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Preface

Example 0.1: Fields (of characteristic 0)

Examples of fields, which we generally denote K:

• [rational numbers]

Q =

{
p

q
: p, q ∈ Z, q ̸= 0

}

• [quadratic extension of Q]

Q(
√
d) =

{
a+ b

√
d : a, b ∈ Q, d ∈ Z

}
• [real numbers]

R

• [complex numbers]
C =

{
a+ bi : a, b ∈ R i2 = −1

}
Remark. Fields are much more general objects, but the above are sufficiently interesting for this
course. For the duration of these notes, we restrict our attention only to (infinite) fields of
characteristic 0 and leave the finite/nonzero characteristic cases to a course in abstract
algebra/algebraic number theory.

v
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Chapter 1

Vector Spaces

1B Definition of Vector Space

Definition: K-vector space

Given a field K, a K-vector space is a set V of objects called vectors, endowed with two
operations:

• (vector) addition, denoted +
• scalar multiplication, denoted (no symbol)

satisfying the following properties: For all vector u,v,w and for all scalars k, ℓ ∈ K:
1. [closure of addition] u+ v ∈ V
2. [commutativity of addition] u+ v = v + u
3. [associativity of addition] (u+ v) +w = u+ (v +w)
4. [existence of zero] There is some vector 0 ∈ V , called the zero vector so that v+ 0 = v

for all v ∈ V .
5. [existence of additive inverses] For each v in V , there is some vector −v for which

v + (−v) = 0.
6. [closure of scalar multiplication] kv ∈ V
7. [associativity of scalar multiplication] (kℓ)v = k(ℓv)
8. [distributivity] k(u+ v) = ku+ kv
9. [distributivity] (k + ℓ)u = ku+ ℓu
10. [existence of a multiplicative identity] If 1K is the multiplicative identity in K, then

1Kv = v.

Remark. Unless otherwise specified, V will always refer to a K-vector space.

Examples of Vector Spaces

Example 1B.1

Let Kn be the set of ordered n-tuples of K values. That is,

Kn = {(k1, k2, . . . , kn) : ki ∈ K for i = 1, . . . , n}

Define vector addition via

(k1, k2, . . . , kn) + (k′
1, k

′
2, . . . , k

′
n) = (k1 + k′

1, k2 + k′
2, . . . , kn + k′

n)

and scalar multiplication via

λ(k1, k2, . . . , kn) = (λk1, λk2, . . . , λkn).

Show that Kn is a K-vector space.

1



2 CHAPTER 1. VECTOR SPACES

Proof. We verify each of the vector space axioms. Let u,v,w ∈ Kn and k, ℓ ∈ K be arbitrary.
1. [closure of addition] NOTES INCOMPLETE
2. [commutativity of addition] NOTES INCOMPLETE
3. [associativity of addition] NOTES INCOMPLETE
4. [existence of zero vector] NOTES INCOMPLETE
5. [existence of additive inverses] NOTES INCOMPLETE
6. [closure of scalar multipliction] NOTES INCOMPLETE
7. [associativity of scalar multiplication] NOTES INCOMPLETE
8. [distributivity] NOTES INCOMPLETE
9. [distributivity] NOTES INCOMPLETE
10. [multiplicative identity] NOTES INCOMPLETE

Example 1B.2: Space of K-valued functions

Let S be any nonempty set, and let KS denote the set of functions f : S → K. Define vector
addition via

(f + g)(x) = f(x) + g(x) where f, g,∈ KS,

and scalar multiplication via

(λf)(x) = λf(x) where f ∈ Ks and λ ∈ K,

for all x ∈ S. Show that KS is a vector space.

Proof. We verify each of the vector space axioms. Let f, g, h ∈ KS and k, ℓ ∈ K be arbitrary.
1. [closure of addition] NOTES INCOMPLETE
2. [commutativity of addition] NOTES INCOMPLETE
3. [associativity of addition] NOTES INCOMPLETE
4. [existence of zero vector] NOTES INCOMPLETE
5. [existence of additive inverses] NOTES INCOMPLETE
6. [closure of scalar multipliction] NOTES INCOMPLETE
7. [associativity of scalar multiplication] NOTES INCOMPLETE
8. [distributivity] NOTES INCOMPLETE
9. [distributivity] NOTES INCOMPLETE
10. [multiplicative identity] NOTES INCOMPLETE

Example 1B.3: Space of polynomials, P(K)

Let P(K) be the set of polynomial functions on K, that is, the set

P(K) =

{
p ∈ KK :

∃m ∈ N and a1, . . . , am ∈ K s.t.
p(x) = a0 + a1x+ a2x

2 + · · ·+ amx
m for all x ∈ K

}
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Define vector addition via

(p+ q)(x) = p(x) + q(x) where p, q ∈ P(K),

and scalar multiplication via

(λp)(x) = λp(x) where p ∈ P(K) and λ ∈ K,

for all x ∈ K. Show that P(K) is a vector space.

We remark that this function addition is the usual polynomial addition.

Proof. We verify each of the vector space axioms. Let p, q, r ∈ P(K) and λ, µ ∈ K be arbitrary.
1. [closure of addition] NOTES INCOMPLETE
2. [commutativity of addition] NOTES INCOMPLETE
3. [associativity of addition] NOTES INCOMPLETE
4. [existence of zero vector] NOTES INCOMPLETE
5. [existence of additive inverses] NOTES INCOMPLETE
6. [closure of scalar multipliction] NOTES INCOMPLETE
7. [associativity of scalar multiplication] NOTES INCOMPLETE
8. [distributivity] NOTES INCOMPLETE
9. [distributivity] NOTES INCOMPLETE
10. [multiplicative identity] NOTES INCOMPLETE

Example 1B.4: Space of degree-m polynomials, Pm(K)

Fixing m ∈ N, let Pm(K) be the set of degree-m polynomial functions on K, that is, the set

Pm(K) =

{
p ∈ KK :

∃a1, . . . , am ∈ K s.t.
p(x) = a0 + a1x+ a2x

2 + · · ·+ amx
m for all x ∈ K

}
Define vector addition via

(p+ q)(x) = p(x) + q(x) where p, q ∈ Pm(K),

and scalar multiplication via

(λp)(x) = λp(x) where p ∈ Pm(K) and λ ∈ K,

for all x ∈ K. Show that Pm(K) is a vector space.

We remark that addition is the usual polynomial addition.

Proof. Fix m ∈ N. We verify each of the vector space axioms. Let p, q, r ∈ Pm(K) and
λ, µ ∈ K be arbitrary.

1. [closure of addition] NOTES INCOMPLETE
2. [commutativity of addition] NOTES INCOMPLETE
3. [associativity of addition] NOTES INCOMPLETE
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4. [existence of zero vector] NOTES INCOMPLETE
5. [existence of additive inverses] NOTES INCOMPLETE
6. [closure of scalar multipliction] NOTES INCOMPLETE
7. [associativity of scalar multiplication] NOTES INCOMPLETE
8. [distributivity] NOTES INCOMPLETE
9. [distributivity] NOTES INCOMPLETE
10. [multiplicative identity] NOTES INCOMPLETE

Example 1B.5: The (n− 1)-simplex

Let ∆n−1 be the following set of ordered n-tuples of positive real numbers:

∆n =

{
(x1, x2, . . . , xn) :

xi ∈ R, xi > 0 for i = 1, . . . , n+ 1
and x1 + x2 + · · ·+ xn = 1

}
.

Define vector addition via

(x1, . . . , xn) + (y1, . . . , yn) =
(x1y1, . . . , xnyn)∑n

i=1 xiyi

and scalar multiplication via

λ(x1, . . . , xn) =

(
xλ
1 , . . . , x

λ
n

)∑n
i=1 x

λ
i

.

Show that ∆n−1 is an R-vector space.

Proof. Fix an integer n > 0. We verify each of the vector space axioms. Let x,y, z ∈ ∆n−1

and λ, µ ∈ R be arbitrary.
1. [closure of addition] NOTES INCOMPLETE
2. [commutativity of addition] NOTES INCOMPLETE
3. [associativity of addition] NOTES INCOMPLETE
4. [existence of zero vector] NOTES INCOMPLETE
5. [existence of additive inverses] NOTES INCOMPLETE
6. [closure of scalar multipliction] NOTES INCOMPLETE
7. [associativity of scalar multiplication] NOTES INCOMPLETE
8. [distributivity] NOTES INCOMPLETE
9. [distributivity] NOTES INCOMPLETE
10. [multiplicative identity] NOTES INCOMPLETE

Proposition 1B.6: Unique additive identity

Let V be a K-vector space. The following properties hold.
1. The zero vector, 0 ∈ V , is unique.
2. For every v ∈ V , the additive inverse is unique.
3. For every v ∈ V , 0v = 0.
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4. For every λ ∈ K, λ0 = 0.
5. For every v ∈ V , (−1)v = −v (the additive inverse of v).

Proof.
(a) Suppose that 0 and 0′ are both additive identities. Then

0 = 0+ 0′ (0′ is additive identity)

= 0′ + 0 ((commutativity of +)

= 0′ (0′ is additive identity)

(b) Suppose that w and w′ are both additive inverses for the same vector v. Then

w = w + 0 (0 is additive identity)

= 0+w (commutativity of +)

= (v +w′) +w (w′ is additive inverse)

= (w′ + v) +w (commutativity of +)

= w′ + (v +w) (associativity of +)

= w′ + 0 (w is additive inverse)

= w′.

(c) Let v ∈ V be arbitrary and let w denote the additive identity of 0v. Then

0 = w + 0v

= w + (0 + 0)v

= (w + 0v) + 0v

= 0+ 0v

= 0v.

(d) Let λ ∈ K be arbitrary. Then

λ0 = λ(0+ 0) = λ0+ λ0.

Letting w be the additive inverse of λ0, we have

0 = λ0+w

= λ(0+ 0) +w

= λ0+ λ0+w

= λ0+ 0 = λ0.

(e) Let v ∈ V be arbitrary. Then

v + (−1)v = 1v + (−1)v
= [1 + (−1)]v
= 0v = 0

whence (−1)v = −v.
□□□.
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1C Subspaces

Definition: vector subspace

A subset U of V is called a (vector) subspace if is a vector space with the same vector
addition, scalar multiplication, and additive identity as V .

Example 1C.1

The set of vectors{
(x, y, 0) ∈ R3 : x, y ∈ R

}
(the xy-plane)

is subspace of R3 (considered as an R-vector space).

Proof. Let U be the subset of R3 described above. Let u = (x1, y1, 0), v = (x2, y2, 0),
w = (x3, y3, 0) be arbitrary elements of U , and let k, ℓ ∈ R be arbitrary. Then

1. [closure of addition]

u+ v = (x1, y1, 0) + (x2, y2, 0) = (x1 + x2, y1 + y2, 0).

Since x1 + x2 ∈ R and y1 + y2 ∈ R, then u+ v ∈ U .
2. [commutativity of addition] NOTES INCOMPLETE
3. [associativity of addition] NOTES INCOMPLETE
4. [existence of zero vector] 0 = (0, 0, 0) is the additive identity in R3. Since 0 is a real

number, then (0, 0, 0) ∈ U also. Moreover,

u+ 0 = (x1, y1, 0) + (0, 0, 0) = (x1 + 0, y1 + 0, 0) = (x1, y1, 0) = u.

5. [existence of additive inverses] NOTES INCOMPLETE
6. [closure of scalar multipliction] NOTES INCOMPLETE
7. [associativity of scalar multiplication] NOTES INCOMPLETE
8. [distributivity]

k(u+ v) = k

(
(x1, y1, 0) + (x2, y2, 0)

)
= k(x1 + x2, y1 + y2, 0)

=

(
k(x1 + x2), k(y1 + y2), 0

)
= (kx1 + kx2, ky1 + ky2, 0) (distributivity of real numbers)

= (kx1, ky1, 0) + (kx2, ky2, 0)

= k(x1, y1, 0) + k(x2, y2, 0) = ku+ kv.

9. [distributivity] NOTES INCOMPLETE
10. [multiplicative identity] NOTES INCOMPLETE
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Theorem 1C.2: 3-Step Subspace Test

A subset U ⊆ V is a subspace of V if and only if the following conditions hold:
• 0 ∈ U . [contains the additive identity]
• For all u1,u2 ∈ U , u1 + u2 ∈ U . [closed under +]
• For all u ∈ U and k ∈ K, ku ∈ U . [closed scalar multiplication]

Proof. Let V be a vector space and U ⊆ V .
(⇒) Suppose that U is a vector space. Then it clearly satisfies the above criteria.
(⇐) Suppose that U satisfies the above criteria. By assumption, U immediately satisfies

properties (1), (6), and (4) [respectively] of the definition of a vector space. The existence
of the additive inverse follows from the assumption that ku ∈ U for all k – in particular,
take k = −1. The remaining properties all follow almost immediately from the fact that
u ∈ U =⇒ u ∈ V , and all vectors in V satisfy these properties. To be super-duper
explicit with the vector space axioms:
1. [closure of addition] This is by assumption.
2. [commutativity of addition] Let u,v ∈ U . Since U is a subset of V , then u,v ∈ V .

Since V is a vector space, then u+ v = v + u.
3. [associativity of addition] Let u,v,w ∈ U . Since U is a subset of V , then u,v,w ∈ V .

Since V is a K-vector space, then (u+ v) +w = u+ (v +w).
4. [existence of zero vector] This is by assumption.
5. [existence of additive inverses] Since U is closed under scalar multiplication, for each

vector u ∈ U , the vector −1u ∈ U . From a previous proposition, we know that −1u
is the additive identity of u.

6. [closure of scalar multipliction] This is by assumption.
7. [associativity of scalar multiplication] Let k, ℓ ∈ K and u ∈ U . Since U is a subset

of B, then u ∈ V . Since V is a K-vector space, then (kℓ)u = k(ℓu).
8. [distributivity] Let k ∈ K and let u,v ∈ U . Since U is a subset of V , then u,v ∈ V .

Since V is a K-vector space, then k(u+ v) = ku+ kv.
9. [distributivity] Let k, ℓ ∈ K and let u ∈ U . Since U is a subset of V , then u ∈ V .

Since V is a K-vector space, then (k + ℓ)u = ku+ ℓu.
10. [multiplicative identity] NOTES INCOMPLETE

□□□.

Example 1C.3

For any m ∈ N, Pm(K) is a subspace of P(K).

We know that Pm(K) is a K-vector space. Indeed, the zero vector in Pm(K) is the same as for
P(K) (namely, the zero polynomail p(x) = 0). As well, the definitions of addition and scalar
multiplication agree in both Pm(K) and P(K).

Example 1C.4

Is the set of vectors

U =
{
(x, y, 0) : x, y ∈ Q(

√
3)
}
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a subspace of R3 (which is an R-vector space)?

U is not a subspace since it is not closed under scalar multiplication. In particular, (1, 0, 0) ∈ U ,
but

π(1, 0, 0) = (π, 0, 0)

and π /∈ Q(
√
3).

Definition: sums of subspaces

Let U1, . . . , Um be subspaces of V . The sum of U1, . . . , Um, denoted U1 + · · ·+ Um is the set
of all possible sums of elements from U1, . . . , Um. More precisely,

U1 + · · ·+ Um := {u1 + · · ·+ um : uj ∈ Uj for each j = 1, . . . ,m} .

One may also write
m∑
i=1

Ui.

Example 1C.5

Let U1, U2 be the following subspaces of K4.

U1 = {(x, x, y, y) : for all x, y ∈ K}
U2 = {(x, x, x, y) : for all x, y ∈ K}

Show that

U1 + U2 = {(x, x, y, z) : for all x, y, z ∈ K}

Recall that showing two sets X and Y are equal means that we need to show that X ⊆ Y
and X ⊇ X.

Proof. To see that these sets are equal, we employ the usual tactic of proving that
each set is a subset of the other. For notational simplicity, we let W be the set
{(x, x, y, z) : for all x, y, z ∈ K}.

U1 + U2 ⊆ W . Let (a, a, b, b) + (c, c, c, d) ∈ U1 + U2. The sum of these vectors is

(a, a, b, b) + (c, c, c, d) = (a+ c, a+ c, b+ c, b+ d),

and since the first two components are equal, then (a+ c, a+ c, b+ c, b+ d) ∈ W .
U1 + U2 ⊇ W . Let (a, a, b, c) ∈ W . Clearly one can write

(a, a, b, c) = (a, a, b, b) + (0, 0, 0, c− b),

and it is easily seen that (a, a, b, b) ∈ U1 and (0, 0, 0, c− b) ∈ U2.
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Proposition 1C.6

Given subspaces U1, . . . , Um of V , the sum U1 + · · ·+ Um is the smallest (by set containment)
subspace of V containing each Ui.

Proof.
Subspace. It is straightforward to verify that U1 + · · ·+ Um is a subspace using the 3-Step

Subspace Test. That is contains each Ui is also immediate: for any ui ∈ Ui,

0+ · · ·+ ui + · · ·+ 0 ∈ U1 + · · ·+ Ui + · · ·+ Um.

Smallest Subspace. Suppose now that W is a subspace satisfying

U1 ∪ · · · ∪ Um ⊆ W ⊆ U1 + · · ·+ Um.

Since W contains each subspace U1 and W is a subspace itself, it must also contain all
sums of elements from each Ui, hence it must also contain U1 + · · ·+ Um. Thus

W ⊇ U1 + · · ·+ Um

and therefore W = U1 + · · ·+ Um.
□□□.

Definition: direct sum of subspaces

Let U1, . . . , Um be subspaces of a K-vector space V . The sum U1 + · · ·+Um is called a direct
sum if and only if, for every v ∈ U1 + · · ·+ Um, there are unique uj ’s so that

v = u1 + · · ·+ um

We denote the direct sum with
U1 ⊕ · · · ⊕ Um.

One may also write
m⊕
i=1

Ui.

Proposition 1C.7

Let U1, . . . , Um be subspaces of V and let uj ∈ Uj, for each j = 1, . . . ,m. The following are
equivalent:

1. U1 + · · ·+ Um is a direct sum.
2. If 0 = u1 + · · ·+ um, then u1 = · · · = um = 0

3. For every i, the subspaces Ui and
m∑
j ̸=i

Uj have only the zero vector in common.

Proof.
(1 ⇒ 2). This is immediate from the definition of a direct sum.
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(2 ⇒ 3). Let ui be a vector common to both Ui and
m∑
j ̸=i

Uj. Then, for j ̸= i, there are

vectors uj ∈ Uj so that

ui = u1 + · · ·+ ui−1 + ui+1 + · · ·+ um.

This rearranges to

0 = u1 + · · ·+ ui−1 + (−ui) + ui+1 + · · ·+ um

and by assumption of Property (2), it must be that each uj = 0. In particular, ui = 0,

so Ui and
m∑
j ̸=i

Uj have only the zero vector in common.

(3 ⇒ 1). Let v ∈ U1 + · · ·+ Un and suppose for each i there are ui,wi ∈ Ui so that

u1 + · · ·+ um = v = w1 + · · ·+wm.

Subtracting and rearranging slightly, for each i we can write

ui −wi =
∑
j ̸=i

(wj − uj)

and thus (ui−wi) ∈
m∑
j ̸=i

Uj . Since (ui−wi) ∈ Ui as well, then by assumption of Property

(3), we must have that ui − wi = 0, hence ui = wi for every i. It follows that the
decomposition of v is unique.

□□□.

Corollary 1C.8

Let U1, U2 be subspaces of V . Then U1 + U2 is a direct sum if and only if U1 ∩ U2 = {0}.

Example 1C.9: The Difference Between a Sum and Direct Sum

Let U1, U2, U3 be the following subspaces of R3:

U1 =
{
(x, y, 0) ∈ R3 : x, y ∈ R

}
U2 =

{
(0, y, z) ∈ R3 : x, y ∈ R

}
U3 =

{
(0, 0, z) ∈ R3 : x, y ∈ R

}
(a) Show that R3 = U1 + U2, but that this is not a direct sum.
(b) Show that R3 = U1 ⊕ U3.

(a) U1 + U2 is a subspace of R3, so one only has to show that U1 + U2 ⊇ R3 to obtain
equality. Indeed, note that R3 ∋ (x, y, z) = (x, y, 0) + (0, 0, z) ∈ U1 + U2. To see that it
is not a direct sum, one could use the corollary (any nonzero vector (0, y, 0) is common
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to U1 and U2), but it can also be seen using uniqueness of sums. For any (x, y, z) ∈ R3

and any t ∈ R, see that (x, y, z) = (x, ty, 0) + (0, (1− t)y, z) ∈ U1 + U2 so there is not a
unique choice of vectors in U1 and U2 which sum to (x, y, z).

(b) Once again U1 + U2 is a subspace of R3, so one only has to show that U1 + U3 ⊇ R3 to
obtain equality. indeed, note that R3 ∋ (x, y, z) = (x, y, 0) + (0, 0, z) ∈ U1 + U3. To see
that this is a direct sum, observe that the intersection of U1 and U3 is only the zero
vector.

The purpose of a sum is to describe a decomposition of a vector space in terms of its subspaces. A
direct sum is such a decomposition where the subspaces are independent of one another. That said,
such subspaces are not typically unique.

Example 1C.10

Let U be the subspace of K3 given by

U =
{
(k1, k2, k1 + k2) ∈ K3 : k1, k2 ∈ K

}
.

Let (a, b, c) be any vector for which c ̸= a+ b and define the subspace

W =
{
(at, bt, ct) ∈ K3 : t ∈ K

}
.

Prove that K3 = U ⊕W .

Proof. Suppose
(0, 0, 0) = (k1, k2, k1 + k2) + (at, bt, ct) ∈ U +W.

This equality yields the following systems
k1 + at = 0
k2 + bt = 0

k1 + k2 + ct = 0
=⇒


k1 = −at
k2 = −bt

−at− bt+ ct = 0

Since c ̸= a+ b, then this last equation is 0 if and only if t = 0, whence (at, bt, ct) = (0, 0, 0).
It follows that (k1, k2, k3) = (0, 0, 0) and therefore there is a unique decomposition of 0.
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Section 1C Exercises

1. Let U1, U2 be arbitrary subspaces of an arbitrary K-vector space, V . Prove or disprove each of
the following.

(a) U1 ∩ U2 is a subspace of V .

(b) U1 ∪ U2 is a subspace of V .

2. Given two vectors u = (x1, . . . , xn) and v = (v1, . . . , vn) in Rn, recall that the dot product is
defined as

u · v = x1y1 + · · ·+ xnyn.

Let U and N be the following subspaces of R3:

U = {(x, y, x+ y) : x, y ∈ R}
N =

{
v ∈ R3 : u · v = 0 for every u ∈ U

}
(a) Find the missing vector entry that makes the following statement true (no proof needed):

N =
{
(x, x, ) ∈ R3 : x ∈ R

}
.

(b) Prove that R3 = U ⊕N .

3. Let Podd
m (K) and Peven

m (K) be the following subsets of Pm(K):

Podd
m (K) = {a0 + a1x+ · · ·+ amx

m : aj = 0 whenever j is not odd}
Peven

m (K) = {a0 + a1x+ · · ·+ amx
m : aj = 0 whenever j is not even}

In other words Podd
m (K) is the collection of polynomials whose only nonzero terms are odd-degree, and

Peven
m (K) is the collection of polynomials whose only nonzero terms are even-dgree.

(a) Prove that Podd
m (K) and Peven

m (K) are subspaces of Pm(K).

(b) Prove that Pm(K) = Podd
m (K)⊕ Peven

m (K).

