I

F(x, y, z) = [sin(y), cos(x)], find curl(F).

−5 −4 −3 −2 −1 1 2 3 4 5
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Figure 16.5.1: Vector Field
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Figure 16.5.2: Vector Field w/ 3rd Component of
curl(F ) positive/negative/zero
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The curl is a new vector that records how much “swirly” is in your vector field at a point, as well as
the direction of “swirly”

Definition

If curl(F) = 0, then F is called irrotational.

Example 16.5.4

f F(x, y, z) = [cos(x+ y), sin(x− y)], find div(F).
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Figure 16.5.3: Vector Field
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Figure 16.5.4: Vector Field w/ div(F ) positive/nega-
tive/zero

The divergence measures how much a point is a “source” (vectors flow away from it; div(F) > 0) or a
“sink” (vectors flow toward it; div(F) < 0).
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Definition

If div(F) = 0, then F is called incompressible.

Theorem 16.5.5: Checking for Conservative Vector Fields on X3

Let F be a vector field on a region D in X3 with continuous first partial derivatives.
1. If F is conservative on D, then curl(F) = 0.

2. If D is simply connected and curl(F) = 0, then F is conservative.

Proof. Write F = Pe1 +Qe2 +Re3.

1. Suppose F is conserative. Then there is a function f so that F = ∇f =

[
∂f

∂x
,
∂f

∂y
,
∂f

∂z

]
.

Computing curl(∇f), we have

curl(∇f) = ∇×∇f

= det

e1 e2 e3
∂
∂x

∂
∂y

∂
∂z

∂f
∂x

∂
∂y

∂f
∂z


=

(
∂2f

∂y∂z
− ∂2f

∂z∂y

)
e1 −

(
∂2f

∂x∂z
− ∂2f

∂z∂x

)
e2 +

(
∂2f

∂x∂y
− ∂2f

∂y∂x

)
e3.

By Clairaut’s Theorem, the mixed partial derivatives
∂2f

∂x∂y
=

∂2f

∂y∂x
, hence all of the coeffi-

cients in curl(∇f) are 0.

2. This is a consequence of Stokes’ Theorem (which we’ll encounter soon).

Exercise 16.5.6

Let F be the vector field from Example 16.4.6:

F(x, y) =
1

x2 + y2

[
−y
x

]
Let D = X3 − {z-axis}. Define a new vector field G on D via

G(x, y, z) =
1

x2 + y2

−yx
0


1. Let σ be some curve in D from the point A(−1, 0, 0) to the point B(1, 0, 0). Show that G

is not conservative on D by showing that
∫
σ

G ds is not independent of path.

2. Compute curl(G).
This shows that the simply-connected assumption in the previous theorem is actually necessary.

What’s the interplay with div and curl?

Theorem 16.5.1. Let F be a vector field on a region D in X3 with continuous first partial
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derivatives.

div(curl(F)) = 0.

Proof. This is a straightforward computation.

This result actually tells us that we can quickly check if a given vector field can ever arise as the curl
of another vector field.

Example 16.5.7

Let F(x, y, z) = [xz , xyz , −y2]. Find some vector field G such that F = curl(G), or show that
one cannot exist.

If such a G did exist, then we have that

F = curl(G)

div(F) = div(curl(G)) = 0

but

div(F) = z + xz + 0 6= 0

hence no such G can exist.

16.5.1 Vector Form of Green’s Theorem

Let D be a simply-connected region with boundary ∂D parameterized by the vector equation
r(t) = [x(t), y(t)] for a ≤ t ≤ b. Notice that the unit tangent vector T(t) and unit normal vector n(t)
to the curve at time t are given by

T(t) =
1

|r′(t)|(x
′(t) + y′(t))

n(t) =
1

|r′(t)|(y
′(t)− x′(t))

Green’s Theorem originally came from exploring the tangent vectors, but the tangent space to an
n-dimensional object is n-dimensional, so with the aim of generalizing to higher dimensions, that
contour integral seems like it might get complicated. However, the tangent space is always uniquely
determined by the outward pointing normal vector, which is just 1-dimensional. So what if we
explored the normal vectors instead? Let F(x, y) = [P (x, y) , Q(x, y)] be a vector field with
continuous partial derivatives on D.

∮
∂D

F · n ds =

∫ b

a

(F · n)(t)|r′(t)| dt

=

∫ b

a

1

|r′(t) (P (x(t), y(t)) y′(t) dt−Q(x(t), y(t)) x′(t) dt) |r′(t)| dt

=

∮
∂D

−Qdx+ P dy
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=

∫∫
D

(
∂P

∂x
+
∂Q

∂y

)
dA

=

∫∫
D

div(F) dA

Theorem 16.5.8: Green’s Theorem - Vectorized

Let D be a simply-connected region in X2 and F a vector field with continuous first partial
derivatives on D. Then ∮

∂D

F · n ds =

∫∫
D

div(F) dA.

Remark. It might not be obvious in its present form, but since T and n are an orthonormal basis for
R2, then (F ·T) + (F ·N) = F · [1, 1], so with this relationship, the lef

As a bit of foreshadowing, div is not special to 2- or 3-dimensional space and can work for all
dimensions. This particular form of Green’s Theorem gives us a clue as to how we might go about
extending it to work in all dimensions...

16.5.2 The Laplacian

If F = ∇f for some scalar function f , then

div(F) = ∇ · ∇f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

Definition 1. Let f be a scalar function whose second partial derivatives exist), then the Laplacian
of f is

∇2f = ∇ · ∇f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

and we call ∇2 the Laplace operator (which is also sometimes denoted as ∆ instead).
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16.6 Parametric Surfaces and Their Axes

Recall that the vector equation

r(t) =
[
x(t) , y(t) , z(t)

]
parameterizes a curve (a 1-dimensional object) in X3. Similarly,

r(u, v) =
[
x(u, v) , y(u, v) , z(u, v)

]
parameterizes a surface (a 2-dimensional object) in X3.

Definition: Parameteric Surface, Parametric Equations

Example 16.6.1: Sphere

Consider the parametric surface given by

r(u, v) =

cos(u) sin(v)
sin(u) sin(v)

cos(v)


where (u, v) are points in the domain D = {0 ≤ u ≤ 2π, 0 ≤ v ≤ π}.

This is the unit sphere.

r[u_, v_] := {Cos[u] Sin[v], Sin[u] Sin[v], Cos[v]};

ParametricPlot3D[r[u, v], {u, 0, 2 Pi}, {v, 0, Pi}]

PICTURE

Example 16.6.2: Cylinder

Consider the parametric surface given by

r(u, v) =

2 cos(u)
v

2 sin(v)


where (u, v) are points in the domain D = {0 ≤ u ≤ 2π, −∞ < v <∞}.

This is a cylinder extending infinitely in the y-direction.

r[u_, v_] := {2 Cos[u], v, 2 Sin[u]};

ParametricPlot3D[r[u, v], {u, 0, 2 Pi}, {v, -2, 2}]

PICTURE
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Example 16.6.3: Cavatappi Noodle

Consider the parametric surface given by

r(u, v) =

(2 + sin(v)) cos(u)
(2 + sin(v)) sin(u)

u+ cos(v)


where (u, v) are points in the domain D = {−∞ < u <∞, 0 < v < 2π}.

This is an infinite cavatappi noodle.

r[u_, v_] := {(2 + Sin[v]) Cos[u], (2 + Sin[v]) Sin[u], u + Cos[v]};

ParametricPlot3D[r[u, v], {u, -5, 5}, {v, 0, 2 Pi}]

PICTURE

With algebraic manipulation, can recover some familiar equations for these surfaces

Example 16.6.4

Find a familiar equation/description for the surface in Example 16.6.1.

Example 16.6.5

Parameterize the surface z = f(x, y)
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Example 16.6.6

Parameterize the infinite cylinder x2 + y2 = 36.

Example 16.6.7: Surfaces of Revolution

Suppose f is a continuous function of 1-variable and f(x) > 0 for a < x < b. Parameterize the
surface obtained by rotating y = f(x) about the x-axis.
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16.6.1 Tangent Planes

Definition: Tangent Plane

Let S be a surface parameterized by the vector r(u, v) and let ru and rv be as above. The
tangent plane to S at the point p = r(u,v0), denoted TpS, is

TpS = span

{
ru

∣∣∣∣
(u0,v0)

, rv

∣∣∣∣
(u0,v0)

}

Tangent plane degenerates if ru × rv = 0,

Definition: Smooth Surface

A surface S is called smooth if the tangent plane never degenerates, i.e., that ru× rv 6= 0 for all
points p in S.

Example 16.6.8

Find equation of tangent plane to the surface in Example 16.6.2 at p = r(0, 0).

x+ z = −2
√

2

16.6.2 Surface Area

Idea is the same as arc length: Approximate surface near each point p with a piece of the tangent
plane. The sum of these areas is a Riemann sum. Take limits to refine approximations and get

43



Definition: Surface Area

Suppose S is a smooth parametric surface given by the equation

r(u, v) = [x(u, v), y(u, v), z(u, v)] where (u, v) ∈ D

where S is covered just once as (u, v) ranges throughout D. Furthermore, let

ru =

[
∂x

∂u
,
∂y

∂u
,
∂z

∂u

]
rv =

[
∂x

∂v
,
∂y

∂v
,
∂z

∂v

]
be the basis vectors for the tangent plane at the point (u, v). Then the surface are of S is

A(S) =

∫∫
D

|ru × rv| dA.

Example 16.6.9

Find the surface area of the sphere of radius R.

Recall that the sphere of radius R is parameterized by

r(u, v) = [R cos(u) sin(v), R sin(u) sin(v), R cos(v)]

and the parameter domain D is D =

{
0 ≤ u ≤ 2π
0 ≤ v ≤ π

}
.

A(S) = 4πR2.
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16.7 Surface Integrals

In this section, when referring to a parameterized smooth surface S = r(u, v) over some domain D,
we will say that S is parameterized once to mean that r is a one-to-one function on D (except
possibly at the boundary); i.e. that for all (u1, v1) 6= (u2, v2) in D (except possibly at the boundary),
r(u1, v1) 6= r(u2, v2)

From the last section, given a surface S parameterized by r(u, v) over a domain D, we got that the
surface area was approximated as follows:

∆S ≈ |ru × rv|∆u∆v

which, in the language of differentials, became

dS = |ru × rv| dA

This leads us to the following

Definition: Surface Integrals

Suppose S = r(u, v) is a surface in X3 parameterized once over a domain D and let f : X3 → R
be a scalar function whose domain contains S. Then the integral of f over the surface S is
given by ∫∫

S

f(x, y, z) dS =

∫∫
D

f(r(u, v)) |ru × rv| dA

Remark. When f(x, y, z) = 1, we have that
∫∫

S
f(x, y, z) dS =

∫∫
S
dS =

∫∫
D
|ru × rv| dA = Area(S).

Example 16.7.1: S is the Graph of a Function

Evaluate

∫∫
S

y dS where S is the surface z = x+ y2, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2.
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=
13
√

2

3

16.7.1 Oriented Surfaces

One key ingredient in Green’s Theorem was that the boundary curve was traced counter-clockwise.
This is a notion of orientation, and the description of it is straightforward in the 1-dimensional case,
but extending it to the 2-dimensional case is a bit more tricky. In the case of a curve, you have two
choices: clockwise and counter-clockwise. But the same is not true in higher dimensions. However, in
the case of a curve, you have the choice of normal vectors that point inward or outward, and this
same binary choice exists for surfaces. So

Definition: Orientation

An orientation on a surface is a choice of unit normal vector at every point p on the surface so
that the family of normal vectors varies smoothly along the surface. If S is a closed surface (i.e.
it bounds a solid region), then it is positively oriented if the unit vectors all point outward.

Remark. When S = r(u, v) is an oriented surface, one often takes N =
ru × rv
|ru × rv

.

Figure 16.7.1: Orientable Surface Figure 16.7.2: Nonorientable Surface
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16.7.2 Surface Integrals of Vector Fields

Definition

If F : X3 → R3 is a continuous vector field defined on an oriented surface S with unit normal
vector N, then the surface integral of F over S (or flux of F across S) is∫∫

S

F · dS =

∫∫
S

F ·N dS.

When S = r(u, v) is parameterized exactly once on a region D, then we get∫∫
S

F · dS =

∫∫
S

F ·N dS

=

∫∫
D

F ·
(

ru × rv
|ru × rv|

)
|ru × rv| dA

=

∫∫
D

F · (ru × rv) dA

Example 16.7.2

Let S be the unit sphere of and let F(x, y, z) = [z, y, x]. Evaluate the surface integral of F over
S.

Note that S = r(u, v) where r(u, v) = [cos(u) sin(v), sin(u) sin(v), cos(v)] with parameter domain
D = {0 ≤ u < 2π, 0 ≤ v ≤ π

2
}. Since S is a closed surface, we want the normal vectors to point

outward, so we take N = rv × ru (one can check that these indeed point outward).

rv × ru = [cos(u) sin2(v), sin(u) sin2(v), cos(v) sin(v)]

F(r(u, v)) = [cos(u), sin(u) sin2(v), cos(u) sin(v)]

F(r(u, v)) · rv × ru = 2 cos(u) cos(v) sin2(v) + sin2(u) sin3(v)

And thus∫∫
S

F · dS =

∫ 2π

0

∫ π

0

2 cos(u) cos(v) sin2(v) + sin2(u) sin3(v) du dv

=

∫ π

0

∫ 2π

0

2 cos(u) cos(v) sin2(v) +
1

2
(1− cos(2u)) sin3(v) du dv

=

∫ π

0

[
2 sin(u) sin2(v) cos(v) +

1

2
u sin3(v)− 1

4
sin(2u) sin3(v)

]2π

0

dv

=

∫ π

0

π sin3(v) dv

=

∫ π

0

π(1− cos2(v)) sin(v) dv

Taking the susbtitution w = cos(v), we get∫ π

0

π(1− cos2(v)) sin(v) dv = π

∫ −1

1

w2 − 1 dw =
4π

3
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In the case that our surface is defined by z = f(x, y) (so that the parameterization is
r(u, v) = [u, v, f(u, v)], we notice that

ru = [1, 0,
∂f

∂u
]

rv = [0, 1,
∂f

∂v
]

ru × rv =

[
−∂f
∂u
,−∂f

∂v
, 1

]
Hence

F · (ru × rv) = [P,Q,R] ·
[
−∂f
∂u
,−∂f

∂v
, 1

]
= −P ∂f

∂u
−Q∂f

∂v
+R.

Example 16.7.3

Let S be the boundary of the solid region enclosed by the paraboloid z = 1 − x2 − y2 and the
xy-plane (z = 0). let F(x, y, z) = [y, x, z]. Evaluate the surface integral of F over S.

Note that S is comprised of two regions, S1 and S2, where S1 = r1(u, v) = [u cos(v), u sin(v), 1−
u2] with parameter domain D1 = {0 ≤ u1, 0 ≤ v ≤ 2π} and S2 = r2(u, v) = [u cos(v), u sin(v), 0]
with parameter domain D2 = {0 ≤ u1, 0 ≤ v ≤ 2π}.
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∫∫
S

F · dS =

∫∫
S1

F · dS +

∫∫
S2

F · dS =
π

2
+ 0 =

π

2
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16.8 Stokes’ Theorem

Definition: Induced Orientation

Suppose S is an oriented surface with boundary curve ∂S and normal vectors n. The induced
orientation from S on ∂S is described as follows: travel along σ so that the surface with
normal vectors pointing upward is always to the left.

Theorem 16.8.1: Stokes’ Theorem

Suppose S is an oriented piecewise smooth surface with boundary curve ∂S (with the induced
orientation). Let F : X3 → R3 be a continuous vector field whose partial derivatives exist in a
neighborhood of S. Then ∮

∂S

F · dr =

∫∫
S

curl(F) · dS.

Figure 16.8.1: SMBC Comics, 24 February 2014

Proof. In the special case that S is the surface defined by z = f(x, y)...
∫
∂S

F · dr =
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∫∫
S

curl(F) · dS =

Example 16.8.2

Evaluate
∮
σ

F · dr where F(x, y, z) = [−y2, x, z2] and σ is the curve of intersection of the plane
y + z = 2 and the cylinder x2 + y2 = 1. (Note: orient σ to traverse around the z-axis counter-
clockwise when viewed from above).

We could parameterize σ directly, or apply Stokes’ theorem instead.

curl F = det

 e1 e2 e3
∂
∂x

∂
∂y

∂
∂z

−y2 x z2

 = [0, 0, 1 + 2y]
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Example 16.8.3

Let S be the part of the sphere of radius 4 lying inside the cylinder x2 + y2 = 1 above the

xy-plane. Let F(x, y, z) = [xz, yz, xy]. Compute

∫∫
S

curl(F) · dS.

Approach by Stokes’ Theorem and computing
∮
∂S

F · dr.

Remark. Notice that Stokes’ Theorem tells us that any surfaces (with the same niceness assumptions
as in the theorem) with the same boundary curve will always have the same integral.∫∫

S1

curl(F) · dS =

∮
∂S1

F · dr =

∮
∂S2

F · dr =

∫∫
S2

curl(F) · dS.

This allows us to pick the simplest surface.

Example 16.8.4: (Attempt 2 at Example 16.8.3)

Let S be the part of the sphere of radius 4 lying inside the cylinder x2 + y2 = 1 above the

xy-plane. Let F(x, y, z) = [xz, yz, xy]. Compute

∫∫
S

curl(F) · dS.

Approach by computing

∫∫
S1

curl(F) · dS where S1 is the unit disk in the z =
√

3 plane.
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16.9 The Divergence Theorem

Recall the vectorized version of Green’s Theorem 16.5.8∮
∂D

F · n ds =

∫∫
D

div(F) dA.

which held when D was a simply-connected region in X2 and F had continuous first partial
derivatives on D. If we wanted to extend this to 3-dimensions, the natural choice would be to replace
the left-hand integral with a surface integral over the boundary of a solid region E, and replace the
right-hand side with a volume integral on the whole region E. As it turns out, this is precisely the
right notion.

Theorem 16.9.1: Divergence Theorem

Suppose E is a solid region in X3 and its boundary ∂E is a (piecewise) smooth closed surface
oriented with outward-pointing normal vectors. Let F :⊂ X3 → R3 be a vector field whose
partial derivatives are continuous on some open region containing E. Then∫∫

∂E

F · dS =

∫∫∫
E

div(F) dV

Remark. The Divergence Theorem is actually true in all dimensions, but it takes some real work to
describe orientation in higher dimensions and one has to come up with an appropriate notion of dS
that avoids the cross product.

One can prove this for certain “simple” regions in X3 with no complicated machinery, but the proof
is quite tedious. The generic proof is actually quite simple, but relies on some complicated new
machinery from the realm of differential topology/Riemannian manifolds. For these reasons, we omit
the proof entirely in these notes.

Let’s verify that the result is true in a very simple case:

Example 16.9.2

Verify the divergence theorem in the case that E is the unit ball, ∂E is the unit sphere, and
F(x, y, z) = [z, y, x].

Recall the following about the unit sphere:

r(u, v) = [cos(u) sin(v), sin(u) sin(v), cos(v)]

rv × ru = [cos(u) sin2(v), sin(u) sin(v)2, cos(v) sin(v)] (outward-pointing normal)

with parameter domain D = {0 ≤ u ≤ 2π, 0 ≤ v ≤ π}.
We then have that∫∫

∂E

F · dS =

∫∫
D

F(r(u, v)) · (rv × ru) dA

=

∫ π

0

∫ 2π

0

 cos(v)
sin(u) sin(v)
cos(u) sin(v)

 ·
cos(u) sin2(v)

sin(u) sin2(v)
cos(v) sin(v)

 du dv
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=

∫ π

0

∫ 2π

0

2 cos(u) cos(v) sin2(v) + sin2(u) sin3(v) du dv

=

∫ π

0

π sin3(v) dv =
4π

3

Alternatively, with the volume integral approach:∫∫∫
E

div(F) dV =

∫∫∫
E

0 + 1 + 0 dV =

∫∫
E

dV =
4

3
π(1)2 =

4

3
π.

