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Preface

There are many different approaches to linear algebra, and everyone has their preference. This
document is largely compiled from the course I taught in the Spring of 2020 at Virginia Tech, where
the book (Linear Algebra: A Modern Introduction 4th Ed. by David Poole) was out of my control.
Over the years, I’ve modified the precise topic ordering, which mostly follows the book with a few
exceptions.

Although not formally stated anywhere, this class is largely geared towards math-adjacent students
(engineering, physics, computer science, etc.) and so these notes and the presentation are at a lower
level of abstraction (and rigor) than what one might experience in another introductory linear algebra
course. In hindsight, I probably would have picked both a different text and order in which to
introduce the topics – it seems perverse to leave the phrase “vector space” until the 6th chapter!
Nevertheless, I did my best to gently introduce concepts as needed in order to more smoothly segue
the topics. As well, many of the homework exercises are designed to bridge certain theoretical gaps in
the material and introduce concepts much earlier than the text (notably, linear transformations).

I would like to thank the many students who inadvertently served as my copy editors over the years;
now I understand why authors seem to produce new versions every few years (somehow there are typos
that persist for generations).

iv



Chapter 1

Vectors

1.1 The Geometry and Algebra of Vectors

Especially following Descartes’ seminal contribution La Géométrie, we frequently blur the line between
geometry and algebra – the reader is assuredly familiar with thinking about real numbers as points on
a number line, or as ordered pairs of real numbers as points in the plane. But the real numbers come
equipped with some natural algebraic operations – we can add and multiply them (hence also subtract
and divide them). It’s not unreasonable to ask whether this algebraic structure continues to ordered
pairs of real numbers, but of course doing so requires defining the operations for ordered pairs of real
numbers that are analogous to addition and multiplication. As it turns out that the näıve idea for
doing so is very close to correct, although we’ll see that we have to weaken the notion of multiplication
slightly to allow for a meaningful geometric interpretation.

1.1.1 Geometric Interpretation of Vector Operations

Now we’ll take a geometric interpretation of vectors to help justify the naturality of the operations of
vector addition and scalar multiplication. Let o = (0, 0), p1 = (x1, y1), p2 = (x2, y2) be some points in
the plane. Let −→op1 be the arrow from o to p1, and similarly let −→op2 be the arrow from o to p2.
Furthermore, let p3 = p1 + p2 (with addition as described in Example 1.1.2). Since arrows communicate
to us a notion of length and direction, the arrow −→op3 can be described as the total displacement and
direction indicated by placing the two arrows −→op1 and −→op2 “head-to-tail”, as is illustrated in Figure 1.1.

p1

p2

p3

−→op1

−→op2

p1

p2

p3−→op3

1
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Figure 1.1: The original vectors (left) and “head-to-tail” vector addition (right).

With p1 as before, consider some real number r. By the scalar multiplication operation described in
Example 1.1.2, we can consider the point p4 = rp1 = (rx1, ry1). As the name suggests, scalar
multiplication by a real number r has the effect of scaling the arrow −→op1. In the case that r > 0, the
arrow −→op4 points in the same direction as −→op1 and its length is scaled by r. In the case that r < 0, the
arrow −→op4 points in the opposite direction of −→op1 and its length is scaled by |r|. (See Figure 1.2)

−→op4

−→op1

−→op4

−→op1

Figure 1.2: The original vector scaled by r > 0 (left) and r < 0 (right).

We can extend this same idea to ordered n-tuples of real numbers (x1, x2, . . . , xn), associating them
with arrows in n-dimensional space (the word “dimension” here should be understood only in an
intuitive sense; the definition will be made precise in a later chapter), which leads us to the following
definition.

1.1.2 Definitions and Examples

Notation: Z, Q, R, and ∈

We introduce the following notation:
� Z – this denotes the integers.
� Q – this denotes the rational numbers (i.e. fractions).
� R – this denotes the real numbers.
� ∈ – this means “is contained in the set”.

Example usage would be: x ∈ R, which translates to “x is a real number.”

or x ∈ {1, 2, 3} means “x is one of the numbers in the list {1, 2, 3}.”