(c) Let V,W be K-vector spaces with addition operations +
V
and +W . The Cartesian

product V ×W is a vector space (called the product space) with addition given by

(v1,w1) + (v2,w2) = (v1 +V v2,w1 +W w2)

and scalar multiplication given by

λ(v1,w1) = (λv1, λw1)

for all λ ∈ K and all v1,v2 ∈ V and all w1,w2 ∈ W . Suppose that X is a subspace of V
and Y is a subspace of W . Prove or disprove the following: X × Y a subspace of V ×W .



Chapter 2

Finite-Dimensional Vector Spaces

2A Span and Linear Independence

Definition: linear combination

A linear combination of a finite set S = {v1, . . . ,vm} of vectors in V is a vector of the
form

a1v1 + · · ·+ amvm

where a1, . . . , am ∈ K.

Definition: span

The span of a finite set S = {v1, . . . ,vm} of vectors in V , denoted either Span(S) or
Span(v1, . . . ,vm) is the set of all linear combinations of these vectors. Explicitly,

Span(S) = Span(v1, . . . ,vn) = {a1v1 + · · ·+ amvm : a1, . . . , am ∈ K}

When S = ∅, we define Span(∅) = {0}.
Given a subset W ⊆ V , if we can find a set S of vectors in V for which Span(S) = X, we say
that S spans W , or that S is a spanning set for W .

Example 2A.1

Let V = R3 (considered as an R-vector space). Describe Span(v1,v2) where v1 = (0, 1, 0) and
v2 = (0, 0, 1).

We have that

Span(v1,v2) = {x(1, 0, 0) + y(0, 1, 0) : x, y ∈ R}
= {(x, y, 0) : x, y ∈ R}

which you might affectionately refer to as the xy-plane.

Example 2A.2

Let V = P(K) (considered as a K-vector space). Describe Span(p0, p1, p2) where p0(x) = 1,
p1(x) = x, and p2(x) = 2− x.

13
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Span(p0, p1, p2) = {k1(1) + k2(x) + k3(2− x) : k1, k2, k3 ∈ K}
= {(k1 + 2k3) + (k2 − k3)x : k1, k2, k3 ∈ K}

and making the substitution a0 = k1 + 2k2, a1 = k2 − k3

= {(a0 + a1x : a0, a1 ∈ K}

which we might refer to as P1(K).

Proposition 2A.3

Given any finite set S of vectors of V , Span(S) is the smallest (by set containment) subspace
of V containing S.

The proof of this claim is very similar to the proof that the sum of subspaces is the smallest
subspace containing all of the component subspaces.

Proof. Let S = {v1, . . . ,vn}.
Subspace. It is straightforward to see that Span(S) is a subspace by way of the 3-Step

Subspace Test. Indeed, 0 ∈ Span(S) as

0 = 0v1 + · · ·+ 0vn.

To see that it is closed under addition and scalar multiplication, let k1, . . . , kn, ℓ1, . . . , ℓn, λ
be scalars. Then

λ (k1v1 + · · ·+ knvn) + (ℓ1v1 + · · ·+ ℓnvn)

= (λk1 + ℓ1)v1 + · · ·+ (λkn + ℓn)vn

Smallest Subspace. Suppose W is any subspace containing S. Then by closure of addi-
tion/scalar multiplication, W contains all of the linear combinations of vectors in S, hence
Span(S) ⊆ W .

□□□.

Definition: finite-/infinite-dimensional vector space

A vector space V is called finite-dimensional if there is a finite set S of vectors in V for
which V = Span(S). V is called infinite-dimensional otherwise.

Example 2A.4

Show that Rn is finite-dimensional.

Proof. For each i = 1, . . . , n, let ei = (e1, e2, . . . , en) where ej =

{
1 when j = i

0 otherwise
. We then
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have that
v = (v1, . . . , vn) = v1e1 + · · ·+ vnen

hence
Rn = Span(e1, . . . , en) .

Example 2A.5

Show that P(K) is infinite-dimensional.

Proof. Let S = {p1(x), . . . , pn(x)} be any finite set of polynomials. Since polynomials have
finite degree by definition, then we may write

m := max{deg(p1), . . . , deg(pn)}

and m < ∞. But now the polynomial q(x) = xm+1 /∈ Span(S), so P(K) cannot be finite-
dimensional.

Definition: linear dependence/independence

Let S = {v1, . . . ,vm} be a finite set of vectors in V .
S is called linearly independent if and only if, for all k1, . . . , km ∈ K for which

k1v1 + · · ·+ kmvm = 0 =⇒ k1 = · · · = km = 0.

S is called linearly dependent if it is not linearly independent. That is, there are coefficients
k1, . . . , km ∈ K, not all zero, for which

k1v1 + · · ·+ kmvm = 0

.

Example 2A.6

Show that S = {(1, 0, 0), (0, 1, 0)} is a linearly independent set of vectors in R3.

Let x, y ∈ R and suppose

0 = (0, 0, 0) = x(1, 0, 0) + y(0, 1, 0) = (x, y, 0).

Clearly, x = y = 0, hence S is a linearly independent set of vectors.

Example 2A.7

Show that S = {1 + x, 1 + x2} is a linearly independent set of vectors in P2(K). Recall that
the “zero vector” is the zero polynomial, p(x) = 0.
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Let k1, k2 ∈ K and suppose
0 = k1(1 + x) + k2(1 + x2).

This rearranges to
0 = (k1 + k2) + k1x+ k2x

2.

Since two polynomials are equal if and only if their corresponding coefficients are equal, then
we must have

k1 + k2 = 0, k1 = 0, k2 = 0.

Thus S is a linearly independent set.

Example 2A.8

Is S = {1 + x, 1 + x+ x2, 1 + x+ 3x2} a linearly independent set of vectors in P2(K)?

As before, let k1, k2, k3 ∈ K and suppose

0 = k1(1 + x) + k2(1 + x+ x2) + k3(1 + x+ 3x2)

This rearranges to

0 = (k1 + k2 + k3) + (k1 + k2 + k3)x+ (k2 + 3k3)x
2

which results in the system 
k1 + k2 + k3 = 0

k1 + k2 + k3 = 0

k2 + 3k3 = 0.

Choose k1 = −(k2 + k3) and k2 = −3k3. Then for any value of k3, we will have a valid
solution to this system. In particular, pick k3 = 1 (from which it follows that k2 = −3 and
k3 = −(−3 + 1) = −(−2) = 2. We see that at least one of (in fact, all three of) k1, k2, k3 are
nonzero, but

0 = 2(1 + x)− 3(1 + x+ x2) + (1 + x+ 3x2).

Therefore S is not linearly independent (i.e. it is a linearly dependent set).

Lemma 2A.9: Linear Dependence Lemma

Let S = {v1, . . . ,vm} be a finite set of vectors in V . The following are equivalent.
1. S is linearly dependent.
2. There is some j satisfying 1 ≤ j ≤ m for which

vj ∈ Span(v1, . . . ,vj−1,vj+1, . . . ,vm) .

3. There is some j satisfying 1 ≤ j ≤ m for which

Span(v1, . . . ,vm) = Span(v1, . . . ,vj−1,vj+1, . . . ,vm) .
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Proof.
(1 ⇔ 2) By definition, S is linearly dependent if and only if there is at least one nonzero kj

(with 1 ≤ j ≤ m) satisfying
k1v1 + · · ·+ kmvm = 0.

(WLOG, take j = 1.) Then the equation above holds if and only if

v1 = −k2
k1

v2 − · · · −
km
k1

vm,

(Aside: Since K is a field, we can freely divide by nonzero field elements, and k1 ̸= 0).

Now v1 is a linear combination of v2, . . . ,vm (as above) if and only if v1 ∈
Span(v2, . . . ,vm).

(2 ⇔ 3) (WLOG, take j = 1.) v1 ∈ Span(v2, . . . ,vm) if and only if there are scalars
k2, . . . , km ∈ K for which

v1 = k2v2 + · · ·+ kmvm.

Now observe that

Span(v1, . . . ,vm)

= {c1v1 + · · ·+ cmvm : c1, . . . , cm ∈ K}
= {c1(k2v2 + · · ·+ kmvm) + c2v2 + · · ·+ cmvm : c1, . . . , cm ∈ K}
= {(c1k2 + c2)v2 + · · ·+ (c1km + cm)vm) : c1, . . . , cm ∈ K} (2.1)

= Span(v2, . . . ,vm)

where the equality in Equation (2.1) holds because each of the cj’s (and hence c1kj + cj)
are arbitrary.

□□□.

Corollary 2A.10

If S is any nonempty set of vectors and 0 ∈ S, then S is linearly dependent.

Theorem 2A.11

Given two sets of vectors in V ,

Su = {u1, . . . ,um} and

Sw = {w1, . . . ,wn} ,

if Su is linearly independent and V = Span(Sv), then m ≤ n.

The strategy is that we’re going to iteratively create a new spanning set by removing wi vectors
from Sw and replacing them with uj vectors.

Proof. Let Su and Sw be as defined above and define

B0 := Sw

Since V = Span(Sw) = Span(B0), then every vector in Su (and in particular, u1) must be a linear
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combination of vectors in B0. That is, there are some scalars k1, · · · kn ∈ K, not all 0 (because
Corollary 2A.10 implies that u1 cannot be zero) for which

u1 = k1w1 + · · ·+ knwn. (2.2)

It follows from the Linear Dependence Lemma that

Span(B0) = Span(w1, . . . ,wn) = Span(u1,w1, . . . ,wn). (2.3)

Up to relabeling the vectors in Sw, we may assume that k1 ≠ 0 in Equation (2.2), and thus we
can rewrite

w1 =
1

k1
u1 +

k2
k1

w2 + · · ·+
kn
k1

wn.

We now have that w ∈ Span(u1,w2, . . . ,wn), and by the Linear Dependence Lemma,

Span(B0) = Span(u1,w1, . . . ,wn) = Span(u1,w2, . . . ,wn).

As such, we define

B1 := {u1} ∪ (B0 − {w1})

and more generally, with appropriate relabeling in every step, for j ≥ 1,

Bj := {uj} ∪ (Bj−1 − {wj}) .

For each j ≥ 1, we have that

uj ∈ Span(u1, . . . ,uj−1,wj , . . . ,wn),

and by linear independence of the ui’s, it must be that

uj = 0u1 + · · ·+ 0uj−1 + ℓjwj + · · ·+ ℓnwn

where (after relabeling), ℓj ̸= 0. The same argument as above above gives us

Span(B0) = · · · = Span(Bj) = Span(u1, . . . ,uj ,wj+1, . . . ,wn),

so the only thing left to do is to ensure that this procedure doesn’t terminate before m steps.

Seeking a contradiction, assume that it does terminate before m steps, i.e., that n < m. Then we
have that

V = Span(Sw) = Span(B0) = · · · = Span(Bn) = Span(u1, . . . ,un)

and by linear independence of the ui’s, we have the following containments:

V = Span(Bn) = Span(u1, . . . ,un) ⊊ Span(u1, . . . ,un,un+1, . . . ,um) ⊆ V.

which is absurd. Therefore, m ≤ n. □□□.
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Proposition 2A.12

If V is a finite-dimensional vector space and U is any subspace of V , then U is finite-dimensional.

Proof. If U = {0} then we’re done. Otherwise, there is some nonzero vector u1 ∈ U . Define the
following sets:

S1 = {u1} , and for each j ≥ 2

Sj = Sj−1 ∪ {uk} where uj /∈ Span(Sj−1)

By construction, Sj is linearly independent for each j, and by Theorem 2A.11, j ≤ dim(V ) <∞,
hence there some j0 ∈ N for which Span(Sj0) = U , whence dim(U) = j0. □□□.

Corollary 2A.13

If V contains an infinite-dimensional subspace, then V is infinite-dimensional.
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Section 2A Exercises

1. Let V be a K-vector space and suppose there are subspaces Ui for which V = U1 ⊕ · · · ⊕ Un.
For each i, choose any nonzero vector ui ∈ Ui. Prove that S = {u1, . . . ,un} is a linearly
independent set.

2. Relationship between disjoint unions and direct sums. Let S1 and S2 be (nonempty)
pairwise disjoint sets of vectors and suppose S1 ∪ S2 is linearly independent. Prove that

Span(S1 ∪ S2) = Span(S1)⊕ Span(S2).

3. Show that the vector space of continuous real-valued functions is infinite-dimensional.
: Hint: Corollary 2A.13

4. Show that the set of functions {cos(nx) : n ∈ N} is a linearly independent set.
: Hint 1: Recall that linear combinations can only involve a finite number of vectors

Hint 2: Recall the Maclaurin expansion cos(t) = 1− 1
2 t

2 + 1
4 t

4 + · · ·+ 1
(2k)! t

2k +O(t2k+2)
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2B Bases

Definition: basis

A basis of a vector space V is a linearly independent set B of vectors in V which span V .

Example 2B.1

Show that {(1, 0), (0, 1)} is a basis for R2.

Proof. Span. We need to show that Span

(
(1, 0), (0, 1)

)
= R2. Certainly we have that

the span is a subset of R2, so we only need to show the reverse containment. Let
(x, y) ∈ R2 be arbitrary. Then we see that

(x, y) = x(1, 0) + y(0, 1)

and since x, y ∈ R, this is a linear combination of the vectors (1, 0) and (0, 1), hence

(x, y) ∈ Span

(
(1, 0), (0, 1)

)
.

Linear Independence. Suppose that there are real numbers x, y for which

x(1, 0) + y(0, 1) = (0, 0)

The left-hand side of this equation is equal to (x, y), and (x, y) = (0, 0) implies that
x = 0, y = 0. Hence {(1, 0), (0, 1)} is a linearly independent set.

Example 2B.2

Show that {1, x, x2} is a basis for P2(K).

Proof. Span. We need to show that Span

(
1, x, x2

)
= P2(K). Certainly we have that

the span is a subset of P2(K), so we only need to show the reverse containment. Let
k0 + k1x+ k2x

2 ∈ P2(K) be arbitrary. Then we see that

k0 + k1x+ k2x
2 = k0(1) + k1(x) + k2(x

2)

which is a linear combination of the vectors 1, x, and x2, k0 + k1x + k2x
2 ∈

Span

(
(1, 0), (0, 1)

)
.

Linear Independence. Suppose that there are scalars k0, k1, k2 for which

k0 + k1x+ k2x
2 = 0

Since two polynomials are equal if and only if their corresponding coefficients are
equal, then it must be that k0 = k1 = k2 = 0, hence this set is linearl independent.
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Theorem 2B.3

A set B = {b1, . . . , bn} is a basis for V if and only if, for all v ∈ V , there are unique scalars
k1, . . . , kn ∈ K for which

v = k1b1 + · · ·+ knbn.

Proof. (⇒) Suppose that B is a basis for V . Then, by definition, it must span V , i.e., every
vector v ∈ V is a linear combination of the bi’s. To see that this linear combination is
unique, suppose there are scalars k1, . . . , kn, ℓ1, . . . , ℓn for which

v = k1b1 + · · ·+ knbn, and

v = ℓ1b1 + · · ·+ ℓnbn.

Subtracting, one gets

0 = (k1 − ℓ1)b1 + · · ·+ (kn − ℓn)bn

and since B is linearly independent, ki − ℓi = 0 for each i, whence ki = ℓi.

(⇐) Suppose instead that, for every v ∈ V , there is a unique choice of scalars k1, . . . , kn so
that

v = k1b1 + · · ·+ knbn.

Since every v can be written as a linear combination of vectors in B, it must be that
V ⊆ Span(B) ⊆ V (where the second containment follows immediately from the fact that
B ⊂ V ) and thus B is a spanning set. To see linear independence, take v = 0 in the
equation above

0 = k1b1 + · · ·+ knbn.

We know that k1 = · · · = kn = 0 gives one valid linear combination of the zero vector, and
by assumption on uniqueness, this must be the only such linear combination. Hence B is a
linearly independent set.

Theorem 2B.4: reducing/extending a basis

Let V be a finite-dimensional K-vector space and let S = {v1, . . . ,vm} be a set of nonzero
vectors in V .

Reduce a set to a basis. If S spans V , then there is a subset S ′ ⊆ S which is a basis
for V .

Extend a set to a basis. If S is linearly independent, then there is a superset S ′ ⊇ S
which is a basis for V .

1. Here’s the strategy:

• Take the spanning set S, and check for linear dependence.

• If it is linearly independent, we’re done. Otherwise, Lemma 2A.9 says that we can throw
away some vi without affecting the span.

• Check for linear dependence of S − {vi}.
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• If it is linearly independent, we’re done. Otherwise, Lemma 2A.9 says that we can throw
away some vj without affecting the span.

• Check for linear dependence of S − {vi,vj}.

• ...Repeat this process until you have linear independence.

Proof. If S is linearly independent, then it is a basis. If S is not linearly independent, then
there is some vector (v1, say) which is a linear combination of the remaining vectors, and by
the Linear Dependence Lemma,

Span(v1, . . . ,vm) = Span(v2, . . . ,vm).

Now we check linear independence of {v2, . . . ,vm} and repeatedly apply Linear Dependence
Lemma as necessary. As S contains only finitely-many vectors, this process must terminate,
and the remaining set is linearly independent, hence a basis.

2. Here’s the strategy:

• Find a spanning set for V , call it T , and look at the set S ∪ T .

• S ∪ T spans, but might not be linearly independent.

• Apply the strategy from Part 1, making sure to only throw away vectors from T .

Proof. Suppose V is spanned by some set of vectors {w1, . . . ,wn}, and consider the setv1, . . . ,vm︸ ︷︷ ︸
S

,w1, . . . ,wn


which contains S. Since the wi’s span V and the vi’s are all contained in V , this set spans V .
However, it may not be linearly independent.

If it is not linearly independent, then any “dependencies” must be coming from the wi vectors
(because the vi’s are linearly independent1). We can repeatedly apply Linear Dependence
Lemma as necessary to remove the appropriate wi vectors until what remains is a linearly
independent set and which still spans. That is, if we assume that we removed n− k vectors,
then up to relabeling, we would havev1, . . . ,vm︸ ︷︷ ︸

S

,wm+1, . . . ,wk


This set is linearly independent, spans V , and contains S. Calling this set S ′ completes the
proof.

1To expand upon this, if there are some nonzero coefficients satisfying

0 = a1v1 + · · ·+ amvm + b1w1 + · · ·+ bnwn,

then it cannot be the case that all of the bj coefficients are zero, otherwise this would result in a nontrivial linear
combination of the vi vectors summing to 0 and therefore violating the linear independence assumption.
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Corollary 2B.5

For every subspace U of V , there is another subspace W for which V = U ⊕W .

Proof. Let SU be a basis for U . Since SU is linearly independent, applying the results of
Theorem 2B.4, SU can be extended to S, a basis for V . Taking SW = S − SU , one can take
W = Span(SW ). It is straightforward to see that U ∩W = {0}.
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Section 2B Exercises

1. Let V = C be a C-vector space. Prove that any nonzero complex number z is a basis for V .

2. Let V = C be a R-vector space. Find a basis for V .

3. Let V = P3(R) be an R-vector space and let U be the following subspace

U = {p(x) ∈ P3(R) : p′(7) = 0}

where p′(7) is the derivative of p(x) evaluated at x = 7. Find a basis for U .
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2C Dimension

Theorem 2C.1

Any two bases of a finite-dimensional vector space have the same cardinality.

Proof. Let B1, B2 be two basis for V . Since B1 is linearly independent and Span(B1) = Span(B2),
then Theorem 2A.11 implies |B1| ≤ |B2|. Similarly, since B2 is linearly independent, then
Theorem 2A.11 implies that |B2| ≤ |B1|. Hence |B1| = |B2|.

Because the cardinality of the basis is independent of the choice of basis, the following is
well-defined:

Definition: dimension

The dimension of a finite-dimensional vector space, denoted dimV , is the cardinality of any
basis for V .

Example 2C.2

Determine the dimension of Kn.

The set {
(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)

}
is a basis for Kn and the cardinality of this set is n.

Example 2C.3

Determine the dimension of Pn(K).

The set {
1, x, . . . , xn

}
is a basis for Pn(K) and the cardinality of this set is n+ 1.

Example 2C.4

Determine the dimension of the following subspace U of K3:

U =
{
(x, y, z) ∈ K3 : x+ y + z = 0

}
.

Check that U = Span((1, 0, 1), (0, 1,−1)) and that these two vectors are linearly independent.

Theorem 2C.5

Let U be a subspace of V . Then dimU ≤ dimV , with equality precisely when U = V .

Proof. If V is finite-dimensional, then so is U (see Proposition 2A.12). Since U is finite-dimensional,
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there is a finite set S which is a basis for U . Using Theorem 2B.4, this can be extended to a set
S ′ ⊇ S which is a basis for V . Hence we have

dim(U) = cardinality of S ≤ cardinality of S ′ = dim(V )

and equality holds when S and S ′ have the same cardinality, i.e., are equal. In which case
U = Span(S) = Span(S ′) = V .

Theorem 2C.6

If U1, U2 are subspaces of a finite-dimensional vector space, then

dim(U1 + U2) = dimU1 + dimU2 − dim(U1 ∩ U2).

The strategy of the proof is this: Find a basis {v1, . . . ,vn} for V1 ∩ V2, extend it to a basis for V1,
and then extend it again to a basis for V2.

︸ ︷︷ ︸
∈V1

u1, . . . ,uk,

∈V2︷ ︸︸ ︷
v1, . . . ,vm,w1, . . . ,wn

Proof. Using all of the notation above, let

Su = {u1, . . . ,uk} , Sv = {v1, . . . ,vm} , and Sw = {w1, . . . ,wn} .

First we show that V1 + V2 = Span(Su ∪ Sv ∪ Sw).

First observe that

V1 = Span(Su ∪ Sv) ⊆ Span(Su ∪ Sv ∪ Sw) and

V2 = Span(Sv ∪ Sw) ⊆ Span(Su ∪ Sv ∪ Sw)

=⇒ V1 ∪ V2 ⊆ Span(Su ∪ Sv ∪ Sw).

Since V1 + V2 is the smallest subspace containing V1 ∪ V2, then

V1 + V2 ⊆ Span(Su ∪ Sv ∪ Sw).

Now let x ∈ Span(Su ∪ Sv ∪ Sw). Then there exist scalars αi, βj, γℓ so that

x =
∑
i

αiui +
∑
j

βjvi +
∑
ℓ

γℓwℓ =
∑
i

αiui +
∑
j

0vi︸ ︷︷ ︸
∈V1

+
∑
j

βjvi +
∑
ℓ

γℓwℓ︸ ︷︷ ︸
∈V2

hence x ∈ V1 + V2. Thus V1 + V2 = Span(Su ∪ Sv ∪ Sw).

Now we show that Su ∪ Sv ∪ Sw is linearly independent.
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By construction in extending bases, Su ∪ Sv and Sv ∪ Sw are linearly independent. Suppose there
are scalars αi, βj, γℓ so that

0 =
∑
i

αiui︸ ︷︷ ︸
∈V1

+
∑
j

βjvi︸ ︷︷ ︸
∈V1∩V2

+
∑
ℓ

γℓwℓ︸ ︷︷ ︸
∈V2

. (2.4)

By rearranging this equation, we have∑
i

αiui = −
∑
j

βjvi −
∑
ℓ

γℓwℓ

and thus
∑

i αiui ∈ Span(Sv ∪ SW ) = V2. It follows then that
∑

i αiui ∈ V1 ∩ V2, so it is some linear
combination of the vi’s. We can thus find new scalars δj to rewrite Equation 2.4 as

0 =
∑
i

αiui︸ ︷︷ ︸
∈V1

+
∑
j

βjvj︸ ︷︷ ︸
∈V1∩V2

+
∑
ℓ

γℓwℓ︸ ︷︷ ︸
∈V2

=
∑
j

δjvj︸ ︷︷ ︸
∈V1∩V2

+
∑
ℓ

γℓwℓ︸ ︷︷ ︸
∈V2

.

