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Preface

These notes largely follow along with the course text Advanced Engineering Mathe-
matics by Peter V. O‘Neil (7th ed). In an attempt to keep things cohesive, chapter and
section numbers correspond to those found in the text. There are some discrepancies,
however, which I will outline below.

� Theorem numbers are internally consistent, but do not align with the numbers
found in the course text. If a theorem in the text is named, I’ve done my best
to retain the naming.

� Sections with letters are comprised of material from the appropriate chapter
that I opted to introduce in a different order. For example, 19.A and 20.A both
focus on harmonic functions as treated in chapters 19 and 20, respectively. I
thought these applications and connections were important enough to deserve
their own treatment.

Every effort has been made in these notes to pick examples different from those in
the text so that students may have a cornucopia of worked examples to look at. I
will reiterate the old adage, however, that “math is not a spectator sport” and that
the real learning comes from working through an example, not just reading it over.

The target audience for this course is largely senior undergraduate engineering stu-
dents, who would be perfectly content to never see the word “proof” ever again.
However, this is still a mathematics class and proofs can absolutely contribute to
understanding the abstract concepts, and so I’ve tried to strike a balance and in-
clude only proofs (or sketches) which I find relatively simple, clever, or in some way
illuminating. Many of these proofs can be found in full in the course text.

Thanks to my many students – Joseph Cunningham, Elijah Gendron, Denys Ovchyn-
nikov, Murphy Smith – for finding the bountiful mistakes and inaccuracies...
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19 Complex Numbers and Functions

19.1 Geometry and Arithmetic of Complex Numbers

Definition. A complex number is a symbol x + iy or x + yi, where x, y are real

numbers and i satisfies i2 = −1. The collection of complex numbers is denoted C.

Writing z = x + yi, we say that x is the real part of z, denoted Re(z), and we

say that y is the imaginary part of z, denoted Im(z).

Remark. Some authors use R(z) and I(z) to denote the real and imaginary parts of
z, respectively.

The complex numbers satisfy the following rules of arithmetic:

� Equality : a+ bi = c+ di if and only if a = c and b = d

� Addition: (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

� Multiplication: (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

Remark. If you think of complex numbers as polynomials with indeterminat i, then
the arithmetic operations are the same as those for polynomials, with the added
simplification of i2 = −1.

Proposition 19.1.1. Complex arithmetic has the following familiar properties from
arithmetic of the real numbers. For all u, v, w ∈ C, we have

� Associative addition: u+ (v + w) = (u+ v) + w

� Commutative addition: u+ v = v + u

� Associative multiplication: u(vw) = (uv)w

� Commutative multiplication: uv = vu

� Distributive law: u(v + w) = uv + uw

� w + 0 = w

� 1w = w

Exercise 19.1.1. Prove Proposition 19.1.1.
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The Complex Plane

We can identify the complex number z = x + yi with the vector x̂i + ŷj. Because of

this identification, the horizontal axis is known as the real axis and the vertical

axis is known as the imaginary axis .

x̂i + ŷj

x

y
|z|

=
√ x

2 +
y
2

real

im
ag

.

Magnitude and Conjugation

From the vector interpretation of a complex number z = x+yi, the following definition
is the natural one:

Definition. For a complex number z = x + yi, the magnitude of z is |z| =

|x+ yi| =
√
x2 + y2. The (complex) conjugate of z is z = x− yi.

z = x+ iy

z = x− iy

real

im
ag

.
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Proposition 19.1.2. For complex numbers z, w, we have the following properties of
the conjugate and magnitude:

1. Re(z) = Re(z)

2. Im(z) = − Im(z)

3. z = z

4. z + w = z + w

5. (zw) = (z)(w)

6. If w 6= 0, then z/w = (z/w)

7. |z| = |z|

8. |zw| = |z||w|

9. Re(z) =
z + z

2

10. Im(z) =
z − z

2

11. |z| ≥ 0

12. |z| = 0 if and only if z = 0

13. zz = |z|2

Exercise 19.1.2. Prove Proposition 19.1.2.

Complex conjugation is usually used when computing quotients.

z

w
=
z

w

w

w
=

1

|w|2
(zw)

Example 19.1.3. Compute the quotient:

7− 4i

3 + 9i
=

7− 4i

3 + 9i

3 + 9i

3 + 9i
=

(7− 4i)(3− 9i)

9 + 81
= −15

90
− 75

90
i = −1

6
− 5

6
i

19.1.1 Argument and Polar Form

Fact (Euler’s formula). eiθ = cos θ + i sin θ

Thinking of z = x + iy as a point in R2, we can write it in polar coordinates with
some radius r and angle θ so that x = r cos θ and y = r sin θ (and a straightforward
computation gives r = |z|). Using Euler’s formula, we have that

z = x+ iy = r (cos θ + i sin θ) = reiθ
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Definition. The complex number z = x + iy = reiθ is said to be in polar form

with argument θ. Sometimes we note this as arg(z).

If θ is an argument for the complex number z, then so is θ + 2kπ for any integer k.
As such the argument of z is not unique.

Example 19.1.4. Find the polar form for z = 1 + i
√

3.

Since |z| =
√

1 + 3 = 2 and arctan(
√

3) = π
3 , then we can write z = 2eiπ/3. Note,

of course, that we could also write z = 2ei(π/3+2kπ) for any integer k since there are
infinitely many possible arguments for z.

z = 1 + i
√

3

|z|
=

2

θ=
π/

3

real

im
ag

.
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19.1.2 Disks, Open Sets, Closed Sets

Definition. Let z0 be a fixed complex number and let r be a positive real num-

ber. The open disk of radius r centered at z0 is the set of all z satisfying

|z − z0| < r and the closed disk of radius r centered at z0 is the set of all

z satisfying |z − z0| ≤ r .

z0

open disk

z1

closed disk

real

im
ag

.

Exercise 19.1.3. Writing z = x+ iy and z0 = x0 + iy0, convince yourself that these
equations look like the familiar equations for open and closed disks in the plane.

Open disks play the same role for complex analysis as open intervals (a, b) do for
calculus. Similarly for closed disks and closed intervals [a, b].

Definition. Let S be a set of complex numbers. A point z is an interior point

if there is a small positive real number for which the open disk of radius r around z

is entirely contained within S. A point z is a boundary point if every open disk

around z contains both a point in S and a point not in S.

z0

interior point

z1

boundary point

real

im
ag

.
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Definition. A set of complex numbers S is open if every point in S is an interior

point. The set S is closed if S contains all boundary points.

Example 19.1.5. A set can be neither open nor closed. Consider the open disk
|z| < 1 together with the points satisfying |z| = 1 and Im(z) ≤ 0.

real

im
ag

.

Remark. To head off the question, yes, a set can actually be both open and closed
(all of C is one such set, for example), but understanding when this happens is
considerably more subtle and probably best left for office hours or MATH 4324; that
is, you don’t need to know it for this course.

Remark. The definition of a closed set we gave is actually not entirely accurate, but
it’s perfectly sufficient for this class. We’re really only concerned with closed sets that
can contain an open disk within them. There are plenty of other closed sets around,
like a finite collection of points for instance, but this is maybe best explored in MATH
4324 or my office hours.
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19.2 Complex Functions

Definition. A complex function is a function whose input is a complex number

and whose output is a complex number. We say that the function is defined on a set
S if we restrict our attention to only input values coming from S.

Remark. Complex functions cannot be visualized quite as easily as the real functions
you may be familiar with. A function f : R→ R has a one-dimensional input and a
one-dimensional output, so we can plot a graph of f on a two-dimensional plane. A
function f : C → C has a two-dimensional input and a two-dimensional output, so
plotting a graph in the same way would require four dimensions.

Example 19.2.1. The function f(z) = z2 is a function defined on all of C. We can
get a feel for the behavior of this function by examining a grid in C before and after
applying f .

f

19.2.1 Limits, Continuity, and Differentiability

Definition. If f is a complex function, then f(z) has a limit L as z approaches

z0 if, for every real number ε > 0, there is a real number δ > 0 such that

|f(z)− L| < ε

for every z in S satisfying 0 < |z − z0| < δ.
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In words, L is a limit if we can arbitrarily approximate it by f(z) when restricting
our focus to z-values in a small disk around z0.

Unlike single-variable calculus where we can check limits from the left and right, in
the complex setting (just like in multivariable calculus), the limit has to exist given
any path from z to z0.

Definition. Suppose f is a complex function defined on a set S. For z0 in S, if

lim
z→z0

f(z) = f(z0), then f is continuous at z0 . If f is continuous at every z0 in S,

then we say that f is continuous on S .

Definition. A set S is bounded if there is some positive real number M for which

every z in S satisfies |z| ≤ M . A function f is bounded if there is some positive

real number K such that |f(z)| ≤ K for every z in S.

Definition. The function f is (complex) differentiable at z0 in S if the following

limit exists

lim
z→z0

f(z)− f(z0)

z − z0

(
or equivalently lim

h→0

f(z0 + h)− f(z0)

h

)
.

If this limit exists, we denote it limit f ′(z0) or
df

dz

∣∣∣∣
z=z0

and call it the

(complex) derivative of f at z0.

Definition. If f is complex differentiable at every z in S, then we say that f is

(complex) differentiable on S . In particular, when S is an open set, then we may

sometimes say that f is (complex) analytic .

Remark. If you’re familiar with the notion of real analytic functions, this definition
may seem odd. It turns out that complex differentiation is a much stronger notion
than real differentiation, so this definition of analyticity is actually equivalent.

Theorem 19.2.2. If f is differentiable at z0, then f is continuous at z0.

Not every continuous complex function is differentiable, however.
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Example 19.2.3. Consider f(z) = z. If f is differentiable at z, then the following
limit must exist when h→ 0 along the real axis (so h is real).

lim
h→0

f(z + h)− f(z)

h
= lim

h→0

z + h− z
h

= lim
h→0

h

h
= 1

As well, the limit should exist when ih→ 0 along the imaginary axis (so h is real).

lim
ih→0

f(z + ih)− f(z)

ih
= lim

h→0

z − ih− z
ih

= lim
h→0

−ih
ih

= −1

But these limits aren’t equal, so f is not differentiable at any number z.

19.2.2 The Cauchy–Riemann Equations

Here we’re going to see ways to compute complex derivatives (when they exist) with-
out having to use limits.

Let z = x + iy. Then Re(f(z)) and Im(f(z)) are real-valued functions of x and y,
let’s call them u(x, y) and v(x, y), respectively, so we can write:

f(z) = u(x, y) + iv(x, y)

If f is complex differentiable at z = x+ iy, then we can compule the limit

lim
h→0

f(z + h)− f(z)

h

along two different paths as in Example 19.2.3.

Path 1 (real axis): For a real number h

lim
h→0

f(z + h)− f(z)

h

= lim
h→0

f(x+ h+ iy)− f(x+ iy)

h

= lim
h→0

u(x+ h, y) + iv(x+ h, y)− u(x, y)− iv(x, y)

h

=

(
lim
h→0

u(x+ h, y)− u(x, y)

h

)
+ i

(
lim
h→0

v(x+ h, y)− v(x, y)

h

)
=
∂u

∂x
+ i

∂v

∂x

provided the partial derivatives exist.
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Path 2 (imaginary axis): In what follows, h is a real number.

lim
h→0

f(z + ih)− f(z)

ih

= lim
h→0

f(x+ ih+ iy)− f(x+ iy)

ih

= lim
h→0

u(x, y + h) + iv(x, y + h)− u(x, y)− iv(x, y)

ih

=
1

i

(
lim
h→0

u(x, y + h)− u(x, y)

h

)
+

(
lim
h→0

v(x, y + h)− v(x, y + h)

h

)
=
∂v

∂y
− i∂u

∂y

provided the partial derivatives exist.

Since the two limits above must agree in both their real and imaginary parts, we must
have that

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

 Cauchy–Riemann equations (19.2.1)

Theorem 19.2.4 (Cauchy–Riemann equations). Suppose z = x + iy and that u, v :
R2 → R are differentiable at (x, y). If f(z) = u(x, y)+iv(x, y) is complex differentiable
at z, then u and v satisfy the Cauchy–Riemann equations 19.2.1. Moreover

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i∂u

∂y

Note that the above implication does not guarantee that f is complex differentiable.
We actually require a further assumption about u and v for that to be true.

Theorem 19.2.5. Suppose z = x + iy and that u, v : R2 → R are differentiable at
(x, y). If the first partial derivatives of u and v are all continuous at (x, y), then
f(z) = u(x, y) + iv(x, y) is complex differentiable at z.
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Example 19.2.6. Cosider the function f(z) = z2 defined on all of C. We have that
f(x+ iy) = u(x, y) + iv(x, y) where

u(x, y) = x2 − y2 and v(x, y) = 2xy.

Computing the partial derivatives, we have that

∂u

∂x
= 2x

∂u

∂y
= −2y

∂v

∂x
= 2y

∂v

∂y
= 2x

These satisfy the Cauchy–Riemann equations and at every point (x, y) the first partial
derivatives are all continuous, so f is complex differentiable and

f ′(z) = f ′(x+ iy) =
∂u

∂x
+ i

∂v

∂x
= 2x+ 2iy

= 2z

More generally,

Proposition 19.2.7 (Power Rule). For every positive integer n,
d

dz
[zn] = nzn−1 .

Exercise 19.2.1. Use the Cauchy–Riemann equations to prove Proposition 19.2.7.

Example 19.2.8. Consider the function f(z) = z Im(z) defined on all of C. We have
that f(x+ iy) = u(x, y) + iv(x, y) where

u(x, y) = xy and v(x, y) = y2.

Computing the partial derivatives, we have that

∂u

∂x
= y

∂u

∂y
= x

∂v

∂x
= 0

∂v

∂y
= 2y

At every point (x, y) the first partial derivatives are all continuous, but the Cauchy–
Riemann equations are only satisfied when x = y = 0:

y =
∂u

∂x
=
∂v

∂y
= 2y

x =
∂u

∂y
= −∂v

∂x
= 0

so f is only complex differentiable at z = 0.
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Remark. This behavior is different than for real derivatives - in the real setting, a
function cannot be differentiable at a single point (rather, it must be differentiable
within an entire interval around that point). This just lends evidence to the fact that
complex differentiability is a much stricter condition than real differentiability.

Proposition 19.2.9 (Algebra of complex derivatives). Let f, g be functions that are
complex differentiable at z, and let c any complex number. The following functions
are also complex differentiable at z and familiar properties hold:

1. (f ± g)′(z) = f ′(z)± g′(z)

2. (cf)′(z) = cf ′(z)

3. (fg)′(z) = f ′(z)g(z) + g′(z)f(z)

4. For g(z) 6= 0,

(
f

g

)′
(z) =

f ′(z)g(z)− g′(z)f(z)

[g(z)]2

5. If f is differentiable at g(z), then (f ◦ g)′(z) = f ′(g(z))g′(z)

Exercise 19.2.2. Use the Cauchy–Riemann equations to prove Proposition 19.2.9.
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19.3 The Exponential and Trigonometric Functions

Definition. The complex exponential function ez is defined for all z = x+ iy as

ez := ex cos(y) + iex sin(y)

Proposition 19.3.1.
d

dz
[ez] = ez

Exercise 19.3.1. Use the Cauchy–Riemann equations to prove Proposition 19.3.1.

The following are obvious consequences of the definition of the complex exponential.

Proposition 19.3.2 (Properties of ez). 1. e0 = 1

2. For z, w complex numbers, ezew = ez+w

3. ez 6= 0 for all complex numbers z

4. e−z = 1/ez

5. For t a real number, eit = e−it

6. For z = x+ iy (with x, y real numbers), |ez| = ex

Exercise 19.3.2. Prove Proposition 19.3.2.

Example 19.3.3. Find all complex numbers z = x+ iy so that ez = 2− 2i.

Note that |ez| = ex = |2−2i| = 2
√

2, so we get that x = ln(2
√

2). Thus, the equation

ez = ex cos(y) + iex sin(y) = 2− 2i

implies that

2
√

2 cos(y) = 2 and 2
√

2 sin(y) = −2.