Definition: (real) vector space

A (real) vector space is a set V of objects called vectors endowed with two operations:
� (vector) addition, denoted +

� scalar multiplication, denoted (no symbol)
satisfying the following properties: For all vector u,v,w and for all real numbers k, ℓ called
scalars k, ℓ ∈ R:
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1. [closure of addition] u+ v ∈ V

2. [commutativity of addition] u+ v = v + u

3. [associativity of addition] (u+ v) +w = u+ (v +w)

4. [existence of zero] There is some vector 0, called the zero vector so that v + 0 = v.

5. [existence of additive inverses] For each v in V , there is some vector −v for which
v + (−v) = 0.

6. [closure of scalar multiplication] kv ∈ V

7. [associativity of scalar multiplication] (kℓ)v = k(ℓv)

8. [distributivity] k(u+ v) = ku+ kv

9. [distributivity] (k + ℓ)u = ku+ ℓu

10. [existence of a multiplicative identity] If 1K is the multiplicative identity in R, then 1Kv = v.

Remark. For a real vector space, R is sometimes referred to as the field of scalars.

It turns out that vector spaces are very common and you’re probably already familiar with many of
them without even knowing it.

Example 1.1.1: R is a vector space.

The real numbers, denoted R, form a real vector space when endowed with the normal addition
and multiplication operations.

It is an exercise to the reader to show that this satisfies all of the vector space axioms.

Example 1.1.2: The xy-plane is a vector space.

The set of all ordered pairs of real numbers, (x, y), is a real vector space when endowed with the
following operations.

� addition:
(x1, y1) + (x2 + y2) = (x1 + x2, y1 + y2)

� scalar multiplication:
r(x, y) = (rx, ry)

The pair (0, 0) is the zero vector in this space.

It is an exercise to the reader to show that this satisfies all of the vector space axioms.

Example 1.1.3: Polynomials are a vector space.

The set of all polynomials with real coefficients and degree at most n (these are polynomials of
the form anx

n + · · · + a1x + a0), denoted Pn(R), is a vector space when considered the usual
addition and scalar multiplication.

� addition:

(anx
n + · · ·+ a0) + (bnx

n + · · ·+ b0) = (an + bn)x
n + · · ·+ (a0 + b0)



CHAPTER 1. VECTORS 4

� scalar multiplication:
r(anx

n + · · ·+ a0) = (ran)x
n + (ra0)

The number 0 (i.e. the constant polynomial 0) is the zero vector in this space, and this space is
sometimes denoted Pn(R).

It is an exercise to the reader to show that this satisfies all of the vector space axioms.

Example 1.1.4: Continuous functions are a vector space

The set of all continuous real-valued functions on R (these are functions f : R→ R), denoted
C(R) is a vector space when considered with the usual function addition and scalar multiplication.

� addition:
f1(x) + f2(x) = (f1 + f2)(x)

� scalar multiplication:
r(f(x)) = (rf)(x)

The constant function f(x) = 0 is the zero vector in this space, and this space is denoted C(R).

It is an exercise to the reader to show that this satisfies all of the vector space axioms.

Notation: Rn

Rn is the set of arrays with n real entries of the form

[
x1, . . . , xn

]
or

x1
...
xn

.
In each array above, the real number xi is called the ith component of the array.

Remark. Order matters. Arrays are always ordered left-to-right, top-to-bottom.

Theorem 1.1.5: Rn is a vector space

Rn is a vector space with addition given byx1
...
xn

+

y1...
yn

 =

x1 + y1
...

xn + yn

,
with scalar multiplication given by

r

x1
...
xn

 =

rx1
...

rxn

,
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and with zero vector 0...
0

.
Definition: row/column representations of vectors

Any vector v in Rn may be written as a row vector

v =
[
v1 · · · vn

]
or as a column vector

v =

v1...
vn

.
Each of these presentations represents the same object and should be regarded as the same. However,
certain computations are very much reliant upon the choice of representation. Throughout this text,
we will almost exclusively prefer column vectors and will be very deliberate whenever using row
vectors. One could equally well develop the theory of linear algebra using row vectors, so this is merely
a stylistic choice on the author’s part.