By linear independence of Sv ∪ Sw, we must have γℓ = 0 for each ℓ. By a similar argument and
linear independence of Su ∪ Sv, we must have αi = 0 for each i.

Equation 2.4 has now been reduced to

0 =
∑
j

βjvi︸ ︷︷ ︸
∈V1∩V2

and by our assumption of linear independence, βj = 0 for each j. Therefore Su ∪ Sv ∪ Sw is linearly
independent.

Corollary 2C.7

dim(U1 ⊕ U2) = dimU1 + dimU2.

and by induction it follows that

Corollary 2C.8

dim

(
m⊕
i=1

Ui

)
=

m∑
i=1

dim(Ui)



Chapter 3

Linear Maps

3A Vector Space of Linear Maps

Definition: linear map

Let V,W be K-vector spaces. A linear map is a function T : V → W with the following
properties:
(a) additivity: for all v1, v2 ∈ V , T (v1 + v2) = T (v1) + T (v2).
(b) homogeneity: for all λ ∈ K and all v ∈ V , T (λv) = λT (v).

Definition: Notation L(V,W ) and L(V )

The set of linear maps T : V → W is denoted L(V,W ). When V = W , we simply write L(V )
or End(V ).

Remark. The notation End(V ) refers to the endomorphism algebra. That End(V ) is an algebra (i.e.
a vector space with an appropriate multiplicative operation) will be more apparent later in this
section.

3A.I Examples of Linear Maps

Example 3A.1: zero map

Show that the following map is a linear transformation.

T : V → W

T (v) = 0

This is straightforward.

Example 3A.2: identity map

Show that the following map is a linear transformation.

T : V → V

T (v) = v

This is straightforward.

29
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Example 3A.3: differentiation

Show that the following map is a linear transformation.

T : P(R)→ P(R)

T (p(x)) =
d

dx
[p(x)]

This is straightforward, and follows from results from just about any first-year calculus course.
Nevertheless, it might be nice to see it explicitly in terms of polynomials. For simplicity, we’ll
use summation notation.
Let p(x) =

∑
aix

i and q(x) =
∑

bjx
j be polynomials and λ a scalar. Then

Additivity.

T (p(x) + q(x)) =
d

dx

(∑
k≥0

(ak + bk)x
k

)
=
∑
k≥1

k(ak + bk)x
k−1

=

(∑
k≥1

kakx
k−1

)
+

(∑
k≥1

kbkx
k−1

)

=
d

dx

(∑
k≥0

akx
k

)
+

d

dx

(∑
k≥0

bkx
k

)
= T (p(x)) + T (q(x))

Homogeneity.

T (λp(x)) =
d

dx

(∑
k≥0

λakx
k

)
=
∑
k≥1

kλakx
k−1

= λ

(∑
k≥1

kakx
k−1

)

= λ
d

dx

(∑
k≥0

akx
x

)
= λT (p(x))

Example 3A.4: integration map

Show that the following map is a linear transformation.

T : P(R)→ R
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T (p(x)) =

∫ 1

0

p(x) dx

This is straightforward, and follows from results from just about any first-year calculus course.
Without appealing to outside results, the proof explicitly looks like that of the previous
example.
We remark that∫ 1

0

p(x) dx =

∫ 1

0

(∑
k≥0

akx
k

)
dx =

∫ 1

0

a0+ · · ·+anx
n dx = a0+

a1
2
+ · · ·+ an

n+ 1
=
∑
k≥0

ak
k + 1

.

so intuitively the output is just a finite sum of real numbers, so both conditions ought to be
satisfied by the distributive property of real numbers.

Example 3A.5: multiplication by x3

Show that the following map is a linear transformation.

T : P(K)→ P(K)

T (p(x)) = x3p(x) dx

This is straightforward.

Lemma 3A.6: Linear Map Lemma

Let V , W be n-dimensional K-vector spaces, with bases

{v1, . . . ,vn} and {w1, . . . ,wn} ,

respectively. Then there exists a unique linear map

T : V → W

T (vj) = wj for each j = 1, . . . , n.

Proof strategy:

• Construction of such a T : just define it in the natural way.

• Uniqueness: Suppose there is another function S with the same properties, and see that
T (v) = S(v) for every v ∈ V .

Proof. Let k1, . . . , kn ∈ K.

Existence. Define the function

T : V → W

T (k1v1 + · · ·+ knvn) = k1w1 + · · ·+ knwn.
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For each fixed i, taking ki = 1 and kj ̸=i = 0, one achieves T (vi) = wi. To see that it is
linear, we check both additivity and homogeneity at the same time. Let λ ∈ K and let
x,y ∈ V , writing them as

x =
∑
i

αivi and y =
∑
i

βivi.

Then

T (λx+ y) = T

(
λ
∑
i

αivi +
∑
i

βivi

)

= T

(∑
i

(λαi + βi)vi

)
=
∑
i

(λαi + βi)wi

= λ

(∑
i

αiwi

)
+

(∑
i

βiwi

)
= λT (x) + T (y).

Therefore T is linear.

Uniqueness. Suppose S : V → W is some other linear map satisfying S(vi) = wi for each i.
Then, for every vector x ∈ V , it follows from linearity of S that

T (x) = c1T (v1) + · · ·+ cnT (vn)

= c1w1 + · · ·+ cnwn

= c1S(v1) + · · ·+ cnS(vn)

= S(x)

hence T = S.

Remark. The moral of this result is twofold: (1) a linear transformation is uniquely defined by where
it sends the basis, and (2) given any two bases, there is a unique linear map which allows you to
convert between bases.

3A.II Algebraic Operations on L(V,W )

Theorem 3A.7: vector space of linear maps

Given two K-vector spaces, V and W , L(V,W ) is a vector space with the following addition
and scalar multiplication operations:

addition. For all T1, T2 ∈ L(V,W ) and for all v ∈ V ,

(T1 + T2)(v) = T1(v) + T2(v).
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scalar multiplication. For all T ∈ L(V,W ), for all v ∈ V , and for all λ ∈ K,

(λT )(v) = λ
(
T (v)

)
.

Note that most of the properties below require one to also check homogeneity and additivity. This
proof is an exercise in overcoming tedium.

Proof. Let T1, T2, T3 ∈ L(V,W ) and λ, µ ∈ K. We verify each of the axioms of a vector space.

1. [closure of addition] Let v1,v2 ∈ V and λ ∈ K be arbitrary. Then

(T1 + T2)(λv1 + v2) = T1(λv1 + v2) + T2(λv1 + v2)

= λT1(v1) + T1(v2) + λT2(v1) + T2(v2)

= λ [T1(v1) + T2(v1)] + T1(v2) + T2(v2)

= λ (T1 + T2)(v1) + (T1 + T2)(v2)

hence T1 + T2 ∈ L(V,W ).

2. [commutativity of addition] Left as an exercise for the reader

3. [associativity of addition] Left as an exercise for the reader

4. [existence of zero] Let Z be the zero map from Example 3A.1. Left as an exercise for the
reader

5. [existence of additive inverses] Left as an exercise for the reader

6. [closure of scalar multiplication] Left as an exercise for the reader

7. [associativity of scalar multiplication] Left as an exercise for the reader

8. [distributivity] Left as an exercise for the reader

9. [distributivity] Left as an exercise for the reader

10. [existence of a multiplicative identity] Left as an exercise for the reader

Definition: product of linear maps

Given K-vector spaces U, V,W , then for all T ∈ L(U, V ) and for all S ∈ L(V,W ), the product
of S and T is the linear map ST ∈ L(U,W ) given by

(ST )(u) = S(T (u)).

In other words, this is just the usual composition of functions.

Proposition 3A.8: properties of products of linear maps

Let U, V,W,X be arbitrary K-vector spaces.
1. [associativity] For all T3 ∈ L(U, V ), T2 ∈ L(V,W ), and T1 ∈ L(W,X),

T1(T2T3) = (T1T2)T3.
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2. [distributivity] For all T1, T2 ∈ L(U, V ) and S1, S2 ∈ L(V,W ),

(S1 + S2)T1 = S1T1 + S2T1 and S1(T1 + T2) = S1T1 + S2T2.

3. [identity]. Let IdV ∈ L(V ) and IdW ∈ W be the identity maps on V and W (see
Example 3A.2), respectively. For all T ∈ L(V,W ),

IdW T = T IdV .

Proof. 1. [associativity] Let T3 ∈ L(U, V ), T2 ∈ L(V,W ), and T1 ∈ L(W,X) be aribtrary. Also,
let u ∈ U be arbitrary and define v = T3(u), w = T2(v), x = T1(w). Then

(T2T3)(u) = T2(T3(u)) = T2(v) = w

=⇒ (T1(T2T3))(u) = T1(w) = x

and similarly

T3(u) = v

((T1T2)T3)(u) = (T1T2)(v) = T1(T2(v)) = T1(w) = x.

2. [distributivity] Straightforward and left as an exercises for the reader.

3. [identity]. Straightforward and left as an exercise for the reader.

Example 3A.9

Let D be the differentiation map defined in Example 3A.3 and let T be the “product by x3

map” in Example 3A.5. Explicitly,

D : P(R)→ P(R) T : P(R)→ P(R)

D(p(x)) =
d

dx
[p(x)] T (p(x)) = x3p(x)

Show that the linear map product is not a commutative operation by checking that

DT ̸= TD.

We compute these explicitly. Let p(x) ∈ P(R) be arbitrary. Then

(DT )(p(x)) = D(x3p(x)) = 3x2p(x) + x3p′(x)

and
(TD)(p(x)) = T (p′(x)) = x3p′(x).

These functions are not equal for all polynomials p(x), hence the functions DT and TD are
not equal.
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Section 3A Exercises

1. Show that the Linear Map Lemma is false when dim(V ) > dim(W ).

2. Show that, for any linear map T , T (0) = 0.

3. Give an example of a function f : R2 → R which is homogeneous, but is not linear.

4. Give an example of a function f : C→ C which is additive, but is not linear.
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3B Null Spaces and Ranges

3B.I Null Space and Injectivity

Definition: null space

The null space or kernel of a linear map T ∈ L(V,W ) is the set

Null(T ) := {v ∈ V : T (v) = 0} .

Example 3B.1

Let T : R2 → R be the linear map given by T ((x, y)) = x+ y. Find Null(T ).

By definition

Null(T ) =
{
(x, y) ∈ R2 : x+ y = 0

}
=
{
(t,−t) ∈ R2 : t ∈ R

}
which is a one-dimensional subspace of R2 (intuitively - the line y = −x).

Example 3B.2

Let T : P(R)→ P(R) be the linear map given by T
(
p(x)

)
=

d

dx

[
p(x)

]
. Find Null(T ).

Recall that the zero polynomial, z(x) = 0, is the “zero vector.” So you’re looking for all
polynomials p(x) for which

p′(x) = z(x) = 0

These are the constant polynomials.

Proposition 3B.3: the null space is a subspace

For any T ∈ L(V,W ), Null(T ) is a subspace of V .

Proof. Let T ∈ L(V,W ) be arbitrary. We apply the 3-Step Subspace Test.

Contains the zero vector. Since T (0) = 0, then 0 ∈ Null(T ).

Closure under addition/scalar multiplication. Suppose now that v1,v2 ∈ Null(T ) and λ
is a scalar. Then

T (λv1 + v2) = λT (v1) + T (v2) (by assumption of linearity)

= λ0+ 0 (by assumption of v1,v2 ∈ Null(T ))

= 0

hence λv1 + v2 ∈ Null(T ).
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Definition: nullity

The dimension of Null(T ) is called the nullity of T .

Definition: injective

A linear map T is called injective or one-to-one precisely when, for all v,w

T (v) = T (w) implies v = w,

or, equivalently
v ̸= w implies T (v) ̸= T (w).

Remark. This definition holds for all functions, in fact. The former description is typically easier to
work with, but the latter description gives better insight into the behavior of such functions. The
spirit of this definition is that it means the range is a “copy of” the domain. For vector spaces, this
is made explicit in Corollary 3B.14.

Example 3B.4

Let T : K2 → K4 be the linear map given by

T (x, y) = (x+ y, 0, x− y, 0)

Show that T is injective.

Let v = (x1, y1) and w = (x2, y2). Suppose T (v) = T (w). Then

(x1 + y1, 0, x1 − y1, 0) = (x2 + y2, 0, x2 − y2, 0).

This yields the following system {
x1 + y1 = x2 + y2

x1 − y1 = x2 − y2
(3.1)

Adding the equations in the system 3.1 gives

2x1 = 2x2 =⇒ x1 = x2

and subtracting the equations in the system 3.1 gives

−2y1 = −2y2 =⇒ y1 = y2

hence v = w. Therefore T is injective.

Example 3B.5

Show that the derivative map (c.f. Example 3A.3)

T : P(R)→ P(R)
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T (p(x)) =
d

dx
[p(x)]

is not injective.

Counter-example: any two polynomials that differ only in the constant term will have the
same derivative.

Theorem 3B.6

A linear map T is injective if and only if Null(T ) = {0}.

Proof. Let v,w ∈ V and let T ∈ L(V,W ).

(⇒). Suppose T is injective and v ∈ Null(T ). Then

T (v) = 0 = T (0)

and by injectivity, this implies that v = 0, hence Null(T ) = {0}.

(⇐). Conversely, suppose Null(T ) = {0} and T (v) = T (w). We then have the following chain
of implications:

T (v) = T (w)

=⇒ T (v)− T (w) = 0

=⇒ T (v −w) = 0 (by linearity of T )

=⇒ v −w ∈ Null(T )

=⇒ v −w = 0 (since Null(T ) = {0})
=⇒ v = w

whence T is injective.

3B.II Range and Surjectivity

Definition: range

The range or image of a linear map T ∈ L(V,W ) is the set

Range(T ) := {T (v) : v ∈ V } .

Example 3B.7

Let T : R2 → R be the linear map given by T ((x, y)) = x+ y. Find Range(T ).

Let r ∈ R be arbitrary and notice that T (r, 0) = r. It follows that Range(T ) = R.
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Example 3B.8

Find Range(T ) where T is the derivative map (c.f. Example 3A.3):

T : P(R)→ P(R)

T (p(x)) =
d

dx
[p(x)]

Let p(x) = anx
n + · · ·+ a1x+ a0 be any polynomial in P(R). Observe that the polynomial

P (x) =
an

n+ 1
xn+1 + · · ·+ a1

2
x2 + a0x has the property that

T (P (x)) = p(x).

Thus Range(T ) = P(R).

Proposition 3B.9: the range is a subspace

For any T ∈ L(V,W ), Range(T ) is a subspace of W .

Proof. We apply the 3-Step Subspace Test.

Contains the zero vector. Since T (0) = 0 for every linear map, then 0 ∈ Range(T ).

Closure under addition/scalar multiplication. Let w1,w2 ∈ Range(T ). By definition of
the range, there are vectors v1,v2 for which T (v1) = w1 and T (v2) = w2. Also, let λ be a
scalar. Then

λw1 +w2 = λT (v1) + T (v2 = T (λv1 + v2)

and therefore λw1 +w2 ∈ Range(T ).

Definition: rank

The dimension of Range(T ) is called the rank of T .

Definition: surjective

A linear map T ∈ L(V,W ) is called surjective or onto precisely when, for all w ∈ W ,

T (v) = w for some v ∈ V,

or, equivalently
Range(T ) = W.

Remark. This definition holds for all functions, in fact. The former description is typically easier to
work with, but the latter description gives better insight into the behavior of such functions.
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Example 3B.10

Let T : R2 → R be the linear map given by T (x, y) = x+ y. Determine whether or not T is
surjective.

Example 3B.11

Let T be the derivative map (c.f. Example 3A.3):

T : P(R)→ P(R)

T (p(x)) =
d

dx
[p(x)]

Determine whether or not T is surjective

Our work in Example 3B.8 shows that T is surjective.

Exercise 3B.12

Let T be the derivative map (c.f. Example 3A.3) be restricted to finite-degree polynomials:

T : Pm(R)→ Pm(R)

T (p(x)) =
d

dx
[p(x)]

Determine whether or not T is surjective.

Theorem 3B.13: Fundamental Theorem of Linear Maps
(aka Rank–Nullity Theorem)

Suppose V is finite-dimensional and T ∈ L(V,W ). Then rank(T ) <∞ and

dim(V ) = dim(Range(T )) + dim(Null(T ))

= rank(T ) + nullity(T ).

Proof strategy:

• Let {n1, . . . ,nk} be a basis for Null(T ).

• Extend to a basis {n1, . . . ,nk, r1, . . . , rm} for V .

• Show that {T (r1), . . . , T (rm)} are a basis for Range(T ).

• Then

dim(V ) = k +m = dim(Range(T )) + dim(Null(T )) = rank(T ) + nullity(T ).

Proof. Suppose V is finite-dimensional and let T ∈ L(V,W ) be arbitrary. Since V is
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finite-dimensional and Null(T ) is a subspace of V , Null(T ) is also finite dimensional. Let

{n1, . . . ,nk}

be a basis for Null(T ). We can extend this to a basis for V (see Theorem 2B.4), written as

{n1, . . . ,nk, r1, . . . , rm}

We claim that {T (r1), . . . , T (rm)} is a basis for Range(T ).

Span. That this set spans Range(T ), let y ∈ Range(T ). Then there is some x ∈ V for which
T (x) = y. Writing down x as a linear combination of V ’s basis vectors,

x = α1n1 + · · ·+ αknk + β1r1 + · · ·+ βmrm

from which we see that

y = α1T (n1) + · · ·+ αkT (nk) + β1T (r1) + · · ·+ βmT (rm)

= 0+ · · ·+ 0+ β1T (r1) + · · ·+ βmT (rm)

and thus every y ∈ Range(T ) is a linear combination of T (ri) vectors.

Linear Independence. Suppose that there are scalars βj, j = 1, . . . ,m for which

β1T (r1) + · · ·+ βmT (rm) = 0

=⇒ T (β1r1 + · · ·+ βmrm) = 0

INCOMPLETE. The above shows this linear combination is actually in the null space.
Hence the rj ’s are a linear combination of ni’s, which can only happen when all of the
coefficients are 0.

Now we have that

dim(V ) = m+ k = dim(Range(T )) + dim(Null(T ))

= rank(T ) + nullity(T ).

Combining this with Theorem 3B.6, one gets

Corollary 3B.14

If V is finite dimensional and T ∈ L(V,W ), then T is injective if and only if dim(V ) =
dim(Range(T )).
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Section 3B Exercises

1. Let V,W be finite-dimensional K-vector spaces and let T ∈ L(V,W ). Prove each of the
following claims.

(a) If dim(V ) > dim(W ), then T cannot be injective.

(b) If dim(V ) < dim(W ), then T cannot be surjective.

2. Show that the converse of each statement in the previous problem is not true.

3. Relationships to linear systems. Let T ∈ L(K2) be the linear map

T (x1, x2) = (ax1 + bx2, cx1 + dx2)

for some scalars a, b, c, d. Suppose that (k1, k2) ∈ Range(T ). Prove that T is injective if and
only if the system below has a unique solution:{

ax1 + bx2 = k1

cx1 + dx2 = k2
.
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3C Matrices

Definition: matrix

Let m,n be nonnegative integers. An m× n matrix A is a rectangular array of elements in
K with m rows and n columns.

A =

A1,1 A1,2 · · · A1,n
...

...
...

Am,1 Am,2 · · · Am,n

.

We may write A = [Ai,j] for short.

The set of all m× n matrices with entries in K is sometimes denoted Km×n.

Definition: matrix of a linear map

Let V,W be finite-dimensional K-vector spaces and let T ∈ L(V,W ). Let

B = {v1, . . . ,vn}
C = {w1, . . . ,wm}

be bases for V and W , respectively.The matrix of T , denotedM(T ), is the m× n matrix
A = [Ai,j] whose entries are defined by

T (vi) = A1,iw1 + · · ·+ Am,iwm.

If the bases of V and W are not clear from context (but important enough to name), we write
M(T,B, C).

Visually 
v1 v2 vn

w1 A1,1 A1,2 · · · A1,n

w2 A2,1 A2,2 · · · A2,n
...

...
...

wm Am,1 Am,2 · · · Am,n


Example 3C.1

Let T : R3 → R2 be the linear map given by

T (x, y, z) = (2x+ 3y, 5x− 6y + 7z)

FindM(T ) (using the standard bases for R3 and R2).

We have that

T (1, 0, 0) = (2, 5) = 2(1, 0) + 5(0, 1)
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T (0, 1, 0) = (3,−6) = 3(1, 0)− 6(0, 1)

T (0, 0, 1) = (0, 7) = 0(1, 0) + 7(0, 1)

and thereforeM(T ) =

(
2 3 6
5 −6 7

)
.

Example 3C.2

Let D : P3(R)→ P2(R) be the derivative map (c.f. Example 3A.3):

D(p(x)) =
d

dx
[p(x)].

FindM(D) using the standard polynomial basis {1, x, x2, x3, . . . , xn}

We have that

D(1)0 = 0 + 0x+ 0x2D(x) 1 = 1 + 0x+ 0x2D(x2)2x = 0 + 2x+ 0x2D(x3) 3x2 = 0 + 0x+ 3x2

and thereforeM(D) =

0 1 0 0
0 0 2 0
0 0 0 3

.

Exercise 3C.3

Let {e1.e2, e3} denote the standard basis for R3, and let ε1, ε2, ε3 ∈ L(R3,R) be the linear
maps given by

εi(x, y, z) = ei · (x, y, z) (the usual dot product).

FindM(5ε1 − 7ε2 + 11ε3)

Definition: matrix sum

The sum of two m×n matrices, A and B, is the m×n matrix whose (i, j) entry is Ai,j +Bi,j .
That is A1,1 A1,2 · · · A1,n

...
...

...
Am,1 Am,2 · · · Am,n

+

B1,1 B1,2 · · · B1,n
...

...
...

Bm,1 Bm,2 · · · Bm,n


=

 A1,1 +B1,1 A1,2 +B1,2 · · · A1,n +B1,n
...

...
...

Am,1 +Bm,1 Am,2 +Bm,2 · · · Am,n +Bm,n

.
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Proposition 3C.4

For any two linear maps S, T ∈ L(V,W )

M(S + T ) =M(S) +M(T ).

Proof. Let {v1, . . . ,vn} be the basis for V and {w1, . . . ,wm} the basis for W . Then, for each vj ,
we have

S(vj) = A1,jw1 + · · ·+ Am,jwj

T (vj) = B1,jw1 + · · ·+Bm,jwj

(S + T )(vj) = (A1,j +B1,j)w1 + · · ·+ (Am,j +Bm,j)wj

Clearly then each (i, j)-entry ofM(S) +M(T ) is equal to the (i, j)-entry ofM(S + T ), and
therefore these two matrices are equal.

Definition: scalar multiple of matrix

Let λ be a scalar and A an m× n matrix. The scalar multiple of A by λ is an m× n matrix
λA whose (i, j)-entry is λAi,j. That is

λ

A1,1 A1,2 · · · A1,n
...

...
...

Am,1 Am,2 · · · Am,n

 =

λA1,1 λA1,2 · · · λA1,n
...

...
...

λAm,1 λAm,2 · · · λAm,n

.

Proposition 3C.5

For any two linear maps T ∈ L(V,W ) and any scalar λ,

M(λT ) = λM(T ).

Proof. This proof is very straightforward and similar to the proof of Proposition 3C.4.

Theorem 3C.6

Km,n is a vector space of dimension mn.

Proof. Let Ei,j denote the matrix that is zero everywhere except at entry (i, j).