Thus

2
√

2 sin(y)

2
√

2 cos(y)
=
−2

2
=⇒ tan(y) = −1

and thus y = arctan(−1) + 2kπ = −π
4 + 2kπ for any integer k. As such, all possible

solutions are

z = ln(2
√

2)− i
(π

4
+ 2kπ

)
.
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It’s not too hard to see that the complex exponential has period 2kπi for any integer
k. After all, for any complex number z,

ez+2kπi = eze2kπi = ez (cos(2kπ) + i sin(2kπ)) = ez(1) = ez.

What’s less obvious is

Theorem 19.3.4. The only periods of the complex exponential are of the form 2kπi
where k is any integer.

Proof. Suppose p is some complex number for which ez+p = ez for every z. Let
z = x+ iy and p = a+ ib. Then

ez+p = ez

ex+a+i(y+b) = ex+iy

ex+a (cos(y + b) + i sin(y + b)) = ex (cos(y) + i sin(y))

ea (cos(y + b) + i sin(y + b)) = cos(y) + i sin(y).

If this is true for every z, then it must be true in the particular case when y = 0. So

ea cos(b) + iea sin(b) = 1 + 0i

Since a is real, ea > 0, hence sin(b) = 0 and cos(b) > 0. Thus b = 2kπ for some
integer k. But then cos(b) = 1 and thus ea = 1, which implies that a = 0. So

p = a+ ib = 0 + 2kπi.

Theorem 19.3.4 also shows us why the real exponential isn’t periodic – all possible
periods are purely imaginary!

Notice that for a real number θ, we have

eiθ = cos θ + i sin θ, (19.3.1)

e−iθ = cos θ − i sin θ. (19.3.2)

Adding and subtracting these two equations yields

cos θ =
eiθ + e−iθ

2

sin θ =
eiθ − e−iθ

2i

Since we have defined the complex exponential for all complex numbers, we now have
a natural way to extend the definition of some trigonometric functions.

18



Definition. For any complex number z, we define the complex cosine function
as

cos(z) =
eiz + e−iz

2
,

and we define the complex sine function as

sin(z) =
eiz − e−iz

2i
.

Theorem 19.3.5. Both cos(z) and sin(z) are complex differentiable on all of C (i.e.
are analytic on all of C). Moreover,

d

dz
sin(z) = cos(z),

d

dz
cos(z) = − sin(z).

Proof. We will only prove that cos(z) is complex differentiable, as the proof for sin(z)
is the same mutatis mutandus. Letting z = x + iy, then we have that iz = −y + ix
and −iz = y − ix. So

cos(z) =
1

2
eiz +

1

2
e−iz

=
1

2
e−y+ix +

1

2
ey−ix

=
1

2
e−y (cosx+ i sinx) +

1

2
ey (cosx− i sinx)

=
1

2
cos(x)

(
ey + e−y

)
+
i

2
sin(x)

(
ey − e−y

)
.

Let

u(x, y) =
1

2
cos(x)

(
ey + e−y

)
v(x, y) =

i

2
sin(x)

(
ey − e−y

)
.

One can check the u and v satisfy the Cauchy–Riemann equations. Moreover, all of
the first partial derivatives of u and v are continuous, so by Theorem 19.2.5, cos(z)
is differentiable.

Exercise 19.3.3. With u, v as given in the above, check that they do indeed satify
the Cauchy–Riemann equations and show that d

dz cos(z) = − sin(z).

It’s worth noting that the complex trig functions cos(z) and sin(z) are unbounded
functions (to see this, take the imaginary part of z to be arbitrarily large). As it turns
out, all of the familiar behavior of sine and cosine happens only in the real numbers.
Precisely,
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Theorem 19.3.6. 1. sin(z) = 0 precisely when z = kπ for any integer k.

2. cos(z) = 0 precisely when z = 1
2(2k + 1)π for any integer k.

3. The only periods of the complex sine and cosine are of the form 2kπ where k is
any integer.

The remaining trigonometric functions can also be made complex in the obvious ways:

Definition. The complex secant, cosecant, tangent, and cotangent are defined as

sec(z) =
1

cos(z)
, csc(z) =

1

sin(z)
,

tan(z) =
sin(z)

cos(z)
, cot(z) =

cos(z)

sin(z)
,

provided sin(z) 6= 0 or cos(z) 6= 0 when appropriate.

Theorem 19.3.7. The remaining complex trigonometric functions are complex differ-
entiable on their domains (i.e. analytic) and have the following complex derivatives:

d

dz
sec(z) = sec(z) tan(z),

d

dz
csc(z) = − csc(z) cot(z),

d

dz
tan(z) = sec2(z),

d

dz
cot(z) = − csc2(z)

Proof. That these functions are complex differentiable is an immediate consequence of
the differentiability of sin(z) and cos(z) in conjunction with Proposition 19.2.9. Since
we now know the complex derivatives of sine and cosine, verification of derivatives is
a sraightforward computation and is left as an exercise for the reader.
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19.4 The Complex Logarithm

Suppose z is fixed and we are trying to find all w for which ew = z. We can make
things a bit easier if we put z into polar form (z = reiθ) and rewrite w = u+ iv. Now
we have

eueiv = eu+iv = ew = z = reiθ (19.4.1)

Since |eiv| = |eiθ| = 1, and since eu and r are both positive, taking magnitudes of
both sides gives us

eu = |eu||eiv| = |r||eiθ| = r

hence u = ln(r) = ln |z|.

But now Equation 19.4.1 simplifies to

eiv = eiθ.

Since the complex exponential has periods of the form 2kπi for integers k, it must
be that v = θ+ 2kπ for some integer k. As such, the answer to our original equation
is

w = ln |z|+ i(θ + 2kπ)

where θ is an argument for z and k is any integer. From this we define

Definition. If z is a nonzero complex number with argument θ, then the

(complex) logarithm , log(z), is the set of complex numbers

log(z) := ln |z|+ i(θ + 2kπ)

where k ranges over all integers.

Note that log(z) is not a function because has infinitely-many outputs for every input.

Remark. In most areas of math, log without any base is interpreted to be “base-e”
and whether it is the real or complex natural logarithm is clear from context. In
these notes, we’ll use ln to distinguish the real natural logarithm from the complex
counterpart.

Example 19.4.1. Compute log(z) where z = 1 + i
√

3.

Since |z| = 2 and z has an argument θ = π
3 , we have that

log(z) = ln 2 + i
(π

3
+ 2kπ

)
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As it will be useful in the next section, suppose z 6= 0 is a complex number with a
chosen argument θ. We then have that

log(z) = ln |z|+ i(θ + 2kπ) (for all integers k).

It follows that

elog(z) = eln |z|+i(θ+2kπ) = eln |z|eiθei2kπ

= |z|eiθ(1) = z

so even though log(z) has infinitely-many values, elog(z) is a single complex number.

22



19.5 Powers

The goal of this section is to give meaning to zw where both z and w are complex
numbers (we already know what happens when w is an integer) and z 6= 0.

19.5.1 nth Roots

Definition. Let n be a positive integer. An nth root of z is a complex number

z1/n whose nth power is z.

To find nth roots of z 6= 0, we begin by putting z into polar form z = rei(θ+2kπ) with
all possible arguments in the exponent. Then

z1/n = r1/nei(θ+2kπ)/n

where r1/n is the real nth root of r. Thus for each number k = 0, . . . , (n − 1), we
obtain all of the different nth roots of z (and there are exactly n of these):

r1/neiθ/n, r1/nei(θ+2π)/n, r1/nei(θ+4π)/n, . . . r1/nei(θ+2(n−1)π)/n

Exercise 19.5.1. Convince yourself that for any k ≥ n, the number r1/nei(θ+2kπ)/n

is already featured in the list above. Hint: What are the periods of the complex
exponential?

Example 19.5.1. Compute the fifth roots of z = 1 + i.

Since |z| =
√

2 = 21/2 and θ = π
4 is an argument for z, the fifth roots of z are

21/10ei(π/4)/5, 21/10ei(π/4+2π)/5, 21/10ei(π/4+4π)/5, 21/10ei(π/4+6π)/5, 21/10ei(π/4+8π)/5,

which, when simplified a bit, are

21/10eiπ/20, 21/10e9iπ/20, 21/10e17iπ/20, 21/10e25iπ/20, 21/10e33iπ/20.
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Example 19.5.2. An nth root of unity is a complex number z1/n whose nth power

is 1, and these are quite ubiquitous throughout different branches of mathematics (for
example, in Fourier analysis, in Galois theory, or even in your instructor’s geometry
PhD thesis). Compute the 5th roots of unity and plot them.

In polar form, 1 = 1e0πi, hence

ζ1 = 1

ζ2 = e2πi/5

ζ3 = e4πi/5

ζ4 = e6πi/5

ζ5 = e8πi/5

ζ1

ζ2

ζ3

ζ4

ζ5

real

im
ag

.

19.5.2 Rational Exponents

If m
n is a rational number (fully reduced), then we define

zm/n := (zm)1/n .

Remark. Because there are n-many nth roots, there will be n-many values of zm/n.

Example 19.5.3. Find (1 + i)2/3.

We have that

(1 + i)2/3 =
(
(1 + i)2

)1/3
= (2i)1/3.

Since 2i = 2eiπ/2, it follows that the cube roots of 2i are

21/3ei(π/2)/3, 21/3ei(π/2+2π)/3, ei(π/2+4π)/3

which, when simplified a bit, are

21/3eiπ/6, 21/3e5iπ/6, 21/3e9iπ/6.
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19.5.3 Complex Exponents

Stemming from the discussion at the end of the previous section, we have that z =
elog(z). As such for any complex w, we can unambiguously define

zw := ew log(z).

If w is not a rational number, then there are infinitely-many values of zw.

Example 19.5.4. Find ii.

i = eiπ/2, so log(i) = i(π/2 + 2kπ) for any integer k. Hence

ii = ei log(i) = ei
2(π/2+2kπ) = eπ/2+2kπ

for any integer k.

Remark. Yes. ii produces real numbers.

19.5.4 Remarks - Log and Arg Functions

As mentioned, given any complex number z, there are infinitely-many possible ar-
guments, and thus logarithms, for z. What this means is that we can’t treat arg(z)
and log(z) as functions. This has some drawbacks, so it’s not uncommon for other
authors to restrict the possible ranges of values in order to make them into function.
Specifically,

Arg(z) = θ where θ is an argument of z and − π < θ ≤ π

Log(z) = ln |z|+ iArg(z)

Your book works very hard to avoid treating them as functions, and I will follow suit
for the semester. However, you may find yourself looking to outside sources, so you
should be aware of different authors’ conventions.
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19.A Harmonic Functions

Recall the following definition

Definition. A real-valued function u(x, y) is harmonic on an open set S if its

second partial derivatives are continuous and it satisfies the Laplace equation ∇2u = 0
on S, i.e. if

∂2u

∂x2
+
∂2u

∂y2
= 0.

at every point in S.

As was suggested in the Problems for Section 19.2, there is an intimate relationship
with complex differentiability and harmonic functions. Namely,

Theorem 19.A.1. Suppose f is analytic on a set S. Then the functions u and v
satisfying f(x+ iy) = u(x, y) + iv(x, y) on S are harmonic on S.

Proof. If f is analytic, then u and v satisfy the Cauchy–Riemann equations on S. To
see that u is harmonic on S,

∂2u

∂x2
+
∂2u

∂y2
=

∂

∂x

(
∂u

∂x

)
+

∂

∂y

(
∂u

∂y

)
=

∂

∂x

(
∂v

∂y

)
+

∂

∂y

(
−∂v
∂x

)
(Cauchy–Riemann Equations)

=
∂2v

∂x∂y
− ∂2v

∂x∂y
= 0.

The proof that v is harmonic is the same mutatis mutandis.

Definition. If f = u+iv is analytic, then u and v are called harmonic conjugates .

Remark. Harmonic conjugates are not unique.

Example 19.A.2. Find a harmonic conjugate for u(x, y) = y.

Since ∇2u = 0 on the whole plane, we need to find a function f that is analytic on
all of C and a real-valued function for which f(x + iy) = u(x, y) + iv(x, y). To do
this, we look for a v satisfying the Cauchy–Riemann equations on all of C:

∂v

∂x
= −∂u

∂y
= −1 (19.A.1)

∂v

∂y
=
∂u

∂x
= 0 (19.A.2)
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Integrating the first equation with respect to x, we deduce that v(x, y) = −x+ ϕ(y)
where ϕ(y) is a differentiable function of y. Differentiating with respect to y (and
keeping in mind the second equation above), we have

∂v

∂y
= ϕ′(y) = 0

in which case ϕ(y) = K, a constant. Thus for any constant K, a harmonic conjugate
for u is

v(x, y) = −x+K.

Example 19.A.3. u(x, y) = x2 − y2 and v(x, y) = 2xy are harmonic conjugates
associated the function f(z) = z2. Plotting out the level sets for each (with u blue
and v red), we see that the level sets intersect each other perpendicularly.
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20 Complex Integration

20.1 The Integral of a Complex Function

Complex functions are integrated over curves, and share much in common with line
integrals of vector fields.

20.1.1 Integral Over a Closed Interval

Supose f is a complex function and u, v are functions of one real variable satisfying
f(x) = u(x) + iv(x). If f(x) is defined for a ≤ x ≤ b, then we define∫ b

a

f(x) dx =

∫ b

a

u(x) dx+ i

∫ b

a

v(x) dx.

Example 20.1.1. Compute
∫ π

0 e
ix dx.

Since f(x) = eix = cos(x) + i sin(x), we have that u(x) = cos(x) and v(x) = sin(x).
Hence

∫ π

0

eix dx =

∫ π

0

cos(x) dx+ i

∫ π

0

sin(x) dx

= sin(x)

∣∣∣∣x=π

x=0

− i cos(x)

∣∣∣∣x=π

x=0

= −ieix
∣∣∣∣x=π

x=0

= −i(−1− 1) = 2i.

eix

real

im
ag

.

For simplicity later, we note that
∫ b
a e

ix dx =−i(eib − eia).

20.1.2 Integral Over a Smooth Curve

Let γ be a smooth curve in the plane with γ(t) defined for a ≤ t ≤ b. Writing
γ(t) = x(t) + iy(t) (and thus γ′(t) = x′(t) + iy′(t)), suppose that f is continuous at
all points on γ. Then we define∫

γ

f(z) dz =

∫ b

a

f(γ(t)) γ′(t) dt.
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Example 20.1.2. Compute
∫
γ zRe(z) dz for γ(t) = t2 + ti where 0 ≤ t ≤ 2.

∫
γ

f(z) dz =

∫ 2

0

(t2 + ti)(t2)(2t+ i) dt

=

∫ 2

0

2t5 − t3 + 3it4 dt

=

∫ 2

0

2t5 − t3 dt+ i

∫ 2

0

3t4 dt

=

(
1

3
t6 − 1

4
t4
) ∣∣∣∣t=2

t=0

+ i
3

5
t5
∣∣∣∣t=2

t=0

=
52

3
+

96

5
i.

γ

real
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20.1.3 Integral Over a Piecewise Smooth Curve

Definition. A piecewise smooth curve γ is a curve comprised of finitely-many

smooth curves γ1, . . . , γn such that the terminal point of each γk is the initial point

of γk+1. A piecewise smooth curve is also sometimes called a contour . Your book

denotes the piecewise smooth curve γ above as γ = γ1 ⊕ γ2 ⊕ · · · ⊕ γn

Piecewise smooth curves can have finitely-many corners or cusps.

γ1

γ2

γ3
· · ·

γi

γi+1

...
γn

real

im
ag

.
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Definition. Suppose γ = γ1⊕⊕γ2⊕ · · · ⊕ γn is a piecewise smooth curve defined for
a ≤ t ≤ b (where γk(t) is defined for ak ≤ t ≤ bk, a = a1, and b = bk) and assume f

is continuous at all points along the curve. Then the integral of f over γ is

∫
γ

f(z) dz =
n∑
k=1

∫ bk

ak

f(γk(t))γ
′
k(t) dt.

Sometimes γ is called a contour and the integral is a contour integral.

Example 20.1.3. Compute
∫
γ z dz for γ = γ1 ⊕ γ2, where

γ1(t) = 2 + 2ti (0 ≤ t ≤ 1),

γ2(t) = 4− 2t+ i(4− 2t) (1 < t ≤ 2).