Example 16.9.3

Evaluate

∫∫
S

F · dS where F(x, y, z) = xye1 + (y2 + exz
2
)e2 + sin(xy)e3 and S is the surface

of the region bounded by the parabolic cylinder z = 1 − x2 and the planes z = 0, y = 0, and
y + z = 2.

The surface of this region is comprised of 4 smooth pieces, so we would need to parameterize four
separate pieces and compute four separate integrals - no fun! We also note that the divergence
is super simple:

div(F) =
∂

∂x
(xy) +

∂

∂x
(y2 + exz

2

) +
∂

∂z
(sin(xy)) = 3y.

So, letting E be the solid region bounded by S and applying the Divergence Theorem, we have∫∫
S

F · dS =

∫∫
E

div(F) dV

=

∫ 1

−1

∫ 1−x2

0

∫ 2−z

0

3y dy dz dx

=

∫ 1

−1

∫ 1−x2

0

3

2
(2− z)2 dy dz dx

=
3

2

∫ 1

−1

∫ 1−x2

0

4− 4z + z2 dz dx

=
3

2

∫ 1

−1

4(1− x2)− 2(1− x2)2 +
1

3
(1− x2)3 dx

=
3

2

∫ 1

−1

41− 4x2 − 2 + 4x2 − x4) +
1

3
− x2 + x4 − 1

3
x6 dx

=
184

35
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Part II

Complex Analysis (from Saff–Snider)

1 Complex Numbers

1.1 The Algebra of Complex Numbers

Definition

A complex number is a symbol x + iy or x + yi, where x, y are real numbers and i satisfies
i2 = −1. The collection of complex numbers is denoted C. Writing z = x + yi, we say that x
is the real part of z, denoted Re(z), and we say that y is the imaginary part of z, denoted
Im(z).

Remark. Some authors use R(z) and I(z) to denote the real and imaginary parts of z, respectively.

The complex numbers satisfy the following rules of arithmetic:

� Equality : a+ bi = c+ di if and only if a = c and b = d

� Addition: (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

� Multiplication: (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

Remark. If you think of complex numbers as polynomials with indeterminate i, then the arithmetic
operations are the same as those for polynomials, with the added simplification of i2 = −1.

Proposition 1.1.1: Properties of Complex Arithmetic

Complex arithmetic has the following familiar properties from arithmetic of the real numbers.
For all u, v, w ∈ C, we have

� Associative addition: u+ (v + w) = (u+ v) + w

� Commutative addition: u+ v = v + u

� Associative multiplication: u(vw) = (uv)w

� Commutative multiplication: uv = vu

� Distributive law: u(v + w) = uv + uw

� w + 0 = w

� 1w = w

Exercise 1.1.2

Prove Proposition 1.1.1.
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1.2 Point Representation of Complex numbers

We can identify the complex number z = x+ yi with the point (x, y) in X2 (the plane). Because of
this identification, the horizontal axis is known as the real axis and the vertical axis is known as the
imaginary axis.

z = x+ iy

x

y

|z|
=
√ x

2 +
y
2

real

im
a
g.

The following definition is thus natural:

Definition

For a complex number z = x + yi, the magnitude (or modulus or absolute value) of z is
|z| = |x+ yi| =

√
x2 + y2.

Definition

The (complex) conjugate of z = x+ iy is z = x− iy.

z = x+ iy

z = x− iy

real

im
ag

.

Proposition 1.2.1: Properties of the Conjugate and Magnitude

For complex numbers z, w, we have the following properties of the conjugate and magnitude:
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1. Re(z) = Re(z)

2. Im(z) = − Im(z)

3. z = z

4. z + w = z + w

5. (zw) = (z)(w)

6. If w 6= 0, then z/w = (z/w)

7. |z| = |z|

8. |zw| = |z||w|

9. Re(z) =
z + z

2

10. Im(z) =
z − z

2

11. |z| ≥ 0

12. |z| = 0 if and only if z = 0

13. zz = |z|2

Proof. We prove only #4 above and acknowledge that all of the others are similarly boring. Let
z = a1 + ib1 and w = a2 + ib2. Then

z + w = (a1 + a2) + i(b1 + b2) = (a1 + a2)− i(b1 + b2) = (a1 − ib1) + (a2 − ib2) = z + w.

Exercise 1.2.2

Prove the remaining parts of Proposition 1.2.1.

Complex conjugation is usually used when computing quotients. In particular

z

w
=
z

w

w

w
=

1

|w|2 (zw)

Example 1.2.3

Compute the quotient
7− 4i

3 + 9i
.

7− 4i

3 + 9i
=

7− 4i

3 + 9i

(
3 + 9i

3 + 9i

)
=

(7− 4i)(3− 9i)

9 + 81
= −15

90
− 75

90
i = −1

6
− 5

6
i
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1.3 Vectors and Polar Forms

Recall that any point (x, y) ∈ X2 can be written in terms of polar coordinates as (r cos θ, r sin θ)
where r, θ are determined as in the diagram below.

(x, y)

x

y
r

θ

x

y

z = x+ iy

x

y
|z|

θ

real

im
a
g.

Given a complex number z = x+ iy, it follows from the above that can then rewrite it as
z = r cos θ + ir sin θ = r(cos θ + i sin θ) where r = |z|.

Definition

A nonzero complex number z is in polar form if it is written as z = r(cos θ+ i sin θ). The value
of θ is called an argument for z and is denoted arg z.

Remark. Because sin(θ) = sin(θ + 2kπ) and cos(θ) = cos(θ + 2kπ) for any integer k, given a complex
number, there is no unique argument. Some other texts will even let arg(z) be a set of
infinitely-many angles:

arg(z) = {θ + 2kπ : for all integers k}
In practice, one often ends up choosing the range of allowable θ values, say (−π, π], and working with
it. For this reason, we let Arg(z) denote the θ-value in the range (−π, π] and we call it the principal
value of the argument.

Example 1.3.1

Find the polar form for z = 1 + i
√

3.

Since |z| =
√

1 + 3 = 2 and arctan(
√

3) = π
3
, then we can write z = 2eiπ/3. Note, of course, that

we could also write z = 2ei(π/3+2kπ) for any integer k since there are infinitely many possible
arguments for z.
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z = 1 + i
√
3

|z|
=
2

θ=
π/

3

real

im
a
g.

Let z1 = r1(cos θ1 + i sin θ1) and z2 = r1(cos θ2 + i sin θ2. Then

z1z2 = r1r2 (cos θ1 cos θ2 − sin θ1 sin θ2 + i(sin θ1 cos θ2 + sin θ2 cos θ1)))

= r1r2 (cos(θ1 + θ2) + i sin(θ1 + θ2)) (angle sum identities)

so multiplication of complex numbers can be described as encoding both a scaling and a rotation.
Specifically

|z1z2| = |z1||z2|
arg(z1z2) = arg(z1) + arg(z2)

If z = r(cos θ + i sin θ), then

z = r (cos θ − i sin θ) = r (cos(−θ) + i sin(−θ))

so it also follows that

arg(z) = − arg(z)
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1.4 The Complex Exponential

Recall from integral calculus that, for any real number x,

ex =
∞∑
n=0

xn

n!

If we replace x with a purely imaginary complex number iy (and brazenly assume that the same
formula holds), we get

eiy =
∞∑
n=0

(i ∗ y)n

n!

=
∞∑
n=0

inyn

n!

=
∞∑
k=0

(−1)k
y2k

(2k)!
+ i

∞∑
k=0

(−1)k
y2k+1

(2k + 1)!

= cos(y) + i sin(y)

If we also want the usual multiplicative properties of the complex exponential to hold, namely that
ex+iy = exeiy, then the following definition is the obvious one.

Definition

The complex exponential ez is defined for all z = x+ iy as

ez := ex (cos(y) + i sin(y))

In this way, we have an easier version of our polar form

z = |z| (cos θ + i sin θ) = |z|eiθ

and it also follows that

z = |z|e−iθ

From the complex exponential, we can derive some familiar formulae:

Proposition 1.4.1

cos θ =
eiθ + e−iθ

2
, and sin θ =

eiθ − e−iθ
2i

Proof. Notice that

z + z = 2 Re(z) = 2|z| cos θ
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and that

z + z = |z|eiθ + |z|e−iθ.

We achieve the desired results by solving for cos θ, and the same argument mutatis mutandis works
to derive the formula for sin θ.
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1.5 Powers and Roots

The complex exponential and polar form also give us a convenient way of computing powers of a
complex number. For any integer (positive or negative) we have that

zn = rneinθ.

The question is, what about mth roots? We already run into issues with square roots of real
numbers: since (−1)2 = (1)2 = 1, then

√
1 has two possible values (and we just take the convention

that it’s positive. For complex numbers, it’s arguably much worse:

(1)3 =
(
ei2π/3

)3
=
(
ei4π/3

)3
= 1

so 1 has three cube roots, so what possible convention could one even take that is consistent for mth

roots? The answer is that we can’t, so we take all possible values for the mth root.

Notice that, for a positive number m, there are only m-many mth roots of 1, and they all form the
vertices of a regular m-gone in the complex plane.

ζ1

ζ2

ζ3

real

im
ag

.

ζ2

ζ3

ζ4

ζ5

real

im
ag

.

ζ1

ζ2

ζ3
ζ4ζ5

ζ6

ζ7

ζ8

ζ9

ζ10 ζ11
ζ12

ζ13

ζ14real

im
ag

.

Definition: Roots of Unity

For any positive integer m, the mth roots of unity are

11/m = ζm = ei2kπ/m where k = 0, 1, . . . ,m− 1

It follows that

Definition

For any positive integer m and complex number z = reiθ the mth roots of z are

z1/m = r1/mei(θ+2kπ)/m where k = 0, 1, . . . ,m− 1

Example 1.5.1

Find the cube roots of
√

2 + i
√

2
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The polar form of
√

2 + i
√

2 = 2eiπ/4. So

(√
2 + i

√
2
)1/2

=


3
√

2eiπ/12

3
√

2ei(π/12+2π/3)

3
√

2ei(π/12+4π/3)

real

im
ag

.
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1.6 Planar Sets

Definition

Let z0 be a fixed complex number and let r be a positive real number. The open disk of radius
r centered at z0 is the set of all z satisfying |z−z0| < r and the closed disk of radius r centered
at z0 is the set of all z satisfying |z − z0| ≤ r.

z0

open disk

z1

closed disk

real

im
a
g.

Exercise 1.6.1. Writing z = x+ iy and z0 = x0 + iy0, convince yourself that these equations look
like the familiar equations for open and closed disks in the plane.

Open disks play the same role for complex analysis as open intervals (a, b) do for calculus. Similarly
for closed disks and closed intervals [a, b].

Definition

Let S be a set of complex numbers. A point z is an interior point if there is a small positive
real number for which the open disk of radius r around z is entirely contained within S. A point
z is a boundary point if every open disk around z contains both a point in S and a point not
in S.

z0

interior point

z1

boundary point

real

im
a
g.
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Definition

A set of complex numbers S is open if every point in S is an interior point. The set S is closed
if S contains all boundary points.

Example 1.6.1

Show that the open disk |z| < 1 together with the points satisfying |z| = 1 and Im(z) ≤ 0 is
neither open nor closed.

real
im

a
g.

Remark. To head off the question, yes, a set can actually be both open and closed (all of C is one
such set, for example), but understanding when this happens is considerably more subtle and
probably best left for office hours or MATH 4324; that is, you don’t need to know it for this course.

Remark. The definition of a closed set we gave is actually not entirely accurate, but it’s perfectly
sufficient for this class. We’re really only concerned with closed sets that can contain an open disk
within them. There are plenty of other closed sets around, like a finite collection of points for
instance, but this is maybe best explored in MATH 4324 or my office hours.
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1.7 The Riemann Sphere and Stereographic Projection

1.7.1 The Point at Infinity

If f has a pole at z0, it has no doubt occured that we might consider taking the value of f(z0) =∞.
Let’s look at what happens if we try to define 1/0 =∞.

If z → 0 (from the right) along the real axis, we might say that 1
z

approaches “+∞.” If z → 0 (from
the left) along the real axis, we might say that 1

z
approaches “−∞. If z → 0 along the imaginary

axis, what would we say 1
z

approaches? “±i∞”?

If we want to try to define this limit, it has to agree from all directions, so writing “1
0

=∞” implies
that we are identifying all of these limits with the same point, which we name ∞. The other
implication, of course, is that if we think of a complex number z as growing without bound, then it is
necessarily tending to this singular point ∞.

Figure 1.7.1: Growing without bound in any direction, the limit point is always the same: ∞

Definition

The extended complex plane Ĉ is the set C∪{∞}. This is also referred to as the Riemann
sphere.

Example 1.7.1

If f(z) =
2z + 1

z − 1
, then f(1) =∞ and f(∞) = 2.

We might consider certain properties of functions defined on all of Ĉ. Notice that the mapping
z 7→ 1

z
has the effect of interchanging 0 and ∞, so studying the behavior of a function f(z) at ∞ is

equivalent to studying the behavior of the function g(w) := f
(

1
w

)
at 0.

As such, we say that

1. f(z) is differentiable at ∞ if f
(

1
w

)
is differentiable (or has a removable singularity) at w = 0.

2. f(z) has a pole of order m at ∞ if f
(

1
w

)
has a pole of order m at w = 0.

3. f(z) has an essential singularity at ∞ if f
(

1
w

)
has an essential singularity at w = 0.
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Example 1.7.2

Let f(z) =
2z + 1

z − 1
. Show that f is differentiable at ∞.

f is certainly analytic for all z ∈ C except at 1, so we’ll look at a Laurent series expansion of f
about 0 on the annulus 1 < |z| <∞:

f(z) =
2z + 1

z − 1
=

2z + 1

z

(
1

z − 1
z

)
=

2z + 1

z

∞∑
n=0

(
1

z

)n
= · · ·+ 2z + 1

z4
+

2z + 1

z3
+

2z + 1

z2
+

2z + 1

z

whence

f

(
1

w

)
= · · ·+

2
w

+ 1(
1
w

)4 +
2
w

+ 1(
1
w

)3 +
2
w

+ 1(
1
w

)2 +
2
w

+ 1
1
w

= (2 + w) + (2 + w)w + (2 + w)w2 + (2 + w)w3 + · · ·
= 2 + 3w + 3w2 + 3w3 + · · ·

and thus f
(

1
w

)
has a removable singularity at w = 0.

Example 1.7.3

Let f(z) = z3 + 2. Show that f has a pole of order 3 at ∞.

Notice that

f

(
1

w

)
=

1

w3
+ 2

is a Laurent expansion of f
(

1
w

)
about w = 0, which is clearly a pole of order 3.

Example 1.7.4

Show that f(z) = sin(z) has an essential singularity at ∞.

f is analytic for all z ∈ C, so we’ll look at the Laurent (Taylor) series expansion of f about 0.

f(z) = sin(z) =
∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1

whence

f

(
1

w

)
= sin

(
1

w

)
=
∞∑
n=0

(−1)n

(2n+ 1)!

(
1

w

)2n+1

=
0∑

n=−∞

(−1)n

(2n+ 1)!
w2n+1
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and thus f
(

1
w

)
has an essential singularity at w = 0.

Example 1.7.5

Find all functions that are analytic on all of Ĉ.

If f has a pole at any z0, then lim
z→z0

f(z) =∞. Since f is analytic on all of Ĉ, then it doesn’t

have any poles, and f it must be bounded. Since f is bounded on the open set |z| < 1, it is
constant (by Liouville’s theorem), and since f is bounded on the open set |z| > 1, it is constant
(by Liouville’s theorem). By continuity on Ĉ (and in particular on |z| = 1), these constants
must be the same, so f is constant.

Example 1.7.6

Find all functions that have a single pole and are analytic on the rest of Ĉ.

Suppose f has a pole of order m at some finite point z0 (so z0 6=∞). Then the Laurent expansion
of f about z0 is

f(z) =
c−m

(z − z0)m
+

c−m+1

(z − z0)m−1
+ · · ·+ c−1

(z − z0)
+ c0 + c1(z − z0) + c2(z − z0)2 + · · ·

and it converges for all z 6= z0 (since the only pole is at z0, f must be bounded on the rest of
Ĉ, including at ∞). For any positive integer n, cn(∞− z0)n =∞, so it must be that cn = 0 for
n > 0. As such, f has the form

f(z) =
c−m

(z − z0)m
+

c−m+1

(z − z0)m−1
+ · · ·+ c−1

(z − z0)
+ c0.

If the pole occurs at z0 =∞, then f
(

1
w

)
has a pole at 0, so the Laurent series expansion of f

(
1
w

)
about 0 is

f

(
1

w

)
=
c−m
wm

+
c−m+1

cm−1
+ · · ·+ c−1

w
+ c0 + c1w + c2w

2 + · · ·

Since f(z) is bounded near 0, then f
(

1
w

)
is bounded near ∞ (i.e. for all sufficiently large |w|),

and just as last we must have that cm = 0 for m > 0. It follows that

f

(
1

w

)
=
c−m
wm

+
c−m+1

cm−1
+ · · ·+ c−1

w
+ c0 =⇒ f(z) = c0 + c−1z + · · ·+ c−mz

m

is a polynomial.

1.7.2 Stereographic projection

In X3, the unit sphere (denoted S2) is the set {(x1, x2, x3) ∈ X3 |x2
1 + x2

2 + x2
3 = 1}. Letting P be any

plane through the origin, P divides S2 into two hemispheres, call one the northern hemisphere and
the other the southern hemisphere.
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The northern hemisphere contains a point N , the north pole, and so we look at the line passing
through N and any other point q0 on the sphere. This line intersects P in a unique point p0, and this
gives us a way of uniquely identifying points on the sphere (minus the north pole) and points in the
plane!

P

p0

q0

N

Definition

The function that makes this identification is called the stereographic projection from N .

Remark. This same procedure gives a stereographic projection from the n-sphere, Sn (as a subset of
Xn+1) down to an n-dimensional subspace of Xn+1. We will only care about it in dimension 2,
however.

If we take P to be the x1x2-plane (so the set of points (x1, x2, 0) ), then N = (0, 0, 1). And if we
identify P with C (so (x1, x2, 0) is identified with z = x1 + ix2), then we can describe stereographic
projection in coordinates:

ρ : S2-{N} −→ C

ρ(x1, x2, x3) =
x1 + ix2

1− x3

ρ−1 : C −→ S2-{N}

ρ−1(z) =

(
2 Re(z)

1 + |z|2 ,
2 Im(z)

1 + |z|2 ,
−1 + |z|2
1 + |z|2

)

We notice a couple of things:

1. ρ can be extended to a map ρ̃ : S2 → Ĉ by defining ρ̃(N) =∞.

2. ρ sends the equator of S2 to the unit circle in C.

3. ρ sends the northern hemisphere of S2-{N} to the exterior of the unit disk: |z| > 1.

4. ρ sends the southern hemisphere of S2 to the interior of the unit disk: |z| < 1.