E1,1 =


1 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 E1,2 =


0 1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 . . . Em,n =


0 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 1


It is completely straightforward to verify that Km,n is a vector space with basis
{E1,1, E1,2, . . . , Em,n}.
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Definition: matrix product

Let A be an m×n matrix and B an n× p matrix. Then the product of A and B is an m× p

matrix AB whose (i, j) entry is
n∑

k=1

Ai,kBk,j.

Example 3C.7

Compute the following matrix product:

AB =

2 0
0 2
1 1

(1 1 0
0 1 1

)

AB =

2 0
0 2
1 1

(1 1 0
0 1 1

)
=



2∑
k=1

A1,kBk,1

2∑
k=1

A1,kBk,2

2∑
k=1

A1,kBk,3

2∑
k=1

A2,kBk,1

2∑
k=1

A2,kBk,2

2∑
k=1

A2,kBk,3

2∑
k=1

A3,kBk,1

2∑
k=1

A3,kBk,2

2∑
k=1

A3,kBk,3


=

(2)(1) + (0)(0) 2(1) + 0(1) 2(0) + 0(1)
 =

2 2 0
0 2 2
1 2 1


Example 3C.8

Let S : R2 → R3 and T : R3 → R2 be linear maps given by

S(x, y) = (2x, 2y, x+ y) and T (x, y, z) = (x+ y, y + z).

Find the matrix of the compositionM(ST ) (using the standard basis for Rn).

INCOMPLETE

Theorem 3C.9

If T ∈ L(U, V ) and S ∈ L(V,W ), then

M(S)M(T ) =M(ST ).

Proof. This is an exercise in symbol-pushing.
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Proposition 3C.10: More reasonable descriptions of matrix product

Let A be an m× n matrix and B an n× p matrix. Letting ai denote row i of A (thought of
as a 1×m matrix) and let bj denote column j of B (thought of as an n× 1 matrix). Then

1. The (i, j)-entry of AB is aibj (or, more precisely, the (1, 1) entry of this 1× 1 matrix).
2. Column j of AB is given by Abj .
3. Row i of AB is given by aiB.

Proof. This proof is a straightforward from the definition of matrix multiplication.

Visually,

1. AB =


a1b1 a1b2 · · · a1bn
a2b1 a2b2 · · · a2bn
...

...
...

amb1 a1b2 · · · ambn


2. AB =

 A

 | | |
b1 b2 · · · bn
| | |

 =

 | | |
Ab1 Ab2 · · · Abn
| | |



3. AB =


— a1 —
— a2 —

...
— am —


 B

 =


— a1B —
— a2B —

...
— amB —

.

Remark. This proposition is hinting at an important computational fact: Given a matrix A, the
product XA is a function on the rows of A, and the product AX is a function on the columns of A.

Proposition 3C.11: More visual ways of thinking about matrix products

Let A be an m× n matrix and B an n× p matrix. Letting aj denote column j of A (thought
of as a m× 1 matrix) and let bi denote row i of B (thought of as an 1× p matrix). Then

1. The columns of AB are linear combinations of the columns of A (with coefficients given
by the column entries of B).

2. The rows of AB are linear combinations of the rows of B (with coefficients given by the
row entries of A).

Proof. This proof is a straightforward from the definition of matrix multiplication.

Visually,

1. AB =

 | | |
a1 a2 · · · an

| | |




B1,j

B2,j
...

Bn,j

 =


| | |

n∑
i=1

Bi,1ai

n∑
i=1

Bi,2ai · · ·
n∑

i=1

Bi,nai

| | |


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2. AB =

Ai,1 Ai,2 · · · Ai,n



— b1 —
— b2 —

...
— bn —

 =


—

n∑
j=1

A1,jbj —

...

—
n∑

j=1

Am,jbj —


Definition: transpose

Let A = [Ai,j] be an m× n matrix. The transpose of A, denoted At, is the n×m matrix
whose (i, j) entry is the (j, i)-entry from A.

Example 3C.12

Find the transpose of A =

1 2
3 4
5 6

.

At =

(
1 3 5
2 4 6

)

Proposition 3C.13

For any m× n matrix A and n× p matrix B,

(AB)t = BtAt.

Proof. This is straightforward. Just look at the (i, j)-entry of each matrix.

Definition: column space, row space

Let A be an m × n matrix. The column space of A, denoted Col(A), is the span of the
columns of A (thought of as a subspace of Km). The row space of A, denoted Row(A),
is the span of the rows of A (through of as a subspace of Kn). One could also think of
Row(A) = Col(AT ).

Observe that we can decompose a matrix A into a product of matrices BC where B is compried of
the basis for Col(A):

A =

 | | | |
a1 a2 a3 a4

| | | |

 =

 | | | |
b1 b2 (αb1 + βb3 + γb3) b3
| | | |


=

 | | |
b1 b2 b3
| | |

1 0 α 0
0 1 β 0
0 0 γ 1

 = BC.

This will be a very useful construction in proving the next result. We also observe that C has
linearly independent rows, since each row contains a 1 in some column which is otherwise all 0’s (so
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no linear combination of the other rows can ever result in anything but a 0 in that column).

Theorem 3C.14: Row Rank = Column Rank

Let A be an m× n matrix. Then

dim(Row(A)) = dim(Col(A))

Proof. Let A be an m× n matrix. We employ the construction/decomposition immediately
preceding this theorem. Let aj denote the jth column of A. We can reduce {a1, . . . ,an} to a basis
{b1, . . . , br} for Col(A). As such, for each aj , there are scalars C1,j, . . . , Cr,j for which

aj = C1,jb1 + · · ·+ Cr,jbr

Let B =

 | |
b1 · · · br
| |

 and C = [Ci,j]. We note that B is an m× r matrix and C is an r × n

matrix. Then, by construction, A = BC and it is easily seen that dim(Col(B)) = r. As well, C has
linearly independent rows since each row contains a column where all but one entry is 0, hence
dim(Row(C)) = r.

Every row of A is a linear combination of the rows of C, hence

dim(Row(A)) ≤ dim(Row(C)) = r = dim(Col(A)).

Applying the same construction and argument to At, one achieves

dim(Row(At)) ≤ dim(Col(At)).

Combining these results, one achieves

dim(Row(A)) ≤ dim(Col(A)) = dim(Row(At)) ≤ dim(Col(At)) = dim(Row(A))

and hence
dim(Row(A)) = dim(Col(A)).

Definition: rank of a matrix

Given an m× n matrix A, the rank of A, denoted rank(A), is the dimension of the column
space of A (or equivalently, the dimension of the row space of A).

Corollary 3C.15

rank(A) = rank(At).
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3D Invertibility and Isomorphisms

Definition: inverse

Let V,W be vector spaces and T ∈ L(V,W ). T is called invertible if there exists T−1 ∈
L(W,V ) so that T−1T = IdV and TT−1 = IdW (the identity maps on V and W , respectively).
T−1 is called the inverse of T .

Our use of the word “the” above is excusable, because

Proposition 3D.1

The inverse is unique.

Proof. Suppose S1, S2 are both inverses for T . Then

S1 = S1IdW = S1(TS2) = (S1T )S2 = IdV S2 = S2.

Example 3D.2

The map Tθ ∈ L(R2) given by

Tθ(x, y) = (x cos(θ)− y sin(θ), x sin(θ) + y cos(θ)

is a rotation of the plane (counterclockwise) by an angle of θ. Find T−1.

The inverse is gien by

(Tθ)
−1 = T−θ(x, y) = (x cos(θ) + y sin(θ), −x sin(θ) + y cos(θ)

We can check this explicitly:

T−θTθ

(
x
y

)
= T−θ

(
x cos(θ)− y sin(θ)
x sin(θ) + y cos(θ)

)
=

(
x cos(θ) cos(−θ)− y sin(θ) cos(−θ) + x sin(θ)(− sin(−θ)) + y cos(θ)(− sin(−θ))

x cos(θ) sin(−θ)− y sin(θ) sin(−θ) + x sin(θ) cos(θ) + y cos(θ) cos(θ)

)
Remembering that cos(−θ) = cos(θ), sin(−θ) = − sin(θ), and cos2(θ) + sin2(θ) = 1, the above

expression simplifies to just

(
x
y

)
, hence T−θTθ = IdR2 .

Theorem 3D.3

A linear map is invertible if and only if it is both one-to-one and onto.

This follows immediately from the following facts (established as exercises):

• T ∈ L(V,W ) is one-to-one if and only if there exists S ∈ L(W,V ) so that ST = IdV .
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• T ∈ L(V,W ) is onto if and only if there exists S ∈ L(W,V ) so that TS = IdW .

We prove it concretely.

Proof. Suppose T ∈ L(V,W ).

( =⇒ ) Suppose that T is invertible.

• To see that T is injective, let u,v ∈ V and suppose T (u) = T (w). Then, since T−1 is
a well-defined function, T−1T (u) = T−1T (v) and

u = T−1T (u) = T−1T (v) = v.

• To see that T is surjective, let w ∈ W and let v = T−1(w). Then
T (v) = TT−1(w) = w ∈ Range(T ).

( ⇐= ) Suppose that T is both injective and surjective.
The strategy for this proof is that we’re going to

1. define an “inverse” S explicitly,

2. verify that ST = IdV and TS = IdW ,

3. verify that S is indeed a linear map, making it the actual inverse.

Since T is surjective, then for every w ∈ W there is some v ∈ V so that T (v) = w. By
injectivity, this vector v is unique. As such, we define S to be the unique map so that
T ◦ S(w) = w. By construction, T ◦ S = IdW . To see that ST = IdV , let v ∈ V . Then by
associativity of function composition,

T (S ◦ T (v)) = (T ◦ S)(T (v)) = IdW ◦ T (v) = T (v).

Since T is injective, S ◦ T (v) = v, hence S ◦ T = IdV .

Finally, we verify that S is linear. Let k be a scalar and v1,v2 ∈ V . Then

T (S(kv1 + v2)) = kv1 + v2

= kT (S(v1)) + T (S(v2))

= T (kS(v1 + S(v2))

and since T is one-to-one,

S(kv1 + v2) = kS(v1) + S(v2).

A straightforward application of the Fundamental Theorem of Linear Maps
(aka Rank–Nullity Theorem) yields the following:
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Corollary 3D.4

Suppose V,W are K-vector spaces of the same finite dimension. For any T ∈ L(V,W ), the
following are equivalent

1. T is invertible.
2. T is injective.
3. T is surjective.

The previous corollary does not apply to infinite-dimensional vector spaces.

Example 3D.5

Is the derivative map D : P(R)→ P(R) invertible?

D is surjective, but not injective (since two polynomials which differ by a constant have the
same derivative). Even if we tried to define an inverse, notice that

D(x2 + 2) = D(x2) = 2x

So any theoretical D−1 would satisfy

D(2x) = x2 + 2 and D(2x) = x2

which fails to be a well-defined function.

Example

Is the “multiplicatio by x3 map” (c.f. Example 3A.5)

T : P(K)→ P(K)

T (p(x)) = x3p(x) dx

invertible?

T is injective. Indeed, whenever p(x) is not the zero polynomial, deg(x3p) ≥ 3, so Null(T ) =
{0} (the zero polynomial). However T is not surjective, since there are no polynomials which
map to x, for example. Even if we tried to define an inverse T−1, notice that we could not
define T−1(x).

However, if one can restrict to a finite-dimensional subspace of an infinite-dimensional vector space,
then we can apply Corollary 3D.4.

Example 3D.6

For any polynomial q(x) ∈ P(R), there exists a polynomial p(x) ∈ P(R) so that
d5

dx

[
(x5 +

5x+ 7)p(x)
]
= q(x).
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Let q(x) be a polynomial of degree n. Observe that if p(x) has degreen m, then (x5 + 5x+ 7)
has degree m+ 5, and then the fifth derivative reduces this to degree (m+ 5)− 5 = m. We
can therefore define the map

T : Pn(R)→ Pn(R)

T (p(x)) =
d5

dx

[
(x5 + 5x+ 7)p(x)

]
= q(x)

which is linear (it is a composition of the linear maps: the derivative map, and the multiply-
by-a-polynomial map).

Now, all polynomials whose fifth derivative is 0 are degree at most 4, and (x5 + 5x+ 7)p(x)
always has degree at least 5. Since 4 < 5, there are no nonzero polynomials p(x) for which
T (p(x)) = 0. Therefore Null(T ) = {0} and T is injective. By Corollary 3D.4, T is surjective,
hence there is a polynomial p(x) for which T (p(x)) = q(x), as desired.

3D.I Isomorphic Vector Spaces

Definition: isomorphism,isomorphic

Let V and W be K-vector spaces. If T ∈ L(V,W ) is invertible, we say that T is an
isomorphism. The vector spaces V and W are isomorphic if there exists an isomorphism
T : V → W (or S : W → V ).

Remark. The term “isomorphism” is etymologically based in ancient Greek, where “iso” comes from
the word meaning “the same” and “morphism” comes from the word meaning “shape/form.” An
isomorphism is essentially just a relabeling of (basis) vectors.
Remark. For those who have seen isomorphisms in other algebraic contexts like groups/rings/fields,
this is the exact same notion as (1) linear maps are the morphisms in the category of vector spaces
and (2) invertible maps are necessarily bijections.

Theorem 3D.7

Let V , W be finite-dimensional K-vector spaces. Then V and W are isomorphic if and only if
dim(V ) = dim(W ).

Proof.

(⇒) Suppose V and W are isomorphic. By definition, there is an isomorphism T : V → W ,
which means T is both injective an surjective. Injectivitiy and surjectivity thus imply that

Null(T ) = {0} and Range(T ) = W,

respectively. By the Rank–Nullity Theorem,

dim(V ) = dim(Null(T )) + dim(Range(T )) = 0 + dim(W ).

(⇐) Suppose now that dim(V ) = dim(W ) = n. Let {v1, . . . ,vn} and {w1, . . . ,wn} be bases
for V and W , respectively.
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Our strategy from here is going to be to explicitly define a map and verify that it is an
isomorphism.
Just as in the Linear Map Lemma, define T ∈ L(W ) by

T (α1v1 + · · ·+ αnvn) = α1w1 + · · ·+ αnwn.

T is a linear map.

(T is injective.) Since the wi’s form a linearly independent set, the linear
combination on the right is 0 precisely when each of the coefficients is 0, hence
Null(T ) = {0} and thus T is injective.

(T is surjective.) Since the alphai’s range over all K-values, we must have that
Range(T ) = Span({w1, . . . ,wn}) = W , hence T is surjective.

Therefore T is an isomorphism.

Lemma 3D.8

Suppose V , W are K-vector spaces with dim(V ) = n and dim(W ) = m and bases {v1, . . . ,vn}
and {w1, . . . ,wm}, respectively. For each i = 1, . . . , n and j = 1, . . . ,m, define the maps

φi,j(α1v1 + · · ·+ αnvn) = αjwi.

The set {φ1,1, . . . , φn,m} is a basis for L(V,W ).

Proof. Let u = α1v1 + · · ·+ αnvn and note that

φi,j(u) = φi,j(α1v1 + · · ·+ αnvn) = φi,j(αjvj).

This observation is precisely what is applied to pass from Equation 3.2 to Equation 3.3.

({φ1,1, . . . , φn,m} spans L(V,W )). Let T ∈ L(V,W ) be arbitrary. Then there are scalars
Ai,j for which

T (u) = α1T (v1) + · · ·+ αnT (vn)

= α1

m∑
j=1

Aj,1wj + · · ·αn

m∑
j=1

Aj,nwj

= α1

m∑
j=1

Aj,1φj,1(v1) + · · ·+ αn

m∑
j=1

Aj,nφj,n(vn)

=
m∑
j=1

A1,jφj,1(α1v1) + · · ·+
m∑
j=1

Aj,nφj,n(αnvn) (3.2)

=
m∑
j=1

A1,jφj,1(u) + · · ·+
m∑
j=1

Aj,nφj,n(u) (3.3)

=
n∑

i=1

m∑
j=1

Aj,iφj,i(u)

and therefore every T is a linear combination of the φi,j’s.
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({φi,1, . . . , φm,n} is linearly independent) . Suppose there are scalars Ai,j so that, for all
v ∈ V ,

n∑
i=1

m∑
j=1

Aj,iφj,i(v) = 0.

In particular, when v = v1, we have

n∑
i=1

m∑
j=1

Aj,1φ1,j(v1) = A1,1φ1,1(v1) = 0

and therefore A1,1 = 0. Repeating this over all i = 1, . . . , n and j = 1, . . . ,m implies that
only the trivial linear combination can result in the constant zero function.

Example 3D.9

Let φi,j ∈ L(R2,R3) be as in the last lemma. Find the matricesM(φi,j) for each i = 1, 2 and
j = 1, 2.

φ1,1(x, y) = (x, 0, 0) φ1,2(x, y) = (0, x, 0) φ1,3(x, y) = (0, 0, x)

φ2,1(x, y) = (y, 0, 0) φ2,2(x, y) = (0, y, 0) φ2,3(x, y) = (0, 0, y)

The matrices associated with these are

M(φ1,1) =

1 0
0 0
0 0

 M(φ1,2) =

0 0
1 0
0 0

 M(φ1,3) =

0 0
0 0
1 0


M(φ2,1) =

0 1
0 0
0 0

 M(φ2,2) =

0 0
0 1
0 0

 M(φ2,3) =

0 0
0 0
0 1


These matrices are clearly a basis for R3,2.

Theorem 3D.10

If V,W are K-vector spaces with dim(V ) = n and dim(W ) = m, then L(V,W ) is isomorphic
to Km,n. Specifically, the “matrix for a linear transformation,” M( · ) is the isomorphism
(hence the somewhat clunky, function-y notation).

Proof. The claim that L(V,W ) and Km,n are isomorphic is immediate given that they have the
same dimensions. It’s only thatM is an isomorphism that needs to be verified, and this is left as an
exercise to the reader.

Corollary 3D.11

dimL(V,W ) = dim(V ) dim(W ).
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3D.II Linear Maps and Matrix Multiplication

Definition: matrix of a vector

Let V be a finite-dimensional vector space with basis B = {v1, . . . ,vn}. For every u ∈ V , the
matrix of u (relative to the B-basis),M(u,B) (or justM(u) if the basis is understood) is
the n× 1 matrix

M(u,B) =


k1
k2
...
kn


where k1, . . . , kn ∈ K satisfy

u = k1v1 + · · ·+ knvn.

Example 3D.12

Let V = P3(K) and consider the following two bases for V : E = {1, x, x2, x3} (the “standard”
polynomial basis), and B = {1 + x2, x+ x3, x+ 2x3, x2 + x3}.

1. FindM(1 + x2 + 3x3, E).
2. FindM(1 + x2 + 3x3, B).

1. For simplicity, label the basis polynomials e1(x) = 1, e2(x) = x, e3(x) = x2, e4(x) = x3.
Now it’s easy to see that

1 + x2 + 3x3 = 1e1(x) + 0e2(x) + 1e3(x) + 3e4(x)

hence

M(1 + x2 + 3x3) =


1
0
1
3

.

2. For simplicity, label the basis polynomials b1(x) = 1+x2, b2(x) = x+x3, b3(x) = x+2x3,
b4(x) = x2 + x3. Now we aim to find constants k1, k2, k3, k4 so that

1 + x2 + 3x3 = k1b1(x) + k2b2(x) + k3b3(x) + k4b4(x).

Expanding out the right-hand side (with a bit of rearranging), we get

1 + x2 + 3x3 = k1 + (k2 + k3)x+ (k1 + k4)x
2 + (k2 + 2k3 + k4)x

3

and this leads us to see that k1 = 1, k4 = 0, and then (solving a small system) that
k2 = −3 and k3 = 3. We thus have that

M(1 + x2 + 3x3) =


k1
k2
k3
k4

 =


1
−3
3
0

.
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Theorem 3D.13: Linear maps as matrix multiplication

Let T ∈ L(V,W ), where both V and W are finite-dimensional. Then, for all v ∈ V , we have
that

T (⊑) =M(T )M(v).

Proof. Let {v1, . . . ,vn} be a basis for V and let u = α1v1 + · · ·+ αnvn. Then for T ∈ L(V,W ), we
have

T (u) = α1T (v1) + · · ·+ αnT (vn)

= α1

m∑
j=1

Aj,1wj + · · ·αn

m∑
j=1

Aj,nwj

from which it follows that

M(T (u)) = α1M

(
m∑
j=1

Aj,1wj

)
+ · · ·αnM

(
m∑
j=1

Aj,nwj

)

= α1

A1,1
...

Am,1

+ · · ·+ αn

A1,n
...

Am,n


=M(T )M(u).

Example 3D.14

Verify Theorem 3D.13 using the following

T : P2(R)→ P3(R)
T (p(x)) = (x− 5)p(x)

(where each polynomial vector space is assumed to be using the standard basis).

INCOMPLETE Let p(x) = a0 + a1x+ a2x
2. Then we have that

M(T )M(p(x)) =


−5 0 0
1 −5 0
0 1 −5
0 0 1


a0
a1
a2

 =


−5a0

a0 − 5a1
a1 − 5a2

a2


Also,

T (p(x)) = (x− 5)(a0 + a1x+ a2x
2)

= a0x+ a1x
2 + a2x

3 − 5a0 − 5a1x− 5a2x
2

= −5a0 + (a0 − 5a1)x+ (a1 − 5a2)x
2 + a2x

3
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=⇒ M(T (p(x)) =


−5a0

a0 − 5a1
a1 − 5a2

a2

.

Theorem 3D.15

Let V,W be finite-dimensional. For all linear transformations T ∈ L(V,W ), rank(T ) =
rank(M(T )).

Proof. INCOMPLETE – See Theorem 3.78 in the book. The observation is just that the matrix of
any element in the range is a linear combination of the columns, so there is a correspondence
between linearly independent columns and linearly independent range vectors.

3D.III Change of Basis

Definition: identity matrix

The identity matrix is an n× n matrix I =
(
Ii,j
)
where

Ii,j =

{
1 when i = j

0 when i ̸= j.

Remark. The entries of the identity matrix are often written as δi,j, the “Kroenecker delta.”

Definition

An n × n matrix A is said to be invertible if there exists an n × n matrix A−1 for which
AA−1 = A−1A = I. The matrix A−1 is called the inverse of A.

Proposition 3D.16

The inverse of a matrix is unique.

Proof. Suppose B − 1, B2 are both inverses for A. Then

B1 = B1I = B1(AB2) = (B1A)B2 = IB2 = B2.

Given the correlation between matrix multiplication and linear maps, the following is
immediate.

Theorem 3D.17

Let V,W be n-dimensional K-vector spaces. Then T ∈ L(V,W ) and S ∈ L(W,V ) are inverse
maps if and only ifM(T ) andM(S) are inverse matrices.
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Let B = {b1, . . . , bn} and C = {c1, . . . , cn} be two bases for a finite-dimensional vector space, V .
Consider the matrix whose jth column isM(bj , C), the column of bj written in the C-basis.

Example 3D.18

Let B =

{
(1, 0)

b1

, (−1, 1)
b2

}
and C =

{
(1, 1)

c1

, (0, 1)
c2

}
be bases for K2.

1. Find the matrix P =

 | |
M(b1, C) M(b2, C)
| |

.

2. Let v = (2, 4). FindM(v,B).
3. FindM((2, 4), C).
4. What happens when you compute the matrix product P M(v,B)?

1. Observe that b1 = c1 − c2 and b2 = −c1 + 2c2. Hence P =

(
1 −1
−1 2

)
.

2. Observe that v = 6b1 + 4b2. ThusM(v, C) =
(
6
4

)
.

3. Observe that v = 2c1 + 2c2. ThusM(v, C) =
(
2
2

)
.

4. P M(v,B) =
(

1 −1
−1 2

)(
6
4

)
=

(
2
2

)
.

We see that this matrix P in the last example represented a linear map T : V → V for which
T (v) = v (and with a little more thought, one can see that this holds for all v). It must be then
that T is the identity map.