We have that∫
γ

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz =

∫ 1

0

f(γ1(t))γ
′
1(t) dt+

∫ 2

1

f(γ2(t))γ
′
2(t) dt.

Computing these integrals separately,

∫ 1

0

f(γ1(t))γ
′
1(t) dt =

∫ 1

0

(2− 2ti)(2i) dt

=

∫ 1

0

4t+ 4i dt = 2 + 4i,

and∫ 2

1

f(γ2(t))γ
′
2(t) dt

=

∫ 2

1

(4− 2t− 4i+ 2ti)(−2− 2i) dt

=

∫ 2

1

8t− 16 dt = −4.

γ1
γ2

real

im
ag

.

Hence
∫
γ f(z) dz = (2 + 4i) + (−4) = −2 + 4i.
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Example 20.1.4. For some fixed z0 and positive real number r, let γ be the circle
|z − z0| = r traversed once in the counterclockwise direction. For each integer n > 0,
compute

∫
γ(z − z0)

n dz.

We know that the circle of radius r centered at the origin is parameterized by reit for
0 ≤ t ≤ 2π, so we can write γ(t) = z0 + reit for 0 ≤ t ≤ 2π.

∫
γ

f(z) dz =

∫
γ

(z − z0)
n dz

=

∫ 2π

0

(γ(t)− z0)
nγ′(t) dt

=

∫ 2π

0

(rneint)(ireit) dt

=

∫ 2π

0

irn+1ei(n+1)t dt

= irn+1

(
−i
n+ 1

)
ei(n+1)t

∣∣∣∣t=2π

t=0

= 0.

γ

z0
real

im
ag

.

Theorem 20.1.5 (Properties of Complex Integrals). Let f and g be integrable over
some (piecewise) smooth curve γ.

1.

∫
γ

(f(z) + g(z)) dz =

∫
γ

f(z) dz +

∫
γ

g(z) dz .

2. For any complex number c,

∫
γ

cf(z) dz = c

∫
γ

f(z) dz .

3. Reversing orientation of the curve changes the integral sign. If γ̃ is the same
curve as γ, traversed in the opposite direction, then∫

γ̃

f(z) dz = −
∫
γ

f(z) dz.

4. There is a version of the fundamental theorem of calculus for complex integrals:
Suppose f is continuous on an open set S and F is defined on S with the
property that F ′(z) = f(z). If γ is a smooth curve in S, defined on an interval
[a, b], then ∫

γ

f(z) dz = F (γ(b))− F (γ(a)).
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5.

∫
γ

f(z) dz can be written as a sum of two real line integrals: Suppose γ is defined

on [a, b]. Then we have that

f(z) = u(x, y) + iv(x, y) and dz = (x′(t) + iy′(t)) dt.

Then∫
γ

f(z) dz =

∫ b

a

(u(x, y) + iv(x, y)) (x′(t) + iy′(t)) dt

=

∫ b

a

u(x, y)x′(t) dt− v(x, y)y′(t), dt+ iu(x, y)y′(t) dt+ iv(x, y)x′(t) dt

=

∫
γ

(u dx− v dy) + i

∫
γ

(u dy + v dx)

6. Let γ be a smooth curve defined on [a, b], let L be its length, and let f be
continuous on γ. If f(z) is bounded by M (i.e. |f(z)| ≤M for all z on γ), then∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ ≤ML.

With the conditions given in # 4 above, the value of

∫
γ

f(z) dz is determined only

on the endpoints of γ, i.e., it is independent of path. In particular, when γ is a closed

curve, then

∫
γ

f(z) dz = 0 (just like with conservative vector fields). We’ll explore

this more thoroughly in the next section.

Example 20.1.6. Using Part 6 of the above Theorem (20.1.5), find a bound for∣∣∣∣∫
γ

1

1 + z
dz

∣∣∣∣ where γ is the straight line segment from 2 + i to 2− 3i.

γ
real

im
ag

.
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We are looking for a number M so that
∣∣ 1
z+1

∣∣ ≤ M for z-values on γ. Notice that

|z + 1| is just the distance from a point z to −1, so the largest value of
∣∣ 1
z+1

∣∣ occurs
when the point on γ is closest to −1. Looking at the picture, it’s not hard to see that
this happens when γ passes through 2. So we have that, for all z on the curve γ

|z + 1| ≥ |2 + 1| = 3 =⇒
∣∣∣∣ 1

z + 1

∣∣∣∣ ≤ 1

3
= M.

Since γ is a line segment with length L = 4, then by Theorem 20.1.5, it follows that∣∣∣∣∫
γ

1

1 + z
dz

∣∣∣∣ ≤ML =

(
1

3

)
(4) =

4

3
.
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20.2 Cauchy’s Theorem

We’ll begin this section by stating a somewhat obvious (but actually very hard to
prove) theorem; we’ll just accept it as fact.

Theorem 20.2.1 (Jordan curve). If γ is a continuous, simple closed curve in the
plane, then γ separates the plane into two connected regions - a bounded open set (the
interior of γ) and an unbounded open set (the exterior of γ).

Visually,

interior
exterior

real

im
ag

.

We’ll introduce a few pieces of terminology for our purposes.

Definition. A path (in a set S) is a simple, piecewise smooth curve (that lies in

S).

Remark. This definition of a path is not consistent with some other texts. Other
authors may only require that a path be continuous, not necessarily piecewise smooth.

Definition. A set S is connected if every two points of S are endpoints of some

path in S. An open, connected set is called a domain .

Remark. This definition of connectedness is not consistent with many other texts.
Many other authors would call this “path-connectedness” and reserve the term “con-
nected” for a strictly weaker notion.

Definition. A set S is simply connected if every closed path in S encloses only

points in S.
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Theorem 20.2.2 (Cauchy). Suppose f is differentiable on a simply connected domain
S. Then ∮

γ

f(z) dz = 0

for every closed path γ in S.

We use the symbol
∮
γ as a visual reminder that we’re integrating over a closed path.

Unless otherwise stated, we always assume closed curves are oriented counterclock-
wise.

Proof. The general proof is very involved, but a simpler case can be proven quite
easily. For z = x+ iy, write f(z) = u(x, y) + iv(x, y) and suppose u, v are continuous
on S with all first partial derivatives continuous on S. Using property 5 from Theorem
20.1.5, we can write∮

γ

f(z) dz =

∮
γ

(u dx− v dy) + i

∮
γ

(u dy + v dx)

to which we can apply Green’s Theorem

=

∫∫
S

(
−∂v
∂x
− ∂u

∂y

)
dx dy + i

∫∫
S

(
∂u

∂x
− ∂v

∂y

)
dx dy

and because of the Cauchy–Riemann equations, we have

=

∫∫
S

(
∂u

∂y
− ∂u

∂y

)
dx dy + i

∫∫
S

(
∂v

∂y
− ∂v

∂y

)
dx dy

= 0 + 0 = 0.
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Example 20.2.3. Compute

∮
γ

1

z − 2i
dz where γ is the circle |z − 2| = 1 (traversed

once].

f(z) = 1
z−2i is differentiable everywhere except at z = 2i, and we can find a simply

connected domain which excudes this point and contains all of γ (for example, take
S to be the set of z satisfying Re(z) > 0).

By Cauchy’s theorem,∫
γ

1

z − 2i
dz = 0.

2i

γ

S

real
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Example 20.2.4. Compute

∮
γ

1

z − 2i
dz where γ is the circle |z − 2i| = 1 (traversed

once].

f(z) = 1
z−2i is differentiable everywhere except at z = 2i. Unfortunately, γ encloses

z = 2i and thus there are no simply connected open domains containing γ on which
f is differentiable. Therefore, Cauchy’s Theorem doesn’t apply. However, f is still
continuous (even differentiable!) along γ, so we can compute this the old fashioned
way.

We parameterize γ(t) = 2i+eit where 0 ≤
t ≤ 2π. Then∫

γ

1

z − 2i
dz =

∫ 2π

0

γ′(t)

γ(t)− 2i
dt

=

∫ 2π

0

ieit

eit
dt

=

∫ 2π

0

i dt = 2πi.

2i
γ
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20.3 Consequences of Cauchy’s Theorem

20.3.1 Independence of Path

Suppose f is differentiable on a simply connected domain S, and suppose z0, z1 are
points of S. Let γ1, γ2 be paths in S from z0 to z1. Writing −γ2 to denote the reverse
path of γ2 (that is −γ2 is a path from z1 to z0), then we have that γ = γ1 ⊕ (−γ2) is
a closed path.

z0

z1 γ1

−γ2

S

real

im
ag

.

Since γ is a closed path,

0 =

∮
γ

f(z) dz (Cauchy’s Theorem)

=

∫
γ1

f(z) dz +

∫
−γ2

f(z) dz

=

∫
γ1

f(z) dz −
∫
γ2

f(z) dz (# 3 in Theorem 20.1.5)

which implies that ∫
γ1

f(z) dz =

∫
γ2

f(z) dz

Exercise 20.3.1. Let γ1 be the straight line from 1 to i given by γ1(t) = (1− t) + it
with 0 ≤ t ≤ 1. Let γ2 be the circular arc from 1 to i given by γ2(t) = eit with

0 ≤ t ≤ π
2 . Compute

∫
γ1

f(z) dz and

∫
γ2

f(z) dz with f(z) = z2 + 2iz − 3.
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20.3.2 The Deformation Theorem

Independence of path suggests that, with minor assumptions, when integrating over
a closed path, we can always try to integrate over a more convenient closed path.

Theorem 20.3.1 (Deformation). Let Γ and γ be closed paths with γ in the interior
of Γ. Suppose f is differentiable on a set S containing both paths and all points in
between them. Then ∮

Γ

f(z) dz =

∮
γ

f(z) dz.

γ

Γ
S

real

im
ag

.

Assumptions of deformation theorem.

γ

Γ

real

im
ag

.

Step-by-step, the outer path Γ is being

“deformed” and shrinking to the inner path γ

Proof. Let z0, z1 be any two distinct points on Γ and let w0, w1 be any two distinct
points on γ. Let Γ1 be the path from z0 to z1 and Γ2 the path from z1 to z0 so that
Γ = Γ1 ⊕ Γ2. Similarly let γ1 be the path from w0 to w1 and γ2 is the path from w1

to w0 so that γ = γ1 ⊕ γ2. Finally, let L0 be a path from w0 to z0, and L1 a path w1

to z1 (without loss of generality, we can choose L0 and L1 so that they do not cross).
We have the picture below.
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L0

L1

γ1

γ2

Γ1

Γ2

S

w0

w1

z0

z1

By Cauchy’s Theorem we have that∮
Γ1⊕(−L1)⊕(−γ1)⊕L0

f(z) dz = 0,∮
Γ2⊕(−L0)⊕(−γ2)⊕L1

f(z) dz = 0.

Recall that∮
Γ1⊕(−L1)⊕(−γ1)⊕L0

f(z) dz =

∫
Γ1

f(z) dz −
∫
L1

f(z) dz −
∫
γ1

f(z) dz +

∫
L0

f(z) dz∮
Γ2⊕(−L0)⊕(−γ2)⊕L1

f(z) dz =

∫
Γ2

f(z) dz −
∫
L0

f(z) dz −
∫
γ2

f(z) dz +

∫
L1

f(z) dz

So,

0 =

∮
Γ1⊕(−L1)⊕(−γ1)⊕L0

f(z) dz +

∮
Γ2⊕(−L0)⊕(−γ2)⊕L1

f(z) dz

=

∫
Γ1

f(z) dz +

∫
Γ2

f(z) dz −
∫
γ1

f(z) dz −
∫
γ2

f(z) dz

=

∫
Γ1⊕Γ2

f(z) dz −
∫
γ1⊕γ2

f(z) dz

=

∮
Γ

f(z) dz −
∮
γ

f(z) dz

hence ∮
Γ

f(z) dz =

∮
γ

f(z) dz.
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20.3.3 Cauchy’s Integral Formula

In Example 20.2.4, we saw that, for z0 = 2i∮
C

1

z − z0
dz = 2πi,

where C was a circle of radius 1 centered at z0. By the Deformation Theorem, we can
conclude that in fact that should be true for any closed path γ surrounding z0 (and
in fact, the particular choice of z0 is also unimportant). So it may be reasonable to
ask, what happens if we consider a slightly more general integral like the one below?

∮
γ

f(z)

z − z0
dz

For simplicity, we’ll assume γ lives in a domain, that f is differentiable on that domain,
and that γ encloses a simply connected domain containing z0. Then∮

γ

f(z)

z − z0
dz =

∮
γ

f(z)− f(z0) + f(z0)

z − z0
dz

=

∮
γ

f(z0)

z − z0
dz +

∮
γ

f(z)− f(z0)

z − z0
dz

= 2πif(z0) +

∮
γ

f(z)− f(z0)

z − z0
dz

What we want to know is that happens to that second integral. By the deformation
theorem, it suffices to consider the case when γ is a small circle around z0, so for some
small radius r, we can parameterize γ as

γ(t) = z0 + reit 0 ≤ t ≤ 2π.

Then ∮
γ

f(z)− f(z0)

z − z0
dz =

∫ 2π

0

f(z0 + reit)− f(z0)

reit
ireit dt

= i

∫ 2π

0

f(z0 + reit)− f(z0) dt.

Since the integrand can be negative, it follows that∣∣∣∣i ∫ 2π

0

f(z0 + reit)− f(z0) dt

∣∣∣∣ ≤ ∫ 2π

0

|f(z0 + reit)− f(z0)| dt.
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Now, by continuity of f at z0,

lim
r→0
|f(z0 + reit)− f(z0)| = 0

so this implies that ∣∣∣∣i ∫ 2π

0

f(z0 + reit)− f(z0) dt

∣∣∣∣ = 0

and thus ∮
γ

f(z)− f(z0)

z − z0
dz = 0.

Theorem 20.3.2 (Cauchy’s Integral Formula). Let f be differentiable on an open set
S. Let γ be a closed path in S enclosing only points of S. Then, for any z0 enclosed
by γ,

f(z0) =
1

2πi

∮
γ

f(z)

z − z0
dz

Example 20.3.3. Let γ be any closed path that does not pass through i and let

f(z) = 85eiz
100π. Evaluate

∮
f(z)

z − i
dz.

Note: f(z) is differentiable for all z ∈ C.

Case 1 (γ does not enclose i): Then by Cauchy’s Theorem∮
γ

f(z)

z − i
dz = 0

Case 2 (γ encloses i): Then by Cauchy’s Integral Formula∮
γ

f(z)

z − i
dz = 2πi(85eiπ) = −170πi.

We can even cleverly use Cauchy’s Integral Formula to evaluate some real integrals
that would have made us cry in MATH 1226. (It might still make you cry now, but
at least it can be solved without resorting to numerical techniques.)
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Example 20.3.4. Evaluate

∫ 2π

0

ecos(θ) cos(sin(θ)) dθ.

Before tackling this head-on, we first examine another contour integral. By Cauchy’s
Theorem, for any closed path γ that encloses 0,∮

γ

ez

z
dz = 2πie0 = 2πi.

Letting γ(θ) = eiθ be the unit circle, we have∮
γ

ez

z
dz =

∫ 2π

0

ee
iθ

eiθ
ieiθ dθ = i

∫ 2π

0

ee
iθ

dθ

= i

∫ 2π

0

ecos θei sin θ dθ

= i

∫ 2π

0

ecos θ (cos(sin θ) + i sin(sin θ)) dθ

= −
∫ 2π

0

ecos θ sin(sin θ) dθ + i

∫ 2π

0

ecos θ cos(sin θ) dθ

Notice that the imaginary part of this integral is exactly what we set out to solve! So
its value must be the same as the imaginary part of 2πi!∫ 2π

0

ecos θ cos(sin θ) dθ = 2π.

Remark. You are not expected to just have the brilliant insight and cleverness to
use contour integrals in that way; even WolframAlpha resorts to numerical techniques
when given that integral. It’s just really interesting to see that, with enough ingenuity,
even some complicated real integrals can have deceptively simple values.