For the sake of concreteness, the remainder of the text will be devoted almost exclusively to developing
the theory of linear algebra using Rn. It is a fact that every finite-dimensional vector space can be
regarded being “the same” as Rn, and so there is no loss of generality in making this specification.
Most of these notions do carry over to infinite-dimensional vector spaces, although there is considerably
more prerequisite knowledge and technical detail needed to discuss such things with any sort of rigor.

1.1.3 Linear combinations

With the operations of addition and scalar multiplication, the fundamental building blocks of any
vector space are linear combinations.

Definition: linear combination

A vector u in Rn is a linear combination of the vectors v1, . . .vk if there are scalars r1, . . . , rk
so that

u = r1v1 + · · ·+ rkvk.

We say that the linear combination is trivial if r1 = r2 = · · · = rk = 0.

You can think of a linear combination as some sort of recipe - the vi’s are the ingredients, the ri’s are
the quantities of those ingredients, and u is the finished product. We also note that there is no obvious
relationship between k and n in the definition above. It could be that k = n, k ≤ n, or that k > n.
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Definition: standard basis vectors

In Rn, there are n vectors

e1 =


1
0
...
0

, e2 =


0
1
...
0

, · · · en =


0
0
...
1

.
which we call the standard basis vectors for Rn.

For now, ignore the word basis above; we will give technical meaning to that later. The reason these
are standard is because, when looking to decompose a vector u into a linear combination of vectors,
then simply picking apart the components is probably the most natural thing to try first.

Example 1.1.6

Show that the vector u =

56
7

 is a linear combination of the standard basis vectors, e1, e2, e3.

u =

56
7

 =

50
0

+

06
0

+

00
7

 = 5

10
0

+ 6

01
0

+ 7

00
1

 = 5e1 + 6e2 + 7e3

With the standard basis vectors above, one can be convinced that the linear combination that appears
is the unique such combination. However, in general, linear combinations need not be unique.

Example 1.1.7

Show that the vector u =

 1
−1
0

 is a linear combination of the vectors v1 =

 1
−1
1

, v2 =

−11
1

,
and v3 =

00
1

 in multiple ways.

u = 1v1 + 0v2 + (−1)v3

= 0v1 + (−1)v2 + 1v3

= (−2)v1 + (−3)v2 + 5v3

The reader may be wondering precisely when a given vector admits a unique linear combination. This
is a very important discussion with important implications, and so we will postpone this discussion for
a later chapter.
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1.1.4 Geometry of Linear Combinations

The reader is probably familiar with the Cartesian grid, which provides a useful geometric depiction of
the algebra. We similarly want to construct a grid that is uniquely suited to a given set of vectors in
Rn.

Definition: coordinate grid (nonstandard terminology)

The coordinate grid associated to a collection of vectors v1, . . . ,vn ∈ Rn is the grid formed
from all integer linear combinations of v1, . . . ,vn.

Example 1.1.8

Draw the coordinate grid in R2 formed from the standard basis vectors e1 and e2. See that it is
the usual Cartesian grid.

e1

e2

Example 1.1.9

Draw the coordinate grid in R2 formed from the vectors v1 = [1,−1]T and v2 = [1, 1]T .

v1

v2

Combined with the geometric intuition about vector addition and scalar multiplication, these
coordinate grids provide us with a way to visually identify the linear combination.



CHAPTER 1. VECTORS 8

Example 1.1.10

Draw a picture which shows how the vector u = [2, 4]T is a linear combination of the standard
basis vectors e1 and e2.

u = 2e1 + 4e2

2e1

4e2
u

Example 1.1.11

Draw a picture showing the vector u =

[
2
4

]
as a linear combination of the vectors v1 =

[
1
−1

]
and v2 =

[
1
1

]
. Determine the precise algebraic linear combination.