5. The map z 7→ 1/z corresponds to exchanging the northern and southern hemispheres of S2.
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Suppose

Ax1 +Bx2 + Cx3 +D = 0 (1.7.1)

is some plane passing through S2. The distance from the origin to this plane is√
D2

A2 +B2 + C2

so to pass through S2 we must have that A2 +B2 + C2 > D2. The corresponding point in C thus
satisfies

A

(
2 Re(z)

1 + |z|2
)

+B

(
2 Im(z)

1 + |z|2
)

+ C

(−1 + |z|2
1 + |z|2

)
+D = 0

=⇒ 2ARe(z) + 2B Im(z) + (C +D)|z|2 = C −D
If the plane contains N(0, 0, 1), then from Equation 1.7.1 we deduce that C +D = 0. Writing
z = x+ iy, then we have

2Ax+ 2By = C −D
which is the equation of a line. If the plane does not contain N(0, 0, 1), then C +D 6= 0. So

2ARe(z) + 2B Im(z) + (C +D)|z|2 = C −D
2ARe(z)

C +D
+

2B Im(z)

C +D
+ |z|2 =

C −D
C +D

.

Noting that |z|2 = (Re(z))2 + (Im(z))2 and completing the square, we get that this rearranges to∣∣∣∣z +
A+Bi

C +D

∣∣∣∣2 =
A2 +B2 + C2 −D2

(C +D)2∣∣∣∣z +
A+Bi

C +D

∣∣∣∣ =

√
A2 +B2 + C2 −D2

(C +D)2

which is the equation of a circle.

Theorem 1.7.7

Stereographic sends circles on S2 not passing through N to circles in C. It sends circles on S2

passing through N to lines in C.
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One more thing that we may notice is that the (inverse) stereographic projection of the grid on C
extends to a “grid” on the sphere minus N , where the circles all still meet at right angles.

ρ−1

ρ

Even though it distorts distances, the stereographic projection map preserves angles. One might
wonder about other types of complex functions that preserve angles.
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2 Analytic Functions

2.1 Functions of a Complex Variable

Definition

A complex function is a function whose input is a complex number and whose output is a
complex number. We say that the function is defined on a set S if we restrict our attention
to only input values coming from S.

Remark. Complex functions cannot be visualized quite as easily as the real functions you may be
familiar with. A function f : R→ R has a one-dimensional input and a one-dimensional output, so
we can plot a graph of f on a two-dimensional plane. A function f : C→ C has a two-dimensional
input and a two-dimensional output, so plotting a graph in the same way would require four
dimensions.

Example 2.1.1

The function f(z) = z2 is a function defined on all of C. We can get a feel for the behavior of
this function by examining a grid in C before and after applying f .

real

im
ag

.

f

real
im

ag
.

Example 2.1.2

The function f(z) = 1
z

is a function defined on all of C−{0}. We can get a feel for the behavior
of this function by examining a grid in C before and after applying f .
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real

im
a
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Notice that, if |z| = 1 (that is z is on the unit circle), then we have that

f(z) =
1

z
=

1

z

(
z

z

)
=

z

|z|2 = z

and |z| = 1, so f(z) is still on the unit circle. Hence the unit circle is sent back to itself. This
map is called the “inversion in the unit circle” (if you remember anything about inversions from
Euclidean geometry, it is exactly the same inversion in a circle).
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2.2 Limits and Continuity

Definition: Limits

If f is a complex function, then f(z) has a limit L as z approaches z0 if, for every real number
ε > 0, there is a real number δ > 0 such that

|f(z)− L| < ε

for every z in S satisfying 0 < |z − z0| < δ.

In words, L is a limit if we can arbitrarily approximate it by f(z) when restricting our focus to
z-values in a small disk around z0.

Unlike single-variable calculus where we can check limits from the left and right, in the complex
setting (just like in multivariable calculus), the limit has to exist given any path from z to z0.

Proposition 2.2.1: Limit Arithmetic

Limits satisfy all of the familiar properties. If lim
z→z0

f(z) = A and lim
z→z0

g(z) = B, then

1. lim
z→z0

(f(z)± g(z)) = A±B

2. lim
z→z0

f(z)g(z) = AB

3. lim
z→z0

f(z)

g(z)
=
A

B
(provided B 6= 0)

Definition: Continuity

Suppose f is a complex function defined on a set S. For z0 in S, if lim
z→z0

f(z) = f(z0), then f is

continuous at z0. If f is continuous at every z0 in S, then we say that f is continuous on S.

Proposition 2.2.2: Combinations of Continuous Functions are Continuous

Continuity has all of the familiar properties. If f(z) and g(z) are continuous at z0, then so are
1. f(z) + g(z)

2. f(z)g(z)

3.
f(z)

g(z)
(provided g(z0) 6= 0)

As well, if f(z) is continuous at z0 and g(z) is continuous at f(z0), then g(f(z)) is continuous
at z0.

Proof. The proof of each of these facts is the same as in the real analysis case.

Proposition

Types of functions that are continuous on their domains:
� Polynomials
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� Rational functions

� f(z) = ez

� f(z) = z

� f(z) = |z|2
(This list is non-exhaustive)

Proof. Each of these proofs is essentially the standarda ε-δ argument from real analysis. The second
and fifth bullet points follow directly from the first and fourth, respectively, by applying Proposition
2.2.2. For proving the third and fourth bullet points, it may be worthwhile to point out:

� |ez−ez0| ≤ |ex−ex0|| cos(y)+i sin(y)|+ex0 |(cos(y) + i sin(y))− (cos(y0) + i sin(y0))| and then
you appeal to the fact that | cos(y) + i sin(y)| ≤ 1 and each of these real functions (e, cos, sin
are all continuous).

� |z − z0| = |(z − z0)| = |z − z0|

Definition

A set S is bounded if there is some positive real number M for which every z in S satisfies
|z| ≤M . A function f is bounded if there is some positive real number K such that |f(z)| ≤ K
for every z in S.
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2.3 Analyticity

Definition: Complex Differentiable

The function f is (complex) differentiable at z0 in S if the following limit exists

lim
z→z0

f(z)− f(z0)

z − z0

(
or equivalently lim

h→0

f(z0 + h)− f(z0)

h

)
.

If this limit exists, we denote it limit f ′(z0) or
df

dz

∣∣∣∣
z=z0

and call it the (complex) derivative

of f at z0.

Definition

If f is complex differentiable at every z in S, then we say that f is (complex) differentiable
on S. In particular, when S is an open set, then we may sometimes say that f is (complex)
analytic. When f is analytic on the entire complex plane, we say that f is entire.

Remark. If you’re familiar with the notion of real analytic functions, this definition may seem odd. It
turns out that complex differentiation is a much stronger notion than real differentiation, so this
definition of analyticity is actually equivalent.

Proposition 2.3.1: Complex Differentiation Rules

If f(z) and g(z) are differentiable at z0, c is any constant, and n > 0 is a positive integer, then...

� [Sum/Difference Rule] ...f(z) ± g(z) is differentiable at z0 and d
dz

∣∣∣∣
z0

(f(z) ± g(z)) =

f ′(z0)± g′(z0).

� [Constant Multiple Rule] ...cf(z) is differentiable at z0 and d
dz

∣∣∣∣
z0

(cf(z)) = cf ′(z0)

� [Product Rule] ...f(z)g(z) is differentiable at z0 and d
dz

∣∣∣∣
z0

(f(z)g(z)) = f ′(z0)g(z0) +

g′(z0)f(z0)

� [Quotient Rule] ...
f(z)

g(z)
is differentiable at z0 and d

dz

∣∣∣∣
z0

(
f(z)

g(z)

)
=

f ′(z0)g(z0)− g′(z0)f(z0)

[g(z0)]2

Also...
� [Chain Rule] ...if f(z) is differentiable at z0 and g(z) is differentiable at f(z0) then

d

dz

∣∣∣∣
z0

g(f(z)) = f ′(z0)g′(f(z0)).

� [Power Rule] ... zn is differentiable at z0 and d
dz

∣∣∣∣
z0

zn = nzn−1
0 .

77



Proposition 2.3.2

The following types of functions are analytic on their domains:
� Polynomials

� Rational Functions

� f(z) = ez

(The list above is non-exhaustive)

Proof. The proof of the first two follow from Proposition 2.3.1. f(z) = ez follows from the limit
definition of the derivative (with the same observations as in the proof of continuity).

Theorem 2.3.3

If f is differentiable at z0, then f is continuous at z0.

Not every continuous complex function is differentiable, however.

Example 2.3.4

f(z) = |z|2 is only differentiable at z = 0.

Notice that the difference quotient for f is

f(z + h)− f(z)

h
=
|z + h|2 − |z|2

h
=

(z + h)(z + h)− zz
h

=
zz + zh+ hz + hh− zz

h
=
zh

h
+ z

This limit exists precisely when it agrees for every possible path, so we consider two possible
pahs that h can take to 0 - where h is real (say h = t for some real number t), and when h is
purely imaginary (say h = it for some real number t).

lim
h→0

f(z + h)− f(z)

h
= lim

t→0

zt

t
+ z = lim

t→0

zt

t
+ z = lim

t→0
z + z

lim
h→0

f(z + h)− f(z)

h
= lim

t→0

zit

it
+ z = lim

t→0

−zit
it

+ z = lim
t→0
−z + z

Notice that these values agree precisely when z = 0, and nowhere else. In fact, the difference
quotient is exactly 0 when z = 0, so the limit does indeed exist there.
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2.4 The Cauchy–Riemann Equations

Here we’re going to see ways to compute complex derivatives (when they exist) without having to
use limits.

Let z = x+ iy. Then Re(f(z)) and Im(f(z)) are real-valued functions of x and y, let’s call them
u(x, y) and v(x, y), respectively, so we can write:

f(z) = u(x, y) + iv(x, y)

If f is complex differentiable at z = x+ iy, then we can compule the limit

lim
h→0

f(z + h)− f(z)

h

along two different paths as in Example ??.

Path 1 (real axis): For a real number h

lim
h→0

f(z + h)− f(z)

h

= lim
h→0

f(x+ h+ iy)− f(x+ iy)

h

= lim
h→0

u(x+ h, y) + iv(x+ h, y)− u(x, y)− iv(x, y)

h

=

(
lim
h→0

u(x+ h, y)− u(x, y)

h

)
+ i

(
lim
h→0

v(x+ h, y)− v(x, y)

h

)
=
∂u

∂x
+ i

∂v

∂x

provided the partial derivatives exist.

Path 2 (imaginary axis): In what follows, h is a real number.

lim
h→0

f(z + ih)− f(z)

ih

= lim
h→0

f(x+ ih+ iy)− f(x+ iy)

ih

= lim
h→0

u(x, y + h) + iv(x, y + h)− u(x, y)− iv(x, y)

ih

=
1

i

(
lim
h→0

u(x, y + h)− u(x, y)

h

)
+

(
lim
h→0

v(x, y + h)− v(x, y + h)

h

)
=
∂v

∂y
− i∂u

∂y

provided the partial derivatives exist.

Since the two limits above must agree in both their real and imaginary parts, we must have that

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Cauchy–Riemann equations (2.4.1)
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Theorem 2.4.1

Suppose z = x+iy and that u, v : R2 → R are differentiable at (x, y). If f(z) = u(x, y)+iv(x, y) is
complex differentiable at z, then u and v satisfy the Cauchy–Riemann equations 2.4.1. Moreover

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i∂u

∂y

Note that the above implication does not guarantee that f is complex differentiable. We actually
require a further assumption about u and v for that to be true.

Theorem 2.4.2

Suppose z = x + iy and that u, v : R2 → R are differentiable at (x0, y0). If the first partial
derivatives of u and v are all continuous at (x0, y0) and satisfy the Cauchy–Riemann equations
at (x0, y0), then f(z) = u(x, y) + iv(x, y) is complex differentiable at z0 = x0 + iy0.

Example 2.4.3

Cosider the function f(z) = z2 defined on all of C. Find the derivative of f .

We have that f(x+ iy) = u(x, y) + iv(x, y) where

u(x, y) = x2 − y2 and v(x, y) = 2xy.

Computing the partial derivatives, we have that

∂u

∂x
= 2x

∂u

∂y
= −2y

∂v

∂x
= 2y

∂v

∂y
= 2x

These satisfy the Cauchy–Riemann equations and at every point (x, y) the first partial derivatives
are all continuous, so f is complex differentiable (in fact, entire) and

f ′(z) = f ′(x+ iy) =
∂u

∂x
+ i

∂v

∂x
= 2x+ 2iy

= 2z

Example 2.4.4: C

nsider the function f(z) = z Im(z), which is defined on all of C. Determine the points at which
f is differentiable.

We have that f(x+ iy) = u(x, y) + iv(x, y) where

u(x, y) = xy and v(x, y) = y2.
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Computing the partial derivatives, we have that

∂u

∂x
= y

∂u

∂y
= x

∂v

∂x
= 0

∂v

∂y
= 2y

At every point (x, y) the first partial derivatives are all continuous, but the Cauchy–Riemann
equations are only satisfied when x = y = 0:

y =
∂u

∂x
=
∂v

∂y
= 2y

x =
∂u

∂y
= −∂v

∂x
= 0

so f is only complex differentiable at z = 0.

The Cauchy–Riemann equations also allow us to prove a fact (which is almost obvious in the real
case).

Proposition 2.4.5

If f ′(z) = 0 for all z in a connected open set S, then f is constant on S.

Proof. If f ′(z) = 0, then it follows that

∂u

∂x
=
∂v

∂y
=
∂u

∂y
=
∂v

∂x
= 0

whence u = const and v = const. Therefore f is constant.
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2.5 Harmonic Functions

We now start making the connection between the real analysis and the complex analysis.

Definition: Harmonic Functions

A real-valued function ϕ(x, y) is said to be harmonic in a connected open set S if all of its
second-order partial derivatives are continuous in S and if

∇2 = ∇ · (∇ϕ) =
∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0

Theorem 2.5.1

If f(z) = u(x, y) + iv(x, y) is analytic in a connected open set S, then each of the functions
u(x, y) and v(x, y) is harmonic in S.

Definition: Harmonic Conjugate

Given a harmonic function u(x, y), the harmonic conjugate is another harmonic function
v(x, y) such that f(z) = u(x, y) + iv(x, y) is an analytic function.

Example 2.5.2

Find an analytic function whose real part is the function u(x, y) = x3 − 3xy2 + y (which is
harmonic on the entire plane).

By the Cauchy–Riemann equations, we have

∂v

∂y
=
∂u

∂x
= 3x2 − 3y2

=⇒ v(x, y) =

∫
∂v

∂y
dy = 3x2y − y3 +K(x)

where K is a function solely in terms of x. Using the other of the Cauchy–Riemann equations,
we have

6xy −K ′(x) =
∂v

∂x
= −∂u

∂y
− (−6xy + 1)

from which it follows that K(x) = x+ const. Therefore

v(x, y) = 3x2y − y3 + x+ const.

is the harmonic conjugate to u(x, y). Moreover, we have that

f(z) = x3 − 3xy2 + y + i(3x2y − y3 − x+ const) = z3 − i(z − const).
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Notice that we have

(∇u) · (∇v) =
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

=
∂u

∂x

∂v

∂x
+

(
−∂v
∂x

)
∂u

∂x
= 0

so if the gradients of u and v are nonzero at a point, then they are perpendicular. Hence

Fact. The level curves of harmonic functions and their harmonic conjugates intersect at right angles.

Example 2.5.3

The level curves for u, v as in Example 2.5.2.

Example 2.5.4

The level curves for the curves u(x, y) = ex cos(y) and v(x, y) = ex sin(y).
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3 Elementary Functions

3.2 The Exponential, Trigonometric, and Hyperbolic Functions

3.2.1 The Exponential Function - Revisited

Recall that

Definition

The complex exponential function ez is defined for all z = x+ iy as

ez := ex cos(y) + iex sin(y)

Using the Cauchy–Riemann equations, one can show the following fact (whose real equivalent is well
known).

Proposition 3.2.1

d

dz
[ez] = ez.

Exercise 3.2.2

Use the Cauchy–Riemann equations to prove Proposition 3.2.1.

The complex exponential does differ from the real exponential in certain behaviors, however.

Example 3.2.3

Find all complex number z = x+ iy so that ez = 1.

Certainly this is true when z = 0, but using the definition of the complex exponential

ez = ex(cos(y) + i sin(y)) = 1

we deduce that sin(y) = 0, and thus Im(z) = y = kπi for some integer k. From that observation
it follows that cos(y) = ±1, so since we require that ex cos(y) = 1 and ex > 0, then we must
have that k is an even integer and x = 0.

Proposition 3.2.4

ez is periodic with periodicity 2πi.

Proposition 3.2.4 also shows us why the real exponential isn’t periodic – all possible periods are
purely imaginary!
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Example 3.2.5

Find all complex numbers z = x+ iy so that ez = 2− 2i.

Note that |ez| = ex = |2− 2i| = 2
√

2, so we get that x = ln(2
√

2). Thus, the equation

ez = ex cos(y) + iex sin(y) = 2− 2i

implies that

2
√

2 cos(y) = 2 and 2
√

2 sin(y) = −2.

Thus

2
√

2 sin(y)

2
√

2 cos(y)
=
−2

2
=⇒ tan(y) = −1

and thus y = arctan(−1) + 2kπ = −π
4

+ 2kπ for any integer k. As such, all possible solutions
are

z = ln(2
√

2)− i
(π

4
+ 2kπ

)
.

3.2.2 Trigonometric Functions

Recall from a previous section that, for any real number θ, we have

cos θ =
eiθ + e−iθ

2

sin θ =
eiθ − e−iθ

2i

Since the complex exponential is defined for all complex numbers, we can thus define the complex
cosine and sine functions.

Definition: F

or any complex number z, we define the complex cosine function as

cos(z) =
eiz + e−iz

2
,

and we define the complex sine function as

sin(z) =
eiz − e−iz

2i
.

Theorem 3.2.6

Both cos(z) and sin(z) are complex differentiable on all of C (i.e. are analytic on all of C).
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Moreover,

d

dz
sin(z) = cos(z),

d

dz
cos(z) = − sin(z).

Proof. We will only prove that cos(z) is complex differentiable, as the proof for sin(z) is the same
mutatis mutandus. Letting z = x+ iy, then we have that iz = −y + ix and −iz = y − ix. So

cos(z) =
1

2
eiz +

1

2
e−iz

=
1

2
e−y+ix +

1

2
ey−ix

=
1

2
e−y (cosx+ i sinx) +

1

2
ey (cosx− i sinx)

=
1

2
cos(x)

(
ey + e−y

)
+
i

2
sin(x)

(
ey − e−y

)
.

Let

u(x, y) =
1

2
cos(x)

(
ey + e−y

)
v(x, y) =

i

2
sin(x)

(
ey − e−y

)
.

One can check the u and v satisfy the Cauchy–Riemann equations. Moreover, all of the first partial
derivatives of u and v are continuous, so by Theorem 2.4.2, cos(z) is differentiable.

Exercise 3.2.7

With u, v as given in the above, check that they do indeed satify the Cauchy–Riemann equations
and show that d

dz
cos(z) = − sin(z).

It’s worth noting that the complex trig functions cos(z) and sin(z) are unbounded functions (to see
this, take the imaginary part of z to be arbitrarily large). As it turns out, all of the familiar behavior
of sine and cosine happens only in the real numbers. Precisely,

Theorem 3.2.8

1. sin(z) = 0 precisely when z = kπ for any integer k.

2. cos(z) = 0 precisely when z = 1
2
(2k + 1)π for any integer k.

3. The complex sine and cosine functions are period with period 2π.

The remaining trigonometric functions can also be made complex in the obvious ways:

Definition

The complex secant, cosecant, tangent, and cotangent are defined as

sec(z) =
1

cos(z)
, csc(z) =

1

sin(z)
,

tan(z) =
sin(z)

cos(z)
, cot(z) =

cos(z)

sin(z)
,
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provided sin(z) 6= 0 or cos(z) 6= 0 when appropriate.