Theorem 20.3.5 (Cauchy’s Integral Formula for Derivatives). Let f , S, γ, and z0

be as in Cauchy’s integral formula (Theorem 20.3.2). Then for any integer n ≥ 0

f (n)(z0) =
n!

2πi

∮
γ

f(z)

(z − z0)n+1
dz

Proof. The proof is a bit tedious, but more-or-less comes down to applying Cauchy’s
integral formula to the definition of the derivative and simplifying the terms.
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Example 20.3.6. Evaluate

∮
γ

ez
3

(z − i)3
dz where γ is a closed path that encloses i.

Let f(z) = ez
3

. Since γ encloses i and f is differentiable on all of C, we can compute
f ′′(z) and then apply Theorem 20.3.5.

f ′(z) = 3z2ez
3

, and f ′′(z) = (6z + 9z4)ez
3

hence ∮
γ

ez
3

(z − i)3
dz =

2πi

2!
f ′′(i) = πi(6i+ 9)e−i.

Not only does Cauchy’s integral formula kind of feel like cheating, it actually has the
following completely amazing consequence.

Corollary 20.3.7. Suppose f is complex analytic on an open set S. Then all deriva-
tives f exist on S.

This is very different from the behavior in real analysis. For example. f(x) = x2/3 is
differentiable on all of R, but the second derivative does not exist at x = 0.

20.3.4 Bounds on Derivatives

The following is also a consequence of Cauchy’s Integral Formula for Derivatives.

Theorem 20.3.8. Suppose f is differentiable on an open set S, suppose z0 ∈ S, and
suppose the closed disk of radius r centered at z0 is entirely contained within S. If
|f(z)| ≤M for all z on the circle bounding the disk, then for any positive integer, we
have that

|f (n)(z0)| ≤
M n!

rn
.

Since complex analytic functions are infinitely differentiable, a fascinating corollary
of this theorem is

Theorem 20.3.9 (Liouville (1847)). Suppose f is analytic on all of C. If f is
bounded, then f is a constant function.

This behavior is definitely different from real analytic functions. For example, f(x) =
arctan(x) is bounded, is infinitely differentiable on all of R, and every one of its
derivatives is bounded.
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20.3.5 An Extended Deformation Theorem

What if we wanted to apply Cauchy’s Integral Formula at multiple points?

Example 20.3.10. Let γ be the circle of radius 3
2 centered at 1

2 , and let f(z) = 3z+4.

Evaluate

∮
γ

f(z)

z2 − z
dz.

We begin with a partial fraction decomposition.

3z + 4

z2 − z
=
A

z
+

B

z − 1
=⇒ 3z + 4 = A(z − 1) +B(z).

We deduce that A = −4 and B = 7. Hence∮
γ

3z + 4

z2 − z
dz =

∮
γ

−4

z
dz +

∮
γ

7

z − 1
dz

By the deformation theorem, we can deform γ into the figure drawn on the right.
From here it should be clear that the middle “loop” contributes nothing to the value
of the integral, so we have

∮
γ

3z + 4

z2 − z
dz =

∮
γ0

−4

z
dz +

∮
γ1

−4

z
dz

+

∮
γ0

7

z − 1
dz +

∮
γ1

7

z − 1
dz

= −4(2πi) + 0 + 0 + 7(2πi) = 6πi.
γ0 γ1

γ

Intuitively, the strategy we used to deform the closed path should apply for any
number of closed paths. And this is precisely the idea behind the proof of the following
theorem.

Theorem 20.3.11 (Extended Deformation). Let Γ be a closed path and let γ1, . . . , γn
be closed paths enclosed by Γ. Assume that no two of Γ, γ1, . . . , γn intersect and no
point interior to any γi is interior to any other γk. Let f be differentiable on an open
set containing Γ and each γi and all points that are both interior to Γ and exterior to
each γj. Then ∮

Γ

f(z) dz =
n∑
k=1

∮
γk

f(z) dz.
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γ1

γ2

γ3

· · ·

γn

Γ
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20.A Applications to Harmonic Functions

Further exploring the theme of how complex analysis can inform about features of
real functions, one may wonder if Cauchy’s Integral Formula tells us anything about
harmonic function values. To explore this idea, let’s suppose f is analytic on an open
set S (so f = u+ iv with u and v harmonic on S). Let z0 = x0 + iy0 be a fixed point
in S, and let γ be a small circle of radius r around z0 and completely contained in S.

z0

γ

S

real
im

ag
.

Then

f(z0) = u(x0, y0) + iv(x0, y0) =
1

2πi

∮
γ

f(z)

z − z0
dz

=
1

2πi

∫ 2π

0

f(z0 + reiθ)

reiθ
ireiθ dθ

=
1

2π

∫ 2π

0

f(z0 + reiθ) dθ

=
1

2π

∫ 2π

0

u(x0 + r cos(θ), y0 + r sin(θ)) dθ

+
i

2π

∫ 2π

0

v(x0 + r cos(θ), y0 + r sin(θ)) dθ

by comparing the real and imaginary parts of these equations, we get the following

Theorem 20.A.1 (The Mean Value Property). Let u be harmonic on a domain D,
let (x0, y0) be any point of D, and let C be a circle of radius r in D centered at (x0, y0)
which encloses only points of D. Then

u(x0, y0) =
1

2π

∫ 2π

0

u(x0 + r cos(θ), y0 + r sin(θ)) dθ.
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One implication of this theorem is that the “average value” of a harmonic function
lies at the center of the disk enclosed by C.

Example 20.A.2. Let u be the harmonic function given by u(x, y) = 3x + 5y + 2
and let C be the circle of radius r about the origin (x0, y0) = (0, 0). Geometrically in
R3, u(x, y) is a plane.

x

y

z

z = u(x,
y)

If we think about the region sitting above C (and the disk it encloses), we would
expect that the average value on that region would be at the center of the disk -
afterall, a plane is linear in every direction. To see this explicitly, we compute

1

2π

∫ 2π

0

u(0 + r cos(θ), 0 + r sin(θ)) dθ

=
1

2π

∫ 2π

0

3r cos(θ) + 5r sin(θ) + 2 dθ

=
1

2π
[3r sin(θ)− 5r cos(θ) + 2θ]2π0

=
1

2π
[3r(0)− 5r(1) + 2(2π)− 3r(0) + 5r(1)− 2(0)]

=
1

2π
(4π) = 2 = u(0, 0).

For a bounded domain D, we write D to denote the set D together with all of its
boundary points; D is a closed set. The familiar Extreme Value Theorem says that if
the function u(x, y) is continous on D, then it must obtain a maximum and minimum
value on D. If u(x, y) is harmonic, then we can say a little bit more.
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Theorem 20.A.3 (The Maximum Princple). Let D be a bounded domain in the
plane and suppose u is continuous on D and harmonic on D. Then u(x, y) achieves
its maximum value at a boundary point of D.

This is also easy to see in the case of the preceding example.
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21 Series Representations of Functions

21.1 Power Series

21.1.1 Sequences and Series of Complex Numbers

We assume familiarity with real sequences and series.

Definition. A sequence of complex numbers is an infinite collection {z1, z2, . . . , }
where zn is a complex number for every nonnegative integer n. We sometimes denote
sequnces {zn}∞n=0 or just {zn}.

Definition. Let {zn} be a sequence of complex numbers. For every zn, there are real

numbers xn, yn such that zn = xn + iyn. The limit of {zn} is a complex number

L = a+ ib where

lim
n→∞

xn = a and lim
n→∞

yn = b.

In this case we write lim
n→∞

zn = L or possibly just zn → L.

Definition. Given a sequence of complex numbers {cn}, a series is a sequence

of partial sums

∞∑
n=0

cn = lim
k→∞

k∑
n=0

cn.

If this limit exists, we say that the series converges .

Proposition 21.1.1. For each complex number cn in the sequence {cn}, write cn =
an + ibn for real an, bn. Then

∑∞
n=0 cn converges to a complex number C = A+ iB if

and only if
∑∞

n=0 an = A and
∑∞

n=0 bn = B.

So convergence of complex series is equivalent to asking about convergence of real
series. Although the reader is assumed to be familiar with these convergence tests,
we will state them again for complex series.

Theorem 21.1.2 (Divergence Test). If limn→∞zn 6= 0, then the series
∞∑
n=0

zn diverges.
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Theorem 21.1.3 (Comparison Test). Suppose
∞∑
n=0

zn is a series of complex numbers

and
∞∑
n=0

Mn is a series of real numbers with |zn| ≤Mn for all n.

1. If
∞∑
n=0

Mn converges, then
∞∑
n=0

zn converges.

2. If
∞∑
n=0

zn diverges, then
∞∑
n=0

Mn diverges.

Remark. It may be worth noting that the Comparison Test for complex series is
slightly different than expected. You may have initially wanted to compare two
terms of a series, but given two complex numbers z and w, the inequality z ≤ w
does not have a meaning (the fancy phrase is that “there is no partial ordering on C
which respects the field structure”.) The next best thing, which is how the theorem
is stated, is to compare the magnitude of the terms of a real series.

Theorem 21.1.4 (Ratio Test). Consider the series
∞∑
n=0

zn and let lim
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣.
1. If L > 1,

∞∑
n=0

zn diverges.

2. If L < 1,
∞∑
n=0

zn converges.

Theorem 21.1.5 (Geometric Series). The series
∞∑
n=0

azn converges if and only if

|z| < 1.

Moreover, if
∞∑
n=0

azn converges, then it converges to
a

1− z
.

Definition. A series of complex numbers
∑∞

n=0 cn converges absolutely if the real

series
∑∞

n=0 |cn| converges.
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21.1.2 Power Series and Taylor Series

Definition. A power series is a series of the form

∞∑
n=0

cn(z − z0)
n = c0 + c1(z − z0) + c2(z − z0)

2 + · · · .

The complex numbers cn are called the coefficients of the power series, and z0 is

called the center of the power series.

Just as for real power series, one fundamental question is about finding z-values for
which the power series converges.

Remark. Just as in the real power series case, our goal is to think about the function

f(z) =
∞∑
n=0

cn(z − z0)
n. This function is only defined when the output is some finite

number, i.e., for z-values where the series converges.

Theorem 21.1.6. Suppose
∑∞

n=0 cn(z − z0)
n converges at z1 6= z0 (that is, suppose∑∞

n=0 cn(z1 − z0)
n is a convergent series). Then this series converges absolutely for

all z-values satisfying

|z − z0| < |z1 − z0|.

Proof. Because
∞∑
n=0

cn(z1 − z0)
n converges,

lim
n→∞

cn(z1 − z0)
n = 0.

This means that we can find a sufficiently large N so that, for all n ≥ N ,

|cn(z1 − z0)
n| < 1.

As such, for all n ≥ N ,

|cn(z − z0)
n| = |(z1 − z0)

n|
|(z1 − z0)n|

|cn(z − z0)
n|
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which rearranges to

|cn(z − z0)
n| = |(z − z0)

n|
|(z1 − z0)n|

|cn(z1 − z0)
n| ≤

∣∣∣∣ (z − z0)
n

(z1 − z0)n

∣∣∣∣ (1) =

∣∣∣∣ z − z0

z1 − z0

∣∣∣∣n .
When |z−z0| < |z1−z0|, then we have that

∣∣∣∣ z − z0

z1 − z0

∣∣∣∣ < 1, hence the geometric series

∞∑
n=1

∣∣∣∣ z − z0

z1 − z0

∣∣∣∣n
converges by the Geometric Series Test (21.1.5). By the comparison test (21.1.3), it

follows that the series

∞∑
n=0

|cn(z − z0)
n|

converges. As such, the following series converges absolutely:

∞∑
n=0

cn(z − z0)
n.

Letting r = |z1 − z0|, then the equation in the theorem has the form |z − z0| < r, so
geometrically, if the series converges on the boundary of a disk of radius r centered
at z0, then it converges absolutely on the interior of that disk.

Definition. The radius of convergence R, is the radius of the largest disk around

z0 on which the series
∞∑
n=0

cn(z − z0)
n converges. The disk |z − z0| < R is called the

disk of convergence .

Proposition 21.1.7. For a given power series, the radius of convergence is unique,
and the series diverges outside of this disk (i.e. for z-values satisfying |z − z0| > R.

Proof. The radius is unique by definition. The series must diverge outside of this
disk, for if it didn’t, then by Theorem 21.1.6, there would be a disk of larger radius
on which the series converged.

Fact. A power series
∞∑
n=0

cn(z − z0)
n always converges at the center z0.
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If a power series converges only at the center, then we may write R = 0, and if it
converges for all complex numbers, we write R =∞.

As with real power series, we can sometimes compute the radius of convergence via
the ratio test.

Example 21.1.8. Determine the radius of convergence for
∞∑
n=0

(−5)n

n+ 1
(z − i)n.

According to the ratio test, this series converges when

1 > lim
n→∞

∣∣∣∣∣∣∣∣
(−5)n+1

n+ 2
(z − i)n+1

(−5)n

n+ 1
(z − i)n

∣∣∣∣∣∣∣∣
= lim

n→∞

∣∣∣∣(−5)

(
n+ 1

n+ 2

)
(z − i)

∣∣∣∣
= 5|z − i|

=⇒ 1

5
> |z − i|.

So the radius of convergence for this power series is R = 1
5 .

Example 21.1.9. Determine the radius of convergence for
∞∑
n=0

n! (z − 2 + 3i)n.

According to the ratio test, this series converges when

1 > lim
n→∞

∣∣∣∣(n+ 1)!(z − 2 + 3i)n+1

n!(z − 2 + 3i)n

∣∣∣∣
= lim

n→∞
n |(z − 2 + 3i)| .

When z 6= 2− 3i this series diverges, so it has radius of convergence R = 0.
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Example 21.1.10. Determine the radius of convergence for
∞∑
n=0

1

n!
(z + 2)n.

According to the ratio test, this series converges when

1 > lim
n→∞

∣∣∣∣∣∣∣∣
1

(n+ 1)!
(z + 2)n+1

1

n
(z + 2)n

∣∣∣∣∣∣∣∣
= lim

n→∞

∣∣∣∣(z + 2)

n+ 1

∣∣∣∣
= 0.

The series converges for all z ∈ C, So the radius of convergence for this power series
is R =∞.

The following theorem is analogous to the familiar version from real analysis.

Theorem 21.1.11 (Differentiation and Integration of Power Series). Let f be the
function given by

f(z) =
∞∑
n=0

cn(z − z0)
n

for z in D, the open disk of convergence.

1. f is complex differentiable with derivative given by

f ′(z) =
∞∑
n=0

d

dz
cn(z − z0)

n =
∞∑
n=1

ncn(z − z0)
n−1 for z ∈ D.

Moreover, the power series for f ′(z) has the same radius of convergence as f .

2. If γ is a path within D, then∫
γ

f(z) dz =
∞∑
n=0

cn

∫
γ

(z − z0)
n dz.

Proof. The proof of this is actually longer and less straightforward than one might
hope; we can’t just quickly apply Cauchy–Riemann. That the derivative and integral
are defined the way they are is obvious, but that the sequence of partial sums still
converges to the appropriate limit (and with the same disk of convergence) is technical
and involves the notion of uniform convergence, which we wont be covering.
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Theorem 21.1.12 (Taylor Expansion). Suppose f is differentiable on an open disk
D of radius R centered at z0. Then, for z ∈ D,

f(z) =
∞∑
n=0

cn(z − z0)
n

where

cn =
f (n)(z0)

n!

Proof. See the text. The strategy is effectively

� Apply Cauchy’s Integral Formula to rewrite f(z) as a contour integral.

� With clever algebraic manipulations, recognize the integrand as the limit of a
convergent geometric series

� Integrate this series using 21.1.11.

� Use Cauchy’s Integral Formula for Derivatives to rewrite the coefficients of this
series.

Definition. The series in Theorem 21.1.12 is called the Taylor series of f about

z0 (or Maclaurin series in the case that z0 = 0). The coefficients are called the

Taylor coefficients of f at z0.

Example 21.1.13. Since
d

dz
[ez] = ez, just as in the real case, the Maclaurin expan-

sion of ez should also look like the Maclaurin series for ex:

ez =
∞∑
n=0

1

n!
zn.