Definition: change of basis matrix

Let V be a finite-dimensional K-vector space with two bases B = {b1, . . . , bn} and C =
{c1, . . . , cn}. The change of basis matrix from the B-basis to the C-basis is given by

M(IdV ,B, C) =

 | |
M(b1, C) · · · M(bn, C)
| |


and this matrix has the following property: for all v ∈ V ,

M(IdV ,B, C)M(v,B) =M(v, C).

Since matrix multiplication corresponds to composition of linear maps, it follows that

Proposition 3D.19

Let V be a finite-dimensional K-vector space with two bases B = {b1, . . . , bn} and
C = {c1, . . . , cn}. Let W be a K-vector space with basis D = {d1, . . . ,dn}. Write
P =M(IdV ,B, C).

1. P is invertible and P−1 =M(IdV , C,B).
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2. Let T ∈ L(V ). Writing AB =M(T,B) and AC =M(T, C),

AB = P−1ACP

3. For any linear maps S ∈ L(W,V ) and T ∈ L(V,W ),

M(IdV ,B, C)M(S,D,B) =M(S,D, C)
M(T, C,D)M(IdV ,B, C) =M(T,B,D).

Remark. The notation is clunky, but item 3 above just says that you can pre- or post-compose your
linear map T with a change of basis to get the marixM(T ) written in different bases.
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3Z Elementary Row Operations and Reduced Row Echelon

Form

INSTRUCTOR NOTE: This topic is entirely absent from the course text, so this section is an
attempt to tie in some of the computational aspects of linear algebra. As such, this section is in a
very raw/clunky state. That said, the target audience for this class is expected to be familiar already
with computational linear algebra (from, say, a 2000-level class...), so hopefully said audience can be
somewhat forgiving of notational discrepancies, mixed up indices, and the like.

Let A ∈ Km,n be a rank r matrix with columns {a1, . . . ,an}. One can find a basis {aj1 , . . . ,ajr}
for Col(A) with the following properties:

1. ji < ji+1 for each i = 1, . . . , r − 1, and

2. For every ℓ = 1, . . . , n where ji ≤ ℓ < ji+1,

aℓ = kj1aj1 + · · ·+ kjiaji + 0aji+1
+ · · ·+ 0ajr

(In plain English, this says that the order that the vectors appear in your bases matches the order in
which these columns appear in the matrix, and that every column in A can be written as a linear
combination of basis columns only to its left.) For lack of a name in the literature, call this an
echelon basis.

Extend this to an (ordered) basis B = {aj1 , . . . ,ajr ,vr+1, . . . ,vm} of Km, and for lack of any
better name, call B an echelon basis. Finally, letM(A,B) denote the m× n matrix | |

M(a1,B) · · · M(a1,B)
| |

.

Remark. This is actually a change-of-basis on the codomain of a linear map T : V → W . In a future
iteration of these notes, it can – and should – be changed to reflect this and to tie it in even better
with the previous section.

Example 3Z.1

Let A =


a1 a2 a3 a4 a5

1 1 1 0 3
−1 0 −2 2 5
0 2 −2 −1 1

 and let B = {a1,a2,a4}. FindM(A,B).

Observe that
a3 = 2a1 − a2 + 0a4

and
a5 = a1 + 2a2 + 3a3.
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Then

M(A,B) =

1 0 2 0 1
0 1 −1 0 2
0 0 0 1 3

.

Definition: Reduced Row Echelon Form

Let A and B be as described above. The matrixM(A,B) is said to be the (reduced row)
echelon form of A. The columns j1, . . . , jr in A are called pivot columns.

Some results fall out almost immediately.

Theorem 3Z.2

Let V and W be K-vector spaces of dimension n,m, respectively. Let T ∈ L(V,W ) and write
A =M(T ) (an m× n matrix). Finally, let B be the echelon basis for A.

1. rank(T ) is the number of pivot columns inM(A,B), which is also the number of nonzero
rows inM(A,B).

2. When m = n, T is invertible if and only ifM(A,B) = I, the n× n identity matrix.

It turns out that there is a very procedural way to find the reduced row echlon

3Z.I Elementary Operations

Definition: elementary matrices

Let B = {b1, . . . , bn} be a basis for Kn. Consider the following bases C obtained by...
1. ...swapping bi and bj .

C = {b1, . . . , bj , . . . , bi, . . . , bn}

2. ...scaling bi by a nonzero scalar k.

C = {b1, . . . , kbi, . . . , bn}

3. ...adding a multiple of bj to bi.

C {b1, . . . , bi + kbj , . . . , bn}

An elementary matrix is a matrix corresponding to one of the change-of-bases described
above.

Example 3Z.3

Let v = α1b1 + · · ·+αnbn and let E1, E2, E3 denote the elemntary matrices from the previous
definition. Observe the differences inM(v,B) andM(v, C) in each case.
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1. Swapping bi and bj .

M(v,B) =



α1
...
αi row i
...
αj row j
...
αn


E1M(v,B) =M(v, C) =



α1
...
αj row i
...
αi row j
...
αn


2. Scaling bi by a nonzero scalar k.

M(v,B) =


α1
...
αi row i
...
αn

 E2M(v,B) =M(v, C) =


α1
...

1
k
αi row i
...
αn


3. Adding kbj to bi.

M(v,B) =


α1
...
αj row j
...
αn

 E2M(v,B) =M(v, C) =


α1
...

−kαi + αj row j
...
αn


We observe that multiplication by an elementary matrix amounts to doing one of the following
things to the rows of a matrix: swapping two rows, scaling a row by a nonzero scalar, and adding a
multiple of one row to another.

Definition: elementary row operation

An elementary row operation on an m × n matrix A is an operation on the rows of a
matrix which is the result of multiplying A by an m ×m elementary matrix E on the left
(that is, the product EA).

Theorem 3Z.4

For any m × n matrix A, there is a sequence of elementary row operations taking A to its
reduced row echelon form.

Proof. The proof is given by the row reduction algorithm below.
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Algorithm 3Z.5: Row Reduction

/*ZEROING OUT LOWER-LEFT ENTRIES*/

i← 1; /*Row Number*/

j ← 1; /*Column Number*/

while i ≤ m and j ≤ n do
if Column j contains nonzero entries then

Use row swap to move nonzero entry to Row i;
Use row addition to make entries below Row i all zero;
i← i+ 1;
j ← j + 1;

else
j ← j + 1;

end if
end while
/*ZEROING OUT UPPER-RIGHT ENTRIES*/

i← m; /*Row Number*/

j ← n; /*Column Number*/

while i ≥ 1 and j ≥ 1 do
if Column j contains a leading entry then

Use row scaling to make leading entry 1;
Use row addition to make entries above Row i all zero;
i← i− 1;
j ← j − 1;

else
j ← j − 1;

end if
end while

Here is a visual of the Row Reduction Algorithm.

Step 1. Look at Rows 1 . . .m in Column 1. If there are any nonzero entries, find it and move
it to Row 1. Then use Row Addition to clear everything below it.

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 −→


3 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 −→


3 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗


Step 2. Look at Rows 2 . . .m in Column 2. There are no nonzero entries here, so we move

onto the next column. We won’t change the range of rows.
3 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

 −→


3 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗


Steps 3 ... n. Repeat the above steps for all remaining columns. Now the matrix is in row
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echelon form. 
3 ∗ ∗ ∗ ∗
0 0 2 ∗ ∗
0 0 0 4 ∗
0 0 0 0 19


Step n + 1. Look at Column n. If there is a leading entry, use Row Scaling to make that

leading entry a 1, and then Row Addition to clear everything above it.
3 ∗ ∗ ∗ ∗
0 0 2 ∗ ∗
0 0 0 4 ∗
0 0 0 0 19

 −→


3 ∗ ∗ ∗ ∗
0 0 2 ∗ ∗
0 0 0 4 ∗
0 0 0 0 1

 −→


3 ∗ ∗ ∗ 0
0 0 2 ∗ 0
0 0 0 4 0
0 0 0 0 1


Step n + 2. Look at Column n− 1. If there is a leading entry, use Row Scaling to make that

leading entry a 1, and then Row Addition to clear everything above it.
3 ∗ ∗ ∗ 0
0 0 2 ∗ 0
0 0 0 4 0
0 0 0 0 1

 −→


3 ∗ ∗ ∗ 0
0 0 2 ∗ 0
0 0 0 1 0
0 0 0 0 1

 −→


3 ∗ ∗ 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 1


Steps n + 3 ... 2n. Repeat the above steps for all remaining columns. Now the matrix is in

reduced row echelon form. 
1 ∗ 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Remark. As a human, you can inject convenient steps into the algorithm above. You do not have to
wait to scale until the end – you can clear fraction denominators/shrink large numbers at any point.
You also have some choice when row swapping – if you can choose between multiple rows for a
leading entry, pick one that already has a leading 1.

And now, I defer you to your 2000-level linear algebra course for all of the computational techniques
you have previously learned.
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Chapter 5

Eigenvalues, Eigenvectors, and Invariant
Subspaces

5A Invariant Subspaces

Definition: linear operator

For any K-vector space, V , a linear map T ∈ L(V ) is called a linear operator (on V ).

Definition: invariant subspaces

Let V be a K-vector space and T ∈ L(V ). A subspace U of V is said to be in invariant
under T if T (U) ⊆ U (that is, for every u ∈ U , T (u) ∈ U).

Example 5A.1: Trivial examples

For any vector space V and any operator T ∈ L(V ), the subspaces {0} and V are an invariant
subspaces of T .

Example 5A.2: Less-trivial examples

For any vector space V and any operator T ∈ L(V ), the subspaces Null(T ) and Range(T ) are
invariant subspaces.

For any v ∈ Null(T ), T (v) = 0 ∈ Null(T ). As well, for any v ∈ Range(T ), T (v) ∈ Range(T )
(because T is a map from V to itself).

Example 5A.3: Slightly- interesting example

Let T ∈ L(K2) be given by T (x, y) = (x + y, y). Show that the subspace U =
{(x, 0) ∈ K2 : x ∈ K} is an invariant subspace.

Let u = (x, 0) ∈ U . Then

T (u) = T (x, 0) = (x+ 0, 0) = (x, 0) ∈ U.

67
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5A.I 1-Dimensional Invariant Subspaces

Fix some v ∈ V and consider the subspace U = Span(v) = {λv : λ ∈ K}. If T is an operator on V
and U is an invariant subspace, then it must be that

T (v) = λv

for some λ. This type of invariant subspace gets a special name.

Definition: eigenvectors, eigenvalues

Let V be a K-vector space and T ∈ L(V ). A number λ ∈ K is called an eigenvalue if there
is some nonzero vector v (called an eigenvector) for which T (v) = λv.

Such a vector v is an element of Null(T − λ IdV ), so we call this null space the eigenspace
corresponding to λ.

Remark. The prefix eigen– is not a name, but is derived from German and means “own” as in the
sense of characterizing an intrinsic property; a less literal translation would be along the lines
of“special” or “characteristic.”
Remark. Eigenvectors are not unique: If v is an eigenvector, so is kv for any k ∈ K:

T (kv) = kT (v) = kλv = λ(kv).

Example 5A.4

Let V = K2 and T be the operator given by T (x, y) = (x+ y, y) (as in Example 5A.3). Find
any eigenvalues/eigevectors for T .

Let v = (a, b). Then v is an eigenvector if and only if we can find some λ ∈ K for which

(a+ b, b) = T (v) = λv = λ(a, b).

This yields the following system of linear equations{
λa = a+ b
λb = b

The second equation implies that λ = 1, and then the first equation implies that b = 0. So all
eigenvectors of T are of the form (x, 0), for some x ∈ K.

Example 5A.5

Let V = K2 and let T be the operator given by T (x, y) = (−y, x). Find any eigenvalues/eigen-
vectors for T when...

1. ...K = R
2. ...K = C

Let v = (a, b). Then v is an eigenvector if and only if we can find some λ ∈ K for which

(−b, a) = T (v) = λv = λ(a, b).
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This yields the following system of linear equations{
λa = −b
λb = a

Since x and y cannot both be zero, then in this case, neither can be zero. Substituting the
second equation into the first, we have

λ(λy) = −y

and so λ2 = −1.
1. There are no real numbers whose squares are negative, so there are no eigenvalues and

thusly no eigenvectors.
This makes sense! A 1-dimensional invariant subspace of Rn is a subspace that is only
stretched by some amount, no vector within in can change direction. A rotation, however,
is a map that changes every vector’s direction (unless that vector is 0 or the angle is an
integer multiple of π).

2. There are two complex numbers that square to −1: namely ±i. The corresponding
invariant subspaces would then be Span((±i, 1)), respectively.
This also makes sense! Complex multiplication is weird and rotations can totally happen
as a result of scaling by a complex number.

Theorem 5A.6

Let V be a K-vector space and T an operator on V . Suppose that λ1, · · · , λm are distinct
eigenvalues with corresponding eigenvectors v1, . . . ,vm. Then the set {v1, . . . ,vm} is linearly
independent.

Proof. We induct on m, taking our base case to be m = 2. Let k1, k2 be scalars for which

k1v1 + k2v2 = 0.

Applying (T − λ2 IdV ) to both sides of this equation, one gets

k1(λ1 − λ2)v1 + k2(λ2 − λ2)v2 = 0

=⇒ k1(λ1 − λ2)v1 = 0

and since λ1 ̸= λ2, it must be that k1 = 0, whence k2 = 0.

Suppose now that v1, . . . ,vm−1 are linearly independent and let k1, . . . , km be scalars for which

k1v1 + · · ·+ km−1vm−1 + kmvm = 0.

Applying (T − λm IdV ) to both sides of this equation, one gets

k1(λ1 − λm)v1 + · · ·+ km−1(λm−1 − λm)vm−1 + km(λm − λm)vm = 0

=⇒ k1(λ1 − λm)v1 + · · ·+ km−1(λm−1 − λm)vm−1 = 0.

Since v1, . . . ,vm−1 are linearly independent, we have that ki(λi − λm) = 0 for all i = 1, . . . ,m− 1.
But since λi − λm ̸= 0, then each ki = 0. It follows then that km = 0 as well.
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If dim(V ) = n, then the cardinality of any set of linearly independent vectors is at most n, so
Theorem 5A.6 yields

Proposition 5A.7

If dim(V ) = n <∞, then any operator T ∈ L(V ) has at most n distinct eigenvalues.

5A.II Polynomials Applied to Operators

Given that eigenvectors are nonzero, the equation T (v) = λv is equivalent to writing
v ∈ Null(T − λ IdV ). Should we know the eigenvalue, finding the corresponding eigenspace (at least
in the finite-dimensional case), is fairly procedural. The difficulty is finding these eigenvalues in the
first place. Our goal is to come up with a systematic means of finding these eigenvalues and
eigenvectors.

To do this, we introduce some new notation:

Notation: polynomial applied to an operator

Let V be a K vector space and T ∈ V . For each positive integer m, we write
• Tm to mean TT · · ·T︸ ︷︷ ︸

m times

• T 0 to mean IdV

• (and when T is invertible) T−m to mean T−1T−1 · · ·T−1︸ ︷︷ ︸
m times

.

For a polynomial p ∈ P(K)

p(x) = k0 + k1x+ · · ·+ kmx
m

Then p(T ) is the operator in L(V ) given by

p(T ) = k0 IdV +k1T + · · ·+ kmT
m

Example 5A.8

Suppose D ∈ L(P(R)) is the derivative operator (c.f. Example 3A.3) given by D(q) =
dq

dx
.

Let p(x) = x4 + 75x3 − x+ 1. What is p(D)(q)?

p(D)(q) = D4(q) + 75D3(q)−D(q) + q =
d4q

dx2
+ 75

d3q

dx3
− dq

dx
+ q

Recall that a product of polynomials p and q is not composition, but honest function
multiplication:

(pq)(z) = p(z)q(z).

We obtain the following
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Theorem 5A.9

Let V be a K-vector space, T ∈ L(V ), and p, q ∈ P(K). Then
1. (pq)(T ) = p(T )q(T ) = q(T )p(T )
2. Range(p(T )) is invariant under T
3. Null(p(T )) is invariant under T

The first item is completely straightforward to prove and is an exercise in bookkeeping, so we prove
only the second two.

Proof. Let p be the polynomial

p(x) = a0 + a1x+ · · ·+ anx
n

We make the following observation: for any vector u ∈ V ,

T (p(T )(u)) = T (a0 IdV (u) + a1T (u) + · · ·+ anT
n(u))

= a0T (u) + a1T
2(u) + · · ·+ anT

n+1(u)

= a0 IdV (T (u)) + a1T (T (u)) + · · ·+ anT
n(T (u))

= p(T )(T (u))

2. We aim to show that T (Range(p(T ))) ⊆ Range(p(T )).
So, suppose that v ∈ Range(p(T )). Then there exists u ∈ V so that p(T )(u) = v. Hence by
our observation above,

T (v) = T (p(T )(u)) = p(T )(T (u))

and therefore T (v) ∈ Range(p(T )).

3. We aim to show that T (Null(p(T ))) ⊆ Null(p(T )).
So, suppose that u ∈ Null(p(T )). Then, following from our above observation, we have

p(T )(T (v)) = T (p(T )(v)) = T (0) = 0

and therefore T (v) ∈ Null(p(T )).
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5B The Minimal Polynomial

Recall the following fact:

Theorem 5B.1: Fundamental Theorem of Algebra

Every non-constant polynomial with coefficients in C has at least one root in C.

We will use this to prove the following major result:

Theorem 5B.2

Let V be a finite-dimensional C-vector space. Then every operator T ∈ L(V ) has at least one
complex eigenvalue.

Proof. Let V be a C-vector space with dim(V ) = n <∞. Let T ∈ L(V ) be any operator and
v ∈ V a fixed nonzero vector. The set of vectors

{v, T (v), . . . , T n(v)}

cannot be linearly independent (it has n+ 1 vectors). Without loss of generality, we’ll suppose that
no proper subset of these vectors is linearly dependent (so in particular, {v, T (v), . . . , T n−1(v)} is
linearly independent). There are scalars α0, . . . , αn – not all zero – for which

α0v + α1T (v) + · · ·+ αnT
n(v) = 0 (5.1)

Let p(x) be the polynomial in Pn(C)

p(x) = α0 + α1x+ · · ·+ αnx
n,

so that Equation 5.1 can be written as p(T )(v) = 0. Without loss of generality, we’ll assume that
p(x) is the smallest-degree polynomial for which this is true.

Now, following the Fundamental Theorem of Algebra, there is a complex number λ so that p(λ) = 0.
We can thus find a polynomial q of degree n− 1 for which

p(x) = (x− λ)q(x).

We now have that
p(T )(v) = (T − λ IdV )q(T )v = 0.

Since q(T ) is a linear combination of {v, . . . , T n−1(v)}, which was assumed to be linearly
independent, it must be that (T − λ IdV )(v) = 0. Therefore

(T − λ IdV )(v) = 0 =⇒ T (v)− λ IdV (v) = 0 =⇒ T (v) = λv

and therefore v is an eigenvector for T corresponding to the eigenvalue λ.
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Definition: monic polynomial

A polynomial anx
n + · · ·+ a1x+ a0 is monic if an = 1.

Theorem 5B.3: Existence and Uniqueness of minimal polynomial

Suppose V is a finite-dimensional K-vector space and T ∈ L(V ). Then there is a unique monic
polynomial p ∈ P(K) of smallest degree so that p(T ) = 0.

Definition: minimal polynomial

The polynomial in the previous theorem is called the minimal polynomial of T .

Proof of Theorem 5B.3. Let T ∈ L(V )

Monic. If anx
n + · · ·+ a1x+ a0 is any polynomial in P(K), then

xn +
an−1

an
xn−1 + · · ·+ a1

an
x+

a0
an

is contained in P(K) also. As such, we can always consider any candidate minimal
polynomial to be monic.

Uniqueness. Suppose that p1 is the minimal polynomial for T and p2 is another polynomial
for which p2(T ) = 0. By the division algorithm for polynomials, then there are polynomials
q and r so that

1. p2(x) = q(x)p1(x) + r(x), and

2. 0 ≤ deg(r) < deg(p1)

Item 1 yields
0 = p2(T ) = q(T )p1(T ) + r(T ) = 0 + r(T )

so must have that r(T ) = 0. Since p1(x) is assumed to be of minimal degree, then Item 2
implies that r(x) = 0. It follows that p1 divides p2. If p2 is also assumed to be minimal,
then it is necessarily monic, hence q(x) = 1 and p1 = p2.

As a corollary of the uniqueness proof above,

Corollary 5B.4

A polynomial q is a polynomial multiple of the minimal polynomial if and only if q(T ) = 0.

Let dim(V ) = d. Since L(V ) has dimension d2 and
{
Id, T, T 2, . . . , T d2

}
is a set of d2 + 1 vectors in

L(V ), then clearly it must be a linearly dependent set, and thus the degree of the minimal
polynomial is less than d2. Now observe that, for any v ∈ V , the set

{
Id(v), T (v), . . . , T d(v)

}
is a

set of d+1 vectors in V , and thus is clearly linearly dependent. It raises the question about whether
the bound for the degree of the minimal polynomial can be lowered from d2 to d. Indeed,
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Theorem 5B.5

Let V be a finite-dimensional vector space, T ∈ L(V ), and p the minimal polynomial for T .
Then deg(p) ≤ dim(V ).

Your book gives an elementary, inductive proof of this fact, but we’ll wait until much later and
appeal to the Cayley–Hamilton Theorem.

Theorem 5B.6

Suppose V is finite-dimensional and T ∈ L(V ). Then the zeroes of the minimal polynomial
are precisely the eigenvalues of T .

Recall that, in the realm of logical statements, “precisely” means a biconditional statement.

Proof. Let p be the minimal polynomial for T .

(⇒) Suppose that λ is a root of p. Then there is a polynomial, q (of strictly smaller degree)
for which

p(x) = (x− λ)q(x).

As p is the minimal polynomial of T , we must have that p(T ) = 0, q(T ) ̸= 0. Let v ∈ V
satisfying q(T )v ̸= 0. Then

0 = 0v = p(T )v = (Tv − λ Idv)q(T )v

from which it follows that Tv = λ Idv, and thus λ is an eigenvalue of T .

(⇒) Suppose now that λ is an eigenvalue for T , and v a corresponding eigenvector. Observe
that, for every nonnegative integer m and every scalar k,

Tm(kv) = kλmv = kTm(v).

We thus have that, for any polynomial q,

q(T )v = q(λ)v.

In particular, when taking the minimal polynomial p,

0 = 0v = p(T )v = p(λ)v

and thus p(λ) = 0, so λ is a root of p.

Finding the Minimal Polynomial

1. Pick a basis and write the operator as a matrix, A say, in that basis.
2. If A is the zero matrix, the minimal polynomial is just p(x) = 1. If A is not the zero

matrix, then...
3. For each m with 1 ≤ m ≤ dim(V ), try to solve the linear system x0I + x1A + · · · +

xm−1A
m−1 + Am = 0.

4. For the first m where you find a solution, use the solution xi-values as your polynomial
coefficients.
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Example 5B.7

Find the minimal polynomial for T ∈ L(R2) given by T (x, y) = (1x+ 2y, 3x+ 4y).

In the standard basis, A := T =

(
1 2
3 4

)
.

A is not the zero matrix, so we try to solve

x1I + A = 0,

but this has no solution because A is not a scalar multiple of I. So we try to solve

x1I + x2A+ A2 = 0 =⇒ x1

(
1 0
0 1

)
+ x2

(
1 2
3 4

)
+

(
7 10
15 22

)
=

(
0 0
0 0

)
.

