Math 3144: Linear Algebra I Spring 2024

Last revised June 25, 2024

Instructor: Joseph Wells, PhD **Phone:** 540-231-6536

(He/Him/His) Homepage: Joseph-Wells.com

Office: 439 McBryde Hall Email: Joseph. Wells@vt.edu

Office Hours: Mon (11:00AM-12:30PM), Wed (1:30PM-3:00PM)

other times by appointment

Text: Linear Algebra Done Right (4th Ed.) by Sheldon Axler

PDF access via VT Library https://virginiatech.on.worldcat.org/oclc/1406837723

or the author's website https://linear.axler.net/

Canvas: https://canvas.vt.edu/courses/187635

Course Content and Delivery:

This is an introductory <u>rigorous</u> course in linear algebra, and students are expected to write proofs. Math 3144 covers general finite dimensional vector spaces, dual spaces, linear transformations, algorithms for solving systems of linear equations, determinants, eigenvector/eigenvalue problems, inner product spaces, and related theory. This is an *in-person course* and your instructor has no intention of recording video lectures.

Per Math Department policy, no other specifics of this course policy sheet may be made publicly available.

Tentative Schedule

Week 1	M.L.K. Junior Day §1B - Definition of a Vector Space §1C - Subspaces
Week 2	§2A - Span and Linear Independence §2B - Bases
Week 3	§2B - Bases §2C - Dimension §3A - The Vector Space of Linear Maps
Week 4	§3A - The Vector Space of Linear Maps §3B - Null Spaces/Kernels and Ranges
Week 5	Exam 1 Review Exam 1
Week 6	§3C - Matrices §3D - Invertibility and Isomorphisms
Week 7	§3D - Invertibility and Isomorphisms Supplementary - Proofs of Reduced Row Echelon Form and Gauss-Jordan Elimination §5A - Invariant Subspaces
Week 8	Spring Break
Week 9	§5A - Invariant Subspaces §5B - The Minimal Polynomial §5D - Diagonalizable Operators
Week 10	§5D - Diagonalizable Operators
Week 11	§9A - Bilinear Forms and Quadratic Forms Exam 2 Review Exam 2
Week 12	§9A - Bilinear Forms and Quadratic Forms §9B - Alternating Multilinear Forms
Week 13	§9B - Alternating Multilinear Forms §9C - Determinants
Week 14	§9C - Determinants
Week 15	§9C - Determinants Supplementary - Proof of Laplace's Cofactor Expansion

 $\S{9D}$ - Tensor Products (the world's briefest introduction)

Week 16 Final Exam Review