Example 21.1.14. Since
d

dz
[sin(z)] = cos(z) and

d

dz
[cos(z)] = − sin(z), just as in

the real case, the Maclaurin expansions of sin(z) and cos(z) should also look like the
Maclaurin series for sin(x) and cos(x) (respectively):

sin(z) =
∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1,

cos(z) =
∞∑
n=0

(−1)n

(2n)!
z2n.
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21.1.3 Isolated Zeros

Definition. For a function f , a number ζ for which f(ζ) = 0 is called an isolated zero

if there is an open disk around ζ which contains no other zero for f .

Example 21.1.15. The function f(z) = sin(z) has an isolated zero at z = 0.

Given what we know about the real sine function, the fact that z = 0 is an isolated
zero for f(z) = sin(z) certainly seems reasonable, but how do we know it’s actually
the case for the complex sine function? It turns out Taylor series can provide the
answer.

Let ζ be a zero for f and consider the Taylor expansion of f in a small disk D around
around ζ

f(z) =
∞∑
n=0

cn(z − ζ)n.

If every cn = 0, then f(z) = 0 for all z ∈ D, so suppose this isn’t the case. Let m be
the first value for which cm 6= 0 (that is, c0 = c1 = . . . = cm−1 = 0). Then we have
that

f(z) =
∞∑
n=0

cn(z − ζ)n

=
∞∑
n=m

cn(z − ζ)n (first terms all 0)

=
∞∑
k=0

ck+m(z − ζ)k+m (where k = n−m)

= (z − ζ)m
∞∑
k=0

ck+m(z − ζ)k

Now let

g(z) =
∞∑
k=0

ck+m(z − ζ)k = cm +
∞∑
k=1

ck+m(z − ζ)k.

By construction we have that g(ζ) = cm 6= 0 and

f(z) = (z − ζ)mg(z).
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Since f is differentiable on D, then so is g; in particular, g is continuous at ζ, so
since g(ζ) 6= 0, then there is a small disk Dg around ζ on which g(z) 6= 0 (otherwise
we would break the intermediate value theorem). It follows that f(z) 6= 0 on this
same disk as well, making ζ an isolated zero. So what this says is that

Theorem 21.1.16. Suppose f is differentiable on a domain S, and let ζ ∈ S be a
zero of f . Then either

f(z) = 0 on all of S,

or

ζ is an isolated zero.

From the theorem and the proof preceding it, what we have is that, if f(z) has a
nonzero Taylor coefficient in the series centered at ζ, then ζ is an isolated zero.

Example 21.1.17. Show that f(z) = sin(z) has an isolated zero at z = 0.

By the above commentary, we just need to examine the Taylor coefficients of f cen-
tered at 0.

c0 =
f(0)

0!
=

sin(0)

1
= 0c1 =

f ′(0)

1!
=

cos(0)

1
= 1

Since c1 6= 0, then z = 0 must be isolated.

Definition. A point z0 is said to be a zero of order m if f is differentiable at z0

and the first nonzero coefficient in the Taylor expansion around z0 is cm. If z0 is a

zero of order 1, it is sometimes called a simple zero .

Example 21.1.18. For f(z) = sin(z), determine the order of the zero z = 0.

z = 0 has order 1 per our work in Example 21.1.17.

While proving Theorem 21.1.16, we actually proved the following, but we’ll state
explicitly.

Proposition 21.1.19. If f is differentiable at z0, then z0 is a zero of order m if and
only if we can write

f(z) = (z − z0)
mg(z).

where g(z0) 6= 0 and g is differentiable at z0.
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Example 21.1.20. Find the order of the zero z0 = 0 of the function ϕ(z) = sin3(z).

Looking at the Taylor expansion of sin3(z) about z0 = 0, we have

sin3(z) = (sin(z))3 =

(
z − 1

6
z3 +

1

120
z5 + · · ·

)3

= z3 − 1

2
z5 +

13

120
z7 − 41

3024
z9 + · · ·

= z3

(
1− 1

2
z2 +

13

120
z4 − 41

3024
z6 + · · ·

)
so taking g(z) = 1− 1

2z
2 + 13

120z
4 − 41

3024z
6 + · · · , we have that

sin3(z) = z3g(z)

with g(0) 6= 0, hence ϕ(z) = sin3(z) has a zero of order 3 at z0 = 0.

Since we can write f(z) = (z − z0)
ng(z) with g(z0) 6= 0, we get the following

Corollary 21.1.21. Suppose z0 is a zero of order m of h(z), and that z0 is a zero of
order n of k(z). Then

1. At z0, h(z)k(z) has a zero of order m+ n

2. If m > n, then at z0, h(z)/k(z) has a zero of order m− n.

Proof sketch. Write

h(z) = (z − z0)
mα(z)

k(z) = (z − z0)
nβ(z)

Then

h(z)k(z) = (z − z0)
m+nα(z)β(z)

and

h(z)

k(z)
=

(z − z0)
mα(z)

(z − z0)nβ(z)
= (z − z0)

m−nα(z)

β(z)

Remark. The term “zero” in the second item of Corollary 21.1.21 is maybe a bit
misleading, because h(z)/k(z) is not even defined at z0 (and as such, is certainly not
0). The requirement that m > n implies that the limit L = limz→z0 h(z)/k(z) exists.
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So what we’re actually thinking of is a zero of a continuous extension (or an analytic
continuation of h(z)/k(z) at z0. Explicitly, for z in a small disk around z0 where
k(z) 6= 0, we are looking at a zero of the function

(̃h/k)(z) :=

{
h(z)/k(z) when z 6= z0,

L when z = z0.

Remark. Some authors may write h(z)/k(z) to refer to the maximal analytic con-
tinuation of the quotient of h(z) and k(z). I will not be adopting this convention, but
it is out there.

Example 21.1.22. Find the order of the zero z0 = 0 of the function f(z) = z2 sin2(z).

By the previous theorem, it suffices to find the orders of z2 and sin2(z) independently
and add them together.

h(z) = z2 k(z) = sin2(z)

n h(n)(z0) n k(n)(z0)

1 2(0) = 0 1 2 sin(0) cos(0) = 0
2 2 2 2 cos2(0)− 2 sin2(0) = 2

Since z0 is a zero of order 2 for z2 and order 2 for sin2(z), then z0 is a zero of order
2 + 2 = 4 for f .
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Example 21.1.23. Find the order of the zero z0 = 3π
2 of the function f(z) =

cos3(z)

z − 3π
2

.

By the previous theorem, it suffices to find the orders of cos3(z) and z − 3π
2 indepen-

dently and add them together.

h(z) = z − 3π
2

k(z) = cos3(z)

n h(n)(z0) n k(n)(z0)

1 1 1 −3 sin
(

3π
2

)
cos
(

3π
2

)
= 0

2 6 sin2
(

3π
2

)
cos
(

3π
2

)
− 3 cos3

(
3π
2

)
= 0

3 21 sin
(

3π
2

)
cos2

(
3π
2

)
− 6 sin3

(
3π
2

)
= 6

Since z0 is a zero of order 1 for z − 3π
2 and order 3 for cos3(z), then z0 is a zero of

order 3− 1 = 2 for f .
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21.2 The Laurent Expansion

If f is differentiable in a small disk around z0, then it has a Taylor series expansion
at z0. Of course, this isn’t always the case, but we can get a different kind of series
expansion if f is differentiable near z0 (even if it isn’t differentiable at z0).

Definition. An annulus is the open set between two concentric circles, and can

be written as the set of all z satisfying

r < |z − z0| < R.

If r = 0, we call this a punctured disk .

r R

z0

real

im
ag

.

Suppose f is differentiable in an annulus centered at z0 and let γ be a simple closed
path in this annulus that encloses z0.

z0
γ

If we wanted to try to construct Taylor coefficients for this function, they would be
of the form

cn =
f (n)(z0)

n!
.
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Since f is differentiable on an open set containing γ, it almost meets the criteria to
apply Cauchy’s Integral Formula for derivatives (Theorem 20.3.5), in which case the
Taylor coefficients would simplify to

cn =
1

2πi

∮
γ

f(z)

(z − z0)n+1
dz.

Even though we can’t obtain a proper Taylor series or apply Cauchy’s Integral For-
mula in exactly this way, we can show that one does obtain a similar-looking series:

Theorem 21.2.1 (Laurent Expansion). Suppose f is differentiable in the annulus
r < |z − z0| < R where 0 ≤ r < R ≤ ∞. Then for each z in this annulus, we have

f(z) =
∞∑

n=−∞
cn(z − z0)

n

where, for each integer n,

cn =
1

2πi

∮
γ

f(z)

(z − z0)n+1
dz.

for any closed path γ in the annulus enclosing z0.

Definition. A series as in Theorem 21.2.1 is called a Laurent series .

Example 21.2.2. Find a Laurent series expansion for f(z) = e1/z around z0 = 0.

Firing up our trusty computer algebra system, one can confirm the following:

cn =

{
1

(−n)! if n ≤ 0

0 if n > 0

so we have that

e1/z =
0∑

n=−∞

1

(−n)!
zn =

∞∑
n=0

1

n!

(
1

z

)n
.

We notice that the Laurent series obtained for e1/z looks a lot like the Taylor series
for ez with the modification that z 7→ 1

z .

Proposition 21.2.3. Given a function f that is differentiable in an annulus centered
at z0, the Laurent expansion about z0 is unique.
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This is great because it means that, no matter how we obtain a Laurent series for our
function, it must be the correct one. So often times we’ll just manipulate known Tay-
lor series to obtain the correct Laurent expansion (because nobody wants to compute
those coefficients by hand if they can help it).

Example 21.2.4. Compute the Laurent series expansion for f(z) =
1

z − 2
on the

annulus |z − 1| > 1 (i.e. the punctured plane).

Notice that this annulus is centered at 1, so our Laurent series will be as well. Notice
also that this annulus excludes z = 2, so in fact f(z) is differentiable on it. Recall
that the geometric series

∑∞
n=0 ar

n = a
1−r for |r| < 1. Since |z− 1| > 1, we must have

that
∣∣ 1
z−1

∣∣ < 1, hence

f(z) =
1

z − 2
=

1

(z − 1)− 1

=

(
1

z − 1

)
1

1− 1
z−1

=

(
1

z − 1

) ∞∑
n=0

(
1

z − 1

)n
=

1

z − 1
+

1

(z − 1)2
+

1

(z − 1)3
+ · · ·

=
∞∑
n=1

1

(z − 1)n

=
−1∑

n=−∞
(z − 1)n.

Example 21.2.5. Compute the Laurent series expansion for f(z) =
2z − 1− i

(z − 1)(z − i)
about z = 1.

Clearly f is not differentiable at 1 or i, so whatever our annulus is must avoid these
two points. Using partial fractions

2z − 1− i
(z − 1)(z − i)

=
1

z − 1
+

1

z − i
. (21.2.1)

The first term is already a Laurent series about z = 1 (it only has one term) and its
defined on the annulus |z − 1| > 0, so we focus only on the second term and aim to
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use the geometric series again. We can rewrite

1

z − i
=

1

(z − 1) + (1− i)
. (21.2.2)

At this points, we have a couple of options for approach: we can factor out 1
z−1 or

we can factor out 1
1−i . In both cases we’ll work with the geometric series, but the

resulting annulus will be different.

(Case 1) We rewrite Equation 21.2.2 as

1

z − i
=

1

(z − 1) + (1− i)
=

(
1

z − 1

)
1

1− i−1
z−1

and assuming
∣∣ 1−i
z−1

∣∣ < 1, from the geometric series this becomes(
1

z − 1

)
1

1− i−1
z−1

=

(
1

z − 1

) ∞∑
n=0

(
i− 1

z − 1

)n
=

∞∑
n=0

(i− 1)n

(z − 1)n+1
(setting k = −n− 1)

=
−1∑

k=−∞

1

(1− 1)k+1
(z − 1)k.

Substituting this into the Equation 21.2.1 we get the Laurent expansion for f

f(z) =
1

z − 1
+

−1∑
k=−∞

1

(1− 1)k+1
(z − 1)k

for z-values satisfying |z − 1| > 0 and
∣∣ 1−i
z−1

∣∣ < 1, i.e. on the annulus |z − 1| >
√

2.

(Case 2) We rewrite Equation 21.2.2 as

1

z − i
=

1

(z − 1) + (1− i)
=

(
1

1− i

)
1

1− z−1
i−1

and assuming
∣∣z−1

1−i

∣∣ < 1, for the geometric series this becomes(
1

1− i

)
1

1− z−1
i−1

=

(
1

1− i

) ∞∑
n=0

(
z − 1

i− 1

)n
=

∞∑
n=0

−1

(i− 1)n+1
(z − 1)n.
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Substituting this into the Equation 21.2.1 we get the Lauren expansion for f

f(z) =
1

z − 1
+
∞∑
n=0

−1

(i− 1)n+1
(z − 1)n

for z-values satisfying |z− 1| > 0 and
∣∣z−1

1−i

∣∣ < 1, i.e. on the annulus 0 < |z− 1| <
√

2.

Remark. There’s not really a cohesive way to write these series succinctly in the
form

∑∞
n=−∞ cn(z−1)n because the coefficients don’t all follow a nice pattern. That’s

fine. The same is true of Taylor series of real functions. For example, the Taylor
expansion of 1 + cos(x) about x0 = 0 is

1 +
∞∑
n=0

(−1)n

(2n)!
x2n.

Remark. The
√

2 in the annulus isn’t too surprising when you think about it geo-
metrically - that’s the distance between 1 and i. The fact that we had two possible
annuli is then not surprising at all - having an annulus centered at z = 1, there were
only two possible options for which f could be analytic within the whole annulus
(either it avoided all singularities, or it avoided one and not the other). Visually,
letting A1 and A2 be the annuli in cases 1 and 2, respectively,

1

i
A2

A1

real

im
ag

.
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22 Singularities and the Residue Theorem

22.1 Singularities

In this section we’ll use the Laurent expansion to find and classify points at which
complex functions are not differentiable.

Definition. We say that a function f has an isolated singularity at z0 if f is

differentiable in an annulus 0 < |z − z0| < R, but not at z0.

Example 22.1.1. f(z) =
1

z
has an isolated singularity at z = 0.

22.1.1 Classification of Singularities

Definition. Suppose f has an isolated singularity at z0. Let the Laurent expasion of
f(z) in an annulus 0 < |z − z0| < R be

f(z) =
∞∑

n=−∞
cn(z − z0)

n.

1. z0 is a removable singularity if cn = 0 for every n < 0.

2. z0 is a pole of order m if m > 0 and c−m 6= 0, but c−m−1 = c−m−2 = c−m−3 =

· · · = 0.

3. z0 is an essential singularity if c−n 6= 0 for infinitely many n > 0.

In other words,

1. z0 is removable if the Laurent expansion is actually a power series.

2. z0 is a pole of order m if
1

(z − z0)m
is the largest power of

1

z − z0
appearing in

the Laurent expansion.

3. z0 is essential if the Laurent expansion contains infinitely many powers of
1

z − z0
with nonzero coefficients.

Example 22.1.2. Consider f(z) =
sin(z)

z
, which is analytic on all of C except at
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z = 0 (where it isn’t defined). The Laurent expansion of f around z0 = 0 is

1

z
sin(z) =

1

z

( ∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1

)

=
∞∑
n=0

(−1)n

(2n+ 1)!
z2n

= 1− 1

3!
z2 +

1

5!
z4 − 1

7!
z6 + · · ·

Since this is a power series about z0 = 0, z0 = 0 is a removable singularity. As such
we can extend f to a function ϕ which is differentiable at z0 = 0:

ϕ(z) =

{
f(z) when z 6= 0

1 when z = 0

Definition. The function ϕ above is called the analytic continuation of f at z0.

Example 22.1.3. Consider the function f(z) =
1

(z − i)5
. f has an isolated signular-

ity at z0 = i, which is a pole of order 5.
The Laurent expansion of f around z0 = i is

1

(z − i)5
(f is its own Laurent expansion).

There is no way that f can be extended to be differentiable at z0 = i.