3v2

−v1

u

From the above figure it follows that

u = 3v1 − v2.

Of course, this coordinate grid can also help to show us when linear combinations are not unique.
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Example 1.1.12

Show that u =

[
2
4

]
is a linear combination of the vectors v1 =

[
2
0

]
, v2 =

[
2
2

]
, and v3 =

[
0
2

]
in

multiple different ways.

v1

v2

2v3
u u

v1

v2
v3

From the above we see that

u = v1 + 2v3 and u = v2 + v3.
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1.2 Length and Angle: The Dot Product

Definition: Dot Product

For vectors u =

u1
...
un

 and v =

v1...
vn

 in Rn, the dot product of u and v is

u · v = u1v1 + · · ·+ unvn.

Remark. Note that the dot product of two vectors is a scalar.

Remark. When u,v are written as column vectors, the product

uTv = [u1v1 + · · ·+ unvn]

is a vector in R1, so by identifying R1 with R, we have that uTv = u · v (the product uTv is called an
inner product).

The dot product has the following nice properties.

Theorem 1.2.1: Properties of the Dot Product

Let u,v,w ∈ Rn and let k be some scalar. Then
1. u · v = v · u
2. u · (v +w) = (u · v) + (u ·w)

3. (v +w) · u = (v · u) + (w · u)
4. (ku) · v = u · (kv) = k(u · v)
5. For every u we have that u · u ≥ 0, with equality if and only if u = 0.

Proof. The proof is entirely straightforward and left as an exercise to the reader.

1.2.1 Length

Notice that for a vector v = [x, y]T ∈ R2,

v · v = x2 + y2,

which, from the Pythagorean theorem, is precisely the square of the length of v.

v

x

y
√ x

2 +
y
2
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Definition: length

The length (or norm) of a vector v ∈ Rn is the scalar defined by

∥v∥ =
√
v · v =

√
v21 + v22 + · · ·+ v2n.

The following are immediate consequences of the properties of the dot product in Theorem 1.2.1

Theorem 1.2.2: Properties of Length

For v ∈ Rn and a scalar k,
1. ∥v∥ = 0 if and only if v = 0.

2. ∥kv∥ = |k|∥v∥.

By thinking of vector addition in terms of triangles, we observe the following classical geometry fact,
restated in terms of our dot product/length:

Theorem 1.2.3: Triangle Inequality

For all u,v ∈ Rn,

∥u+ v∥ ≤ ∥u∥+ ∥v∥.

u

v

u+ v

Definition: unit vector

A vector v is called a unit vector if ∥v∥ = 1.

Remark. Every unit vector in R2 corresponds to a point on the unit circle. Every unit vector in R3

corresponds to a point on the unit sphere. Generally, every unit vector in Rn corresponds to a point on
the unit (n− 1)-sphere.

Proposition 1.2.4: normalizing a vector

For any nonzero vector v ∈ Rn, the vector u =
v

∥v∥
is a unit vector in the direction of v.

Proof. Let v be any nonzero vector and let ℓ = ∥v∥ be its length. Then the vector
v

ℓ
is a unit vector

because ∥∥∥v
ℓ

∥∥∥ =
∥v∥
ℓ

=
ℓ

ℓ
= 1
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v
v

∥v∥ v

v

∥v∥

Figure 1.3: If ∥v∥ > 1 (pictured on the left), normalization effectively shrinks the vector.
If ∥v∥ < 1 (pictured on the right), normalization effectively stretches the vector.

Remark. Despite the similarities in name, “normalization” is unrelated to the concept of a “normal
vector.” What you’ll find is that “normal” is probably the most over-used word in mathematics.
Because there aren’t any around me as I type this, I’m going to go ahead and blame the physicists for
the abuse of language.

1.2.2 Distances

Recall that, for two points P (x1, y1) and Q(x2, y2) in the plane, we have that the distance between
them is given by

d(P,Q) =
√
(x1 − x2)2 + (y1 − y2)2

If we identify the point P (x1, y1) with the vector u = [x1, y1]
T and the point Q(x2, y2) with the vector

v = [x2, y2]
T , then the right-hand side of the equation is just ∥u− v∥. As such, we can define distances

between vectors using the obvious analog.