This produces the system 
x1 + x2 = −7

2x2 = −10
3x2 = −15

x1 + 4x2 = −22
which is readily seen to have the solution x2 = −5 and x1 = −2. Thus the minimal polynomial
is

p(x) = −2− 5x+ x2.

When a monic polynomial has degree less than dim(V ), it signals repeated eigenvalues. However,
“most” (which has a precise, qualitative meaning) matrices have all distinct eigenvalues and thus
have a minimal polynomial of maximum degree. As such, there is a slightly-faster method that one
can employ in general and which has a high success rate. (Axler claims that it works on more than
99.999% of 4× 4 matrices A = (Ai,j) with integer entries where −100 ≤ Ai,j ≤ 100).

Finding the Minimal Polynomial – Faster Method (but not guaranteed)

Let dim(V ) = m.
1. Pick a basis and write the operator as a matrix, A say, in that basis. Fix any nonzero

vector, v (the standard basis vectors are usually easiest).
2. If A is the zero matrix, the minimal polynomial is just p(x) = 1. If A is not the zero

matrix, then...
3. Try to solve the linear system x0v + x1Av + · · ·+ xm−1A

m−1v + Amv = 0.
4. If the solution is unique, use the solution xi-values as your polynomial coefficients.

Example 5B.8

Using the fast technique with the standard basis vector v = e1, find the minimal polynomial
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for T ∈ L(K4) where

M(T ) =


0 −1 −1 2
1 2 −2 −1
2 2 0 1
0 −2 0 1


Let A :=M(T ). Then we see that

Ae1 =


0
1
2
0

,

A2e1 = A


0
1
2
0

 =


−3
−2
2
−2

,

A3e1 = A


−3
−2
2
−2

 =


−4
−9
−12
2

,

A4e1 = A


−4
−9
−12
2

 =


25
0
−25
20

.

So we try to solve the system

x1e1 + x2Ae1 + x3A
2e1 + x4A

3e1 + A4e1 = 0

−→


x1 − 3x3 − 4x4 = −25

x2 − 2x3 − 9x4 = 0

2x2 + 2x3 − 12x4 = 24

− 2x3 + 2x4 = −20

Using Gaussian elimination,
1 0 −3 −4 25
0 1 −2 −9 0
0 2 2 −12 −24
0 0 −2 2 20

 RREF−−−→


1 0 0 0 16
0 1 0 0 13
0 0 1 0 −7
0 0 0 1 3


We see that the minimal polynomial is

p(x) = 16 + 13x− 7x2 + 3x3 + x4.

Generally-speaking, the choice of v is also very important and the technique will fail if v is an
eigenvector.

Example 5B.9

Let T ∈ L(R4) where

T =


1 −1 1 −1
0 0 0 −1
0 2 −2 −1
0 −2 −1 2

.
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Show that the fast technique fails to find the minimal polynomial with each of the following
choices of v:

1. v = (1, 0, 0, 0)
2. v = (3,−2,−2, 6)

3. v = (−7, 3, 18, 6)
4. v = (−1, 2, 2, 2)
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5D Diagonalizable Operators

Definition: diagonal, diagonal matrix

An n× n matrix A = (Ai,j) is said to be diagonal if Ai,j = 0 whenever i ̸= j. The matrix
entries {A1,1, A2,2, . . . , An,n} are called the diagonal of A.

Remark. A diagonal matrix is defined by having 0 for non-diagonal entries. It is entirely possible
that 0’s can occur along the diagonal.

Definition: diagonalizable matrix

An operator T ∈ L(V ) is called diagonalizable if there exists a basis B for whichM(T,B) is
a diagonal matrix.

Example 5D.1

Let T ∈ L(R2) be the operator given by

T (x, y) = (−x+ 3y, 3x− y)

Find M(T ) in both the standard basis, E = {e1 = (1, 0), e2 = (0, 1)}, and the basis B =
{b1 = (1, 1), b2 = (1,−1)}.

We have that

T (e1) = (−1, 3) = −1e1 + 3e2 and T (e2) = (3,−1) = 3e1 − 1e2

so

M(T, E) =
(
−1 3
3 −1

)
.

We also have that

T (b1) = (2, 2) = 2b1 + 0b2 and T (b2) = (−4, 4) = 0b1 − 4b2

and thus

M(T,B) =
(
2 0
0 −4

)
.

Therefore T is diagonalizable.

Notation: Eigenspace – E(λ, T )

Recall that the eigenspace of an operator T , corresponding to the eigenvalue λ, is Null(T−λId).
We’ll write E(λ,T ) to denote this eigenspace.
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Theorem 5D.2: sum of eigenspaces

Let V be a K-vector space and T ∈ L(V ). Suppose λ1, . . . , λm are distinct eigenvalues of T .
Then the sum

E(λ1, T ) + · · ·+ E(λm, T )

is actually a direct sum. Moreover,

dim(E(λ1, T )) + · · ·+ dim(E(λm, T )) ≤ dim(V ).

Proof. Because eigenvectors corresponding to different eigenvalues are linearly independent, it
follows immediately that the sum is a direct sum (we also proved this on the homework in the
context of spans). Moreover, letting Bi be basis for each E(λi, T ), one has that

⋃m
i=1Bi is a linearly

independent set of vectors, and

dim

(
m⊕
i=1

E(λ1, T )

)
=

m∑
i=1

dim(E(λi, T )) = cardinality

(
m⋃
i=1

Bi

)
≤ dim(V ).

Theorem 5D.3: Diagonalization

Let V be a finite-dimensional K-vector space and T ∈ L(V ). Let λ1, . . . , λm be the distinct
eigenvalues of T . The following are equivalent.

1. T is diagonalizable.
2. V has a basis of eigenvectors.
3. V = E(λ1, T )⊕ · · · ⊕ E(λm, T )
4. dim(V ) = dim(E(λ1, T )) + · · ·+ dim(E(λm, T ))

Proof. Let n = dim(V ).

(1 ⇔ 2) M(T ) is a diagonal matrix if and only if there is some basis {b1, . . . , bn} for which

T (bi) = 0b1 + · · ·+ 0bi−1 + λibi + 0bi+1 + · · ·+ 0bn = λibi;

in other words, if and only if V has a basis of eigenvectors.

(2 ⇒ 3) Suppose V has a basis of eigenvectors. Then every vector in V is a linear
combination of eigenvectors, hence

V = E(λ1, T ) + · · ·+ E(λm, T ),

and Theorem 5D.2 implies this is a direct sum.

(3 ⇒ 4) This follows immediately from Corollary 2C.8.

(3 ⇒ 2) Suppose V = E(λ1, T )⊕ · · · ⊕ E(λm, T ). In each E(λi, T ), there is a unique
eigenvector vi for which

v1 + · · ·+ vm = 0.
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Now let Bi be a basis for each eigenspace E(λi, T ). Then each vi is a unique linear

combination of the basis vectors Bi, and thus the collection of all basis vectors
m⋃
i=1

Bi is a

linearly independent set. That V equals this direct sum implies that this set spans V , and
hence is a basis.

(4 ⇒ 2) Suppose dim(V ) = dim(E(λ1, T )) + · · ·+ dim(E(λm, T )). The linearly independent

set
m⋃
i=1

Bi constructed in the previous part contains n-many vectors, which means it is a

basis for an n-dimensional vector space.

Corollary 5D.4

If dim(V ) = n and T ∈ L(V ) has n distinct eigenvalues, then T is diagonalizable.

Example 5D.5

Let T ∈ L(Q3) be given by

T (x, y, z) = (3x+ z,−x+ 3y − z, 3z).

Is T diagonalizable?

We first look for eigenvalues by way of the minimal polynomial. In the standard basis,

A =M(T ) =

 3 0 1
−1 3 −1
0 0 3

, so

k1e3 + k2Ae3 + k3A
2e3 = −A3e3

k1

0
0
1

+ k2

 1
−1
3

+ k3

 6
−7
9

 =

−2736
−27


is a system which can be solved with Gaussian elimination:0 1 6 −27

0 −1 −7 36
1 3 9 −27

 RREF−−−→

1 0 0 −27
0 1 0 27
0 0 1 −9


and thus the minimal polynomial is

−27 + 27x− 9x2 + x3 = (x− 3)3

and our lone eigenvalue is 3.

We only need to count the number of linearly independent eigenvectors associated with λ = 3.
This is quickly achieved by considering the nullity of T − 3 Id – T is diagonalizable if and only
if T − 3 Id has nullity 3 (or equivalently rank 0). Since

(T − 3 Id)(x, y, z) = (z,−x− z, 0)
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then rank(T − 3 Id) > 0 and therefore T is not diagonalizable.

The minimal polynomial degree is roughly inversely proportional to the number of linearly
independent eigenvectors decreases (it’s not a one-to-one correspondence, however). All of the
matrices in the following examples (Examples 5D.6 to 5D.10) have only the eigenvalue 7, and only
A1 is diagonalizable.

Example 5D.6

Find the eigenvectors and minimal polynomial for A1 =


7

7
7

7

.

A1 has eigenvectors e1, e2, e3, e4. Also,

A1 − 7I =


0

0
0

0

,

and thus the minimal polynomial is p1(x) = (x− 7).

Example 5D.7

Find the eigenvectors and minimal polynomial for A2 =


7 1

7 0
7 0

7

.

A2 has eigenvectors e1, e3, e4. Also,

A2 − 7I =


0 1

0 0
0 0

0

, (A2 − 7I)2 =


0 0

0 0
0 0

0

,

and thus the minimal polynomial is p2(x) = (x− 7)2.

Example 5D.8

Find the eigenvectors and minimal polynomial for A3 =


7 1

7 0
7 1

7

.
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A3 has eigenvectors has eigenvectors e1, e3. Also,

A3 − 7I =


0 1

0 0
0 1

0

, (A3 − 7I)2 =


0 0

0 0
0 0

0

,

and thus the minimal polynomial is p3(x) = (x− 7)2.

Example 5D.9

Find the eigenvectors and minimal polynomial for A4 =


7 1

7 1
7 0

7

.

A4 has eigenvectors e1, e4. Also

A4−7I =


0 1

0 1
0 0

0

, (A4−7I)2 =


0 0 1

0 0 0
0 0

0

, (A4−7I)2 =


0 0 0

0 0 0
0 0

0

,

and thus the minimal polynomial is p4(x) = (x− 7)3.

Example 5D.10

Find the eigenvectors and minimal polynomial for A5 =


7 1

7 1
7 1

7

.

A5 has eigenvector e1. Also,

A5 − 7I =


0 1

0 1
0 1

0

, (A5 − 7I)2 =


0 0 1

0 0 1
0 0

0

,

(A5 − 7I)3 =


0 0 0 1

0 0 0
0 0

0

, (A5 − 7I)4 =


0 0 0 0

0 0 0
0 0

0


and thus the minimal polynomial is p5(x) = (x− 7)4.
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Theorem 5D.11: Diagonalizability and Minimal Polynomial

An operator T is diagonalizable if and only if its minimal polynomial is p(x) = (x−λ1) · · · (x−
λm) where the λi’s are distinct eigenvalues.

Proof. Let T ∈ L(V ) be an operator with minimal polynomial p.

(⇒) Suppose that T is diagonalizable. Then V has a basis of eigenvectors, {v1, . . . ,vn} with
corresponding eigenvalues λ1, . . . , λn (not necessarily distinct). Up to relabeling, suppose
that there is some m ≤ n for which λ1, . . . , λm are distinct. Certainly one then has that

(T − λm Id)vm = 0

and since λm+1, . . . , λn are repeats of eigenvalues in λ1, . . . , λm, it must be that for every
j ∈ {m+ 1, . . . , n} there is some k ∈ {1, . . . ,m} for which (T − λk Id)vj = 0. Therefore

(T − λ1 Id) · · · (T − λm Id)vi = 0

for every basis eigenvector vi and the minimal polynomial is (x− λ1) · · · (x− λm).

(⇐) 1 Suppose now that we can write p(x) = (x− λ1) · · · (x− λm) where the λi’s are distinct
eigenvalues. By Theorem 5D.3, T is diagonalizable if and only if

V = E(λ1, T )⊕ · · · ⊕ E(λm, T )

The sum on the right is always a subset of V , so we only need to show that every u ∈ V
can be written as a sum

u = v1 + · · ·+ vm (5.2)

where vj ∈ E(λj, T ) = Null(T − λj Id). Looking at the partial fraction decomposition of
1

p(x)
, there are scalars k1, . . . , km for which

1

p(x)
=

1

(x− λ1) · · · (x− λm)
=

m∑
j=1

kj
x− λj

.

For each j, define the polynomial

qj(x) =
kj p(x)

x− λj

.

This can be rearranged to (x− λj)qj(x) = kjp(x), so we see that, for every u,

(T − λj Id)qj(T )(u) = kjp(T )(u) = 0u = 0.

It follows that qj(T )(u) ∈ Null(T − λj Id) = E(λj, T ) and therefore we can take each
vj = qj(T )(u) in Equation 5.2.

1Credit for this slick proof goes to Math.StackExchange user Faust.
https://math.stackexchange.com/questions/2676557/prove-that-t-is-diagonalizable-

if-and-only-if-the-minimal-polynomial-of-t-has-no
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5D.I Utility of Diagonal Operators

Observe that, if λ is an eigenvalue for an operator T and v is a corresponding eigenvector, then
T kv = λkv, and then linearity yields

T k(α1v1 + · · ·+ αmvm) = α1λ
k
1v1 + · · ·+ αmλ

k
mvm.

Although outright computing T k for large values of k can be computationally expensive2, but
computing images of specific vectors can be very fast if said vectors are linear combinations of
eigenvectors.

Example 5D.12

The operator T ∈M(R3) given by

T (x, y, z) = (3x,−3x+ 2y − 3z, 2x+ 5z)

is diagonalizable and has eigenvalues 2, 3, 5. Find

T 3141592(−π2,−π + π3, π + π2).

In the standard basis, A :=M(T ) =

 3 0 0
−3 2 −3
2 0 5

, and the eigenvectors are quickly achieved

with Gaussian elimination.

(
A− 2I 0

) RREF−−−→

1 0 0 0
0 0 1 0
0 0 0 0

 and thus (0, 1, 0) ∈ Null(T − 2 Id) = E(2, T )

(
A− 3I 0

) RREF−−−→

1 0 1 0
0 1 0 0
0 0 0 0

 and thus (−1, 0, 1) ∈ Null(T − 3 Id) = E(3, T )

(
A− 5I 0

) RREF−−−→

1 0 0 0
0 1 1 0
0 0 0 0

 and thus (0,−1, 1) ∈ Null(T − 5 Id) = E(5, T )

We see that

(−π2,−π + π3, π + π2) = π3(0, 1, 0) + π2(−1, 0, 1) + π(0,−1, 1)

from which it follows that

T 3141592(−π2,−π + π3, π + π2)

= T 3141592

(
π3(0, 1, 0) + π2(−1, 0, 1) + π(0,−1, 1)

)
= 23141592 · π3(0, 1, 0) + 33141592 · π2(−1, 0, 1) + 53141592 · π(0,−1, 1)

2Directly applying the definition of the product of two n×n matrices is an O(n3)-time algorithm. The best-known
improvement on this result is from 2022, which provides a faster O(n2.37188)-time algorithm. However, this improved
algorithm is known as a “galactic” algorithm, because the constants involved in it are so large that the algorithm is
totally impractical.



Chapter 9

Multilinear Algebra and Determinants

9A Bilinear Forms and Quadratic Forms

9A.I Bilinear Forms

Definition: bilinear form

A bilinear form on V (a K-vector space) is a function β : V × V → K so that, for every v,
the functions given by

β1(x) = β(x,v) and β2(x) = β(v,x)

are linear functionals β1, β2 : V → K.

Remark. Bilinear forms generalize the idea of a dot product.

Example 9A.1: The canonical example

Show that the usual dot product on Rn is a bilinear form.

Although we haven’t formally covered the dot product in this class, we’ll assume that the
reader is familiar with it and has seen the following properties: For all scalars k and all vectors
u,v,w ∈ Rn:

(ku) · v = k(u · v)
(u+ v) ·w = (u ·w) + (v ·w)

and

u · (kv) = k(u · v)
u · (v +w) = (u · v) + (u ·w)

The bilinearity is immediate.

Example 9A.2

Let Ai,j be scalars (where i = 1, . . . , n and j = 1, . . . , n). Show that

β : Kn ×Kn → K

β(u,v) =
n∑

i=1

n∑
j=1

Ai,juivj

85
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is a bilinear form.

By staring at the above long enough, one sees that

β(u,v) =
(
M(u)tAM(v)

)
1,1

where A is the n× n matrix A = (Ai,j). For this reason, and especially when u,v are already column vectors,
it’s common to draw no distinction between K1,1 and K and simply write

β(u,v) = utAv

Notation

The set of bilinear forms on V is denoted V (2).

Theorem 9A.3

V (2) is a vector space with the usual function addition/scalar multiplication.

Proof. This is an exercise to the reader.

Definition

Suppose B = {b1, . . . , bn} is a basis on V and β ∈ V (2). The matrix of β with respect to
the basis B is the n× n matrixM(β,B) whose (i, j)-entry is given by β(bi, bj).

When the basis is clear from context, one just writesM(β).

Example 9A.4

Find the matrix for the standard dot product on Rn, c.f. Example 9A.1.

M(β) =


e1 · e1 e1 · e2 · · · e1 · en

e2 · e1 e2 · e2 · · · e2 · en
...

... · · · ...
en · e1 en · e2 · · · en · en

 =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

 = I

Example 9A.5

Find the matrix for the bilinear form in Example 9A.2.
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Let {e1, . . . , en} be the standard basis for Kn. Then

M(β) =


β(e1, e1) β(e1, e2) · · · β(e1, en)
β(e2, e1) β(e2, e2) · · · β(e2, en)

...
... · · · ...

β(en, e1) β(en, e2) · · · β(en, en)

 =


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n
...

...
...

An,1 An,2 · · · An,n


Theorem 9A.6

dimV (2) = (dimV )2

We show that the map

Φ : V (2) → Kn,n

β 7→ M(β)

is an isomorphism.

Proof. Let {e1, . . . , en} be a basis for V .

Linearity. Let α, β ∈ V (2) and k ∈ K. Then

M(kα+ β)i,j = (kα + β)(ei, ej) = kα(ei, ej) + β(ei, ej) = kM(α)i,j =M(β)i,j

Injective. Suppose α, β ∈ V (2) satisfy

M(α) = Φ(α) = Φ(β) =M(β).

Then the (i, j)-entry of these matrices agree, hence α(ei, ej) = β(ei, ej) for all i, j, and
since functionals are uniquely defined by their values on the basis, then it must be that
α = β.

Surjective. Abusing notation slightly as per Example 9A.2, for every A ∈ Kn,n, we can define
β ∈ V (2) via

β(u,v) = utAv

and as we saw in Example 9A.5,

Φ(β) =M(β) = A.

Therefore Φ is an isomorphism, and so dim(V (2)) = dim(Kn,n) = n2 = dim(V )2.

Lemma 9A.7

Suppose β ∈ V (2) and T ∈ L(V ). Define the following related bilinear forms:

α(u,v) = β(T (u),v) and γ(u,v) = β(u, T (v))
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Then, with respect to any basis,

M(α) =M(T )tM(β) and M(γ) =M(β)M(T ).

Proof. Let {e1, . . . , en} be basis for V . Then

M(α)i,j = α(ei, ej) = β(Tei, ej)

= β

(
n∑

k=1

M(T )k,iek, ej

)

=
n∑

k=1

M(T )k,iβ(ek, ej)

=
n∑

k=1

M(T )k,iM(β)k,j

=
n∑

k=1

M(T t)i,kM(β)k,j

= (M(T )M(β))i,j .

Also,

M(γ)i,j = γ(ei, ej) = β(ei, Tej)

= β

(
ei,

n∑
k=1

M(T )k,jek

)

=
n∑

k=1

β(ei, ek)M(T )k,j

=
n∑

k=1

M(β)i,kM(T )k,j

= (M(β)M(T ))i,j .

Theorem 9A.8: Change-of-basis

Suppose β ∈ V (2) and let B, C be two bases for V . Write B =M(β,B) and C =M(β, C) and
let A be the change-of-basis matrix

A =M(Id,B, C).

Then
B = AtCA

Proof. Let B = {b1, . . . , bn} and C = {c1, . . . , cn}, and define T ∈ L(V ) via

T (ci) = bi, for all i = 1, . . . , n
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Observe that T is linear and invertible. We then have that

Bi,j = β(bi, bj)

= β(T (ci), T (cj))

=
n∑

k=1

M(T )ti,kβ(ck, T (cj) (applyying Lemma 9A.7)

=
n∑

k=1

n∑
ℓ=1

M(T )ti,kβ(ck, cℓ)M(T )ℓ,j (applyying Lemma 9A.7)

= (M(T )tCM(T ))i,j

and thus takingM(T ) = A, we have the desired result.

9A.II Symmetric Bilinear Forms

Definition: symmetric bilinear form

A bilinear form β ∈ V (2) is called symmetric if, for all u,v ∈ V ,

β(u,v) = β(v,u)

The set of all symmetric bilinear forms is denoted V
(2)
sym.

Example 9A.9

Show that the dot product, Example 9A.1, is a symmetric bilinear form.

Example 9A.10

Show that there is a matrix A for which the bilinear form Example 9A.2 is not a symmetric
bilinear form.

Consider V = K2 and let A =

(
1 2
3 4

)
. Define

β(u,v) =
(
M(u)t AM(v)

)
1,1

(bilinearity is up to the reader to check) Then

β(e1, e2) = 2 and β(e2, e1) = 3.

Definition: symmetric matrix

A matrix A is called symmetric if A = At.
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Theorem 9A.11

Let β ∈ V (2) where dim(V ) = n. The following are equivalent.
1. β is a symmetric bilinear form.
2. For every basis B,M(β,B) is a symmetric matrix.
3. For some basis B,M(β,B) is a symmetric matrix.
4. For some basis B,M(β,B) is a diagonal matrix.

Proof. Let β ∈ V (2).

(1 ⇒ 2) Suppose β is symmetric and let {e1, . . . , en} be any basis for V . Then since
β(ei, ej) = β(ej , ei) for all i = 1, . . . , n and j = 1, . . . , n,M(β) must be symmetric for
every basis.

(2 ⇒ 3) This is immediate.

(3 ⇒ 1) SupposeM(β) is symmetric with respect to some basis {e1, . . . , en}. Then for all
v,w ∈ V ,

β(v,w) = β

(
n∑

i=1

viei,
n∑

j=1

wjej

)

=
n∑

i=1

n∑
j=1

viwjβ(ei, ej) (bilinearity)

=
n∑

i=1

n∑
j=1

viwjβ(ej , ei) (symmetry ofM(β) )

= β

(
n∑

i=j

wjej ,
n∑

i=1

viej

)
= β(w,v)

and therefore β is symmetric.

(4 ⇒ 3) Diagonal matrices are always symmetric, so this is immediate.

(1 ⇒ 4) Suppose β is symmetric. Then for any vectors v,w we have

β(v +w,v +w) = β(v,v) + β(w,v) + β(v,w) + β(w,w)

= β(v,v) + β(v,w) + β(v,w) + β(w,w)

= β(v,v) + 2β(v,w) + β(w,w)

and this rearranges to

2β(v,w) = β(v +w,v +w)− β(v,v)− β(w,w) (9.1)

If β is the zero map, then β is the zero matrix (which is a diagonal matrix). As well, if V is
1-dimensional, then β is a 1× 1 matrix and is diagonal. So, suppose β is not the zero map
and dim(V ) = n > 1. Then Equation 9.1 implies that there is some vector u1 for which
β(u1,u1) = k1,1 ̸= 0. Define

U2 = {v ∈ V : β(v,u1) = 0}
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Letting T2 ∈ L(V,K) be given by T2(x) = β(x,u1), then we have that U2 = Null(T2), and
since T is not the zero map, it must have rank 1, whence dim(U2) = n− 1.