Example 22.1.4. Consider the function f(z) =
cos(z)

z4
, which is analytic on all of C

except at z0 = 0 where it isn’t defined. The Laurent expansion of f about z0 = 0 is

1

z4
cos(z) =

1

z4

( ∞∑
n=0

(−1)n

(2n)!
z2n

)

=
∞∑
n=0

(−1)n

(2n)!
z2n−4

=
1

z4
− 1

2!z2
+

1

4!
− · · ·

so f(z) has a pole of order 4, and it cannot be extended to be differentiable at z0 = 0.
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Example 22.1.5. The Laurent expansion of f(z) = e1/z about z0 = 0 is

e1/z =
∞∑
n=0

1

n!

1

zn
= · · ·+ 1

3!z3
+

1

2!z2
+

1

z
+ 1.

f has an essential singularity at z0 = 0 because infinitely many powers of 1
z appear

in this Laurent expansion.

Definition. A pole of order 1 is called a simple pole and a pole of order 2 is

called a double pole .

Let us consider the Laurent expansion of some function f in an annulus 0 < |z−z0| <
R:

f(z) =
∞∑

n=−∞
cn(z − z0)

n.

If f has a pole of order m at z0, then c−m 6= 0 but c−m−1 = c−m−2 = · · · = 0, so the
Laurent expansion is

f(z) =
c−m

(z − z0)m
+

c−m−1

(z − z0)m+1
+

c−m−2

(z − z0)m+2
+ · · ·

(z − z0)
mf(z) = c−m + c−m−1(z − z0) + c−m−2(z − z2

0 + · · ·

and so

lim
z→z0

(z − z0)
mf(z) = c−m 6= 0.

As it turns out, the existence of this limit is enough to deduce that a function has a
pole of order m at z0. Explicitly,

Theorem 22.1.6. Suppose f is differentiable in 0 < |z− z0| < R. Then f has a pole
of order m at z0 if and only if

lim
z→z0

(z − z0)
mf(z)

exists and is nonzero.
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22.1.2 Zeroes and Poles

When looking for poles, it seems natural to look for places where the denominator is
zero, especially if f(z) = g(z)/h(z) is a quotient of functions.

Lemma 22.1.7. A function f has a pole of order m at z0 if and only if, in some
annulus 0 < |z − z0| < R,

f(z) =
g(z)

(z − z0)m

where g is differentiable at z0 and g(z0) 6= 0.

Proof. If f has a pole of order m, then its Laurent expansion about z0 is

f(z) =
c−m

(z − z0)m
+

c−m+1

(z − z0)m−1
+ · · ·

(z − z0)
mf(z) = c−m + c−m+1(z − z0) + c−m+2(z − z0)

2 + · · ·

so writing

g(z) = c−m + c−m+1(z − z0) + c−m+2(z − z0)
2 + · · ·

we have that g(z0) 6= 0 and g is defined by its Taylor expansion about z0 (whence it
is differentiable).

Theorem 22.1.8. Let f(z) = g(z)/h(z) where g, h are analytic in some open disk
about z0. Suppose that z0 is a zero of order m for g and a zero of order n for h with
n > m. Then f has a pole of of order n−m at z0.

Proof. From Proposition ??,we can write

g(z) = (z − z0)
mg̃(z)

h(z) = (z − z0)
nh̃(z)

where g̃ and h̃ are differentiable and nonzero at z0. It follows that g̃/h̃ is differentiable
and nonzero at z0 and

g(z)

h(z)
=

g̃(z)/h̃(z)

(z − z0)n−m

thus, by the above lemma, f(z) = g(z)/h(z) has a pole of order n−m at z0.
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Remark. One could adopt the convention that f(z) has a zero of order 0 (and
likewise, a pole of order 0) if f is defined at z and if f(z) 6= 0. This is not standard
to my knowledge, but the calculations do align with the theorem.

Example 22.1.9. Find the order of the pole of f(z) =
ez − 1

sin7(z)
at z0 = 0. The

motivated student could compute the Laurent expansion of f about 0 directly to get

f(z) =
1

z6
+

1

2

1

z5
+

4

3

1

z4
+ · · ·

in which case it is quickly seen that f has a pole of order 6 at z0 = 0. Rather than do
this, by looking at the Maclaurin series, it is straightforward to see that ez − 1 has a
zero of order 1

ez − 1 = z +
1

2
z2 +

1

6
z3 + · · ·

and that sin7(z) has a zero of order 7

sin(z) = z − 1

6
z3 +

1

120
z5 + · · ·

sin7(z) =

(
z − 1

6
z3 +

1

120
z5 + · · ·

)7

= z7 − 7

6
z9 +

77

120
z11 + · · ·

so by the theorem, f(z) has a pole of order 7− 1 = 6 at z0 = 0.

Example 22.1.10. Find all poles of f(z) = 1

(z−π2 )
3

cos4(z)
and their orders.

cos4(z) has a zero of order 4 at all odd multiples of π
2 , and

(
z − π

2

)3
has a zero of

order 3 at π
2 . So f has a pole of order 7 at π

2 and a pole of order 4 at all other odd
multiples of π

2 .
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22.2 The Residue Theorem

The aim of this section is to explore the relationship with singularities, the Laurent
expansion, and integrals.

Suppose f is differentiable in the annulus 0 < |z − z0| < R and has an isolated
singularity at z0. Let γ be a closed path in this annulus that encloses z0. The
Laurent expansion for f in this annulus is

f(z) =
∞∑

n=−∞
cn(z − z0)

n

where the coefficients cn are given by

cn =
1

2πi

∮
γ

f(z)

(z − z0)n+1
dz

for all integers n. Notice that when n = −1, the 1
z−z0 term in the series has coefficient

c−1 =
1

2πi

∮
γ

f(z) dz

which rearranges to ∮
γ

f(z) dz = 2πic−1.

This means that finding that one single coefficient is all that we need to evaluate the
integral! Magic!

Definition. The coefficient of 1
z−z0 in the Laurent expansion of f about z0 is called

the residue of f at z0 and is denoted Res(f, z0).

What we have is that ∮
γ

f(z) dz = 2πiRes(f, z0),

but what if γ enclosed multiple isolated singularities z1, . . . , zn?

Around each singularity zk, we can find a small loop γk so that none of the γk’s inter-
sect and none of the γk’s enclose any other singularity. By the extended deformation
theorem, ∮

γ

f(z) dz =
n∑
k=1

∮
γk

f(z) dz
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and since each of the integrals on the right can be written in terms of the corre-
sponding residues, the following result is an immediate consequence:

Theorem 22.2.1 (Residue Theorem). Let γ be a closed path. Suppose f is differ-
entiable on γ and all points enclosed by γ, exceot for z1, . . . , zn which are all of the
isolated singularities of f enclosed by γ. Then∮

γ

f(z) dz = 2πi
n∑
k=1

Res(f, zk).

In this way, we see that computing an integral is as efficient as our ability to evaluate
these residues. Obviously computing Laurent series by hand is a little time consuming,
so we want to find a faster way to obtain the residue.

Proposition 22.2.2. If f has a simple pole at z0, then

Res(f, z0) = lim
z→z0

(z − z0)f(z).

Proof. Since f has a simple pole at z0, then the Laurent expansion of f in some
annulus about z0 is

f(z) =
c−1

z − z0
+
∞∑
n=0

cn(z − z0)
n.

As such

(z − z0)f(z) = c−1 +
∞∑
n=0

cn(z − z0)
n+1

and therefore

lim
z→z0

(z − z0)f(z) = c−1.

Example 22.2.3. Evaluate

∮
γ

sin(z)

z2
dz where γ is any closed path enclosing z0 = 0.

Since z0 = 0 is a zero of order 1 for sin(z) and a zero of order 2 for z2, then z0 is a
simple pole for f(z) by Theorem 22.1.8. By the preceding theorem, we have that

Res(f, 0) = lim
z→0

zf(z) = lim
z→0

sin(z)

z
= 1.
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Since z0 = 0 is the only singularity of
sin(z)

z2
, we have∮

γ

sin(z)

z2
dz = 2πiRes(f, 0) = 2πi.

Corollary 22.2.4. Let f(z) =
h(z)

g(z)
where h is continuous at z0 and h(z0) 6= 0.

Suppose g is differentiable at z0 and has a simple zero there. Then f has a simple
pole at z0, and

Res(f, z0) =
h(z0)

g′(z0)
.

Proof. Since g(z0) = 0 and z0 is a simple pole for f , then

Res(f, z0) = lim
z→z0

(z − z0)f(z)

= lim
z→z0

(z − z0)
h(z)

g(z)

= lim
z→z0

(z − z0)
h(z)

g(z)− g(z0)

= lim
z→z0

h(z)
g(z)−g(z0)
z−z0

= lim
z→z0

h(z0)

g′(z0)
.

Example 22.2.5. Evaluate

∮
γ

f(z) dz where f(z) =
10− 2iz

cos(z)
and γ is the circle∣∣z − π

2

∣∣ = 1.

Let h(z) = 10−2iz and g(z) = cos(z). Then f(z) =
h(z)

g(z)
has a simple pole at z0 = π

2

and g
(
π
2

)
= 0. By the corollary,

Res
(
f,
π

2

)
= lim

z→π/2

10− 2iz

− sin(z)
=

10− iπ
−1

= iπ − 10.

Hence ∮
γ

10− 2iz

cos(z)
dz = 2πiRes

(
f,
π

2

)
= 2πi(iπ − 10).
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What if we want to compute Res(f, z0) when z0 is a pole of order m for f? In an
annular neighborhood about z0, f has the Laurent expansion

f(z) =
c−m

(z − z0)m
+

c−m+1

(z − z0)m−1
+

c−m+2

(z − z0)m−2
+

c−m+3

(z − z0)m−3
+ · · ·

Thus

(z − z0)
mf(z) = c−m + c−m+1(z − z0) + · · ·+ c−1(z − z0)

m−1 + · · · .

By differentiating m− 1 times, we obtain

dm−1

dzm−1
[(z − z0)

mf(z)] = (m− 1)! c−1 +m! c0(z − z0) + · · · .

and taking the limit as z → z0, the right-hand side reduces to

(m− 1)! c−1.

This yields the following

Theorem 22.2.6 (Residue at a Pole of Order m). Let f have a pole of order m at
z0. Then

Res(f, z0) =
1

(m− 1)!
lim
z→z0

dm−1

dzm−1
[(z − z0)

mf(z)] .

Remark. Note that Proposition 22.2.2 is the special case of this theorem whenm = 1.

Example 22.2.7. Evaluate
∮
γ f(z) dz where f(z) =

2iz − cos(z)

z(z − i)3
and γ is any closed

path that encloses 0 and i.

0 is a simple pole of f , so

Res(f, 0) = lim
z→0

zf(z) = lim
z→0

2iz − cos(z)

(z − i)3
=
−1

i
= i.
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i is a pole of order 3, so

Res(f, i) =
1

(3− 1)!
lim
z→i

d3−1

dz3−1

[
(z − i)3f(z)

]
=

1

2
lim
z→i

d2

dz2

[
2iz − cos(z)

z

]
=

1

2
lim
z→i

(z2 − 2) cos(z)− 2z sin(z)

z3

=
1

2

−3 cos(i)− 2i sin(i)

−i
= sin(i)− 3

2
i cos(i).

So, by the Residue Theorem 22.2.1,∮
γ

2iz − cos(z)

z(z − i)3
dz = 2πi(Res(f, 0) + Res(f, i))

= 2πi(i+ sin(i)− 3

2
i cos(i)) = −2π + 3 cos(i) + 2πi sin(i).
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22.3 Evaluation of Real Integrals

22.3.1 Rational Functions

Suppose we’re trying to evaluate the improper integral∫ ∞
−∞

p(x)

q(x)
dx

where p, q are polynomials. To ensure that this integral converges, we’ll assume that
deg(q) ≥ deg(p) + 2 and that q has no real roots. For simplicity, we’ll also assume
that p and q have no common roots (so the fraction is fully reduced).

Since q has no real roots and is a polynomial with real coefficients, all of its roots are
complex and come in conjugate pairs, z1, z1, . . . , zn, zn. Without loss of generality,
assume that all of the zk’s live in the upper half plane (i.e. satisfy Im(zk) > 0)), and
thus all of the zk’s live in the lower half plane.

For a positive real number R, let γR be the upper semi-circle from R to −R and let SR
be the line segment from −R to R. Let ΓR be loop formed from these two segments,
and take R taken large enough that ΓR encloses all of z1, . . . , zn.

−R R

z1

z2

z3
z4

zn

Γ is the loop formed from the line segment from −R to R and the upper half circle from R to −R.

The zi’s are all of the poles of f(z) =
p(z)

q(z)
in the upper half plane, so by the Residue

Theorem ∫
SR

p(z)

q(z)
dz +

∫
γR

p(z)

q(z)
dz =

∮
ΓR

p(z)

q(z)
dz = 2πi

n∑
k=1

Res(f, zn).

Since Im(z) = 0 for all z on the segment SR, the equation above can be rewritten∫ R

−R

p(x)

q(x)
dx+

∫
γR

p(z)

q(z)
dz =

∮
ΓR

p(z)

q(z)
dz = 2πi

n∑
k=1

Res(f, zn). (22.3.1)

We’ll state as a fact the following result (which is the complex analog of a familiar
result from calculus):
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Fact. If p(z), q(z) are polynomials with deg(q) ≥ deg(p), then the limit as |z| → ∞
of p(z)

q(z) exists.

Since deg(q) ≥ deg(p)+2 in our case, then we must have that z2p(z)/q(z) is bounded
for |z| ≥ R, say∣∣∣∣z2p(z)

q(z)

∣∣∣∣ = |z2|
∣∣∣∣p(z)

q(z)

∣∣∣∣ ≤M =⇒
∣∣∣∣p(z)

q(z)

∣∣∣∣ ≤ M

|z|2
.

Since γR has length πR, then it follows from Theorem 20.1.5 that∣∣∣∣∫
γR

p(z)

q(z)
dz

∣∣∣∣ ≤ M

|z|2
(πR) ≤ M

R2
(πR)

and so when we take the limit as R→∞, Equation 22.3.1 becomes∫ ∞
−∞

p(x)

q(x)
dx+ 0 = 2πi

n∑
k=1

Res

(
p(z)

q(z)
, zn

)

Example 22.3.1. Compute

∫ ∞
−∞

1

x2 + 1
dx.

Approaching the old-fashioned way,∫ ∞
−∞

1

x2 + 1
dx = lim

a→∞

∫ a

−a

1

x2 + 1
dx

= lim
a→∞

arctan(a)− arctan(−a)

=
π

2
+
π

2
= π.

Approaching the new way, we see that f(z) =
p(z)

q(z)
=

1

z2 + 1
has a simple pole at

z = −i and a simple pole at z = i. Only i lies in the upper half plane, so we compute
the residue

Res(f, i) =
p(i)

q′(i)
=

1

2i
.

and from our work above,∫ ∞
−∞

1

x2 + 1
dx = 2πiRes(f, i) =

2πi

2i
= π.
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Example 22.3.2. Compute

∫ ∞
−∞

1

x4 + 4
dz.

Writing

f(z) =
p(z)

q(z)
=

1

z4 + 4

We see that f(z) has simple poles at 41/4eπi/4, 41/4e3πi/4, 41/4e5πi/4, and 41/4e7πi/4.
Only two of these have positive imaginary parts, and they are

z1 = 41/4eπi/4 = 1 + i

z2 = 41/4e3πi/4 = −1 + i.

Computing residues, we have

Res(f, z1) =
1

4z3
1

=
1

4(1 + i)3
= −1 + i

16

Res(f, z2) =
1

4z3
2

=
1

4(−1 + i)3
=

1− i
16

whence ∫ ∞
−∞

1

x4 + 4
dx = 2πi (Res(f, z1) + Res(f, z2))

= 2πi

(
−1 + i

16
+

1− i
16

)
=
π

4

22.3.2 Rational Functions Times Cosine or Sine

With p,q,ΓR,γR, and SR as in the previous subsection, we consider, for a positive real
number c, the integral ∮

ΓR

p(z)

q(z)
eicz dz

By the Residue Theorem,

2πi
n∑
k=1

Res

(
p(z)

q(z)
eicz, zk

)
=

∮
ΓR

p(z)

q(z)
eicz dz

=

∫
γR

p(z)

q(z)
eicz dz +

∫
SR

p(z)

q(z)
eicz dz

=

∫
γR

p(z)

q(z)
eicz dz +

∫ R

−R

p(x)

q(x)
cos(x) dx+ i

∫ R

−R

p(x)

q(x)
sin(x) dx
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Since |eicz| = 1, then the same bound argument holds as in the previous subsection.
And so, setting limR→∞, the integral over γR tends to 0 and we are left with∫ R

−R

p(x)

q(x)
cos(x) dx+ i

∫ R

−R

p(x)

q(x)
sin(x) dx = 2πi

n∑
k=1

Res

(
p(z)

q(z)
eicz, zk

)
.