Definition: distance between vectors

Given two vectors u,v ∈ Rn, the distance between u and v is

d(u,v) = ∥u− v∥.

Example 1.2.5: relationship to the classical distance formula

1. Let P (x1, y1) and Q(x2, y2) be points in the plane. Compute the distance between P and
Q using the classical distance formula.

2. Let v =

[
x1

y1

]
and u =

[
x2

y2

]
be vectors in R2. Compute the distance between vectors u

and v using the given formula.
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Q(x2, y2)

P (x1, y1)

v=

[
x2

y2

]
u−v=

[
x1−x2

y1−y2

]

u=

[
x1

y1

]

1. INCOMPLETE

2. INCOMPLETE

Remark. The above example shows that the distance between vectors is measuring the distance
between the heads of the vectors.

1.2.3 Angles

Definition: angle between vectors

For any two nonzero vectors u,v ∈ Rn, the angle θ between u and v satisfies

cos θ =
u · v
∥u∥∥v∥

c

b

a

θ θ

v

u− v

u

This is a straightforward derivation using the law of cosines:

b2 = a2 + c2 − 2ac cos(θ)

Replacing the triangle on the left with the triangle formed from vectors u, v, u− v (as in the picture
above on the right), we have

∥u− v∥2 = ∥v∥2 + ∥u∥2 − 2∥u∥∥v∥ cos θ
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Expanding out the left-hand side of the above equation in terms of dot products, we get

∥u∥2 + ∥v∥2 − 2u · v = ∥v∥2 + ∥u∥2 − 2∥u∥∥v∥ cos θ

Canceling appropriately gives the desired formula.

Example 1.2.6

Compute the angle between the vectors u =

03
3

 and v =

−12
1

.
From the definition, we get that

cos θ =
u · v
∥u∥∥v∥

=
9

(3
√
2)(
√
6)

=

√
3

2

and thus

θ = arccos

(√
3

2

)
=

π

6
.

The following result is an immediate consequence of the definition of the angle between vectors.

Corollary 1.2.7

Two nonzero vectors u,v ∈ Rn are perpendicular if and only if u · v = 0.



Chapter 2

System of Linear Equations

2.1 Introduction to Linear Systems

Definition: (system of) linear equations

A linear equation in the variables x1, . . . , xn is an equation that can be written in the form

a1x1 + · · ·+ anxn = b

where a1, . . . , an are real numbers called coefficients and b is a real number called the constant
term.
A system of linear equations is a finite set of linear equations, each with the same variables
(and probably different coefficients).

a11x1 + a12x2 · · · a1nxn = b1
a21x1 + a22x2 · · · a2nxn = b2

... +
...

...
... =

...
am1x1 + am2x2 · · · amnxn = bm

Definition: solution (set)

A solution of a system of linear equations is a vector that v = [v1, . . . , vn]
T that simultaneously

satisfies every equation in the system. In other words,
a11v1 + a12v2 · · · a1nvn = b1
a21v1 + a22v2 · · · a2nvn = b2

... +
...

...
... =

...
am1v1 + am2v2 · · · amnvn = bm

The solution set of a linear system is the set of all solutions for a given system.

15
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Naturally-Occuring Linear Systems

Example 2.1.1: linear combinations

Consider the vectors used in Example 1.1.7:

u =

 1
−1
0

, v1 =

 1
−1
1

, v2 =

−11
1

, v3 =

00
1

.
Write down a linear system whose solutions would yield the coefficients necessary to write u as a
linear combination of v1,v2,v3. Write down some solution vectors to this linear system.