See now that we have
V = Span(u1)⊕ U2

(the directness of the sum requires a small argument that we’ll reserve for later).

At this point I’d like to look at where we’re at. Taking {v2, . . . ,vn} to be a basis for U , we
have

M(β) =


β(u1,u1) β(u1,v2) · · · β(u1,vn)
β(v2,u1) β(v2,v2) · · · β(v2,vn)

...
...

...
β(vn,u1) β(vn,v2) · · · β(vn,vn)

 =


k1,1 0 · · · 0
0 β(v2,v2) · · · β(v2,vn)
...

...
...

0 β(vn,v2) · · · β(vn,vn)


The goal will be to iteratively chip away at this bottom-right block.

Now, for each i ≥ 2, choose ui ∈ Ui so that β(ui,ui) = ki,i ̸= 0, and then define

Ui = {v ∈ V : β(v,ui−1) = 0} .

By construction, just as above

dim(Ui) = dim(Ui−1)− 1.

This process terminates after m ≤ n+ 1 steps, at which point

β(v,w) = 0 for all v,w ∈ Um

(and this can be at most n+ 1, since dim(V ) = n and thus Un+1 = {0}.)

At this point, we have

V = Span(u1)⊕ Span(u2)⊕ · · · ⊕ Span(um−1)⊕ Um

(where we simply omit Um above in the case that m = n+ 1). And now, taking a basis
{vm, . . . ,vn} for Um, we have

M(β, {u1, . . . ,um−1,vm, . . . ,vn}) =



k1,1
k2,2

. . .

km−1,m−1

0
. . .

0


Now, to verify that this set is a basis (at which point the direct sum claim) will follow, let

w = c1u1 + · · ·+ cm−1um−1 + cmvm + · · ·+ cnvn
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By construction 
β(w,u1) = c1β(u1,u1)
...

β(w,um−1) = cm−1β(um−1,um−1)

So if w = 0, then the above implies c1 = · · · = cm−1 = 0, and since the vi vectors were
already linearly independent, so cm = · · · = cn = 0.

Definition: alternating form

A bilinear form β ∈ V (2) is called alternating if, for every v ∈ V ,

β(v,v) = 0.

The set of alternating bilinear forms is denoted V
(2)
alt .

Remark. Alternating forms generalize the idea of a determinant of a 2× 2 matrix.

Example 9A.12: canonical example

Show that the following map β is an alternating bilinear form on R2:

β((a, b), (c, d)) = ad− bc.

Theorem 9A.13

A bilinear form α on V is alternating if and only if, for all u and v,

α(u,v) = −α(v,u).

Proof. INCOMPLETE
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Corollary 9A.14

α is an alternating bilinear form if and only if, for every basis B,

M(α,B)t = −M(α,B)

Definition: skew-symmetric matrix

A matrix A is called skew-symmetric if it satisfies AT = −A.

Theorem 9A.15

The sets V
(2)
sym and V

(2)
alt are subspaces of V (2). Moreover

V (2) = V (2)
sym ⊕ V

(2)
alt .

Proof. INCOMPLETE

Corollary 9A.16

Let Usym, Uskew ⊂ Kn,n be the subspaces of symmetric and skew-symmetric matrices, respec-
tively. Then

Kn,n = Usym ⊕ Uskew.
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9A.III Quadratic Forms

Definition: quadratic form

For any bilinear form β, the function qβ : V → K given by qβ(v) = β(v,v) is called a
quadratic form on V .

Remark. Quadratic forms generalize the notion of a norm/distance (from the origin).

Example 9A.17

Let q : R2 → R be the function

q(x, y, z) = x2 + y2 + z2.

Show that q is a quadratic form by finding the associated bilinear form.

Take β to be the usual dot product:

β((x1, y1, z1), (x2, y2, z2)) = x1x2 + y1y2 + z1z2.

Then β((x, y, z), (x, y, z)) = x2 + y2 + z2 = q(x, y, z).

It turns out that there are no interesting quadratic forms on Kn.

Theorem 9A.18

A function q : Kn → K is a quadratic form if and only if there are scalars Ai,j (i = 1, . . . , n
and j = 1, . . . , n) for which

q(x1, . . . , xn) =
n∑

i=1

n∑
j=1

Ai,jxixj.

(Or, abusing notation slightly) ...if and only if there is a matrix A for which

q(v) = vtAv.

Proof. INCOMPLETE

Theorem 9A.19: Characterization of quadratic forms

Let q : V → K be a function. The following are equivalent
1. q is a quadratic form.
2. There is a unique symmetric bilinear for β on V so that q(v) = β(v,v).
3. q(λv) = λ2q(v) for all scalars λ and all v ∈ V , and the function

β(u,v) = q(u+ v)− q(u)− q(v)

is a bilinear form on V .
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4. q(2v) = 22q(v) for all v ∈ V , and the function

β(u,v) = q(u+ v)− q(u)− q(v)

is a bilinear form on V .

Proof.

Theorem 9A.20

For any quadratic form q : V → K, there is a basis {b1, . . . , bn} of V and scalars λ1, . . . , λn

so that, for all v = v1b1 + · · ·+ vnv,

q(v) = q(v1b1 + · · ·+ vnv) = λ1v
2
1 + · · ·+ λnv

2
n.

Proof.
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9B Alternating Multilinear Forms

One can extend the idea of a bilinear form to a multilinear form in a straightforward way:

Notation: n-fold Cartesian Product

Let V be a K-vector space and m > 0. Then

V m := V × · · · × V︸ ︷︷ ︸
m

is the n-fold Cartesian product of V .

Fact. V m is a K-vector space with componentwise operations.

Definition: multilinear form

A map β : V m → K is called a multilinear form or an m-linear form if it is linear in each
component. So for all scalars k and all vectors u,v1, . . . ,vm,

β(v1 + ku,v2, . . . ,vm) = β(v1,v2, . . . ,vm) + kβ(u,v2, . . . ,vm)

...

β(v1,v2, . . . ,vm + ku) = β(v1,v2, . . . ,vm) + kβ(v1,v2, . . . ,u)

The set of m-linear forms is denoted V (m).

Example 9B.1

Every bilinear form is a “2-linear form.”

Example 9B.2

Show that the map β : R4 → R given by

β(v1, . . . ,v4) = (v1 · v2)(v3 · v4)

is a 4-linear form.

This is straightforward to show. Multilinearity is essentially inherited from the bilinearity of
the dot product.

Definition: alternating multilinear form

An m-linear form β is called alternating if

β(v1, . . . ,vm) = 0

whenever vi = vj for some distinct i, j in 1, 2, . . . ,m.

The set of alternating m-linear forms is denoted V
(m)
alt .
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Example 9B.3

Let V be a K-vector space and β a 3-linear form on V . Show that the map α : V 3 → K given
by

α(v1,v2,v3) =β(v1,v2,v3) + β(v2,v3,v1) + β(v3,v1,v2)

− β(v2,v1,v3)− β(v3,v2,v1)− β(v1,v3,v2)

is an alternating 3-linear form on V .

That α is 3-linear follows immediately from the fact that it’s defined entirely in terms of the
βs, which are themselves 3-linear (although the reader is encouraged to check this).

Checking that α is alternating requires checking that it holds when the same vector is placed
in any two of the input arguments. This means checking

α(v,v,w) = α(v,w,v) = α(w,v,v) = 0.

We show only the first of these cases as the others are straightforward and nearly identical.

α(v,v,w) =β(v,v,w) + β(v,w,v) + β(w,v,v)

−β(v,v,w)−β(w,v,v)−β(v,w,v)

=0.

Proposition 9B.4

Suppose β is an alternating m-linear form. Then

β(v1, . . . ,vm) = 0

whenever {v1, . . . ,vm} is linearly dependent.

Proof. Sketch Write down the offending vector as a linear combination of the others. Observe that,
through multilinearity, this can be rewritten as a sum of the β’s where each term has a repeated vm

in the list.

Corollary 9B.5

If m > dimV , then V
(m)
alt = {0}.
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9B.I Alternating Forms and Permutations

Theorem 9B.6: Swapping inputs changes sign

If β is an alternating m-linear form on V , then

β(v1, . . . ,vi, . . . ,vj , . . . ,vm) = −β(v1, . . . ,vj , . . . ,vi, . . . ,vm)

Proof. INCOMPLETE

Definition: permutation, transposition

A permutation, σ, of an ordered m-tuple (1, 2, . . . ,m) is formally a bijection

σ : {1, 2, . . . ,m} → {1, 2, . . . ,m}

the amounts to simply reordering of the entries. The relabeled m-tuple will be written
(σ(1), σ(2), . . . , σ(m)

)
.

A transposition is a reordering obtained by swapping exactly two entries.

Below we state some facts that one would typically see in a first semester course in abstract algebra
(relevant Google search term: “symmetric group”).

Theorem 9B.7: Group Theory Facts

1. There are m! distinct permutations of any m-tuple (1, 2, . . . ,m).
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2. Every permutation can be realized as a (non-unique) sequence of transpositions.

3. Given any two sequences of transpositions corresponding to a single permutation, the
two sequences will either both have an even number of transpositions, or both have an
odd number of transpositions.

In this way, the following is well-defined.

Definition: sign of a permutation

The sign of a permutation σ is
sgn(σ) = (−1)N

where N is the length of the sequence of transpositions which produce σ.

Example 9B.8

Let σ be the permutation for which(
σ(1), σ(2), σ(3)

)
= (3, 2, 1)

Write σ in two different ways as sequences of transpositions. Then find sgn(σ).

σ is already a transposition, so sgn(σ) = (−1)1 = −1. As well

σ : (1, 2, 3) 7→
τ1

(2, 1, 3) 7→
τ2

(2, 3, 1) 7→
τ3

(3, 2, 1).

so we also have sgn(σ) = (−1)3 = −1.

Theorem 9B.6 can thus be upgraded to

Theorem 9B.9: Permutations and alternating multilinear forms

If β is an altnerating m-linear form on V and σ is a permutation, then for any set of vectors
{v1, . . . ,vm},

β(v1, . . . ,vm) = sgn(σ) β
(
vσ(1), . . . , vσ(m)

)
.

Proof. INCOMPLETE
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Theorem 9B.10: Formula for alternating (dimV )-linear forms on V

Let V be an n-dimensional K-vector space with basis {e1, . . . , en}, and let {v1, . . . ,vn} be a
set of vectors in V . Write

vi =
n∑

j=1

Aj,iej where Aj,i ∈ K

Then, for every β ∈ V
(n)
alt ,

β(v1, . . . ,vn) = β(e1, . . . , en)

∑
perm.

σ

sgn(σ)Aσ(1),1Aσ(2),2 · · ·Aσ(n),n


Proof. INCOMPLETE

Theorem 9B.11

Let V be an n-dimensional K-vector space. The vector space V
(n)
alt is 1-dimensional.

This result tells us that every alternating n-linear form on V will be a scalar multiple of the
“determinant”... whatever that is... we should probably define it in the next section.

Proof. INCOMPLETE
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9C Determinants

Definition

Suppose that m is a polisitve integer and T ∈ L(V ). For α ∈ V
(m)
alt , define αT ∈ V (m) by

αT (v1, . . . ,vm) = α(T (v1), . . . , T (vm))

Proposition 9C.1

For any α ∈ V
(m)
alt and any operator T ∈ L(V ), αT is alternating. Moreover, for each T , the

function ΦT : V
(m)
alt → V

(m)
alt given by

ΦT (α) = αT

is a linear transformation.

Proof. Let T ∈ L(V ) and let α ∈ V
(m)
alt . Let (v1, . . . ,vm) be an m-tuple of vectors where vi = vj

for some i ̸= j. Then T (vi) = T (vj), hence

αT (v1, . . . ,vm) = α(T (v1, . . . , T (vm)) = 0.

The linearity of ΦT follows from the fact that linear combinations of alternating m-linear forms are
still alternating m-linear forms:

ΦT (α + kβ)(v1, . . . ,vm) = (α + kβ)(T (v1), . . . , T (vm))

= α(T (v1), . . . , T (vm)) + kβ(T (v1), . . . , T (vm))

= αT (v1, . . . ,vm) + kβ(v1, . . . ,vm)

Quick discussion of uniqueness...If dim(V ) = n, then V
(n)
alt is one-dimensional (Theorem 9B.11), so

ΦT acts by multiplying by a scalar, call it kT . This scalar is fixed (hence unique and not dependent
upon α), and so we give a name to it.

Definition: determinant of an operator

Let T be an operator on V – an n-dimensional K-vector space. The determinant of T is
the unique scalar detT so that, for all α ∈ V

(n)
alt ,

αT = (detT )α.

Example 9C.2

Let dim(V ) = n and T = Id ∈ L(V ). Find det(T ).
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For all tuples (v1, . . . ,vn) and α ∈ V
(n)
alt ,

αId(v1, . . . ,vn) = α(Idv1, . . . , Idvn) = α(v1, . . . ,vn)

whence det Id = 1.

It’s worth noting that our definition of the determinant is independent of the basis, so one can
compute the determinant from a convenient basis.

Example 9C.3

Let dim(V ) = n and T ∈ L(V ). If {v1, . . . ,vn} is a basis of eigenvectors with eigenvalues
λ1, . . . , λn. Find det(T ).

αT (v1, . . . ,vn) = α(Tv1, . . . , Tvn) = α(λ1v1, . . . , λnvn) = λ1 · · ·λnα(v1, . . . ,vn)

where the last equality follows from n-linearity of α. Therefore det(T ) = λ1 · · ·λn.

Example 9C.4

Let T ∈ L(R2) be the linear operator given by

T (x, y) = (ax+ by, cx+ dy)

Find det(T ).

Letting e1 = (1, 0) and e2, we have that

T :

{
e1 7→ ae1 + ce2 = A1,1e1 + A2,1e2

e2 7→ be1 + de2 = A1,2e1 + A2,2e2

From Theorem 9B.10, we have that

αT (e1, Te2) = α(A1,1e1 + A2,1e2, A1,2e1 + A2,2Te2)

= α(e1, e2)

∑
perm.

σ

sgn(σ)Aσ(1),1Aσ(2),2


So

det(T ) =
∑
perm.

σ

sgn(σ)Aσ(1),1Aσ(2),2

Observe that there are only two permutations of (1, 2):

ι : (1, 2) 7→ (1, 2) and τ : (1, 2) 7→ (2, 1)

with sgn(ι) = 1 and sgn(τ). As such

det(T ) = sgn(ι)Aι(1),1Aι(2),2 + sgn(τ)Aτ(1),1Aτ(2),2 = A1,1A2,2 − A2,1A2,2 = ad− bc.
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Definition: “nicest” (with respect to a basis) alternating n-linear form

Let B = {b1, . . . , bn} be a basis for V and {φ1, . . . , φn} be the dual basis, i.e.

φi ∈ L(V,K) where φi(bj) =

{
1 when i = j,

0 when i ̸= j.

Call the alternating n-linear form constructed in the proof of Theorem 9B.11 the “nicest”
alternating n-linear form with respect to the B-basis:

α : V m → K

α(v1, . . . ,vn) =
∑
perm.

σ

φσ(1)(v1) · · ·φσ(n)(vn).

Remark. The “nicest” form α with respect to the basis B = {b1, . . . , bn} satisfies

α(b1, . . . , bn) = 1.

Definition: determinant of a matrix

Let T ∈ L(V ) be an operator and let A =M(T,B) be the n× n matrix of T with respect to
the B basis. Then the determinant of A, detA, is given by det(A) := det(T ).

Example 9C.5

Let T ∈ L(R2) be the linear operator given by

T (x, y) = (ax+ by, cx+ dy)

In the standard basis, A =M(T ) =

(
a b
c d

)
and, from our work, det(A) = ad− bc.

Theorem 9C.6: Computing detA

Let A =


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n
...

...
...

An,1 An,2 · · · An,n

. Then

detA =
∑
perm.

σ

sgn(σ)Aσ(1),1 · · ·Aσ(n),n.

Proof. Given our matrix A, we can find an operator T ∈ L(V ), a basis B = {b1, . . . , bn} for which

A =M(T,B).
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Let α be the “nicest” form with respect to the B-basis. It follows that

det(A) = det(T )

= det(T )α(b1, . . . , bn)

= α(Tb1, . . . , Tbn)

= α(b1, . . . , bn)

∑
perm.

σ

sgn(σ)Aσ(1),1 · · ·Aσ(n),n.

 (by Theorem 9B.10)

=
∑
perm.

σ

sgn(σ)Aσ(1),1 · · ·Aσ(n),n.

Letting ai be the ith column of an n× n matrix A and recalling that ai is just the matrix
representation of Tbi, the computations in the above previous proof also yield the following:

Corollary 9C.7

The map α : (Kn)n → K given by

α(a1, . . . ,an) = det

 | |
a1 · · · an

| |


is an alternating n-linear form.

Exercise 9C.8: Determinant of an upper triangular matrix

Suppose A =


A1,1 ∗ · · · ∗
0 A2,2 . . . ∗
0 0

. . .
...

0 0 0 An,n

. Then

det(A) = A1,1A2,2 · · ·An,n.

9C.I Properties of Determinants

Proposition 9C.9: Determinant is multiplicative

1. Suppose S, T ∈ L(V ). Then det(ST ) = det(S) det(T )
2. Suppose A,B ∈ Kn×n. Then det(AB) = det(A) det(B).
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Proof. Let {e1, . . . , en} and let α ∈ V
(n)
alt . Then

det(ST )αST (e1, . . . , en) = αST (e1, . . . , en)

= α(STe1, . . . , STe2)

= det(S)α(Te1, . . . , Te2)

= det(S) det(T )α(e1, . . . , en)

And therefore det(ST ) = det(S) det(T ). That the same result holds for matrices is immediate from
the definition of the determinant of a matrix.

Proposition 9C.10

An operator T ∈ L(V ) is invertible iff det(T ) ̸= 0. Moreover, when T is invertible, det(T−1) =
1

det(T )
.

Sketch. Observe that
1 = det(Id) = det(TT−1) = det(T ) det(T−1).

The proof of the converse requires the observation that α(v1, . . . ,vn) = 0 if and only if the vi’s
form a linearly independent set

Proposition 9C.11

1. Suppose A is a square matrix. Then det(At) = det(A).
2. Suppose T ∈ L(V ) and let T ′ ∈ L(V ′) = L

(
L(V,K)

)
be the dual map. Then det(T ′) =

det(T ).

Proof. Recall from a homework assignment that the matrix of T in some basis is precisely the
transpose of the matrix for T ′ in the dual basis. So item 2 follows from item 1.

To prove item 1, we make the following observations about permutations. Permutations of the set
{1, . . . , n} are formally bijections

σ : {1, . . . , n} → {1, . . . , n}

hence

• σ is invertible.

• sgn(σ−1) = sgn(σ)

• summing over σ’s is equal to summing over the σ−1s

• σ(j) = i if and only if σ−1(i) = j

This last observation, when combined with the transpose, gives

At
σ(i),i = At

j,i = Ai,j = Aσ−1(j),j
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and thus

det(At) =
∑
perm.

σ

sgn(σ)At
σ(1),1 · · ·At

σ(n),n =
∑
perm.
σ−1

sgn(σ−1)Aσ−1(1),1 · · ·At
σ−1(n),n = det(A).

Theorem 9C.12: Determinants and row operations

Let A be an n× n matrix and let B be the n× n matrix formed by performing an elementary
row operation on A.

1. If that elementary row operation is swapping Rowi and Rowj, then det(B) = − det(A).
2. If that elementary row operation is scaling Rowi by k ̸= 0, then det(B) = k det(A).
3. If that elementary row operation is adding k ·Rowi to Rowj, then det(B) = det(A).

Proof. Each of these follow from the fact that det(At) = det(A) and the multilinearity of the
determinant (on the columns) of A. The first two are immediate as they are analogous to
swapping/scaling columns of A, but the last one is possibly non-obvious. WLOG, we show only that
this holds when adding a multiple of column 1 to column n.

det

 | |
a1 · · · (ka1 + an)
| |

 = k det

 | |
a1 · · · a1

| |

+ det

 | |
a1 · · · an

| |


= 0 + det

 | |
a1 · · · an

| |

.

Exercise 9C.13

Verify the above claim by computing the following determinants explicitly in the 2× 2 case:

1. det

(
a b
c d

)
= ad− bc

2. det

(
c d
a b

)
=

3. det

(
ka kb
c d

)
=

4. det

(
a b

(c+ ak) (b+ dk)

)
=

9C.II Determinants and Eigenvalues

Proposition 9C.14

λ is an eigenvalue for T ∈ L(V ) if and only if det(T − λ Id) = 0.
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Proof. Eigenvalues λ are specifically those values for which Null(T − λI) is nontrivial, hence T − λI
is not invertible. Now apply Proposition 9C.10.

Definition: characteristic polynomial

Suppose T ∈ L(V ). The polynomial

p(x) = det(x Id−T )

is the characteristic polynomial of T .

Remark. The above is the convention that your book takes (and it ensures that the monic
polynomial has a positive leading term). If one takes the convention that the characteristic
polynomial of T is det(T − xI), then this only differs by possibly a sign. That said, p(x) and −p(x)
have the same roots, so it’s not a big deal.

Theorem 9C.15: Cayley–Hamilton

Let T ∈ L(V ) with characteristic polynomial p(x). Then p(T ) = 0.

Equivalently, p(x) is a multiple of the minimal polynomial q(x) for T .

This fact is actually true quite generally (think modules over commutative rings). In the context of
this course, however, we’re focused on only subfields of C, where it is easier to show.

We first prove this for T ∈ L(V ) where V is a finite-dimensional C-vector space so that the minimal
polynomial factors, and we’ll generalize the result. The strategy of proof will be to argue that we
can choose a basis for T in which the matrix T in this basis is upper-triangular with eigenvalues
appearing on the diagonal, and then apply Exercise 9C.8.

Lemma 9C.16

Let p(x) = (x− λ1)
ℓ1 · · · (x− λm)

ℓm be the minimal for the operator T ∈ L(V ). Then

V = Null(T − λ1I)
ℓ1 ⊕ · · · ⊕ Null(T − λmI)

ℓm .

Proof. The sum on the right is always a subspace of V , so we aim to show that, for every v ∈ V ,
there are vectors uj ∈ Null(T − λjI)

ℓj for which

v = u1 + · · ·+ um.

V is a sum of null spaces . We employ the same technique as in the proof of Theo-
rem 5D.11.

Let p(x) = (x−λ1)
ℓ1 · · · (x−λm)

ℓm be the minimal for T . Looking at the partial fraction
decomposition of 1

p(x)
, there are polynomials k1(x), . . . , km(x) for which

1

p(x)
=

1

(x− λ1)ℓ1 · · · (x− λm)ℓm
=

m∑
j=1

kj(x)

(x− λj)ℓj
.

For each j, define the polynomial

qj(x) =
kj(x) p(x)

(x− λj)ℓj
.
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This can be rearranged to (x− λj)
ℓjqj(x) = kj(x)p(x), and now we have that

(T − λjI)
ℓjqj(T )v = kj(T )p(T )v = 0

(because p(T ) = 0). Taking uj = qj(T )v, we see that uj ∈ Null(T − λjI)
ℓj , as desired.