As such, but comparing real and imaginary parts, we can solve either of the real
integrals on the right via residues.

Example 22.3.3. Let α, β, c be positive real numbers. Compute

∫ ∞
−∞

sin(cx)

(x2 + α2)(x2 + β2)
dx.

Let f(z) =
eicz

(z2 + α2)(z2 + β2)
, which has simple poles at x = ±αi,±βi. Computing

the residues for the poles in the upper half plane

Res(f, αi) =
e−cα

2αi(−α2 + β2)

Res(f, βi) =
e−cβ

2βi(−α2 + β2)

We thus have that∫ ∞
−∞

sin(cx)

(x2 + α2)(x2 + β2)
dx = Im

(
2πi

[
e−cα

2αi(−α2 + β2)
+

e−cβ

2βi(−α2 + β2)

])
= Im

(
π

e−cα

α(−α2 + β2)
+ π

e−cβ

β(α2 − β2)

)
= 0.

That it’s zero isn’t too surprising - the integrand is an odd function.

Example 22.3.4. Let α, β, c be positive real numbers. Compute

∫ ∞
−∞

cos(cx)

(x2 + α2)(x2 + β2)
dx.

From the work we did in the previous example,∫ ∞
−∞

cos(cx)

(x2 + α2)(x2 + β2)
dx = Re

(
2πi

[
e−cα

2αi(−α2 + β2)
+

e−cβ

2βi(−α2 + β2)

])
= Re

(
π

e−cα

α(−α2 + β2)
+ π

e−cβ

β(α2 − β2)

)
= π

e−cα

α(−α2 + β2)
+ π

e−cβ

β(α2 − β2)
.
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22.3.3 Rational Functions of Cosine and Sine

Let K(x, y) be a rational function of x and y (i.e. a quotient of multivariate polyno-
mials in x and y). For example,

K(x, y) =
x3y + 6y2 − 7xy + 2x

y3 − x2 + y − 9x
.

We are interested in evaluating integrals of the form∫ 2π

0

K(cos θ, sin θ) dθ.

Let γ be the unit circle about the origin, which we parameterize as γ(θ) = eiθ with
0 ≤ θ ≤ 2π. On this curve, z = eiθ and z = e−iθ = 1

z , so we can write

cos θ =
1

2

(
z +

1

z

)
and sin θ =

1

2i

(
z − 1

z

)
.

What’s more, we have

dz = ieiθ dθ = iz dθ =⇒ dθ =
1

iz
dz

and so∮
Γ

K

(
1

2

(
z +

1

z

)
,

1

2i

(
z − 1

z

))
1

iz
dz =

∫ 2π

0

K(cos(θ), sin(θ)) dθ. (22.3.2)

As such, we can interpret the integral on the right as the contour integral on the left,
and use the Residue Theorem to solve it.

Example 22.3.5. Evaluate
∫ 2π

0
1

α+β cos(θ) dθ with 0 < β < α.

With x = cos θ and y = sin θ, the integrand can be thought of as the rational function

K(x, y) =
1

α + βx
.

Converting into z-coordinates as in Equation 22.3.2, our integrand becomes

f(z) = K

(
1

2

(
z +

1

z

)
,

1

2i

(
z − 1

z

))
1

iz

=
1

α + β
2

(
z + 1

z

) 1

iz

=
−2i

2αz + βz2 + β
.
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From the quadratic formula, we get that the poles are

z =
−2α±

√
α2 − β2

β

both of which are real because of our assumption that α > β, however, only

z0 =
−2α +

√
α2 − β2

β

is contained within the unit circle. Therefore∫ 2π

0

1

α + β cos(θ)
dθ = 2πiRes(f, z0)

= 2πi
−2i

2α + 2βz0
=

2π√
α2 − β2

.
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22.A The Point at Infinity and the Riemann Sphere

22.A.1 The Point at Infinity

If f has a pole at z0, it has no doubt occured that we might consider taking the value
of f(z0) =∞. Let’s look at what happens if we try to define 1/0 =∞.

If z → 0 (from the right) along the real axis, we might say that 1
z approaches “+∞.”

If z → 0 (from the left) along the real axis, we might say that 1
z approaches “−∞. If

z → 0 along the imaginary axis, what would we say 1
z approaches? “±i∞”?

If we want to try to define this limit, it has to agree from all directions, so writing
“1

0 =∞” implies that we are identifying all of these limits with the same point, which
we name∞. The other implication, of course, is that if we think of a complex number
z as growing without bound, then it is necessarily tending to this singular point ∞.

Growing without bound in any direction, the limit point is always the same: ∞

Definition. The extended complex plane Ĉ is the set C ∪ {∞}. This is also

referred to as the Riemann sphere .

Example 22.A.1. If f(z) =
2z + 1

z − 1
, then f(1) =∞ and f(∞) = 2.

We might consider certain properties of functions defined on all of Ĉ. Notice that the
mapping z 7→ 1

z has the effect of interchanging 0 and∞, so studying the behavior of a

function f(z) at∞ is equivalent to studying the behavior of the function g(w) := f
(

1
w

)
at 0.
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As such, we say that

1. f(z) is differentiable at ∞ if f
(

1
w

)
is differentiable (or has a removable singu-

larity) at w = 0.

2. f(z) has a pole of order m at ∞ if f
(

1
w

)
has a pole of order m at w = 0.

3. f(z) has an essential singularity at ∞ if f
(

1
w

)
has an essential singularity at

w = 0.

Example 22.A.2. Let f(z) =
2z + 1

z − 1
. Show that f is differentiable at ∞.

f is certainly analytic for all z ∈ C except at 1, so we’ll look at a Laurent series
expansion of f about 0 on the annulus 1 < |z| <∞:

f(z) =
2z + 1

z − 1
=

2z + 1

z

(
1

z − 1
z

)
=

2z + 1

z

∞∑
n=0

(
1

z

)n
= · · ·+ 2z + 1

z4
+

2z + 1

z3
+

2z + 1

z2
+

2z + 1

z

whence

f

(
1

w

)
= · · ·+

2
w + 1(

1
w

)4 +
2
w + 1(

1
w

)3 +
2
w + 1(

1
w

)2 +
2
w + 1

1
w

= (2 + w) + (2 + w)w + (2 + w)w2 + (2 + w)w3 + · · ·
= 2 + 3w + 3w2 + 3w3 + · · ·

and thus f
(

1
w

)
has a removable singularity at w = 0.

Example 22.A.3. Let f(z) = z3 + 2. Show that f has a pole of order 3 at ∞.

Notice that

f

(
1

w

)
=

1

w3
+ 2

is a Laurent expansion of f
(

1
w

)
about w = 0, which is clearly a pole of order 3.

Example 22.A.4. Show that f(z) = sin(z) has an essential singularity at ∞.

f is analytic for all z ∈ C, so we’ll look at the Laurent (Taylor) series expansion of f
about 0.

f(z) = sin(z) =
∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1

83



whence

f

(
1

w

)
= sin

(
1

w

)
=

∞∑
n=0

(−1)n

(2n+ 1)!

(
1

w

)2n+1

=
0∑

n=−∞

(−1)n

(2n+ 1)!
w2n+1

and thus f
(

1
w

)
has an essential singularity at w = 0.

Example 22.A.5. Find all functions that are analytic on all of Ĉ.

If f has a pole at any z0, then lim
z→z0

f(z) =∞. Since f is analytic on all of Ĉ, then it

doesn’t have any poles, and f it must be bounded. Since f is bounded on the open
set |z| < 1, it is constant (by Liouville’s theorem), and since f is bounded on the

open set |z| > 1, it is constant (by Liouville’s theorem). By continuity on Ĉ (and in
particular on |z| = 1), these constants must be the same, so f is constant.

Example 22.A.6. Find all functions that have a single pole and are analytic on the
rest of Ĉ.

Suppose f has a pole of order m at some finite point z0 (so z0 6= ∞). Then the
Laurent expansion of f about z0 is

f(z) =
c−m

(z − z0)m
+

c−m+1

(z − z0)m−1
+ · · ·+ c−1

(z − z0)
+ c0 + c1(z − z0) + c2(z − z0)

2 + · · ·

and it converges for all z 6= z0 (since the only pole is at z0, f must be bounded on

the rest of Ĉ, including at ∞). For any positive integer n, cn(∞− z0)
n = ∞, so it

must be that cn = 0 for n > 0. As such, f has the form

f(z) =
c−m

(z − z0)m
+

c−m+1

(z − z0)m−1
+ · · ·+ c−1

(z − z0)
+ c0.

If the pole occurs at z0 = ∞, then f
(

1
w

)
has a pole at 0, so the Laurent series

expansion of f
(

1
w

)
about 0 is

f

(
1

w

)
=
c−m
wm

+
c−m+1

cm−1
+ · · ·+ c−1

w
+ c0 + c1w + c2w

2 + · · ·

Since f(z) is bounded near 0, then f
(

1
w

)
is bounded near ∞ (i.e. for all sufficiently

large |w|), and just as last we must have that cm = 0 for m > 0. It follows that

f

(
1

w

)
=
c−m
wm

+
c−m+1

cm−1
+ · · ·+ c−1

w
+ c0 =⇒ f(z) = c0 + c−1z + · · ·+ c−mz

m

is a polynomial.
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22.A.2 Stereographic projection

In R3, the unit sphere (denoted S2) is the set {(x1, x2, x3) ∈ R3 |x2
1 + x2

2 + x2
3 = 1}.

Letting P be any plane through the origin, P divides S2 into two hemispheres, call
one the northern hemisphere and the other the southern hemisphere.

The northern hemisphere contains a point N , the north pole, and so we look at the
line passing through N and any other point q0 on the sphere. This line intersects P
in a unique point p0, and this gives us a way of uniquely identifying points on the
sphere (minus the north pole) and points in the plane!

P

p0

q0

N

Definition. The function that makes this identification is called the

stereographic projection from N .

Remark. This same procedure gives a stereographic projection from the n-sphere,
Sn (as a subset of Rn+1) down to an n-dimensional subspace of Rn+1. We will only
care about it in dimension 2, however.

If we take P to be the x1x2-plane (so the set of points (x1, x2, 0) ), then N = (0, 0, 1).
And if we identify P with C (so (x1, x2, 0) is identified with z = x1 + ix2), then we
can describe stereographic projection in coordinates:

ρ : S2-{N} −→ C

ρ(x1, x2, x3) =
x1 + ix2

1− x3

ρ−1 : C −→ S2-{N}

ρ−1(z) =

(
2 Re(z)

1 + |z|2
,

2 Im(z)

1 + |z|2
,
−1 + |z|2

1 + |z|2

)
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We notice a couple of things:

1. ρ can be extended to a map ρ̃ : S2 → Ĉ by defining ρ̃(N) =∞.

2. ρ sends the equator of S2 to the unit circle in C.

3. ρ sends the northern hemisphere of S2-{N} to the exterior of the unit disk:
|z| > 1.

4. ρ sends the southern hemisphere of S2 to the interior of the unit disk: |z| < 1.

5. The map z 7→ 1/z corresponds to exchanging the northern and southern hemi-
spheres of S2.

Suppose

Ax1 +Bx2 + Cx3 +D = 0 (22.A.1)

is some plane passing through S2. The distance from the origin to this plane is√
D2

A2 +B2 + C2

so to pass through S2 we must have that A2 + B2 + C2 > D2. The corresponding
point in C thus satisfies

A

(
2 Re(z)

1 + |z|2

)
+B

(
2 Im(z)

1 + |z|2

)
+ C

(
−1 + |z|2

1 + |z|2

)
+D = 0

=⇒ 2ARe(z) + 2B Im(z) + (C +D)|z|2 = C −D
If the plane contains N(0, 0, 1), then from Equation 22.A.1 we deduce that C+D = 0.
Writing z = x+ iy, then we have

2Ax+ 2By = C −D
which is the equation of a line. If the plane does not contain N(0, 0, 1), then C+D 6=
0. So

2ARe(z) + 2B Im(z) + (C +D)|z|2 = C −D
2ARe(z)

C +D
+

2B Im(z)

C +D
+ |z|2 =

C −D
C +D

.

Noting that |z|2 = (Re(z))2 + (Im(z))2 and completing the square, we get that this
rearranges to ∣∣∣∣z +

A+Bi

C +D

∣∣∣∣2 =
A2 +B2 + C2 −D2

(C +D)2∣∣∣∣z +
A+Bi

C +D

∣∣∣∣ =

√
A2 +B2 + C2 −D2

(C +D)2

which is the equation of a circle.
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Theorem 22.A.7. Stereographic sends circles on S2 not passing through N to circles
in C. It sends circles on S2 passing through N to lines in C.

One more thing that we may notice is that the (inverse) stereographic projection of
the grid on C extends to a “grid” on the sphere minus N , where the circles all still
meet at right angles.

ρ−1

ρ

Even though it distorts distances, the stereographic projection map preserves angles.
One might wonder about other types of complex functions that preserve angles.
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23 Conformal Mappings and Applications

23.1 Conformal Mappings

Given a set S and a function f : C→ C, we will write f(S) to be the set of all points
f(z) where z ∈ S.

Consider the map f(z) = ez. For any real number s, let Va be the vertical line
consisting of points z ∈ C for which Re(z) = s. Similarly, for any real number t let
Ht be the horizontal line consisting of points z ∈ C for which Im(z) = t.

Let w ∈ f(Va). Then |w| = |ez| = eRe(z) = ea, which is a circle of radius ea. So f(Va)
is a circle about the origin, and if b > a, then f(Vb) is a larger circle centered at the
origin.

Since ez = eRe(z)ei Im(z), it follows that every w ∈ f(Hc) has fixed argument c, hence
f(Hc) is a ray from the origin (minus the origin) at an angle of c from the positive
real axis.

f

Va Vb

Hc

Hd

f(Va)

f(Vb)

f(Hc)

f(Hd)

Not-to-scale image of the grid after applying the map z 7→ ez

For funsies, here’s what it all looks like on the sphere.

88



ρ−1 ◦ f ◦ ρ

Notice that f(z) = ez preserves angles (the right angles in the square grid get sent to
right angles on the circular/curvy grid), but it also preserves orientation

fp3 p2

p1
f(p1)

f(p2)

f(p3)

Definition. A function that preserves both angles and orientations on a domain

is said to be conformal on this domain. Such a function is usually called a

conformal mapping .

Theorem 23.1.1 (Conformal Mappings). Let D1, D2 be domains and f : D1 → D2.
Suppose f is differentiable on D1 and that f ′(z) 6= 0 for all z ∈ D1. Then f is a
conformal mapping.

Proof. Let p ∈ D1 and let γ(t) be a smooth curve in D1 for which γ(0) = p. Let
Γ(t) = f(γ(t)) be the image of γ under f . The tangent vectors of γ and Γ at p and
f(p) (respectively) are related by the chain rule

Γ′(0) = f ′(p)γ′(0)

so applying a differentiable function to any curve through the point p has the effect
of multiplying the tangent vector to that curve by the complex number f ′(p) =
reiθ. Since all curves through p get multiplied by the same complex number, their
arguments are all also changed by the same angle θ.
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Proposition 23.1.2. If f : D1 → D2 is conformal and one-to-one on D1 (i.e. f−1

is well-defined), then f−1 : D2 → D1 is conformal.

Proposition 23.1.3. If f : D1 → D2 and g : D2 → D3 are conformal, then so is the
composition (g ◦ f) : D1 → D3.