Theorem 3.2.9

The remaining complex trigonometric functions are complex differentiable on their domains (i.e.
analytic) and have the following complex derivatives:

d

dz
sec(z) = sec(z) tan(z),

d

dz
csc(z) = − csc(z) cot(z),

d

dz
tan(z) = sec2(z),

d

dz
cot(z) = − csc2(z)

Proof. That these functions are complex differentiable is an immediate consequence of the differen-
tiability of sin(z) and cos(z) in conjunction with Proposition ??. Since we now know the complex
derivatives of sine and cosine, verification of derivatives is a sraightforward computation and is left
as an exercise for the reader.
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3.3 The Logarithmic Function

Before we begin, we mention that functions (by definition) are always single-valued: every input has
one single output. However, we’ve encountered situations where things that would reasonably be
called functions, say f(z) = arg(z) or f(z) = z1/m, actually have multiple (even infinitely-many)
outputs. Such things are called multivalued functions and they usually arise when trying to define
the inverse of a function that is not one-to-one.

Remark. Notationally, your book uses “Log” to mean the normal natural logarithm for real numbers
and ”log” for the complex logarithm. However, this idea is somewhat inconsistent with our usage of
arg and Arg, so instead we’ll use “ln” for the real natural logarithm.

Suppose z is fixed and we are trying to find all w for which ew = z. We can make things a bit easier
if we put z into polar form (z = reiθ) and rewrite w = u+ iv. Now we have

eueiv = eu+iv = ew = z = reiθ (3.3.1)

Since |eiv| = |eiθ| = 1, and since eu and r are both positive, taking magnitudes of both sides gives us

eu = |eu||eiv| = |r||eiθ| = r

hence u = ln(r) = ln(|z|).
But now Equation 3.3.1 simplifies to

eiv = eiθ.

Since the complex exponential has periods of the form 2kπi for integers k, it must be that
v = θ + 2kπ for some integer k. As such, the answer to our original equation is

w = ln |z|+ i(θ + 2kπ)

where θ is an argument for z and k is any integer. From this we define

Definition: Complex Logarithm

If z is a nonzero complex number, then the (complex) logarithm, log(z), is the set of complex
numbers

log(z) := ln |z|+ i arg(z)

:= ln |z|iArg(z) + 2kπi

where k ranges over all integers. The principal value of log(z) is

Log(z) := ln |z|+ iArg(z).

Note that log(z) is a multi-valued function, but Log(z) is a single-valued function.
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Definition: A

function F (z) is said to be a branch of a multi-valued function f(z) in a domain D if F (z) is
a single-valued, continuous function on D and F (z) is one of the values of f(z).

Remark. Log(z) is a branch of log(z), Arg(z) is a branch of arg(z).

Example 3.3.1

Compute log(z) where z = 1 + i
√

3.

Since |z| = 2 and z has an argument θ = π
3
, we have that

log(z) = ln 2 + i
(π

3
+ 2kπ

)
Proposition 3.3.1. Log(z) is analytic on C− {the non-positive real axis}. Moreover,
d

dz
[Log(z)] = 1

z

Proof. We first mention that the strange domain is reasonable - when z = 0, Log(z) is undefined.
Also, Arg(z) isn’t continuous on the negative real axis.
To prove that Log(z) is analytic, we’ll approach with the Cauchy–Riemann equations, which means
we need

Log(x+ iy) = ln |x+ iy|+ iArg(x+ iy) = u(x, y) + iv(x, y)

We have that

u(x, y) = ln |x+ iy| = ln(
√
x2 + y2)

v(x, y) = Arg(x+ iy) = arctan 2(y, x) = 2 arctan

(
y√

x2 + y2 + x

)
(arctan(y/x) only returns a value between−π/2 and π/2, so using the half-angle formula for tangent,
this new version returns a value between −π and π, as desired.) It is straightforward to compute

∂u

∂x
=

x

x2 + y2
=
∂v

∂y
∂u

∂y
=

y

x2 + y2
= −∂v

∂x

so since the first partials of u, v are continuous on the indicated domain, then it follows that Log(z)
is analytic on this domain. Moreover

d

dz
[Log(z)] =

∂u

∂x
+ i

∂v

∂x

=
x

x2 + y2
+ i

−y
x2 + y2

=
x− iy

(x+ iy)(x− iy)
=

1

x+ iy
=

1

z
.
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Figure 3.3.1: The domain of Log(z)

Corollary 3.3.2

ln |z| and Arg(z) are harmonic on the domain described in the previous proposition.
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3.5 Complex Powers and Inverse Trigonometric Functions

3.5.1 Complex Powers

Let z be a nonzero complex number. Then we have that

elog(z) = eln |z|+Arg(z)+2πik = eln |z|eArg(z)e2πik = |z|eiArg(z) = z

It follows that...

Definition

Let z 6= 0. For any complex w, we define

zw := ew log(z).

This definition is consistent with the discussion of roots earlier, and it’s easy to check that we get the
following:

� If w is a real integer, then zw has one value.

� If w = p
q

is a real rational number, then zw has q values.

� In any other case, zw takes infinitely-many values, one for each value of log(z).

From the chain rule it follows that

Proposition 3.5.1

f(z) = za is analytic in the same domain as Log(z), that is C − (−∞, 0]. Moreover,
d

dz
[za] =

aza−1.

Example 3.5.2

Find ii.

i = eiπ/2, so log(i) = i(π/2 + 2kπ) for any integer k. Hence

ii = ei log(i) = ei
2(π/2+2kπ) = eπ/2+2kπ

for any integer k.

Remark. Yes. ii produces real numbers.

Example 3.5.3

Another Example Here
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3.5.2 Inverse Trig Functions

Recall that for a real function y = f(x), one often finds the inverse by replacing y and x (i.e. writing
y = f(x) and trying to solve for solve for y in terms of x.

Let w = tan(z). We aim to find the inverse, so we write z = tan(w) and solve for w (which will
produce arctan(z)).

z = tan(w) =
eiw − e−iw
i (eiw + e−iw)

=⇒ 0 = i
(
eiw + e−iw

)
z −

(
eiw − e−iw

)
0 = e2iwz − iz + ie2iw − i (multiply everything by − ieiz)
0 = (z + i)e2iw − (iz + i)

=⇒ e2iw =
iz + i

z + i

eiw =

(
iz + i

z + i

)1/2

iw =
1

2
log

[
iz + i

z + i

]
w =

−i
2

log

[
iz + i

z + i

]

Fiddling with the algebra just a bit, and applying similar arguments, one obtains the following:

Definition: Inverse Trig Functions

� arctan(z) =
i

2
log

[
i+ z

i− z

]
� arcsin(z) = −i log

[
iz + (1− z2)1/2

]
� arccos(z) = −i log

[
z + (z2 − 12)1/2

]
It turns out that the derivatives of the inverse trig functions have familiar derivatives

Proposition 3.5.4

�

d

dz
arcsin(z) =

1

(1− z2)1/2

�

d

dz
arccos(z) =

−1

(1− z2)1/2

�

d

dz
arctan(z) =

1

1 + z2

Exercise 3.5.1. Prove the formulae in Proposition ??.
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4 Complex Integration

4.1 Contours

Given our identification of the real plane X2 and the complex plane C, we can consider curves in the
complex plane.

Definition: Contours

Let γ be the function

γ : [a, b]→ C
γ(t) = x(t) + iy(t)

where x(t), and y(t) are real-valued. γ is called a contour if (x(t), y(t)) is a piecewise smooth
curve in the plane, X2. Just as before, if γ is comprised of several smooth curves γ1, . . . , γn, we
write

γ(t) = γ1 ⊕ γ2 ⊕ · · · ⊕ γn(t) =


γ1(t) when a ≤ t ≤ t1

γ2(t) when t1 < t ≤ t2
...

γn(t) when tn−1 < t ≤ b

A contour is closed if γ(a) = γ(b), and is simple if γ(t1) 6= γ(t2) for any a < t1 < t2 < b.

Piecewise smooth curves can have finitely-many corners or cusps.

γ1
γ2

γ3
· · ·

γi

γi+1

...

γn

real

im
ag

.

Example 4.1.1

Parameterize a contour traversing the circle of radius 2, counter-clockwise.

In X2, the usual parameterization would be

σ(t) = (2 cos(t), 2 sin(t)), for 0 ≤ t ≤ π
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Thus, in the complex plane we have

γ(t) = 2 cos(t) + i2 sin(t) = 2eit

Example 4.1.2

Parameterize a contour traversing the circle of radius r, centered at z0, counter-clockwise.

Letting z0 = x0 + iy0, in X2, the usual parameterization would be

σ(t) = (x0 + r cos(t), y0 + 2 sin(t)), for 0 ≤ t ≤ π

Thus, in the complex plane we have

γ(t) = r cos(t) + x0 + ir sin(t) + iy0 = reit + z0

Example 4.1.3

Parameterize a contour traversing the line segment from z0 to z1.

Letting z0 = x0 + iy0 and z1 = x1 + iy1, the usual parameterization in X2 is givne by

σ(t) = (x0(1− t) + x1t, y0(1− t) + y1t), for 0 ≤ t ≤ 1.

Thus, in the complex plane, we have

γ(t) = x0(1− t) + x1t+ iy0(1− t) + iy1t = z0(1− t) + z1t

4.1.1 Arc Length

Letting z(t) = x(t) + iy(t) for some real parameter t, we have that dz
dt

= dx
dt

+ idy
dt

, and thus

∣∣∣∣dzdt
∣∣∣∣ =

√(
dx

dt

)2

+

(
dy

dt

)2

.

The right-hand-side of this equation is the infinitesimal change in arc length, hence we define arc
length of a contour as follows:

Definition

If γ : [a, b]→ C is a contour, then the length of γ is given by

length(γ) =

∫ b

a

∣∣∣∣dzdt
∣∣∣∣ dt.
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4.2 Contour Integrals

Definition

Suppose γ = γ1 ⊕⊕γ2 ⊕ · · · ⊕ γn is a piecewise smooth curve defined for a ≤ t ≤ b (where γk(t)
is defined for ak ≤ t ≤ bk, a = a1, and b = bk) and assume f is continuous at all points along
the curve. Then the contour integral of f along γis∫

γ

f(z) dz =
n∑
k=1

∫ bk

ak

f(γk(t))γ
′
k(t) dt.

Example 4.2.1

Compute
∫
γ
z dz for γ = γ1 ⊕ γ2, where

γ1(t) = 2 + 2ti (0 ≤ t ≤ 1),

γ2(t) = 4− 2t+ i(4− 2t) (1 < t ≤ 2).

We have that∫
γ

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz =

∫ 1

0

f(γ1(t))γ′1(t) dt+

∫ 2

1

f(γ2(t))γ′2(t) dt.

Computing these integrals separately,

∫ 1

0

f(γ1(t))γ′1(t) dt =

∫ 1

0

(2− 2ti)(2i) dt

=

∫ 1

0

4t+ 4i dt = 2 + 4i,

and ∫ 2

1

f(γ2(t))γ′2(t) dt

=

∫ 2

1

(4− 2t− 4i+ 2ti)(−2− 2i) dt

=

∫ 2

1

8t− 16 dt = −4.

γ1
γ2

real

im
ag
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Hence
∫
γ
f(z) dz = (2 + 4i) + (−4) = −2 + 4i.

Example 4.2.2

For some fixed z0 and positive real number r, let γ be the circle |z − z0| = r traversed once in
the counterclockwise direction. For each integer n 6= 1, compute

∫
γ
(z − z0)n dz.
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We know that the circle of radius r centered at the origin is parameterized by reit for 0 ≤ t ≤ 2π,
so we can write γ(t) = z0 + reit for 0 ≤ t ≤ 2π.

∫
γ

f(z) dz =

∫
γ

(z − z0)n dz

=

∫ 2π

0

(γ(t)− z0)nγ′(t) dt

=

∫ 2π

0

(rneint)(ireit) dt

=

∫ 2π

0

irn+1ei(n+1)t dt

= irn+1

( −i
n+ 1

)
ei(n+1)t

∣∣∣∣t=2π

t=0

= 0.

γ

z0
real

im
a
g.

Example 4.2.3

For some fixed z0 and positive real number r, let γ be the circle |z − z0| = r traversed once in
the counterclockwise direction. Compute

∫
γ

1
z−z0 dz.

We know that the circle of radius r centered at the origin is parameterized by reit for 0 ≤ t ≤ 2π,
so we can write γ(t) = z0 + reit for 0 ≤ t ≤ 2π.

∫
γ

f(z) dz =

∫
γ

1

z − z0

dz

=

∫ 2π

0

γ′(t)

γ(t)− z0

dt

=

∫ 2π

0

ireit

reit
dt

=

∫ 2π

0

i dt

= 2πi.

γ

z0
real

im
ag
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So now we conclude that, if γ is any circle centered at z0, then∮
γ

(z − z0)n dz =

{
0 when n 6= −1,

2πi when n = −1.

Theorem 4.2.4: Properties of Complex Integrals

Let f and g be integrable over some (piecewise) smooth curve γ.

1.

∫
γ

(f(z) + g(z)) dz =

∫
γ

f(z) dz +

∫
γ

g(z) dz.
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2. For any complex number c,

∫
γ

cf(z) dz = c

∫
γ

f(z) dz.

3. Reversing orientation of the curve changes the integral sign. If γ̃ is the same curve as γ,
traversed in the opposite direction, then∫

γ̃

f(z) dz = −
∫
γ

f(z) dz.

4.

∫
γ

f(z) dz can be written as a sum of two real line integrals: Suppose γ is defined on [a, b].

Then we have that

f(z) = u(x, y) + iv(x, y) and dz = (x′(t) + iy′(t)) dt.

Then∫
γ

f(z) dz =

∫ b

a

(u(x, y) + iv(x, y)) (x′(t) + iy′(t)) dt

=

∫ b

a

u(x, y)x′(t) dt− v(x, y)y′(t), dt+ iu(x, y)y′(t) dt+ iv(x, y)x′(t) dt

=

∫
γ

(u dx− v dy) + i

∫
γ

(u dy + v dx)

5. Let γ be a smooth curve defined on [a, b], let L be its length, and let f be continuous on
γ. If f(z) is bounded by M (i.e. |f(z)| ≤M for all z on γ), then∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ ≤ML.

Example 4.2.5

Using Part 5 of the above Theorem (4.2.4), find a bound for

∣∣∣∣∫
γ

1

1 + z
dz

∣∣∣∣ where γ is the straight

line segment from 2 + i to 2− 3i.

γ
real

im
ag

.
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We are looking for a number M so that

∣∣∣∣ 1

z + 1

∣∣∣∣ ≤ M for z-values on γ. Notice that |z + 1| =

|z − (−1)| is just the distance from a point z to −1, so the smallest value of |z + 1| (and thus,

the largest value of

∣∣∣∣ 1

z + 1

∣∣∣∣) occurs when γ is closest to −1. Looking at the picture, it’s not hard

to see that this happens when γ passes through 2. So we have that, for all z on the curve γ

|z + 1| ≥ |2 + 1| = 3 =⇒
∣∣∣∣ 1

z + 1

∣∣∣∣ ≤ 1

3
= M.

Since γ is a line segment with length L = 4, then by Theorem 4.2.4, it follows that∣∣∣∣∫
γ

1

1 + z
dz

∣∣∣∣ ≤ML =

(
1

3

)
(4) =

4

3
.

Computing the integral exactly, we write γ(t) = 2− ti for −1 ≤ t ≤ 3. Then∫
γ

1

1 + z
dz =

∫ 3

−1

γ′(t)

1 + γ(t)
dt

=

∫ 3

−1

−i
3− ti dt

=

∫ 3

−1

−i(3 + ti)

9 + t2
dt

=

∫ 3

−1

t

9 + t2
− i 3

9 + t2
dt

=

[
1

2
ln
(
9 + t2

)
− i arctan

(
t

3

)]3

−1

≈ 0.293893− 1.10715i

and the modulus of this complex number is approximately 1.14549.
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4.3 Independence of Path

Suppose F (z) is analytic on some domain D, and write f(z) = F ′(z). Let γ : [a, b]→ D be a smooth
path in D and write z = γ(t). Then we have

∫
γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt

Notice that, by the chain rule,

dF

dt
=
dF

dz

dz

dt
= f(γ(t))γ′(t) dt

whence ∫ b

a

f(γ(t))γ′(t) dt =

∫ b

a

dF (γ(t))

dt
dt = F (γ(b))− F (γ(a))

If γ is a contour (i.e. γ = γ1 ⊕ · ⊕ γn for some smooth paths γj), then this formula extends to sums∫ b

a

f(γ(t))γ′(t) dt =
n∑
j=1

∫ tj

tj−1

dF (γj(t))

dt
dt =

n∑
j=1

F (γj(tj−1))− F (γ(tj))

This sum is telescoping, hence reduces to

F (γ(b))− F (γ(a))

With this observation, we conclude the following (which can be thought of as an extension of the
Fundamental Theorem of Calculus

Theorem 4.3.1: Independence of Path

If f(z) is continuous in a domain D and has an antiderivative F (z), then for any contour
γ : [a, b]→ D in D we have that∫

γ

f(z) dz = F (γ(b))− F (γ(a))

The following is immediate:

Corollary 4.3.2

If f(z) is continuous in a domain D and has an antiderivative F (z), then for any closed contour
γ : [a, b]→ D in D we have that ∫

γ

f(z) dz = 0
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Example 4.3.3

Evaluate

∫
γ

sin2(z) cos(z) dz where γ(t) =
eit(2π2 − πt+ it)

2π
and 0 ≤ t ≤ 2π.

−π π

−4ı

−3i

−2i

−i

i

2i

3i

4i

real

im
ag

.

We recognize that F (z) = 1
3

sin3(z) is an antiderivative for f(z) = sin2(z) cos(z), so since γ(0) =
π and γ(2π) = i, we have that∫

γ

sin2(z) cos(z) dz =
1

3
sin3(i)− 1

3
sin3(π) =

1

3
sin3(i) ≈ −0.541023i

In Example 4.2.3 we computed
∫
γ
(z − z0)n dz where z0 was some fixed number and γ was a circle of

radius r centered at 0. Let’s look at it again. Specifically, after parameterizing γ(t) = z0 + reit with
a ≤ t ≤ b, we obtained∫

γ

f(z) dz =

∫ b

a

(γ(t)− z0)nγ′(t) dt
rn+1ei(n+1)b

n+ 1
− rn+1ei(n+1)a

n+ 1
.

However, knowing about the power rule/chain rule, we see that F (z) =
1

n+ 1
(z − z0)n+1 is an

antiderivative for f(z) = (z − z0)n, and it’s fairly clear that the above can be rewritten

rn+1ei(n+1)b

n+ 1
− rn+1ei(n+1)a

n+ 1
=

(γ(b)− z0)n+1

n+ 1

(γ(a)− z0)n+1

n+ 1
= F (γ(b))− F (γ(a))

Exercise 4.3.4

Show that
∮
γ

1
(z−z0)

dz by using the antiderivative/independence of path technique on a circle γ

centered at z0. Note that you will require two different branches of log(z − z0).

The same cannot be said about Example 4.2.1 – what exactly is the antiderivative of f(z) = z? Let’s
compute that integral for a different path from 2 to 0 and see if it’s even independent of path.
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Example 4.3.5

Compute
∫
γ
z dz for γ(t) = 2− t, where 0 ≤ t ≤ 2.

We have that γ(t) = −1, thus ∫
γ

z dz =

∫ 2

0

γ(t)γ′(t) dt

=

∫ 2

0

t− 2 dt = −2.

This is not the value we obtained in Example 4.2.1, so f(z) = z is not independent of path.

It turns out that the existence of an antiderivative is actually quite tied to the independence of path.

Theorem 4.3.6

Suppose f is continuous in some domain D. The following are equivalent.
1. f has an antiderivative.

2.
∫
γ
f(z) dz is independent of path for every contour γ in D.