The sum of null spaces is a direct sum. For each j, choose uj ∈ Null(T − λjI)
ℓj so

that

u1 + · · ·+ um = 0. (9.2)

Observe that, using qj(x) as above, we have

qj(x) = kj(x)(x− λ1)
ℓ1 · · · (x− λj−1)

ℓj−1(x− λj+1)
ℓj+1 · · · (x− λm)

ℓm

so qj(T )uk = 0 when j ̸= k. Thus, applying qj(T ) to both sides of Equation 9.2, one gets

qj(T )(u1 + · · ·+ um) = qj(T )0

0+ · · ·+ 0+ uj + 0+ · · ·0 = 0

=⇒ uj = 0

and therefore the sum is a direct sum.

Before stating the next result, we first look at an example for motivation.

Example 9C.17

Let T ∈ L(C4) be the operator whose matrix (in the standard basis) is given by

M(T ) =


17 20 16 4
−6 −5 −8 −2
−6 −10 −3 −2
20 33 25 11

.

Find a basis G for C4 so thatM(T,G) is upper-triangular the eigenvalues appearing along
the diagonal.

It is an exercise to check that T has a minimal polynomial of (x− 5)3, so only the eigenvalue
λ = 5. First we find a basis for Null(T − 5I):

Null(T − 5I) = Span
(
(3,−2, 0, 1), (7,−5, 1, 0)

)
.

and so we take
g1 = (3,−2, 0, 1) and g2 = (7,−5, 1, 0).

Now we find a basis for Null(T − 5I)2. We note, however, that Null(T − 5I)n is a subspace of
Null(T − 5I)n+1 for all n, so we want to actually extend the basis for Null(T − 5I) to a basis
for Null(T − 5I)2.

Null(T − 5 Id)2 = Span
(
(0, 0, 0, 1), (−1, 0, 2, 0), (−3, 2, 0, 0)

)
.
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and so we take
g3 = (0, 0, 0, 1).

Lastly we extend the basis for Null(T − 5 Id)2 into a basis for Null(T − 5 Id)3 = C4, taking
g4 = (1, 0, 0, 0).

And now in the G = {g1, g2, g3, g4} basis, it can be checked that

M(T,G) =


5 0 6 24
0 5 −2 −8
0 0 5 1
0 0 0 5

.

So why is the matrix in the last example upper triangular? Here’s the observation: For any vector
v ∈ Null(T − 5I)2, the vector (T − 5I)v ∈ Null(T − 5I). So, there are scalars k1, k2 for which

(T − 5I)g3 = k1g1 + k2g2 =⇒ Tg3 = 5g3 + k1g1 + k2g3.

Thus the matrix representationM(g3,G) =


k1
k2
5
0

.

Lemma 9C.18: A generalized eigenbasis

Let T ∈ L(V ). There is a basis G for T (a “generalized eigenbasis”) in which M(T,G) is
upper triangular and the diagonal entries are the eigenvalues.

Proof of Lemma 9C.18. Let p(x) = (x − λ1)
ℓ1 · · · (x − λm)

ℓm be the minimal polynomial for T .
From Lemma 9C.16, we have that

V = Null(T − λ1I)
ℓ1 ⊕ · · · ⊕ Null(T − λmI)

ℓm

and so it suffices to consider each null space independently.

Find a basis for Null(T − λjI). For each i = 1, . . . , ℓj, extend the basis for Null(T − λjI)
i

to a basis for Null(T − λjI)
i+1. Repeat this process for each j = 1, . . . ,m to achieve a basis

G = {g1, . . . , gn}.
To see that this matrix is upper-triangular, take a basis vector gd of Null(T − λjI)

i+1 which is
not contained in Null(T − λjI)

i, we see that

(T − λI)gd ∈ Null(T − λj)
i

=⇒ (T − λjI)gd = [linear combination of Null(T − λj)
i basis]

=⇒ Tgd = [linear combination of Null(T − λj)
i basis] + λjgd
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and so column d of the matrix will be

M(Tgd,G) =



∗
...
∗
λj

0
· · ·
0



In the last proof, the number of times that the eigenvalue λj appears on the diagonal is always
greater than or equal to ℓj (since you get at least one new basis vector for each Null(T − λjI)

i, as
i = 1, . . . , ℓj).

Proof of the Cayley–Hamilton theorem. Let T ∈ L(V ) be an operator on an n-dimensional vector
space.

Case 1. Suppose V is a C-vector space. Find a generalized eigenbasis G for V , a la
Lemma 9C.18, so that the matrixM(T,G) is upper-triangular with eigenvalues on the
diagonal. For simplicity, let dj be the number of times that λj appears on the diagonal.
AsM(T ) is upper triangular, the characteristic polynomial p(x) for T is the product of
the diagonal entries (see Exercise 9C.8), hence

p(x) = (x− λ1)
d1 · · · (x− λm)

dm .

Let q(x) = (x − λ1)
ℓ1 · · · (x − λm)

ℓm be the minimal polynomial for T . Our above
observation yields

p(x) = (x− λ1)
d1−ℓ1 · · · (x− λm)

dm−ℓmq(x)

whence

p(T ) = (T − λ1I)
d1−ℓ1 · · · (T − λmI)

dm−ℓmq(T )

= (T − λ1I)
d1−ℓ1 · · · (T − λmI)

dm−ℓm0

= 0

Case 2. Suppose V is a K-vector space with K ̸= C and dim(V ) = n. Let A =M(T ) be the
matrix for T in the standard basis. Since A has entries in K and a standing assumption
in this class is that K ⊆ C, we can let S ∈ L(Cn) be the operator whose matrix in the
standard basis is also A. Then we have that, for all x,

p(x) = det(xI − T ) = det(xI − A) = det(xI − S).

Appealing to case 1, we must have that 0 = p(S) = p(A) = p(T ).
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9C.III Bits and Bobs

Definition

Let T ∈ L(V ) be an operator on a finite-dimensional vector space, and let λ be an eigenvalue
of T . The algebraic multiplicity of λ is the number of times that the (λ− x) appears in
the characteristic polynomial.

The geometric multiplicity of λ is the dimension of the eigenspace E(λ, T ).

For lack of any good notation, one may write AlgMult(λ) and GeoMult(λ) to represent the
algebraic and geometric multiplicities, respectively.

Lemma 9C.19

For any operator T ∈ L(V ), 1 ≤ GeoMult(λ) ≤ AlgMult(λ).

Sketch. That GeoMult(λ) ≥ 1 is immediate: λ is an eigenvalue for T if and only if Null(T − λI)
is nontrivial (i.e. has dimension greater than 0).
To see that GeoMult(λ) ≤ AlgMult(λ), let p(x) = · · · (x− λ)ℓ · · · be the minimal polynomial for
T . We observe that

GeoMult(λ) = dimE(λ, T ) = dimNull(T − λI) ≤ dimNull(T − λI)ℓ = AlgMult(λ).

Theorem 9C.20

An operator T ∈ L(V ) is diagonalizable if and only if, for every eigenvalue λ, AlgMult(λ) =
GeoMult(λ).

Proof. This follows immediately from the work in the above lemma, and letting ℓ be as in the
lemma, the fact that T is only diagonalizable if ℓ = 1 (thm:diag-and-min-poly).

Theorem 9C.21: Laplace’s Cofactor Expansion

Let A be an n× n matrix and let Mi,j denote the (n− 1)× (n− 1) submatrix obtained by
deleting Row i and Column j from A. The determinant of an n×n matrix A can be computed
along the ith row as the sum

detA =
n∑

ℓ=1

(−1)i+ℓAi,ℓ det(Mi,ℓ)

or along the jth column as the sum

detA =
n∑

ℓ=1

(−1)ℓ+jAℓ,j det(Mℓ,j).

The quantity (−1)i+j det(Mi,j) is sometimes called the (i, j)-cofactor and the above sums
are called cofactor expansions.
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Proof. Since the determinant is the unique alternating n-linear form on the columns of A which is 1
when A = I, it suffices to check that the expression above has these properties.

Alternating. We argue only in the case of expanding along a particular row (that
det(A) = det(At) implies the column expansion result holds.) We choose to expand along
Row i. Suppose that A has Column j and Column k are equal (with j ̸= k). Upon
removing Row i and Column ℓ from the matrix, when ℓ ̸= j and ℓ ̸= k the resulting matrix
Mi,ℓ still has repeated columns.


A1,1 A1,2 A1,3 A1,4 A1,5

A2,1 A2,2 A2,3 A2,4 A2,5

A3,1 A3,2 A3,3 A3,4 A3,5

A4,1 A4,2 A4,3 A4,4 A4,5

A5,1 A5,2 A5,3 A5,4 A5,5



A1,1 A1,2 A1,3 A1,4 A1,5

A2,1 A2,2 A2,3 A2,4 A2,5

A3,1 A3,2 A3,3 A3,4 A3,5

A4,1 A4,2 A4,3 A4,4 A4,5

A5,1 A5,2 A5,3 A5,4 A5,5



A1,1 A1,2 A1,3 A1,4 A1,5

A2,1 A2,2 A2,3 A2,4 A2,5

A3,1 A3,2 A3,3 A3,4 A3,5

A4,1 A4,2 A4,3 A4,4 A4,5

A5,1 A5,2 A5,3 A5,4 A5,5


i = 3, ℓ = 1 i = 3, ℓ = 2 i = 3, ℓ = 3


A1,1 A1,2 A1,3 A1,4 A1,5

A2,1 A2,2 A2,3 A2,4 A2,5

A3,1 A3,2 A3,3 A3,4 A3,5

A4,1 A4,2 A4,3 A4,4 A4,5

A5,1 A5,2 A5,3 A5,4 A5,5



A1,1 A1,2 A1,3 A1,4 A1,5

A2,1 A2,2 A2,3 A2,4 A2,5

A3,1 A3,2 A3,3 A3,4 A3,5

A4,1 A4,2 A4,3 A4,4 A4,5

A5,1 A5,2 A5,3 A5,4 A5,5


i = 3, ℓ = 4 i = 3, ℓ = 5

As such, we have

n∑
ℓ=1

Ai,ℓ(−1)i+ℓ det(Mi,ℓ) = Ai,j(−1)i+j det(Mi,j) + Ai,k(−1)i+k det(Mi,k). (9.3)

Now, Mi,j and Mi,k have the same columns, but permuted.

(−1)i+j det(Mi,j) (−1)i+k det(Mi,k)

= =

(−1)i+j det

 | | | |
m1 m3 m4 m5

| | | |

 (1,2,3,4)7→(1,3,2,4)−−−−−−−−−−−−−→
τ2,3

(−1)i+k det

 | | | |
m1 m2 m3 m5

| | | |



Let σ be the permutation sending Mi,j to Mi,k. Then, acknowledging that Ai,j = Ai,k,
Equation 9.3 becomes

Ai,j(−1)i+j det(Mi,j) + Ai,k(−1)i+k det(Mi,k) (9.4)

= Ai,j(−1)i+j det(Mi,j) + Ai,k(−1)i+k sgn(σ) det(Mi,j)

= Ai,j(−1)i+j det(Mi,j)

[
1 + (−1)k−j sgn(σ)

]
(9.5)

(9.6)

WLOG, assuming k > j. Observe that column aj in A becomes column mj in Mi,k, and
column ak in A becomes column mk−1 in Mi,j. As such, it must take (k − 1− j) column
transpositions in order to change Mi,j into Mi,k:

σ = τk−1,k−2 ◦ · · · ◦ τj+1,j.
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Therefore, Equation 9.5 becomes

Ai,j(−1)i+j det(Mi,j)

[
1 + (−1)k−j sgn(σ)

]
= Ai,j(−1)i+j det(Mi,j)

[
1 + (−1)k−j(−1)k−j−1

]
= Ai,j(−1)i+j det(Mi,j)

[
1 + (−1)2k−2j−1

]
= Ai,j(−1)i+j det(Mi,j)

[
1 + (−1)

]
= 0

and thus the expression is alternating.

Multilinear. The multilinearity follows from the fact that it is defined as a linear combination
of determinants, which are themselves multilinear.

One. Taking A = I, the n× n identity matrix, the only nonzero Aij in the alternating sum
occurs when i = j, and the resulting submatrix Mi,i is the identity matrix, and
det(Mi,i) = 1.

Since cofactor expansion suggests that we get the freedom to choose which row or column we
expand along, the reasonable thing to do is to find the row or column with the most rows possible
and use that.

Example 9C.22

Use cofactor expansion to compute detA, where A =


3 0 π2 −1 0

ζ(2) 4
√
e 0.7 1

0 0 1 0 0
5 1 cos(1) 5 0
−5 0 1

100
2 0

.

First expanding along row 3:

det(A) = det


3 0 π2 −1 0

ζ(2) 4
√
e 0.7 1

0 0 1 0 0
5 1 cos(1) 5 0
−5 0 1

100
2 0

 = (1) det


3 0 −1 0

ζ(2) 4 0.7 1
5 1 5 0
−5 0 2 0


Now expanding along column 4:

det(A) = (1) det


3 0 −1 0

ζ(2) 4 0.7 1
5 1 5 0
−5 0 2 0

 = (1)(1) det

 3 0 −1
5 1 5
−5 0 2


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Now expanding along column 2:

det(A) = (1)(1) det

 3 0 −1
5 1 5
−5 0 2

 = (1)(1)(1) det

(
3 −1
−5 2

)
= (1)(1)(1)(1) = 1
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9D Tensor Products

This section was just for funsies at the end of the course and is mostly supposed to be a survey/brief
introduction to tensor products. It’s going to be lacking in proofs in favor of a few explicit
computations. While your instructor agrees that the approach taken by the textbook author is
sufficiently aligned with his higher-level treatment of other material, in this instance, your instructor
thinks that a few explicit, low-dimensional computations are a necessary supplement.
Fact. Let V,W be K-vector spaces. Then the Cartesian product V ×W is a vector space with
component-wise operations. Letting +V and +W be the vector operations on V and W
(respectively) and k a scalar:

(v1,w1) + (v2,w2) = (v1 +V v2,w1 +W w2)

k(v,w) = (kv, kw)

More generally, if V1, . . . , Vm are K-vector spaces, the m-fold Cartesian product V1 × · · · × Vm is a
K-vector space.

Tensor products are extremely useful for a myriad of reasons, many (most?) of which are simply
outside of the scope of this course. In the context of this class, maybe two compelling reasons are
the following:

• Bilinear forms β : V × V → K are not actually linear maps, which means that we can’t utilize
the full power of linear algebra to work with them. Observe that,

β(k(v1,v2)) = β(kv1, kv2) = k2β(v1,v2)

and other than for some very specific k or v1, v2-values, this is generally not equal to
kβ(v1,v2). With a tensor product, we are able to turn bilinear (or even multilinear) maps
into honest linear maps.

• Vector spaces do not naturally come equipped with a product operation (R3 and the cross
product is a special example, as is P(K) with the usual polynomial multiplication). The
tensor product allows us to define something akin to a product operation.

Definition

Let V1, . . . , Vm be K-vector spaces. An m-linear functional is a map

β : V1 × · · · × Vm → K

where
x 7→ β(v1, . . . , vi−1, x, vi+1, . . . , xm)

is a linear map for each i.

Recall that, for each vector space V , the dual space V ′ is the vector space of linear maps
L(V,K).
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Definition

Let V1, . . . , Vm be K-vector spaces. The tensor product of these vector spaces is

v1 ⊗ · · · ⊗ Vm := {multilinear functionals β : V ′
1 × · · · × V ′

m → K} .

Given vectors vi ∈ Vi, the tensor product of v1, . . . , vn is the element of V1 ⊗ · · · ⊗ Vm,
denoted v1 ⊗ · · · ⊗ vm, so that

v1 ⊗ · · · ⊗ vm(φ1, . . . , φm) = φ1(v1)φ2(v2) · · ·φm(vm).

for all linear functionals φi ∈ V ′
i .

This seems like kind of an odd choice of definition to fix our non-linear multilinearity problem, but I
think the spirit of the choice is that it “hides” the multilinearity part. For all intents and purposes,
you can (should?) consider this to just be a technicality and not get bogged down by it. A “natural”
choice of basis is coming shortly, and once you have that you’re find to think of this as a more
normal vector space.

Proposition 9D.1

Let v1 ⊗ · · · ⊗ vm ∈ V1 ⊗ · · · ⊗ Vm, let λ ∈ K, and for each i let wi ∈ Vi. Then

v1 ⊗ · · · ⊗ (vi +wi)⊗ · · · ⊗ vm

= (v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vm) + (v1 ⊗ · · · ⊗wi ⊗ · · · ⊗ vm)

and

v1 ⊗ · · · ⊗ (λvi)⊗ · · · ⊗ vm = λ(v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vm)

This is a straightforward proof.

Proposition 9D.2

Let V1, . . . , Vm be K-vector spaces. Then the tensor product space V1⊗ · · · ⊗ Vm is a K-vector
space.

This is a straightforward proof.

Since the tensor product space is a vector space, it’s natural to ask about its basis.

Theorem 9D.3

Let V1, . . . , Vm be K-vector spaces with bases B1, . . . ,Bm, respectively. Then

{b1 ⊗ · · · ⊗ bm : bi ∈ Bi}

is a basis for V1 ⊗ · · · ⊗ Vm.

Proof. Left as an exercise; but straightforward.
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Corollary 9D.4

dim(V1 ⊗ · · · ⊗ Vm) =
m∏
j=1

dimVj

9D.I Universal Property of Tensor Products

One of the reasons that tensor products are so useful is the fact that they turn multilinear maps
into linear maps (and in a unique way). This is sometimes called a universal property.

Definition: multilinear map

Let V1, . . . , Vm,W be K-vector spaces. A map

F : V1 × · · · × Vm → W

is a multilinear map if it is linear in each component, that is, for each i = 1, . . . ,m, and
each scalar λ ∈ K and all vectors xi,y1 ∈ Vi,

F (v1, . . . , λxi + yi, . . . ,vm)

= λF (v1, . . . ,xi, . . . ,vm) + F (v1, . . . ,yi, . . . ,vm)

Theorem 9D.5: Universal Property of Tensor Products

For every multilinear map
Γ : V1 × · · · × Vm → W

there is a unique linear map

Γ̃ :V1 ⊗ · · · ⊗ Vm → W

Γ̃(v1 ⊗ · · · ⊗ vm) = Γ(v1, . . . ,vm)

Proof. Left as an exercise.

Example 9D.6: dot product on R2

Consider the usual dot product on R2, which we write as the function

Γ :R2 × R2 → R
Γ(v,w) = v ·w = v1w1 + v2w2

FindM(Γ̃) in some basis and verify thatM(Γ̃)M(v ⊗w) =M(Γ̃(v ⊗w)).

Let {e1, e2} be the standard basis for R2, and let

{e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2}
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be the standard basis for R2 ⊗ R2. Then we have that

Γ̃(e1 ⊗ e1) = e1 · e2 = 1 Γ̃(e1 ⊗ e2) = e1 · e2 = 0

Γ̃(e2 ⊗ e1) = e2 · e1 = 0 Γ̃(e2 ⊗ e2) = e2 · e2 = 1

In the standard (tensor product) basis, we thus have

M(Γ̃) =
(
1 0 0 1

)
Now, let v,w ∈ R2. We see that

v ⊗w = (v1e1 + v2e2)⊗ (w1e1 + w2e2)

= v1w1e1 ⊗ e2 + v1w2e1 ⊗ e2 + v2w1e2 ⊗ e1 + v2w2e2 ⊗ e2

and thus, in the standard (tensor product) basis, we see that

M(Γ̃)M(v ⊗w) =
(
1 0 0 1

)
v1w1

v1w2

v2w1

v2w2

 =
(
v1w1 + v2w2

)
=M(v ·w).

Example 9D.7: cross product on R3

Consider the usual cross product on R3, which we write as the function

Γ :R3 × R3 → R3

Γ(v,w) = v ×w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1)

FindM(Γ̃) in some basis and verify thatM(Γ̃)M(v ⊗w) =M(Γ̃(v ⊗w)).

Let {e1, e2, ee} be the standard basis for R3 and let

{e1 ⊗ e1, e1 ⊗ e2, e1 ⊗ e3, . . . , e3 ⊗ e3}

be the standard basis for R3 ⊗ R3. See that, in the standard (tensor product) basis,

M(Γ̃) =

0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0


and in the standard (tensor product) basis,

M(v ⊗w) =
(
v1w1 v1w2 v1w3 v2w1 v2w2 v2w3 v3w1 v3w2 v3w3

)t
so we have

M(Γ̃)M(v ⊗w) =

v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

.
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9D.II Tensors of mixed type

Some of the most useful tensor products involve only a single K-vector space V and its dual space
V ′. Every author will have their own particular notation for this.

Definition

Let V be a K-vector space and V ′ the dual space. The space of (m,n)-tensors (sometimes
called m-contravariant / n-covariant tensors) is the tensor prodct space

T (m,n)(V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
m

⊗V ′ ⊗ · · · ⊗ V ′︸ ︷︷ ︸
n

Theorem 9D.8

The space T (1,1)(V ) is isomorphic to L(V ).

For every vector v ∈ V and covector φ ∈ V ′, we can define a linear transformation Tv⊗φ for
which

Tv⊗φ(w) = φ(w)v

Let’s see explicitly what’s happening with this linear map

For simplicity, take V = R2 and K = R. Using {e1, e2} and {ε1, ε2} as bases for V and V ′,
respectively, we write

v = xe1 + ye2 and φ = zε1 + wε2.

Now, we compute

Tv⊗φ(e1) = (zε1 + wε2)︸ ︷︷ ︸
φ

(e1) (xe1 + ye2)︸ ︷︷ ︸
v

= (zε1(e1) + wε2(e2))︸ ︷︷ ︸
φ(e1)

(xe1 + ye2)︸ ︷︷ ︸
v

= z (xe1 + ye2)︸ ︷︷ ︸
v

= zxe1 + yze2

an a similar computation yields

Tv⊗φ(e2) = xwe1 + ywe2

Hence the matrix for T in the (tensor product) basis is

M(Tv⊗φ) =

(
xz yz
xw yw

)
.

I’ll leave it to you to check that

v ⊗ φ = xze1 ⊗ ε1 + xwe1 ⊗ ε2 + yze2 ⊗ ε1 + ywe2 ⊗ ε2.
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Proof of ??. Assume V is n-dimensional and let F : T (1,1)(V )→ L(V ) be the map

F(v ⊗ φ) = Tv⊗φ.

Explicitly, if v ⊗ φ =
∑

Ai,jei ⊗ εj, then

F
(∑

Ai,jei ⊗ εj

)
=

A1,1 · · · A1,n
...

...
An,1 · · · An,n

.

The claim is that this is an isomorphism.
Left as an exercise.

Example 9D.9

Let V be a K-vector space evaluation map

e :T (1,1)(V )→ K
e(v, φ) = φ(v)

Since there is an isomorphism between T (1,1) and L(V ), e can be regarded as a map E :
L(V )→ K.

Find an explicit description for this map in the case that K = R and V = R2 (which is
sufficient; the same observation holds in general).

We take the same basis and vectors from the work above:
For simplicity, take V = R2 and K = R. Using {e1, e2} and {ε1, ε2}
as bases for V and V ′, respectively, we write

v = xe1 + ye2 and φ = zε1 + wε2.

Then

v ⊗ φ = xze1 ⊗ ε1 + xwe1 ⊗ ε2 + yze2 ⊗ ε1 + ywe2 ⊗ ε2.

and

M(Tv⊗φ) =

(
xz yz
xw yw

)
.

Now we compute e(v ⊗ φ):

e(v ⊗ φ) = φ(v)

(zε1 + wε2)(xe1 + ye2)

= (zε1 + wε2)(xe1 + ye2)

= xzε1(e1) + yzε1(e2) + wxε2(e1) + wyε2(e2)

= xz + 0 + 0 + wy

The evaluation map is the sum of the diagonal entries ofM(Tv⊗φ).

(This is called the “trace” of the matrix, and the trace is actually the sum of the the eigenvalues.)
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