Given two domains D1 and D2, we may want to construct a conformal mapping
f : D1 → D2, but this can be very difficult. However, there is s relatively simple class
of conformal mappings that we can use for convenient domains (disks, half-planes,
etc.)

23.1.1 Fractional Linear Transformations

Definition. A fractional linear transformation (or Möbius transformation )

is a map of the form

M(z) =
az + b

cz + d

where a, b, c, d are constants and ad− bc 6= 0. The latter condition ensures the trans-
formation is invertible, and its inverse is given by the fractional linear transformation

M−1(z) =
dz − b
−cz + a

.

Remark. Although your book calls these bilinear mappings, I don’t think this term
is quite as common anymore outside of maybe algebraic geometry (when considering
special cases of birational maps). Furthermore, “bilinear” is used in other areas of
math as well and the meanings do not overlap, so we’ll avoid this terminology.

Let A be the 2× 2 matrix

A =

(
a b
c d

)
.

We can use this matrix to encode the fractional linear transformation with the
following notation

A • z =

(
a b
c d

)
• z :=

az + b

cz + d
= M(z).

Moreover, the invertibility condition on the fractional linear transformation is exactly
the requirement that det(A) 6= 0, i.e., that A is invertible!
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Exercise 23.1.1. Let M1, M2 be fractional linear transformations and let A1, A2 be
invertible 2× 2 matrices so that A1 • z = M1(z) and A2 • z = M2(z). Show that

1. M−1
1 (z) = A−1

1 • z and

2. (M2 ◦M1)(z) = (A2A1) • z.

Because of the parallels, it becomes very convenient to encode fractional linear trans-
formations into a matrix form. What’s more, this connection allows us to freely pass
between studying an algebraic object (the set of all invertible 2 × 2 matrices) and
studying a geometric object (functions on the complex plane). This is the subject for
another class, but is generally the motivation behind the area of “geometric group
theory.”

Let’s look at the properties of some specific types of fractional linear trasnformations.

Definition. A transformation of the form M(z) = z + b is called a translation .

It translates z by Re(b)-units horizontally and Im(b)-units vertically. The associated
matrix A is the unipotent matrix

A =

(
1 b
0 1

)
.

Remark. Technically the matrix could be any invertible matrix of the form(
α αb
0 α

)
,

but these are all conjugate, so we take the natural choice having determinant 1.

Example 23.1.4. Consider M(z) = z + 2− i.

M

z

M(z)
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Definition. A transformation of the form M(z) = az is called a (pure) rotation

when |a| = 1, and a (pure) dilation when a is real. When a is neither of those,

then writing it in polar for as a = reiθ makes it clear that it’s a composition of a
rotation of angle θ and a dilation with factor r. In any case, the corresponding matrix
is the diagonal matrix

A =

(
a 0
0 1

)
.

Remark. As before, it’s natural to pick the determinant-1 matrix(√
a 0

0 1√
a

)
where

√
a is fixed to be one of a1/2.

Example 23.1.5. Consider M(z) = (2+ 2i)z. Since 2 + 2i =
√

8eiπ/4, we can picture
this as a rotation throuh angle π/4 and then a dilation with a factor of

√
8.

M
1

i

−1

−i

M(1)M(i)

M(−1) M(−i)

Definition. A transformation of the form M(z) =
1

z
is called an inversion . The

associated matrix is the order-2 matrix

A =

(
0 1
1 0

)
.
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M
z

M(z)

arg(M(z)) = − arg(z) and |M(z)| = |1/z|

Remark. The associated determinant-1 matrix is(
0 i
i 0

)
.

Inversion is possibly the least obvious of these transformations, but if we use stere-
ographic projeciton to see what’s happening on the sphere, it’s more intuitive. Let
∆ be a triangle in the plane and let ∆′ the inversion of ∆. Using ρ−1 to visualize on
the sphere, we see that we can pass between ρ−1(∆) and ρ−1(∆′) by a rotation of the
sphere around the x-axis by an angle π (which makes sense, the inversion map fixes
±1 and sends every point eiθ to e−iθ).

Letting R be the rotation of the sphere around the x-axis by an angle of π, we can
thus think of invertion as the composition

ρ ◦R ◦ ρ−1.

93



Theorem 23.1.6. All fractional linear transformations M(z) =
az + b

cz + d
are a compo-

sition of these three types of transformations.

Proof. When c = 0, M(z) is an actual linear transformation, which is clearly a
rotation/dilation followed by a translation. Since compositions of fractional linear
transformations can be represened by products of the corresponding matrices, when
c 6= 0, we have (

1 a
c

0 1

)

translate

(
bc−ad
c 0
0 1

)

rotate/dilate

(
0 1
1 0

)

invert

(
1 d
0 1

)

translate

(
c 0
0 1

)
rotate/dilate

=

(
a b
c d

)

Theorem 23.1.7. Fractional linear transformations send lines to lines or circles, and
send circles to lines or circles.

Proof. It’s completely obvious that rotations, dilations, and transformations take
lines to lines and circles to circles, so it only remains to check inversion. Given
that inversion is a composition of stereographic projection (which has the desired
property) and a rotation of the sphere (which sends circles on the sphere to circles
on the sphere), the inversion has the desired property.

Theorem 23.1.8 (Three point theorem). Given any three points z1, z2, z3 in C, any
other three points w1, w2, w3 in C, there is a unique fractional linear transformation
M for which M(z1) = w1, M(z2) = w2, and M(z3) = w3.

Proof. Let M1 and M2 be the following fractional linear transformations:

M1(z) =
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
and M2(z) =

(z − w1)(w2 − w3)

(z − w3)(w2 − w1)
.

As a functions on the extended complex plane,

M1(z1) = 0, M2(w1) = 0,

M1(z2) = 1, M2(w2) = 1,

M1(z3) =∞, M2(w3) =∞.

By setting M = M−1
2 ◦M1, we have the desired fractional linear transformation.

We’ll see in the next section how we can use the above technique to pass between
domains.
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23.2 Construction of Conformal Mappings

One strategy for solving problems is to find the solution on a simple domain (a disk,
half-plane, etc) and to use a conformal mapping to pass between them. The following
result tells us that this is always possible.

Theorem 23.2.1 (Riemann Mapping Theorem). Let D0 be the unit disk and D1

any domain in C (that is not all of C). Then there exists a conformal mapping
f : D0 → D1 that is both one-to-one and onto.

This major theorem tells us that we can pass between any two domains. Let D0 be
the unit disk and let D1, D2 be any two domains (that aren’t all of C). Then there
exist one-to-one and onto conformal mappings f1 : D0 → D1 and f2 : D0 → D2.
Since each of these maps is invertible, we get that f2 ◦ f−1

1 is a one-to-one and onto
conformal mapping.

Of course, FINDING these conformal maps in practice is generally very hard. Since
a conformal mapping must send the boundary of D1 to the boundary of D2, one
strategy is to try finding a map between the boundaries, and then test to see if the
interior points are mapped to interior points. We’ll explore this idea in the context
of fractional linear transformations.

Example 23.2.2. Find a conformal mapping from the open unit disk to the disk
|z| < 3.

Clearly the map

M(z) = 3z

sends the unit circle to the circle of radius 3. If |z| < 1, then

|M(z)| = |3z| = 3|z| < 3,

as desired.

Example 23.2.3. Find a conformal mapping from the open unit disk to the exterior
of the disk |z| > 3

We know that inversion preserves the circle |z| = 1 and that dilation maps this circle
conformally onto the circle |z| = 3, so we try composing the two

M(z) = 3

(
1

z

)
.
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Suppose that |z| < 1, then |1/z| > 1 and

M(z) =

∣∣∣∣3z
∣∣∣∣ = 3

∣∣∣∣1z
∣∣∣∣ > 3,

as desired.

Example 23.2.4. Find a conformal mapping from the open unit disk to the open
disk |z − 1| < 3

We know M(z) = 3z takes the unit disk to the disk of radius 3, so we try composing
it with a translation by 1

M(z) = (3z) + 1.

Indeed, if |z| < 1, then

|M(z)− 1| = |3z + 1− 1| = |3z| = 3|z| < 3,

as desired.

Example 23.2.5. Find a conformal mapping from the right half-plane to the unit
disk.

Let’s try the conformal mapping f for which

f(i) = 1

f(0) = i

f(−i) = −1

As in the proof of Theorem 23.1.8, we can look for two fractional linear transforma-
tions on Ĉ that send our points to 0, 1, and∞ and then compose them appropriately.
Let

M1(z) =
(z − i)(0 + i)

(z + i)(0− i)
=

iz + 1

−iz + 1
, and M2(z) =

(z − 1)(i+ 1)

(z + 1)(i− 1)
=

(1 + i)z − (1 + i)

(−1 + i)z + (−1 + i)
.

Now we have that  i
0
−i

 M1−→

 0
1
∞

 M−1
2−→

 1
i
−1


and thus can pick

f(z) = (M−1
2 ◦M1)(z) =

iz − i
−z − 1
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Now we have mapped the boundary of the right half-plane to the boundary of the
disk, so it remains to check that the interiors map accordingly. Checking

f(1) =
i− i
−1− 1

= 0

which is in the interior of the disk.

Example 23.2.6. Find a conformal map sending the infinite strip −π
2 < Im(z) < π

2
to the right half plane

Clearly this cannot be a fractional linear transformation, because there are two bound-
ary lines in the infinite strip and fractional linear transformations send lines to lines
(or circles). So instead we look back at the first motivational map we used. Recall
that f(z) = ez sends horizontal lines to rays from the origin (although it technically
excludes the origin, this doesn’t matter because we’re not including the boundary in
our map). If z = x + iπ2 then f(z) = iex and if z = x − iπ2 then f(z) = −iex, so the
boundary of the strip is sent to the imaginary axis (minus the origin). It’s quick to
check that f(0) = e0 = 1 which is in the right half of the plane.

f

The complex exponential “opens up” the infinite strip −π2 < Im(z) < π
2 like a book into right half plane Re(z) > 0

23.2.1 The Schwarz-Christoffel Transformation

In the proof of Theorem 23.1.1, the crucial intuition was that the derivative of the
conformal map could be thought of as a rotation of the plane at a point. As such, we
can cook up the derivative of a function that bending the real line into a polygon (and
thus the upper half plane into the interior of a polygon), and the conformal mapping
will exactly the be integral of this function.

What follows is formally known as a branch cut, but we’ll avoid the greater discussion
surrounding them and introduce only the salient features.
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Writing z = |z|eiθ, let L : C→ C be the function defined by

L(z) = ln |z|+ i(θ + 2kπ)

where k is chosen so that −π
2 ≤ θ < 3π

2 . So L(z) is defined to pick out a single value
of log(z).

Fact. L(z) is analytic on C-{it : 0 ≤ t <∞}

PICTURE OF ANALYTIC REGION

We’re ultimately interested in the upper half plane, so we’ll always take our complex
numbers to have arguments between 0 and π. For some angle α with 0 < α < π,
define the function

gα(z) := e−αL(z)

It follows from the chain rule that

Corollary 23.2.7. For each α as above, gα is analytic on the same set as L.

Notice that, since L(z) is just a specific value of the logarithm, we must have that

gα(z) = zα

for any z where L(z) is differentiable. So provided we’re willing to accept this slight
abuse of notation and the restricted domain, we can think of the map z 7→ zα as an
analytic function. Since the upper half plane is contained in the domain of analyticity,
then zα is analytic on the upper half plane

Let’s look at what happens along the real axis (minus 0) with this mapping. Since

x =

{
|x|eiπ when x < 0

|x| when x > 0
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then

xα =

{
|x|αeiαπ when x < 0

|x|α when x > 0

and so the arguments are

arg(xα) =

{
απ when x < 0

0 when x > 0.

As we move along the real axis (from left to right) and pass 0, then gα has the effect
of bending the axis and decreasing the argument by an angle of απ.

PICTURE of straight line and bent line

For some fixed angle θ ∈ (−π, π), set α = − θ
π . In the case that θ > 0, passing 0 has

the effect of bending the axis and increasing the argument by θ.

PICTURE of straight line and bent line

If we let f(z) =
∫ z
z0
ζα dζ (where Im(z0) ≥ 0), then this makes f ′(z) = zα, and as we

saw in the proof of Theorem 23.1.1, the argument of f ′(z) is precisely the angle by
which the tangent vectors are bent.

Remark. You can absolutely take z0 = 0 above; the integral just becomes an im-
proper integral. However, you’ll almost always be working with such maps numerically
and improper integrals cause computational issues, so it’s recommended you choose
z0 with Im(z0) > 0.
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Example 23.2.8. If we set α = −π
3 , then f(z) =

∫ z
0 ζ
−1/3 dζ, and the image of the

upper half plane is

f

Notice now that for any two complex numbers z1 = |z1|eiθ1 and z2 = |z2|eiθ2, we have
that the argument of z1z2 is θ1 + θ2. So if we fix real numbers x1, x2 with x1 < x2 and
angles α1, α2, then we have that

arg((x− x1)
α1(x− x2)

α2) =


α1 + α2 when x < x1

α1 when x1 < x < x2

0 when x > x2

Example 23.2.9. Let θ1 = π
2 and θ2 = π

3 . If we consider f(z) =
∫ z

0 ζ
−1/2(ζ−1)−1/3 dζ,

then the image of the upper half plane is

f
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Given any angles θ1, . . . , θn for which
n∑
k=1

θk and real numbers x1 < x2 < · · · < xn,

the function

f(z) =

∫ z

0

(ζ − x1)
−θ1/π(ζ − x2)

−θ2/π · · · (ζ − xn−1)
−θn−1/π dζ

is a conformal mapping of the upper half plane to a polygon with exterior angles
θ1, . . . , θn (the last angle is uniquely determined by the other n− 1 angles, and with
the above map, the point at infinity is sent to the remaining vertex).

Example 23.2.10. A pentagon has exterior angles θi = 2π
5 , so taking

f(z) =

∫ z

i

(ζ + 2)−2/5(ζ + 1)−2/5(ζ − 1)−2/5(ζ − 1)−2/5 dζ

then the image of the upper half plane is

f

Of course, this construction works as well for non-convex polygons

Example 23.2.11. Consider the quadrilateral with exterior angles θ1 = θ2 = θ3 = 5π
6

and θ4 = −π
2 . Taking

f(z) =

∫ z

i

(ζ + 1)−5/6ζ−5/6(ζ − 1)−5/6 dζ

then the image of the upper half plane is
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f

A polygon in the plane is not uniquely determined by its angles - it may be scaled,
translated, or rotated. Thankfully, each of those are conformal maps!

Theorem 23.2.12 (Schwarz–Christoffel transformation). Given any polygon P in the
plane with exterior angles θ1, . . . , θn, them for any real numbers x1 < x2 < · · · < xn−1,
there are complex numbers A and B for which the function

f(z) = A+B

∫ z

0

(ζ − x1)
−θ1/π(ζ − x2)

−θ2/π · · · (ζ − xn−1)
−θn−1/π dζ

is a conformal mapping of the upper half plane to the interior of P .

Example 23.2.13. Find a conformal map from the upper half plane into the square
with vertices 0, 1, 1 + i, i.

We know from our previous work that

f(z) =

∫ z

0

(ζ + 1)−1/2ζ−1/2(ζ − 1)−1/2 dζ

sends the upper half plane to the interior of a rectangle. So all that remains is
for us to find constants A and B so that F (z) = A + Bf(z) modifies the rectangle
appropriately. We can do this by finding A and B for which our chosen “bend points”
−1, 0, 1,∞ correspond to the necessary vertices. Note that f is a so-called “elliptic
integral” and has no closed form solution, so this will all have to be done numerically.

Since f(0) = 0, the following correspondence seems natural

Bend points {−1, 0, 1,∞} ↔ Rectangle {i, 0, 1, 1 + i}
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This yields the following system of equations
A+Bf(−1) = i
A+Bf(0) = 0
A+Bf(1) = 1
A+Bf(∞) = 1 + i

 =⇒


A+B(2.62206) ≈ i

A = 0
A+B(2.62206i) ≈ 1

A+B(2.62206− 2.62206)i ≈ 1 + i


hence A = 0 and B ≈ i/2.62206. The mapping

F (z) =
i

2.62206
f(z)

is thus the desired conformal mapping.

f
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