3.
∫
γ
f(z) dz = 0 for every closed contour in D.
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4.4 Cauchy’s Integral Theorem

Notice that, if f(z) has an antiderivative F (z) on some domain D, then F (z) is analytic on the
domain D. So Corollary 4.3.2, where ∮

γ

f(z) dz = 0

kind of feels like it’s maybe a statement about analyticity.

As it turns out, Gauss noticed this same thing in 1811 and Cauchy published it in his book in 1890
(which is why it gets Cauchy’s name).

Theorem 4.4.1: Cauchy’s Theorem

Suppose f is analytic on a simply connected domain S. Then∮
γ

f(z) dz = 0

for every closed path γ in S.

There are at least a couple of distinct ways to prove this, and we’ll present two strategies – one way
using a more topological/complex analytic viewpoint, and another way appealing to Green’s
Theorem.

4.4.1 A Deformation of Contours Approach

Definition

Let γ0 and γ1 be contours in a region D. We say that we can deform γ0 into γ1 if we can
find a continuous family of contours Γ(s, t) in D with 0 ≤ s ≤ 1 so that γ0(t) = Γ(0, t) and
γ1(t) = Γ(1, t).

This definition is a little bit subtle, but the idea is that you treat Γ(s, t) as a function of two
variables, s and t, and you want it to be a continuous function of two variables.

Example 4.4.2

Show that the curve γ0(t) = (2 + 2i)− t(t− 2π)eit (with 0 ≤ t ≤ 2π) can be deformed into the
curve γ1(t) = 2eit entirely within the domain 2 < |z < 10.

Let Γ(s, t) = (1− s)γ0(t) + sγ1(t).
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Independence of path suggests that, with minor assumptions, when integrating over a closed path,
we can always try to integrate over a more convenient closed path.

Theorem 4.4.3: Deformation Theorem

et Γ and γ be closed contours with γ in the interior of Γ. Suppose f is differentiable on a set S
containing both paths and all points in between them. Then∮

Γ

f(z) dz =

∮
γ

f(z) dz.

γ

Γ
S

real

im
ag

.

Figure 4.4.1: Assumptions of deformation theorem.

γ

Γ

real

im
ag

.

Figure 4.4.2: Step-by-step, the outer path Γ is being “deformed” and
shrinking to the inner path γ.

Proof. Let z0, z1 be any two distinct points on Γ and let w0, w1 be any two distinct points on γ.
Let Γ1 be the path from z0 to z1 and Γ2 the path from z1 to z0 so that Γ = Γ1 ⊕ Γ2. Similarly let
γ1 be the path from w0 to w1 and γ2 is the path from w1 to w0 so that γ = γ1 ⊕ γ2. Finally, let L0

be a path from w0 to z0, and L1 a path w1 to z1 (without loss of generality, we can choose L0 and
L1 so that they do not cross). We have the picture below.
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L0

L1

γ1

γ2

Γ1

Γ2

S

w0

w1

z0

z1

By Cauchy’s Theorem we have that∮
Γ1⊕(−L1)⊕(−γ1)⊕L0

f(z) dz = 0,∮
Γ2⊕(−L0)⊕(−γ2)⊕L1

f(z) dz = 0.

Recall that∮
Γ1⊕(−L1)⊕(−γ1)⊕L0

f(z) dz =

∫
Γ1

f(z) dz −
∫
L1

f(z) dz −
∫
γ1

f(z) dz +

∫
L0

f(z) dz∮
Γ2⊕(−L0)⊕(−γ2)⊕L1

f(z) dz =

∫
Γ2

f(z) dz −
∫
L0

f(z) dz −
∫
γ2

f(z) dz +

∫
L1

f(z) dz

So,

0 =

∮
Γ1⊕(−L1)⊕(−γ1)⊕L0

f(z) dz +

∮
Γ2⊕(−L0)⊕(−γ2)⊕L1

f(z) dz

=

∫
Γ1

f(z) dz +

∫
Γ2

f(z) dz −
∫
γ1

f(z) dz −
∫
γ2

f(z) dz

=

∫
Γ1⊕Γ2

f(z) dz −
∫
γ1⊕γ2

f(z) dz

=

∮
Γ

f(z) dz −
∮
γ

f(z) dz

hence ∮
Γ

f(z) dz =

∮
γ

f(z) dz.
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4.4.2 Rational Functions

Following from Cauchy’s Theorem/The Deformation Theorem, We know that∮
γ

(z − z0)n dz =

{
0 when n 6= −1,

2πi when n = −1,

for any contour γ that encloses z0 and∮
γ

(z − z0)n dz = 0

for any contour γ that does not enclose z0.

More generally, if p(z) is any polynomial, then we can do polynomial long division to write

p(z)

z − z0

= r(z) +
A

z − z0

where r is some other polynomial and A is a constant, which yields∮
γ

p(z)

z − z0

dz =

∮
γ

q(z) +
A

z − z0

dz = 0 + A(2πi).

Even more generally, if p(z) and q(z) = (z − z0)(z − z1) · · · (z − zn) are any polynomials, then we can
applying polynomial long division and partial fraction decompositions to write

p(z)

q(z)
= r(z) +

A0

z − z0

+
A1

z − z1

+ · · ·+ An
z − zn

for some other polynomial r and constants A0, A1, . . . , An. From this it follows that, if γ is a contour
enclosing z0, . . . , zk (and not enclosing zk+1, . . . , zn), then∮

γ

p(z)

q(z)
dz =

∮
γ

r(z) +
A0

z − z0

+ · · ·+ Ak
z − zk

+
Ak+1

z − zk+1

+ · · ·+ An
z − zn

dz

= 0 + A0(2πi) + A1(2πi) + · · ·+ Ak(2πi) + 0 · · ·+ 0.

None of the above considers multiplicity, so assume that q(z) = (z − z0)n for n > 1. We know from
the rules of partial fractions decompositions that we can write

p(z)

q(z)
= r(z) +

B1

z − z0

+
B2

(z − z0)2
+ · · ·+ B2

(z − z0)n

for some polynomial r(z) and constants B1, . . . , Bn. The boxed facts above implies that, if γ encloses
z0, then ∮

γ

p(z)

q(z)
dz =

∮
γ

r(z) +
B1

z − z0

+
B2

(z − z0)2
+ · · ·+ Bn

(z − z0)n
dz

= 0 +B1(2πi) + 0 + · · ·+ 0
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In this sense, the only things we need to evaluate contour integrals of rational functions are (1) the
denominator’s roots zj which are enclosed by γ and (2) the constant coefficients in the numerator for
each (z − zj) term!

But is there an easier way to figure out what that numerator coefficient is? Let’s try some examples.

z + 2

z − z0

=
(z − z0) + (z0 + 2)

z − z0

= 1 +
z0 + 2

z − z0

z2 + 3

z − z0

=
(z − z0)2 + 2z0z − 2z2

0 + z2
0 + 3

z − z0

= (z − z0) + 2 +
z2

0 + 3

z − z0

3z2 + 5z + 7

z − z0

=
3(z − z0)2 + 6z0(z − z0) + 3z2

0 + 5z0 + 7

z − z0

= 3(z − z0) + 6z0 +
3z2

0 + 5z + 7

z − z0

What we’re seeing is the classical algebraic fact:

For any polynomial p(z) and any number z0,

p(z)

z − z0

= q(z) +
p(z0)

z − z0

where q(z) is some other polynomial.

Example 4.4.4

Evaluate

∮
γ

z800 + 1

z − i dz where γ is any loop enclosing i.

∮
γ

z800 + 1

z − i dz =

∮
γ

q(z) +
i800 + 1

z − i dz =

∮
γ

q(z) +
2

z − i dz = 0 + 2(2πi).
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4.5 Cauchy’s Integral Formula and Its Consequences

In Example ??, we saw that, for z0 = 2i ∮
C

1

z − z0

dz = 2πi,

where C was a circle of radius 1 centered at z0. By the Deformation Theorem, we can conclude that
in fact that should be true for any closed path γ surrounding z0 (and in fact, the particular choice of
z0 is also unimportant). So it may be reasonable to ask, what happens if we consider a slightly more
general integral like the one below? ∮

γ

f(z)

z − z0

dz

For simplicity, we’ll assume γ lives in a domain, that f is differentiable on that domain, and that γ
encloses a simply connected domain containing z0. Then∮

γ

f(z)

z − z0

dz =

∮
γ

f(z)− f(z0) + f(z0)

z − z0

dz

=

∮
γ

f(z0)

z − z0

dz +

∮
γ

f(z)− f(z0)

z − z0

dz

= 2πif(z0) +

∮
γ

f(z)− f(z0)

z − z0

dz

What we want to know is that happens to that second integral. By the deformation theorem, it
suffices to consider the case when γ is a small circle around z0, so for some small radius r, we can
parameterize γ as

γ(t) = z0 + reit 0 ≤ t ≤ 2π.

Then ∮
γ

f(z)− f(z0)

z − z0

dz =

∫ 2π

0

f(z0 + reit)− f(z0)

reit
ireit dt

= i

∫ 2π

0

f(z0 + reit)− f(z0) dt.

Since the integrand can be negative, it follows that∣∣∣∣i ∫ 2π

0

f(z0 + reit)− f(z0) dt

∣∣∣∣ ≤ ∫ 2π

0

|f(z0 + reit)− f(z0)| dt.

Now, by continuity of f at z0,

lim
r→0
|f(z0 + reit)− f(z0)| = 0

so this implies that ∣∣∣∣i ∫ 2π

0

f(z0 + reit)− f(z0) dt

∣∣∣∣ = 0

and thus ∮
γ

f(z)− f(z0)

z − z0

dz = 0.
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Theorem 4.5.1: Cauchy’s Integral Formula

Let f be differentiable on an open set S. Let γ be a closed path in S enclosing only points of S.
Then, for any z0 enclosed by γ,

f(z0) =
1

2πi

∮
γ

f(z)

z − z0

dz

Example 4.5.2

Let γ be any closed path that does not pass through i and let f(z) = 85eiz
100π. Evaluate∮

f(z)

z − i dz.

Note: f(z) is differentiable for all z ∈ C.
Case 1 (γ does not enclose i): Then by Cauchy’s Theorem∮

γ

f(z)

z − i dz = 0

Case 2 (γ encloses i): Then by Cauchy’s Integral Formula∮
γ

f(z)

z − i dz = 2πi(85eiπ) = −170πi.

Example 4.5.3

Let γ be any closed path that encloses both i or 4i and let f(z) = 85eiz
100π. Evaluate∮

γ

f(z)

(z − i)(z − 4i)
dz.

Let γi be a small loop around i and γ4i be a small loop around 4i. From Cauchy’s Theorem, we
can write ∮

γ

f(z)

(z − i)(z − 4i)
dz =

∮
γi

f(z)

(z − i)(z − 4i)
dz +

∮
γ4i

f(z)

(z − i)(z − 4i)
dz

Cauchy’s Integral Formula only works if the denominator is a linear term, so the initial guess

is that we’ll have to do something like partial fractions. However, notice that
f(z)

z − i is analytic

inside of γ4i and
f(z)

z − 4i
is analytic inside γi. So wr can further rewrite∮

γi

f(z)

(z − i)(z − 4i)
dz +

∮
γ4i

f(z)

(z − i)(z − 4i)
dz =

∮
γi

f(z)/(z − 4i)

z − i dz +

∮
γ4i

f(z)/(z − i)
z − 4i

dz

and now apply Cauchy’s Integral Formula

= 2πi

(
f(i)

i− 4i

)
+ 2πi

(
f(4i)

4i− i

)
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= 2πi

(
85ei·i

100π

−3i
+

85ei·(4i)
100π

3i

)

We can even cleverly use Cauchy’s Integral Formula to evaluate some real integrals that would have
made us cry in MATH 1226. (It might still make you cry now, but at least it can be solved without
resorting to numerical techniques.)

Example 4.5.4

Evaluate

∫ 2π

0

ecos(θ) cos(sin(θ)) dθ.

Before tackling this head-on, we first examine another contour integral. By Cauchy’s Theorem,
for any closed path γ that encloses 0,∮

γ

ez

z
dz = 2πie0 = 2πi.

Letting γ(θ) = eiθ be the unit circle, we have∮
γ

ez

z
dz =

∫ 2π

0

ee
iθ

eiθ
ieiθ dθ = i

∫ 2π

0

ee
iθ

dθ

= i

∫ 2π

0

ecos θei sin θ dθ

= i

∫ 2π

0

ecos θ (cos(sin θ) + i sin(sin θ)) dθ

= −
∫ 2π

0

ecos θ sin(sin θ) dθ + i

∫ 2π

0

ecos θ cos(sin θ) dθ

Notice that the imaginary part of this integral is exactly what we set out to solve! So its value
must be the same as the imaginary part of 2πi!∫ 2π

0

ecos θ cos(sin θ) dθ = 2π.

Remark. You are not expected to just have the brilliant insight and cleverness to use contour
integrals in that way; even WolframAlpha resorts to numerical techniques when given that integral.
It’s just really interesting to see that, with enough ingenuity, even some complicated real integrals
can have deceptively simple values.

Theorem 4.5.5: Cauchy’s Integral Formula for Derivatives

Let f , S, γ, and z0 be as in Cauchy’s Integral Formula. Then for any integer n ≥ 0

f (n)(z0) =
n!

2πi

∮
γ

f(z)

(z − z0)n+1
dz
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Proof. The proof is a bit tedious, but more-or-less comes down to applying Cauchy’s integral formula
to the definition of the derivative and simplifying the terms.

Example 4.5.6

Evaluate

∮
γ

ez
3

(z − i)3
dz where γ is a closed path that encloses i.

Let f(z) = ez
3
. Since γ encloses i and f is differentiable on all of C, we can compute f ′′(z) and

then apply Cauchy’s Integral Formula for Derivatives.

f ′(z) = 3z2ez
3

, and f ′′(z) = (6z + 9z4)ez
3

hence ∮
γ

ez
3

(z − i)3
dz =

2πi

2!
f ′′(i) = πi(6i+ 9)e−i.

Not only does Cauchy’s integral formula kind of feel like cheating, it actually has the following
completely amazing consequence.

Corollary 4.5.7

Suppose f is complex analytic on an open set S. Then all derivatives f exist on S.

This is very different from the behavior in real analysis. For example. f(x) = x2/3 is differentiable on
all of R, but the second derivative does not exist at x = 0.
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5 Series Representations for Analytic Functions

5.1 Sequences and Series

We assume familiarity with real sequences and series.

Definition: Sequence

A sequence of complex numbers is an infinite collection {z1, z2, . . . , } where zn is a complex
number for every nonnegative integer n. We sometimes denote sequnces {zn}∞n=0 or just {zn}.

Definition

Let {zn} be a sequence of complex numbers. For every zn, there are real numbers xn, yn such
that zn = xn + iyn. The limit of {zn} is a complex number L = a+ ib where

lim
n→∞

xn = a and lim
n→∞

yn = b.

In this case we write lim
n→∞

zn = L or possibly just zn → L.

Definition

Given a sequence of complex numbers {cn}, a series is a sequence of partial sums

∞∑
n=0

cn = lim
k→∞

k∑
n=0

cn.

If this limit exists, we say that the series converges.

Proposition 5.1.1

For each complex number cn in the sequence {cn}, write cn = an + ibn for real an, bn. Then∑∞
n=0 cn converges to a complex number C = A+ iB if and only if

∑∞
n=0 an = A and

∑∞
n=0 bn =

B.

So convergence of complex series is equivalent to asking about convergence of real series. Although
the reader is assumed to be familiar with these convergence tests, we will state them again for
complex series.

Theorem 5.1.2: Divergence Test

If limn→∞zn 6= 0, then the series
∞∑
n=0

zn diverges.
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Theorem 5.1.3: Comparison Test

Suppose
∞∑
n=0

zn is a series of complex numbers and
∞∑
n=0

Mn is a series of real numbers with

|zn| ≤Mn for all n.

1. If
∞∑
n=0

Mn converges, then
∞∑
n=0

zn converges.

2. If
∞∑
n=0

zn diverges, then
∞∑
n=0

Mn diverges.

Remark. It may be worth noting that the Comparison Test for complex series is slightly different
than expected. You may have initially wanted to compare two terms of a series, but given two
complex numbers z and w, the inequality z ≤ w does not have a meaning (the fancy phrase is that
“there is no partial ordering on C which respects the field structure”.) The next best thing, which is
how the theorem is stated, is to compare the magnitude of the terms of a real series.

Theorem 5.1.4: Ratio Test

Consider the series
∞∑
n=0

zn and let lim
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣.
1. If L > 1,

∞∑
n=0

zn diverges.

2. If L < 1,
∞∑
n=0

zn converges.

Theorem 5.1.5: Geometric Series

The series
∞∑
n=0

azn converges if and only if |z| < 1.

Moreover, if
∞∑
n=0

azn converges, then it converges to
a

1− z .

Definition

A series of complex numbers
∑∞

n=0 cn converges absolutely if the real series
∑∞

n=0 |cn| con-
verges.
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5.2 Taylor Series

Definition

A power series is a series of the form

∞∑
n=0

cn(z − z0)n = c0 + c1(z − z0) + c2(z − z0)2 + · · · .

The complex numbers cn are called the coefficients of the power series, and z0 is called the
center of the power series.

Just as for real power series, one fundamental question is about finding z-values for which the power
series converges.

Remark. Just as in the real power series case, our goal is to think about the function

f(z) =
∞∑
n=0

cn(z − z0)n. This function is only defined when the output is some finite number, i.e., for

z-values where the series converges.

Theorem 5.2.1

Suppose
∑∞

n=0 cn(z−z0)n converges at z1 6= z0 (that is, suppose
∑∞

n=0 cn(z1−z0)n is a convergent
series). Then this series converges absolutely for all z-values satisfying

|z − z0| < |z1 − z0|.

Proof. Because
∞∑
n=0

cn(z1 − z0)n converges,

lim
n→∞

cn(z1 − z0)n = 0.

This means that we can find a sufficiently large N so that, for all n ≥ N ,

|cn(z1 − z0)n| < 1.

As such, for all n ≥ N ,

|cn(z − z0)n| = |(z1 − z0)n|
|(z1 − z0)n| |cn(z − z0)n|

which rearranges to

|cn(z − z0)n| = |(z − z0)n|
|(z1 − z0)n| |cn(z1 − z0)n| ≤

∣∣∣∣ (z − z0)n

(z1 − z0)n

∣∣∣∣ (1) =

∣∣∣∣ z − z0

z1 − z0

∣∣∣∣n .
When |z − z0| < |z1 − z0|, then we have that

∣∣∣∣ z − z0

z1 − z0

∣∣∣∣ < 1, hence the geometric series

∞∑
n=1

∣∣∣∣ z − z0

z1 − z0

∣∣∣∣n
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converges by the Geometric Series Test (5.1.5). By the comparison test (5.1.3), it follows that the
series

∞∑
n=0

|cn(z − z0)n|

converges. As such, the following series converges absolutely:

∞∑
n=0

cn(z − z0)n.

Letting r = |z1 − z0|, then the equation in the theorem has the form |z − z0| < r, so geometrically, if
the series converges on the boundary of a disk of radius r centered at z0, then it converges absolutely
on the interior of that disk.

Definition

The radius of convergence R, is the radius of the largest disk around z0 on which the series
∞∑
n=0

cn(z − z0)n converges. The disk |z − z0| < R is called the disk of convergence.

Proposition 5.2.1. For a given power series, the radius of convergence is unique, and the series
diverges outside of this disk (i.e. for z-values satisfying |z − z0| > R.

Proof. The radius is unique by definition. The series must diverge outside of this disk, for if it didn’t,
then by Theorem 5.2.1, there would be a disk of larger radius on which the series converged.

Fact. A power series
∞∑
n=0

cn(z − z0)n always converges at the center z0.

If a power series converges only at the center, then we may write R = 0, and if it converges for all
complex numbers, we write R =∞.

As with real power series, we can sometimes compute the radius of convergence via the ratio test.

Example 5.2.2

Determine the radius of convergence for
∞∑
n=0

(−5)n

n+ 1
(z − i)n.

According to the ratio test, this series converges when

1 > lim
n→∞

∣∣∣∣∣∣∣∣
(−5)n+1

n+ 2
(z − i)n+1

(−5)n

n+ 1
(z − i)n

∣∣∣∣∣∣∣∣
= lim

n→∞

∣∣∣∣(−5)

(
n+ 1

n+ 2

)
(z − i)

∣∣∣∣
= 5|z − i|
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=⇒ 1

5
> |z − i|.

So the radius of convergence for this power series is R = 1
5
.

Example 5.2.3

Determine the radius of convergence for
∞∑
n=0

n! (z − 2 + 3i)n.

According to the ratio test, this series converges when

1 > lim
n→∞

∣∣∣∣(n+ 1)!(z − 2 + 3i)n+1

n!(z − 2 + 3i)n

∣∣∣∣
= lim

n→∞
n |(z − 2 + 3i)| .

When z 6= 2− 3i this series diverges, so it has radius of convergence R = 0.

Example 5.2.4

Determine the radius of convergence for
∞∑
n=0

1

n!
(z + 2)n.

According to the ratio test, this series converges when

1 > lim
n→∞

∣∣∣∣∣∣∣∣
1

(n+ 1)!
(z + 2)n+1

1

n
(z + 2)n

∣∣∣∣∣∣∣∣
= lim

n→∞

∣∣∣∣(z + 2)

n+ 1

∣∣∣∣
= 0.

The series converges for all z ∈ C, So the radius of convergence for this power series is R =∞.

The following theorem is analogous to the familiar version from real analysis.

Theorem 5.2.5: Differentiation and Integration of Power Series

Let f be the function given by

f(z) =
∞∑
n=0

cn(z − z0)n

for z in D, the open disk of convergence.
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1. f is complex differentiable with derivative given by

f ′(z) =
∞∑
n=0

d

dz
cn(z − z0)n =

∞∑
n=1

ncn(z − z0)n−1 for z ∈ D.

Moreover, the power series for f ′(z) has the same radius of convergence as f .

2. If γ is a path within D, then∫
γ

f(z) dz =
∞∑
n=0

cn

∫
γ

(z − z0)n dz.

Proof. The proof of this is actually longer and less straightforward than one might hope; we can’t
just quickly apply Cauchy–Riemann. That the derivative and integral are defined the way they are
is obvious, but that the sequence of partial sums still converges to the appropriate limit (and with
the same disk of convergence) is technical and involves the notion of uniform convergence, which
we wont be covering.

Theorem 5.2.6: Taylor Expansion

Suppose f is differentiable on an open disk D of radius R centered at z0. Then, for z ∈ D,

f(z) =
∞∑
n=0

cn(z − z0)n

where

cn =
f (n)(z0)

n!

Proof. See the text. The strategy is effectively
� Apply Cauchy’s Integral Formula to rewrite f(z) as a contour integral.

� With clever algebraic manipulations, recognize the integrand as the limit of a convergent
geometric series

� Integrate this series using 5.2.5.

� Use Cauchy’s Integral Formula for Derivatives to rewrite the coefficients of this series.

Definition

The series in Theorem 5.2.6 is called the Taylor series of f about z0 (or Maclaurin series in
the case that z0 = 0). The coefficients are called the Taylor coefficients of f at z0.

Example 5.2.7

Since
d

dz
[ez] = ez, just as in the real case, the Maclaurin expansion of ez should also look like

the Maclaurin series for ex.
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ez =
∞∑
n=0

1

n!
zn.

Example 5.2.8

Since
d

dz
[sin(z)] = cos(z) and

d

dz
[cos(z)] = − sin(z), just as in the real case, the Maclaurin

expansions of sin(z) and cos(z) should also look like the Maclaurin series for sin(x) and cos(x)
(respectively).

sin(z) =
∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1,

cos(z) =
∞∑
n=0

(−1)n

(2n)!
z2n.
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5.3 Power Series
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5.5 Laurent Series

If f is differentiable in a small disk around z0, then it has a Taylor series expansion at z0. If f isn’t
differentiable at z0 (but is maybe differentiable near z0) it would still be nice to get a series
expansion of f centered at z0.

Definition

An annulus is the open set between two concentric circles, and can be written as the set of all
z satisfying

r < |z − z0| < R.

with r ≥ 0 and R ≤ ∞. If r = 0 and R < ∞, we call this a punctured disk. If r = 0 and
R =∞ we call this a punctured plane.

r R

z0

real

im
ag

.

Suppose f is analytic at z0. Then we can find a disk (the disk of convergence) on which f has a

Taylor series expansion f(z) =
∞∑
n=0

cn(z − z0)n where

cn =
f (n)(z0)

n!

If we draw a closed contour γ within this disk that encloses z0, then applying Cauchy’s Integral
Formula for Derivatives, we can rewrite cn as

cn =

n!
2πi

∮
γ

f(z)
(z−z0)n+1 dz

n!
=

1

2πi

∮
γ

f(z)

(z − z0)n+1
dz.

There are a couple of observations one can make about these coefficients:

� Unlike the normal Taylor coefficients, f is not actually required to be defined at z0.

� The lack of factorial means that n can be negative.

As such, we could reasonably define a series like a Taylor series when f is differentiable in an annulus
centered at z0 so long as γ is entirely within that annulus.
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z0
γ

Theorem 5.5.1: Laurent Expansion

Suppose f is differentiable in the annulus r < |z − z0| < R where 0 ≤ r < R ≤ ∞. Then for
each z in this annulus, we have

f(z) =
∞∑

n=−∞
cn(z − z0)n

where, for each integer n,

cn =
1

2πi

∮
γ

f(z)

(z − z0)n+1
dz.

for any closed path γ in the annulus enclosing z0.

Definition

A series as in Theorem 5.5.1 is called a Laurent series.

Example 5.5.2

Find a Laurent series expansion for f(z) = e1/z around z0 = 0.

Firing up our trusty computer algebra system (since nobody wants to compute these by hand),
one can confirm the following:

cn =

{
1

(−n)!
if n ≤ 0

0 if n > 0

so we have that

e1/z =
0∑

n=−∞

1

(−n)!
zn

= · · · 1

n!
· 1

zn
+ · · ·+ 1

2!
· 1

z2
+

1

1!
· 1

z
+ 1

=
∞∑
n=0

1

n!

(
1

z

)n
.
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We notice that the Laurent series obtained for e1/z looks a lot like the Taylor series for ez with the
modification that z 7→ 1

z
.

Proposition 5.5.3

Given a function f that is differentiable in an annulus centered at z0, the Laurent expansion
about z0 is unique.

This is great because it means that, no matter how we obtain a Laurent series for our function, it
must be the correct one. So often times we’ll just manipulate known Taylor series to obtain the
correct Laurent expansion (because nobody wants to compute those coefficients by hand if they can
help it).

Example 5.5.4

Compute the Laurent series expansion for f(z) =
1

z − 2
on the annulus |z − 1| > 1 (i.e. the

punctured plane).

Notice that this annulus is centered at 1, so our Laurent series will be as well. Notice also that
this annulus excludes z = 2, so in fact f(z) is differentiable on it. Recall that the geometric series
∞∑
n=0

arn =
a

1− r for |r| < 1. Since |z − 1| > 1, we must have that

∣∣∣∣ 1

z − 1

∣∣∣∣ < 1. This suggests

that we want our geometric series’ ratio to be 1
z−1

, hence

f(z) =
1

z − 2
=

1

(z − 1)− 1

=

(
1

z − 1

)
1

1− 1
z−1

=

(
1

z − 1

) ∞∑
n=0

(
1

z − 1

)n
=

1

z − 1
+

1

(z − 1)2
+

1

(z − 1)3
+ · · ·

=
∞∑
n=1

1

(z − 1)n

=
−1∑

n=−∞
(z − 1)n.
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Example 5.5.5

Compute the Laurent series expansion for f(z) =
2z − 1− i

(z − 1)(z − i) about z = 1.

Clearly f is not differentiable at 1 or i, so whatever our annulus is must avoid these two points.
Using partial fractions

2z − 1− i
(z − 1)(z − i) =

1

z − 1
+

1

z − i . (5.5.1)

The first term is already a Laurent series about z = 1 (it only has one term) and its defined on
the annulus |z− 1| > 0, so we focus only on the second term and aim to use the geometric series
again. We can rewrite

1

z − i =
1

(z − 1) + (1− i) . (5.5.2)

At this points, we have a couple of options for approach: we can factor out
1

z − 1
or we can

factor out
1

1− i . In both cases we’ll work with the geometric series, but the resulting annuli will

be different.

(Case 1) We rewrite Equation 5.5.2 as

1

z − i =
1

(z − 1) + (1− i) =

(
1

z − 1

)
1

1− i−1
z−1

and assuming
∣∣ 1−i
z−1

∣∣ < 1, from the geometric series this becomes(
1

z − 1

)
1

1− i−1
z−1

=

(
1

z − 1

) ∞∑
n=0

(
i− 1

z − 1

)n
=
∞∑
n=0

(i− 1)n

(z − 1)n+1
(setting k = −n− 1)

=
−1∑

k=−∞

1

(1− 1)k+1
(z − 1)k.

Substituting this into the Equation 5.5.1 we get the Laurent expansion for f

f(z) =
1

z − 1
+

−1∑
k=−∞

1

(1− 1)k+1
(z − 1)k

for z-values satisfying |z − 1| > 0 and

∣∣∣∣ 1− iz − 1

∣∣∣∣ < 1, i.e. on the annulus |z − 1| >
√

2.

(Case 2) We rewrite Equation 5.5.2 as

1

z − i =
1

(z − 1) + (1− i) =

(
1

1− i

)
1

1− z−1
i−1
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and assuming

∣∣∣∣z − 1

1− i

∣∣∣∣ < 1, for the geometric series this becomes

(
1

1− i

)
1

1− z−1
i−1

=

(
1

1− i

) ∞∑
n=0

(
z − 1

i− 1

)n
=
∞∑
n=0

−1

(i− 1)n+1
(z − 1)n.

Substituting this into the Equation 5.5.1 we get the Lauren expansion for f

f(z) =
1

z − 1
+
∞∑
n=0

−1

(i− 1)n+1
(z − 1)n

for z-values satisfying |z − 1| > 0 and

∣∣∣∣z − 1

1− i

∣∣∣∣ < 1, i.e. on the annulus 0 < |z − 1| <
√

2.

Remark. There’s not really a cohesive way to write these series succinctly in the form
∞∑

n=−∞
cn(z − 1)n because the coefficients don’t all follow a nice pattern. That’s fine. The same is true

of Taylor series of real functions. For example, the Taylor expansion of 1 + cos(x) about x0 = 0 is

1 +
∞∑
n=0

(−1)n

(2n)!
x2n.

Remark. The
√

2 in the annulus isn’t too surprising when you think about it geometrically - that’s
the distance between 1 and i. The fact that we had two possible annuli is then not surprising at all -
having an annulus centered at z = 1, there were only two possible options for which f could be
analytic within the whole annulus (either it avoided all singularities, or it avoided one and not the
other). Visually, letting A1 and A2 be the annuli in cases 1 and 2, respectively,

1

i
A2

A1

real

im
a
g
.
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5.6 Zeros and Singularities

5.6.1 Isolated Zeros

Definition

For a function f , a number z0 for which f(z0) = 0 is called an isolated zero if there is an open
disk around z0 which contains no other zero for f .

Example 5.6.1

The function f(z) = sin(z) has an isolated zero at z = 0.

Given what we know about the real sine function, the fact that z = 0 is an isolated zero for
f(z) = sin(z) certainly seems reasonable, but how do we know it’s actually the case for the complex
sine function? It turns out Taylor series can provide the answer.

Let z0 be a zero for f and consider the Taylor expansion of f in a small disk D around around z0

f(z) =
∞∑
n=0

cn(z − z0)n.

If every cn = 0, then f(z) = 0 for all z ∈ D, so suppose this isn’t the case. Let m be the first value
for which cm 6= 0 (that is, c0 = c1 = . . . = cm−1 = 0). Then we have that

f(z) =
∞∑
n=0

cn(z − z0)n

=
∞∑
n=m

cn(z − z0)n (first terms all 0)

=
∞∑
k=0

ck+m(z − z0)k+m (where k = n−m)

= (z − z0)m
∞∑
k=0

ck+m(z − z0)k

Now let

g(z) =
∞∑
k=0

ck+m(z − z0)k = cm +
∞∑
k=1

ck+m(z − z0)k.

By construction we have that g(z0) = cm 6= 0 and

f(z) = (z − z0)mg(z).

Since f is differentiable on D, then so is g; in particular, g is continuous at z0, so since g(z0) 6= 0,
then there is a small disk Dg around z0 on which g(z) 6= 0 (otherwise we would break the
intermediate value theorem). It follows that f(z) 6= 0 on this same disk as well, making z0 an
isolated zero. So what this says is that
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Theorem 5.6.2

Suppose f is differentiable on a domain S, and let z0 ∈ S be a zero of f . Then either

f(z) = 0 on all of S,

or

ζ is an isolated zero.

From the theorem and the proof preceding it, what we have is that, if f(z) has a nonzero Taylor
coefficient in the series centered at z0, then z0 is an isolated zero.

Example 5.6.3

Show that f(z) = sin(z) has an isolated zero at z = 0.

By the above commentary, we just need to examine the Taylor coefficients of f centered at 0.

c0 =
f(0)

0!
=

sin(0)

1
= 0

c1 =
f ′(0)

1!
=

cos(0)

1
= 1

Since c1 6= 0, then z = 0 must be isolated.

Definition

A point z0 is said to be a zero of order m if f is differentiable at z0 and the first nonzero
coefficient in the Taylor expansion around z0 is cm. If z0 is a zero of order 1, it is sometimes
called a simple zero.

Example 5.6.4

For f(z) = sin(z), determine the order of the zero z = 0.

z = 0 has order 1 per our work in Example 5.6.3.

While proving Theorem 5.6.2, we actually proved the following, but we’ll state explicitly.

Proposition 5.6.5

If f is differentiable at z0, then z0 is a zero of order m if and only if we can write

f(z) = (z − z0)mg(z).

where g(z0) 6= 0 and g is differentiable at z0.
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Example 5.6.6

Find the order of the zero z0 = 0 of the function ϕ(z) = sin3(z).

Looking at the Taylor expansion of sin3(z) about z0 = 0, we have

sin3(z) = (sin(z))3 =

(
z − 1

6
z3 +

1

120
z5 + · · ·

)3

= z3 − 1

2
z5 +

13

120
z7 − 41

3024
z9 + · · ·

= z3

(
1− 1

2
z2 +

13

120
z4 − 41

3024
z6 + · · ·

)
so taking g(z) = 1− 1

2
z2 + 13

120
z4 − 41

3024
z6 + · · · , we have that

sin3(z) = z3g(z)

with g(0) 6= 0, hence ϕ(z) = sin3(z) has a zero of order 3 at z0 = 0.

Since we can write f(z) = (z − z0)ng(z) with g(z0) 6= 0, we get the following

Corollary 5.6.7

Suppose z0 is a zero of order m of h(z), and that z0 is a zero of order n of k(z). Then
1. At z0, h(z)k(z) has a zero of order m+ n.

2. If m > n, then at z0, h(z)/k(z) has a zero of order m− n.

Proof sketch. Write

h(z) = (z − z0)mα(z)

k(z) = (z − z0)nβ(z)

Then

h(z)k(z) = (z − z0)m+nα(z)β(z)

and

h(z)

k(z)
=

(z − z0)mα(z)

(z − z0)nβ(z)
= (z − z0)m−n

α(z)

β(z)

Remark. The term “zero” in the second item of Corollary 5.6.7 is maybe a bit misleading, because
h(z)/k(z) is not even defined at z0 (and as such, is certainly not 0). The requirement that m > n
implies that the limit L = limz→z0 h(z)/k(z) exists. So what we’re actually thinking of is a zero of a
continuous extension (or an analytic continuation of h(z)/k(z) at z0. Explicitly, for z in a small disk
around z0 where k(z) 6= 0, we are looking at a zero of the function

(̃h/k)(z) :=

{
h(z)/k(z) when z 6= z0,

L when z = z0.
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Remark. Some authors may write h(z)/k(z) to refer to the maximal analytic continuation of the
quotient of h(z) and k(z). I will not be adopting this convention, but it is out there.

Example 5.6.8

Find the order of the zero z0 = 0 of the function f(z) = z2 sin2(z).

By the previous theorem, it suffices to find the orders of z2 and sin2(z) independently and add
them together.

h(z) = z2 k(z) = sin2(z)

n h(n)(z0) n k(n)(z0)

1 2(0) = 0 1 2 sin(0) cos(0) = 0
2 2 2 2 cos2(0)− 2 sin2(0) = 2

Since z0 is a zero of order 2 for z2 and order 2 for sin2(z), then z0 is a zero of order 2 + 2 = 4 for
f .

Example 5.6.9

Find the order of the zero z0 = 3π
2

of the function f(z) =
cos3(z)

z − 3π
2

.

By the previous theorem, it suffices to find the orders of cos3(z) and z − 3π
2

independently and
add them together.

h(z) = z − 3π
2

k(z) = cos3(z)

n h(n)(z0) n k(n)(z0)

1 1 1 −3 sin
(

3π
2

)
cos
(

3π
2

)
= 0

2 6 sin2
(

3π
2

)
cos
(

3π
2

)
− 3 cos3

(
3π
2

)
= 0

3 21 sin
(

3π
2

)
cos2

(
3π
2

)
− 6 sin3

(
3π
2

)
= 6

Since z0 is a zero of order 1 for z− 3π
2

and order 3 for cos3(z), then z0 is a zero of order 3−1 = 2
for f .

5.6.2 Poles and Singularities

In this section we’ll use the Laurent expansion to find and classify points at which complex functions
are not differentiable.

Definition: Isolated Singularity

We say that a function f has an isolated singularity at z0 if f is differentiable in an annulus
0 < |z − z0| < R, but not at z0.
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Example 5.6.10

f(z) =
1

z
has an isolated singularity at z = 0.

5.6.3 Classification of Singularities

Definition: Poles of Order m

Suppose f has an isolated singularity at z0. Let the Laurent expasion of f(z) in a punctured
disk around z0 be

f(z) =
∞∑

n=−∞
cn(z − z0)n.

If the smallest n-value for which cn 6= 0 is...
1. ... n ≥ 0, then z0 is a removable singularity.

2. ... −∞ < n < 0, then z0 is a pole of order |n| (and in particular, when n = −1, z0 is a
simple pole).

3. ... n =∞, then z0 is an essential singularity.

In other words,

1. z0 is removable if the Laurent expansion is actually a power series.

2. z0 is a pole of order m if
1

(z − z0)m
is the largest power of

1

z − z0

appearing in the Laurent

expansion.

3. z0 is essential if the Laurent expansion contains infinitely many powers of
1

z − z0

with nonzero

coefficients.

Example 5.6.11

Find and classify all poles of f(z) =
sin(z)

z
.

f is analytic on all of C except at z = 0 (where it isn’t defined). The Laurent expansion of f
around z0 = 0 is

1

z
sin(z) =

1

z

( ∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1

)

=
∞∑
n=0

(−1)n

(2n+ 1)!
z2n

= 1− 1

3!
z2 +

1

5!
z4 − 1

7!
z6 + · · ·

Since this is a power series about z0 = 0, z0 = 0 is a removable singularity. As such we can
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extend f to a function ϕ which is differentiable at z0 = 0:

ϕ(z) =

{
f(z) when z 6= 0

1 when z = 0

Definition: Analytic Continuation

The function ϕ above is called the analytic continuation of f at z0.

Example 5.6.12

Find and classify all poles of f(z) =
1

(z − i)5
.

f has an isolated signularity at z0 = i, which is a pole of order 5. To see this, note that the
Laurent expansion of f around z0 = i is

1

(z − i)5
(f is its own Laurent expansion).

There is no way that f can be extended to be differentiable at z0 = i.

Example 5.6.13

Consider the function f(z) =
cos(z)

z4
, which is analytic on all of C except at z0 = 0 where it isn’t

defined. Classify the singularity z0 = 0.

The Laurent expansion of f about z0 = 0 is

1

z4
cos(z) =

1

z4

( ∞∑
n=0

(−1)n

(2n)!
z2n

)

=
∞∑
n=0

(−1)n

(2n)!
z2n−4

=
1

z4
− 1

2!z2
+

1

4!
− · · ·

so f(z) has a pole of order 4, and thus it cannot be extended to be differentiable at z0 = 0.

Example 5.6.14

Let f(z) = e1/z, which is analytic on all of C except at z0 = 0 where it isn’t defined. Classify
the singularity z0 = 0.
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Since the Laurent expansion of f(z) = e1/z about z0 = 0 is

e1/z =
∞∑
n=0

1

n!

1

zn
= · · ·+ 1

3!z3
+

1

2!z2
+

1

z
+ 1.

f has an essential singularity at z0 = 0 because infinitely many powers of 1
z

appear in this
Laurent expansion.

Let us consider the Laurent expansion of some function f in an annulus 0 < |z − z0| < R:

f(z) =
∞∑

n=−∞
cn(z − z0)n.

If f has a pole of order m at z0, then c−m 6= 0 but c−m−1 = c−m−2 = · · · = 0, so the Laurent
expansion is

f(z) =
c−m

(z − z0)m
+

c−m−1

(z − z0)m+1
+

c−m−2

(z − z0)m+2
+ · · ·

(z − z0)mf(z) = c−m + c−m−1(z − z0) + c−m−2(z − z2
0 + · · ·

and so

lim
z→z0

(z − z0)mf(z) = c−m 6= 0.

As it turns out, the existence of this limit is enough to deduce that a function has a pole of order m
at z0. Explicitly,

Theorem 5.6.15

Suppose f is differentiable in 0 < |z− z0| < R. Then f has a pole of order m at z0 if and only if

lim
z→z0

(z − z0)mf(z)

exists and is nonzero.

5.6.4 Zeroes and Poles Together

When looking for poles, it seems natural to look for places where the denominator is zero, especially
if f(z) = g(z)/h(z) is a quotient of functions.

Lemma 5.6.16

A function f has a pole of order m at z0 if and only if, in some annulus 0 < |z − z0| < R,

f(z) =
g(z)

(z − z0)m
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where g is differentiable at z0 and g(z0) 6= 0.

Proof. If f has a pole of order m, then its Laurent expansion about z0 is

f(z) =
c−m

(z − z0)m
+

c−m+1

(z − z0)m−1
+ · · ·

(z − z0)mf(z) = c−m + c−m+1(z − z0) + c−m+2(z − z0)2 + · · ·

so writing

g(z) = c−m + c−m+1(z − z0) + c−m+2(z − z0)2 + · · ·

we have that g(z0) 6= 0 and g is defined by its Taylor expansion about z0 (whence it is differentiable).

Theorem 5.6.17

Let f(z) = g(z)/h(z) where g, h are analytic in some open disk about z0. Suppose that z0 is a
zero of order m for g and a zero of order n for h with n > m. Then f has a pole of of order
n−m at z0.

Proof. From Proposition ??,we can write

g(z) = (z − z0)mg̃(z)

h(z) = (z − z0)nh̃(z)

where g̃ and h̃ are differentiable and nonzero at z0. It follows that g̃/h̃ is differentiable and nonzero
at z0 and

g(z)

h(z)
=

g̃(z)/h̃(z)

(z − z0)n−m

thus, by the above lemma, f(z) = g(z)/h(z) has a pole of order n−m at z0.

Remark. One could adopt the convention that f(z) has a zero of order 0 (and likewise, a pole of
order 0) if f is defined at z and if f(z) 6= 0. This is not standard to my knowledge, but the
calculations do align with the theorem.

Example 5.6.18

Find the order of the pole of f(z) =
ez − 1

sin7(z)
at z0 = 0.

The motivated student could compute the Laurent expansion of f about 0 directly to get

f(z) =
1

z6
+

1

2

1

z5
+

4

3

1

z4
+ · · ·
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in which case it is quickly seen that f has a pole of order 6 at z0 = 0. Rather than do this, by
looking at the Maclaurin series, it is straightforward to see that ez − 1 has a zero of order 1

ez − 1 = z +
1

2
z2 +

1

6
z3 + · · ·

and that sin7(z) has a zero of order 7

sin(z) = z − 1

6
z3 +

1

120
z5 + · · ·

sin7(z) =

(
z − 1

6
z3 +

1

120
z5 + · · ·

)7

= z7 − 7

6
z9 +

77

120
z11 + · · ·

so by the theorem, f(z) has a pole of order 7− 1 = 6 at z0 = 0.

Example 5.6.19

Find all poles of f(z) = 1

(z−π2 )
3

cos4(z)
and their orders.

cos4(z) has a zero of order 4 at all odd multiples of π
2
, and

(
z − π

2

)3
has a zero of order 3 at π

2
.

So f has a pole of order 7 at π
2

and a pole of order 4 at all other odd multiples of π
2
.
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6 Residue Theory

6.1 The Residue Theorem

The aim of this section is to explore the relationship with singularities, the Laurent expansion, and
integrals.

Suppose f is differentiable in the annulus 0 < |z − z0| < R and has an isolated singularity at z0. Let
γ be a closed path in this annulus that encloses z0. The Laurent expansion for f in this annulus is

f(z) =
∞∑

n=−∞
cn(z − z0)n

where the coefficients cn are given by

cn =
1

2πi

∮
γ

f(z)

(z − z0)n+1
dz

for all integers n. Notice that when n = −1, the 1
z−z0 term in the series has coefficient

c−1 =
1

2πi

∮
γ

f(z) dz

which rearranges to ∮
γ

f(z) dz = 2πic−1.

This means that finding that one single coefficient is all that we need to evaluate the integral! Magic!

Definition: residue

The coefficient of 1
z−z0 in the Laurent expansion of f about z0 is called the residue of f at z0

and is denoted Res(f, z0).

What we have is that ∮
γ

f(z) dz = 2πiRes(f, z0),

but what if γ enclosed multiple isolated singularities z1, . . . , zn?

Around each singularity zk, we can find a small loop γk so that none of the γk’s intersect and none of
the γk’s enclose any other singularity. By the extended deformation theorem,∮

γ

f(z) dz =
n∑
k=1

∮
γk

f(z) dz

and since each of the integrals on the right can be written in terms of the corresponding residues, the
following result is an immediate consequence:
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Theorem 6.1.1: Residue Theorem

Let γ be a closed path. Suppose f is differentiable on γ and all points enclosed by γ, exceot for
z1, . . . , zn which are all of the isolated singularities of f enclosed by γ. Then∮

γ

f(z) dz = 2πi
n∑
k=1

Res(f, zk).

In this way, we see that computing an integral is as efficient as our ability to evaluate these residues.
Obviously computing Laurent series by hand is a little time consuming, so we want to find a faster
way to obtain the residue.

Proposition 6.1.2

If f has a simple pole at z0, then

Res(f, z0) = lim
z→z0

(z − z0)f(z).

Proof. Since f has a simple pole at z0, then the Laurent expansion of f in some annulus about z0

is

f(z) =
c−1

z − z0

+
∞∑
n=0

cn(z − z0)n.

As such

(z − z0)f(z) = c−1 +
∞∑
n=0

cn(z − z0)n+1

and therefore

lim
z→z0

(z − z0)f(z) = c−1.

Example 6.1.3

Evaluate

∮
γ

sin(z)

z2
dz where γ is any closed path enclosing z0 = 0.

Since z0 = 0 is a zero of order 1 for sin(z) and a zero of order 2 for z2, then z0 is a simple pole
for f(z) by Theorem 5.6.17. By the preceding theorem, we have that

Res(f, 0) = lim
z→0

zf(z) = lim
z→0

sin(z)

z
= 1.
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Since z0 = 0 is the only singularity of
sin(z)

z2
, we have∮

γ

sin(z)

z2
dz = 2πiRes(f, 0) = 2πi.

Corollary 6.1.4

Let f(z) =
h(z)

g(z)
where h is continuous at z0 and h(z0) 6= 0. Suppose g is differentiable at z0 and

has a simple zero there. Then f has a simple pole at z0, and

Res(f, z0) =
h(z0)

g′(z0)
.

Proof. Since g(z0) = 0 and z0 is a simple pole for f , then

Res(f, z0) = lim
z→z0

(z − z0)f(z)

= lim
z→z0

(z − z0)
h(z)

g(z)

= lim
z→z0

(z − z0)
h(z)

g(z)− g(z0)

= lim
z→z0

h(z)
g(z)−g(z0)
z−z0

= lim
z→z0

h(z0)

g′(z0)
.

Example 6.1.5

Evaluate

∮
γ

f(z) dz where f(z) =
10− 2iz

cos(z)
and γ is the circle

∣∣z − π
2

∣∣ = 1.

Let h(z) = 10 − 2iz and g(z) = cos(z). Then f(z) =
h(z)

g(z)
has a simple pole at z0 = π

2
and

g
(
π
2

)
= 0. By the corollary,

Res
(
f,
π

2

)
= lim

z→π/2

10− 2iz

− sin(z)
=

10− iπ
−1

= iπ − 10.

Hence ∮
γ

10− 2iz

cos(z)
dz = 2πiRes

(
f,
π

2

)
= 2πi(iπ − 10).

What if we want to compute Res(f, z0) when z0 is a pole of order m for f? In an annular
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neighborhood about z0, f has the Laurent expansion

f(z) =
c−m

(z − z0)m
+

c−m+1

(z − z0)m−1
+

c−m+2

(z − z0)m−2
+

c−m+3

(z − z0)m−3
+ · · ·

Thus

(z − z0)mf(z) = c−m + c−m+1(z − z0) + · · ·+ c−1(z − z0)m−1 + · · · .

By differentiating m− 1 times, we obtain

dm−1

dzm−1
[(z − z0)mf(z)] = (m− 1)! c−1 +m! c0(z − z0) + · · · .

and taking the limit as z → z0, the right-hand side reduces to

(m− 1)! c−1.

This yields the following

Theorem 6.1.6: Residue at a Pole of Order m

Let f have a pole of order m at z0. Then

Res(f, z0) =
1

(m− 1)!
lim
z→z0

dm−1

dzm−1
[(z − z0)mf(z)] .

Remark. Note that Proposition 6.1.2 is the special case of this theorem when m = 1.

Example 6.1.7

Evaluate
∮
γ
f(z) dz where f(z) =

2iz − cos(z)

z(z − i)3
and γ is any closed path that encloses 0 and i.

0 is a simple pole of f , so

Res(f, 0) = lim
z→0

zf(z) = lim
z→0

2iz − cos(z)

(z − i)3
=
−1

i
= i.

i is a pole of order 3, so

Res(f, i) =
1

(3− 1)!
lim
z→i

d3−1

dz3−1

[
(z − i)3f(z)

]
=

1

2
lim
z→i

d2

dz2

[
2iz − cos(z)

z

]
=

1

2
lim
z→i

(z2 − 2) cos(z)− 2z sin(z)

z3

=
1

2

−3 cos(i)− 2i sin(i)

−i
= sin(i)− 3

2
i cos(i).
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So, by the Residue Theorem 6.1.1,∮
γ

2iz − cos(z)

z(z − i)3
dz = 2πi(Res(f, 0) + Res(f, i))

= 2πi(i+ sin(i)− 3

2
i cos(i)) = −2π + 3 cos(i) + 2πi sin(i).
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6.2 Trigonometric Integrals over [0, 2π]

6.2.1 Rational Functions of Cosine and Sine

Let K(x, y) be a rational function of x and y (i.e. a quotient of multivariate polynomials in x and y).
For example,

K(x, y) =
x3y + 6y2 − 7xy + 2x

y3 − x2 + y − 9x
.

We are interested in evaluating integrals of the form∫ 2π

0

K(cos θ, sin θ) dθ.

Let γ be the unit circle about the origin, which we parameterize as γ(θ) = eiθ with 0 ≤ θ ≤ 2π. On
this curve, z = eiθ and z = e−iθ = 1

z
, so we can write

cos θ =
1

2

(
z +

1

z

)
and sin θ =

1

2i

(
z − 1

z

)
.

What’s more, we have

dz = ieiθ dθ = iz dθ =⇒ dθ =
1

iz
dz

and so ∮
Γ

K

(
1

2

(
z +

1

z

)
,

1

2i

(
z − 1

z

))
1

iz
dz =

∫ 2π

0

K(cos(θ), sin(θ)) dθ. (6.2.1)

As such, we can interpret the integral on the right as the contour integral on the left, and use the
Residue Theorem to solve it.

Example 6.2.1

Evaluate
∫ 2π

0
1

α+β cos(θ)
dθ with 0 < β < α.

With x = cos θ and y = sin θ, the integrand can be thought of as the rational function

K(x, y) =
1

α + βx
.

Converting into z-coordinates as in Equation 6.2.1, our integrand becomes

f(z) = K

(
1

2

(
z +

1

z

)
,

1

2i

(
z − 1

z

))
1

iz

=
1

α + β
2

(
z + 1

z

) 1

iz

=
−2i

2αz + βz2 + β
.
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From the quadratic formula, we get that the poles are

z =
−2α±

√
α2 − β2

β

both of which are real because of our assumption that α > β, however, only

z0 =
−2α +

√
α2 − β2

β

is contained within the unit circle. Therefore∫ 2π

0

1

α + β cos(θ)
dθ = 2πiRes(f, z0)

= 2πi
−2i

2α + 2βz0

=
2π√
α2 − β2

.
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6.3 Improper Integrals of Rational Functions over (−∞,∞)

6.3.1 Preliminary

Recall from your first integral calculus course that∫ ∞
−∞

f(x) dx = lim
a→−∞

∫ b

a

f(x) dx+ lim
c→∞

∫ c

b

f(x) dx

where c is any real number. That is, evaluating an integral over (−∞,∞) required you to compute

two limits, and the integral

∫ ∞
−∞

f(x) dx converged if and only if both of those limits exist.

Naively, one could have also tried to evaluate the single limit

lim
ρ→∞

∫ ρ

−ρ
f(x) dx

and it turns out that if

∫ ∞
−∞

f(x) dx converges in the classical sense, then the value one obtains with

this new limit is the same (this is a classical, though nontrivial fact). However, if the integral∫ ∞
−∞

f(x) dx does not converge, then it’s still possible that this single limit exists.

Example 6.3.1

Since ∫ ∞
0

x dx =∞

then the integral

∫ ∞
−∞

x dx diverges. However,

lim
ρ→∞

∫ ρ

−ρ
x dx = lim

ρ→∞
ρ2

2
− (−ρ)2

2
= lim

ρ→∞
0 = 0.

Definition

The (Cauchy) principal value of the integral

∫ ∞
−∞

f(x) dx is

p.v.

∫ ∞
−∞

f(x) dx = lim
ρ→∞

∫ ρ

−ρ
f(x) dx

Evaluating a single limit is often easier, so provided we have some insight into whether or not our
integral converges, this technique is as good as any.
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6.3.2 Evaluating Real Integrals

Suppose we’re trying to evaluate the improper integral∫ ∞
−∞

p(x)

q(x)
dx

where p, q are polynomials. To ensure that this integral converges, we’ll assume that
deg(q) ≥ deg(p) + 2 and that q has no real roots. For simplicity, we’ll also assume that p and q have
no common roots (so the fraction is fully reduced).

Since q has no real roots and is a polynomial with real coefficients, all of its roots are complex and
come in conjugate pairs, z1, z1, . . . , zn, zn. Without loss of generality, assume that all of the zk’s live
in the upper half plane (i.e. satisfy Im(zk) > 0)), and thus all of the zk’s live in the lower half plane.

For a positive real number R, let γR be the upper semi-circle from R to −R and let SR be the line
segment from −R to R. Let ΓR be loop formed from these two segments, and take R taken large
enough that ΓR encloses all of z1, . . . , zn.

−R R

z1

z2

z3
z4

zn

Figure 6.3.1: Γ is the loop formed from the line segment from −R to R and the upper half circle from R to −R.

The zi’s are all of the poles of f(z) =
p(z)

q(z)
in the upper half plane, so by the Residue Theorem

∫
SR

p(z)

q(z)
dz +

∫
γR

p(z)

q(z)
dz =

∮
ΓR

p(z)

q(z)
dz = 2πi

n∑
k=1

Res(f, zn).

Since Im(z) = 0 for all z on the segment SR, the equation above can be rewritten∫ R

−R

p(x)

q(x)
dx+

∫
γR

p(z)

q(z)
dz =

∮
ΓR

p(z)

q(z)
dz = 2πi

n∑
k=1

Res(f, zn). (6.3.1)

We’ll state as a fact the following result (which is the complex analog of a familiar result from
calculus):

Fact. If p(z), q(z) are polynomials with deg(q) ≥ deg(p), then the limit as |z| → ∞ of p(z)
q(z)

exists.

Since deg(q) ≥ deg(p) + 2 in our case, then we must have that z2p(z)/q(z) is bounded for |z| ≥ R, say∣∣∣∣z2p(z)

q(z)

∣∣∣∣ = |z2|
∣∣∣∣p(z)

q(z)

∣∣∣∣ ≤M =⇒
∣∣∣∣p(z)

q(z)

∣∣∣∣ ≤ M

|z|2 .

Since γR has length πR, then it follows from Theorem 4.2.4 that∣∣∣∣∫
γR

p(z)

q(z)
dz

∣∣∣∣ ≤ M

|z|2 (πR) ≤ M

R2
(πR)
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and so when we take the limit as R→∞, Equation 6.3.1 becomes∫ ∞
−∞

p(x)

q(x)
dx+ 0 = 2πi

n∑
k=1

Res

(
p(z)

q(z)
, zn

)

Example 6.3.2

Compute

∫ ∞
−∞

1

x2 + 1
dx.

Approaching the old-fashioned way,∫ ∞
−∞

1

x2 + 1
dx = lim

a→∞

∫ a

−a

1

x2 + 1
dx

= lim
a→∞

arctan(a)− arctan(−a)

=
π

2
+
π

2
= π.

Approaching the new way, we see that f(z) =
p(z)

q(z)
=

1

z2 + 1
has a simple pole at z = −i and a

simple pole at z = i. Only i lies in the upper half plane, so we compute the residue

Res(f, i) = lim
z→i

(z − i)
(

1

(z − i)(z + i)

)
=

1

2i
.

and from our work above, ∫ ∞
−∞

1

x2 + 1
dx = 2πiRes(f, i) =

2πi

2i
= π.

Example 6.3.3

Compute

∫ ∞
−∞

1

x4 + 4
dx.

Writing

f(z) =
p(z)

q(z)
=

1

z4 + 4

We see that f(z) has simple poles at 41/4eπi/4, 41/4e3πi/4, 41/4e5πi/4, and 41/4e7πi/4. Only two of
these have positive imaginary parts, and they are

z1 = 41/4eπi/4 =
√

2

(
1 + i√

2

)
= 1 + i

z2 = 41/4e3πi/4 =
√

2

(−1 + i√
2

)
= −1 + i
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Computing residues, we have

Res(f, z1) = lim
z→1+i

(z − (1 + i))

(
1

(z − (1 + i))(z − (−1 + i))(z − (1− i))(z − (−1− i))

)
=

1

−8 + 8i
= −1 + i

16

Res(f, z2) = lim
z→−1+i

(z − (−1 + i))

(
1

(z − (1 + i))(z − (−1 + i))(z − (1− i))(z − (−1− i))

)
=

1

8 + 8i
=

1− i
16

whence ∫ ∞
−∞

1

x4 + 4
dx = 2πi (Res(f, z1) + Res(f, z2))

= 2πi

(
−1 + i

16
+

1− i
16

)
=
π

4

Example 6.3.4

Compute

∫ ∞
−∞

1

(x2 + 1)2
dx.

Writing

f(z) =
p(z)

q(z)
=

1

(z2 + 1)2

We see that f(z) has double poles at ±i, but only i lies in the upper half plane, so we compute
the residue

Res(f, i) = lim
z→i

d

dz

[
(z − i)2 1

(z − i)2(z + i)2

]
= lim

z→i
d

dz

[
1

(z + i)2

]
= lim

z→i
−2

(z + i)3
=
−2

(2i)3
=

1

4i
= − i

4

whence ∫ ∞
−∞

1

(x2 + 1)2
dx = 2πiRes(f, i)

= 2πi

(
− i

4

)
=
π

2
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6.4 Improper Integrals Involving Trig Functions

With p,q,ΓR,γR, and SR as in the previous subsection, we consider, for a positive real number c, the
integral ∮

ΓR

p(z)

q(z)
eicz dz

By the Residue Theorem,

2πi
n∑
k=1

Res

(
p(z)

q(z)
eicz, zk

)
=

∮
ΓR

p(z)

q(z)
eicz dz

=

∫
γR

p(z)

q(z)
eicz dz +

∫
SR

p(z)

q(z)
eicz dz

=

∫
γR

p(z)

q(z)
eicz dz +

∫ R

−R

p(x)

q(x)
cos(x) dx+ i

∫ R

−R

p(x)

q(x)
sin(x) dx

Since |eicz| = 1, then the same bound argument holds as in the previous subsection. And so, setting
limR→∞, the integral over γR tends to 0 and we are left with∫ R

−R

p(x)

q(x)
cos(x) dx+ i

∫ R

−R

p(x)

q(x)
sin(x) dx = 2πi

n∑
k=1

Res

(
p(z)

q(z)
eicz, zk

)
.

As such, but comparing real and imaginary parts, we can solve either of the real integrals on the
right via residues.

Example 6.4.1

Let α, β, c be positive real numbers. Compute

∫ ∞
−∞

sin(cx)

(x2 + α2)(x2 + β2)
dx.

Let f(z) =
eicz

(z2 + α2)(z2 + β2)
, which has simple poles at x = ±αi,±βi. Computing the residues

for the poles in the upper half plane

Res(f, αi) =
e−cα

2αi(−α2 + β2)

Res(f, βi) =
e−cβ

2βi(−α2 + β2)

We thus have that∫ ∞
−∞

sin(cx)

(x2 + α2)(x2 + β2)
dx = Im

(
2πi

[
e−cα

2αi(−α2 + β2)
+

e−cβ

2βi(−α2 + β2)

])
= Im

(
π

e−cα

α(−α2 + β2)
+ π

e−cβ

β(α2 − β2)

)
= 0.

That it’s zero isn’t too surprising - the integrand is an odd function.
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Example 6.4.2

Let α, β, c be positive real numbers. Compute

∫ ∞
−∞

cos(cx)

(x2 + α2)(x2 + β2)
dx.

From the work we did in the previous example,∫ ∞
−∞

cos(cx)

(x2 + α2)(x2 + β2)
dx = Re

(
2πi

[
e−cα

2αi(−α2 + β2)
+

e−cβ

2βi(−α2 + β2)

])
= Re

(
π

e−cα

α(−α2 + β2)
+ π

e−cβ

β(α2 − β2)

)
= π

e−cα

α(−α2 + β2)
+ π

e−cβ

β(α2 − β2)
.
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7 Conformal Mapping

7.2 Geometric Considerations

7.2.1 Construction of Conformal Mappings

One strategy for solving problems is to find the solution on a simple domain (a disk, half-plane, etc)
and to use a conformal mapping to pass between them. The following result tells us that this is
always possible.

Theorem 7.2.1: Riemann Mapping Theorem

Let D0 be the unit disk and D1 any domain in C (that is not all of C). Then there exists a
conformal mapping f : D0 → D1 that is both one-to-one and onto.

This major theorem tells us that we can pass between any two domains. Let D0 be the unit disk and
let D1, D2 be any two domains (that aren’t all of C). Then there exist one-to-one and onto conformal
mappings f1 : D0 → D1 and f2 : D0 → D2. Since each of these maps is invertible, we get that
f2 ◦ f−1

1 is a one-to-one and onto conformal mapping.

Of course, FINDING these conformal maps in practice is generally very hard. Since a conformal
mapping must send the boundary of D1 to the boundary of D2, one strategy is to try finding a map
between the boundaries, and then test to see if the interior points are mapped to interior points.
We’ll explore this idea in the context of fractional linear transformations.

Example 7.2.2

Find a conformal mapping from the open unit disk to the disk |z| < 3.

Clearly the map

M(z) = 3z

sends the unit circle to the circle of radius 3. If |z| < 1, then

|M(z)| = |3z| = 3|z| < 3,

as desired.

Example 7.2.3

Find a conformal mapping from the open unit disk to the exterior of the disk |z| > 3

We know that inversion preserves the circle |z| = 1 and that dilation maps this circle conformally
onto the circle |z| = 3, so we try composing the two

M(z) = 3

(
1

z

)
.
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Suppose that |z| < 1, then |1/z| > 1 and

M(z) =

∣∣∣∣3z
∣∣∣∣ = 3

∣∣∣∣1z
∣∣∣∣ > 3,

as desired.

Example 7.2.4

Find a conformal mapping from the open unit disk to the open disk |z − 1| < 3

We know M(z) = 3z takes the unit disk to the disk of radius 3, so we try composing it with a
translation by 1

M(z) = (3z) + 1.

Indeed, if |z| < 1, then

|M(z)− 1| = |3z + 1− 1| = |3z| = 3|z| < 3,

as desired.

Example 7.2.5

Find a conformal mapping from the right half-plane to the unit disk.

Let’s try the conformal mapping f for which

f(i) = 1

f(0) = i

f(−i) = −1

As in the proof of Theorem 7.3.9, we can look for two fractional linear transformations on Ĉ
that send our points to 0, 1, and ∞ and then compose them appropriately. Let

M1(z) =
(z − i)(0 + i)

(z + i)(0− i) =
iz + 1

−iz + 1
, and M2(z) =

(z − 1)(i+ 1)

(z + 1)(i− 1)
=

(1 + i)z − (1 + i)

(−1 + i)z + (−1 + i)
.

Now we have that 
i
0
−i

 M1−→


0
1
∞

 M−1
2−→


1
i
−1


and thus can pick

f(z) = (M−1
2 ◦M1)(z) =

iz − i
−z − 1

Now we have mapped the boundary of the right half-plane to the boundary of the disk, so it
remains to check that the interiors map accordingly. Checking

f(1) =
i− i
−1− 1

= 0

which is in the interior of the disk.
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Example 7.2.6

Find a conformal map sending the infinite strip −π
2
< Im(z) < π

2
to the right half plane

Clearly this cannot be a fractional linear transformation, because there are two boundary lines in
the infinite strip and fractional linear transformations send lines to lines (or circles). So instead
we look back at the first motivational map we used. Recall that f(z) = ez sends horizontal lines
to rays from the origin (although it technically excludes the origin, this doesn’t matter because
we’re not including the boundary in our map). If z = x+ iπ

2
then f(z) = iex and if z = x− iπ

2

then f(z) = −iex, so the boundary of the strip is sent to the imaginary axis (minus the origin).
It’s quick to check that f(0) = e0 = 1 which is in the right half of the plane.

f

The complex exponential “opens up” the infinite strip −π
2 < Im(z) < π

2 like a book into right half plane Re(z) > 0
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7.3 Móbius Transformations

Given a set S and a function f : C→ C, we will write f(S) to be the set of all points f(z) where
z ∈ S.

Consider the map f(z) = ez. For any real number s, let Va be the vertical line consisting of points
z ∈ C for which Re(z) = s. Similarly, for any real number t let Ht be the horizontal line consisting of
points z ∈ C for which Im(z) = t.

Let w ∈ f(Va). Then |w| = |ez| = eRe(z) = ea, which is a circle of radius ea. So f(Va) is a circle about
the origin, and if b > a, then f(Vb) is a larger circle centered at the origin.

Since ez = eRe(z)ei Im(z), it follows that every w ∈ f(Hc) has fixed argument c, hence f(Hc) is a ray
from the origin (minus the origin) at an angle of c from the positive real axis.

f

Va Vb

Hc

Hd

f(Va)

f(Vb)

f(Hc)

f(Hd)

Figure 7.3.1: Not-to-scale image of the grid after applying the map z 7→ ez

For funsies, here’s what it all looks like on the sphere.

ρ−1 ◦ f ◦ ρ

Notice that f(z) = ez preserves angles (the right angles in the square grid get sent to right angles on
the circular/curvy grid), but it also preserves orientation.
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fp3 p2

p1
f(p1)

f(p2)

f(p3)

Definition

A function that preserves both angles and orientations on a domain is said to be conformal on
this domain. Such a function is usually called a conformal mapping.

Theorem 7.3.1: Conformal Mappings

Let D1, D2 be domains and f : D1 → D2. Suppose f is differentiable on D1 and that f ′(z) 6= 0
for all z ∈ D1. Then f is a conformal mapping.

Proof. Let p ∈ D1 and let γ(t) be a smooth curve in D1 for which γ(0) = p. Let Γ(t) = f(γ(t)) be
the image of γ under f . The tangent vectors of γ and Γ at p and f(p) (respectively) are related by
the chain rule

Γ′(0) = f ′(p)γ′(0)

so applying a differentiable function to any curve through the point p has the effect of multiplying
the tangent vector to that curve by the complex number f ′(p) = reiθ. Since all curves through p get
multiplied by the same complex number, their arguments are all also changed by the same angle
θ.

Proposition 7.3.2

If f : D1 → D2 is conformal and one-to-one on D1 (i.e. f−1 is well-defined), then f−1 : D2 → D1

is conformal.

Proposition 7.3.3

If f : D1 → D2 and g : D2 → D3 are conformal, then so is the composition (g ◦ f) : D1 → D3.

Given two domains D1 and D2, we may want to construct a conformal mapping f : D1 → D2, but
this can be very difficult. However, there is s relatively simple class of conformal mappings that we
can use for convenient domains (disks, half-planes, etc.)
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7.3.1 Fractional Linear Transformations

Definition

A fractional linear transformation (or Möbius transformation) is a map of the form

M(z) =
az + b

cz + d

where a, b, c, d are constants and ad − bc 6= 0. The latter condition ensures the transformation
is invertible, and its inverse is given by the fractional linear transformation

M−1(z) =
dz − b
−cz + a

.

Remark. Although your book calls these bilinear mappings, I don’t think this term is quite as
common anymore outside of maybe algebraic geometry (when considering special cases of birational
maps). Furthermore, “bilinear” is used in other areas of math as well and the meanings do not
overlap, so we’ll avoid this terminology.

Let A be the 2× 2 matrix

A =

(
a b
c d

)
.

We can use this matrix to encode the fractional linear transformation with the following notation

A • z =

(
a b
c d

)
• z :=

az + b

cz + d
= M(z).

Moreover, the invertibility condition on the fractional linear transformation is exactly the
requirement that det(A) 6= 0, i.e., that A is invertible!

Exercise 7.3.4

Let M1, M2 be fractional linear transformations and let A1, A2 be invertible 2 × 2 matrices so
that A1 • z = M1(z) and A2 • z = M2(z). Show that

1. M−1
1 (z) = A−1

1 • z and

2. (M2 ◦M1)(z) = (A2A1) • z.

Because of the parallels, it becomes very convenient to encode fractional linear transformations into a
matrix form. What’s more, this connection allows us to freely pass between studying an algebraic
object (the set of all invertible 2× 2 matrices) and studying a geometric object (functions on the
complex plane). This is the subject for another class, but is generally the motivation behind the area
of “geometric group theory.”

Let’s look at the properties of some specific types of fractional linear trasnformations.

Definition

A transformation of the form M(z) = z+b is called a translation. It translates z by Re(b)-units
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horizontally and Im(b)-units vertically. The associated matrix A is the unipotent matrix

A =

(
1 b
0 1

)
.

Remark. Technically the matrix could be any invertible matrix of the form(
α αb
0 α

)
,

but these are all conjugate, so we take the natural choice having determinant 1.

Example 7.3.5

Consider M(z) = z + 2− i.

M

z

M(z)

Definition

A transformation of the form M(z) = az is called a (pure) rotation when |a| = 1, and a
(pure) dilation when a is real. When a is neither of those, then writing it in polar for as
a = reiθ makes it clear that it’s a composition of a rotation of angle θ and a dilation with factor
r. In any case, the corresponding matrix is the diagonal matrix

A =

(
a 0
0 1

)
.

Remark. As before, it’s natural to pick the determinant-1 matrix(√
a 0

0 1√
a

)
where

√
a is fixed to be one of a1/2.

Example 7.3.6

Consider M(z) = (2 + 2i)z. Since 2 + 2i =
√

8eiπ/4, we can picture this as a rotation throuh
angle π/4 and then a dilation with a factor of

√
8.
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M

1

i

−1

−i

M(1)M(i)

M(−1) M(−i)

Definition

A transformation of the form M(z) =
1

z
is called an inversion. The associated matrix is the

order-2 matrix

A =

(
0 1
1 0

)
.

M
z

M(z)

Figure 7.3.2: arg(M(z)) = − arg(z) and |M(z)| = |1/z|

Remark. The associated determinant-1 matrix is(
0 i
i 0

)
.

Inversion is possibly the least obvious of these transformations, but if we use stereographic projeciton
to see what’s happening on the sphere, it’s more intuitive. Let ∆ be a triangle in the plane and let
∆′ the inversion of ∆. Using ρ−1 to visualize on the sphere, we see that we can pass between ρ−1(∆)
and ρ−1(∆′) by a rotation of the sphere around the x-axis by an angle π (which makes sense, the
inversion map fixes ±1 and sends every point eiθ to e−iθ).
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Letting R be the rotation of the sphere around the x-axis by an angle of π, we can thus think of
invertion as the composition

ρ ◦R ◦ ρ−1.

Theorem 7.3.7

All fractional linear transformations M(z) =
az + b

cz + d
are a composition of these three types of

transformations.

Proof. When c = 0, M(z) is an actual linear transformation, which is clearly a rotation/dilation
followed by a translation. Since compositions of fractional linear transformations can be represened
by products of the corresponding matrices, when c 6= 0, we have(

1 a
c

0 1

)
translate

(
bc−ad
c

0
0 1

)

rotate/dilate

(
0 1
1 0

)

invert

(
1 d
0 1

)

translate

(
c 0
0 1

)

rotate/dilate

=

(
a b
c d

)

Theorem 7.3.8

Fractional linear transformations send lines to lines or circles, and send circles to lines or circles.

Proof. It’s completely obvious that rotations, dilations, and transformations take lines to lines and
circles to circles, so it only remains to check inversion. Given that inversion is a composition of
stereographic projection (which has the desired property) and a rotation of the sphere (which sends
circles on the sphere to circles on the sphere), the inversion has the desired property.
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Theorem 7.3.9: Three point theorem

Given any three points z1, z2, z3 in C, any other three points w1, w2, w3 in C, there is a unique
fractional linear transformation M for which M(z1) = w1, M(z2) = w2, and M(z3) = w3.

Proof. Let M1 and M2 be the following fractional linear transformations:

M1(z) =
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
and M2(z) =

(z − w1)(w2 − w3)

(z − w3)(w2 − w1)
.

As a functions on the extended complex plane,

M1(z1) = 0, M2(w1) = 0,

M1(z2) = 1, M2(w2) = 1,

M1(z3) =∞, M2(w3) =∞.

By setting M = M−1
2 ◦M1, we have the desired fractional linear transformation.

We’ll see in the next section how we can use the above technique to pass between domains.
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7.4 Móbius Transformations, Continued
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7.5 The Schwarz-Christoffel Transformation

In the proof of Theorem 7.3.1, the crucial intuition was that the derivative of the conformal map
could be thought of as a rotation of the plane at a point. As such, we can cook up the derivative of a
function that bending the real line into a polygon (and thus the upper half plane into the interior of
a polygon), and the conformal mapping will exactly the be integral of this function.

What follows is formally known as a branch cut, but we’ll avoid the greater discussion surrounding
them and introduce only the salient features.

Writing z = |z|eiθ, let L : C→ C be the function defined by

L(z) = ln |z|+ i(θ + 2kπ)

where k is chosen so that −π
2
≤ θ < 3π

2
. In this way L(z) is defined to pick out a single value of log(z).

Fact. L(z) is analytic on C - {it : −∞ < t ≤ 0} (that is, the whole complex plane except for the
nonpositive imaginary axis).

We’re ultimately interested in the upper half plane, so we’ll always take our complex numbers to
have arguments between 0 and π. For some angle α with 0 < α < π, define the function

gα(z) := e−αL(z)

It follows from the chain rule that

Corollary 7.5.1

For each α as above, gα is analytic on the same set as L.

Notice that, since L(z) is just a specific value of the logarithm, we must have that

gα(z) = zα

for any z where L(z) is differentiable. So provided we’re willing to accept this slight abuse of notation
and the restricted domain, we can think of the map z 7→ zα as an analytic function. Since the upper
half plane is contained in the domain of analyticity, then zα is analytic on the upper half plane

Let’s look at what happens along the real axis (minus 0) with this mapping. Since

x =

{
|x|eiπ when x < 0

|x| when x > 0

158



then

xα =

{
|x|αeiαπ when x < 0

|x|α when x > 0

and so the arguments are

arg(xα) =

{
απ when x < 0

0 when x > 0.

As we move along the real axis (from left to right) and pass 0, then gα has the effect of bending the
axis and decreasing the argument by an angle of απ.

PICTURE of straight line and bent line

For some fixed angle θ ∈ (−π, π), set α = − θ
π
. In the case that θ > 0, passing 0 has the effect of

bending the axis and increasing the argument by θ.

PICTURE of straight line and bent line

If we let f(z) =
∫ z
z0
ζα dζ (where Im(z0) ≥ 0), then this makes f ′(z) = zα, and as we saw in the proof

of Theorem 7.3.1, the argument of f ′(z) is precisely the angle by which the tangent vectors are bent.

Remark. You can absolutely take z0 = 0 above; the integral just becomes an improper integral.
However, you’ll almost always be working with such maps numerically and improper integrals cause
computational issues, so it’s recommended you choose z0 with Im(z0) > 0.

Example 7.5.2

If we set α = −π
3
, then f(z) =

∫ z
0
ζ−1/3 dζ, and the image of the upper half plane is
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f

Notice now that for any two complex numbers z1 = |z1|eiθ1 and z2 = |z2|eiθ2 , we have that the
argument of z1z2 is θ1 + θ2. So if we fix real numbers x1, x2 with x1 < x2 and angles α1, α2, then we
have that

arg((x− x1)α1(x− x2)α2) =


α1 + α2 when x < x1

α1 when x1 < x < x2

0 when x > x2

Example 7.5.3

Let θ1 = π
2

and θ2 = π
3
. If we consider f(z) =

∫ z
0
ζ−1/2(ζ−1)−1/3 dζ, then the image of the upper

half plane is

f
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