To write u as a linear combination of v1,v2,v3, we solve for x1, x2, x3 in the following equation:

u = x1v1 + x2v2 + x3v3

which we can expand as  1
−1
0

 = x1

 1
−1
1

+ x2

−11
1

+ x3

00
1


=

 x1

−x1

x1

+

−x2

x2

x2

+

 0
0
x3


=

 x1 − x2

−x1 + x2

x1 + x2 + x3


and this equality of vectors holds if and only if the following system is satisfied:

x− y = 1
−x+ y = −1

x+ y + z = 0

From Example 1.1.7, the following are each solutions to this system: 1
0
−1

,
 0
−1
1

,
−2−3

5

.
Example 2.1.2: linear combinations of polynomials

Let p1, p2, p3, p4 be the following polynomials:

p1(x) = 1− 2x+ 3x2 − 4x3

p2(x) = 5x+ 6x3

p3(x) = 2− 9x+ 6x2 − 14x3

p4(x) = x3
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Write a linear system whose solution gives the coefficients for writing p1 as a linear combination
of p2, p3, p4.

Let a, b, c be some unknown scalars. We want to write

p1(x) = ap2(x) + bp3(x) + cp4(x)

1− 2x+ 3x2 − 4x2 = a(5x+ 6x3) + b(2− 9x+ 6x2 − 14x3) + cx3

which rearranges to

1− 2x+ 3x2 − 4x2 = 2b+ (5a− 9b)x+ 6bx2 + (6a− 14b+ c)x3

Two polynomials are equal if and only if their corresponding coefficients are equal, so comparing
coefficients, we get 

2b = 1
5a − 9b = −2

6b = 3
6a − 14b + c = −4

Example 2.1.3: dot products

Let v1 = [9, 8, 7]T and v2 = [6, 5, 4]T . Write down a linear system whose solutions will be vectors
perpendicular to both v1 and v2. Verify that [1,−2, 1] is a solution to this system.

Recall Corollary 1.2.7that two vectors u1 and u2 are perpendicular if and only if u1 · u2 = 0.

Let x =

x1

x2

x3

 be a vector that simultaneously satisfies v1 · x = 0 and v2 · x = 0. This gives us

{
v1 · x = 0
v2 · x = 0

which produces the system {
9x1 + 8x2 + 7x3 = 0
6x1 + 5x2 + 4x3 = 0

It is straightforward to plug in x1 = 1, x2 = −2, and x3 = 1 into the system above and verify
that each equation is true.

Example 2.1.4: functions

Let f be the function given below, whose domain is R3 and range is R2:

f

x1

x2

x3

 =

[
x1 + x2

x2 − x3

]
.
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Write down a system which finds all vectors x ∈ R3 for which f(x) =

[
3
7

]
.

If we want to find all vectors v in R3 for which f(v) = [3, 7]T , we begin by writing this out

f

v1v2
v3

 =

[
3
7

]
[
v1 + v2
v2 − v3

]
=

[
3
7

]
and this last equation produces a linear system with two equations and three variables v1, v2, v3:{

v1 + v2 = 3
v2 − v3 = 7

Example 2.1.5: curve fitting

Let p be a cubic polynomial

p(x) = c3x
3 + c2x

2 + c1x
1 + c0.

Write down a linear system whose solutions are the polynomials whose graphs y = p(x) pass
through the points (−2, 3), (−1,−6), (1, 0), (3,−2). Then verify that

p(x) = −x3 + 2x2 + 4x− 5

is a solution to this system.

We are searching for a polynomial for which p(−2) = 3, p(−1) = −6, p(1) = 0, p(3) = −2. That
is, 

p(−2) = 3
p(−1) = −6
p(1) = 0
p(3) = −2

which produces the system
−8c3 + 4c2 − 2c1 + c0 = 3
−c3 + c2 − c1 + c0 = −6
c3 + c2 + c1 + c0 = 0

27c3 + 9c2 + 3c1 + c0 = −2

It is straightforward to plug in c3 = −1, c2 = 2, c1 = 4 and c0 = −5 in each equation above to
verify that they are correct.
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−2 −1 1 2 3

−10

−8

−6

−4

−2

2

4

6

8

10

Example 2.1.6

Show that, for every real number t, the vector v =

 0
3
−4

+ t

 1
−1
−1

 is a solution to the system

{
x1 + x2 = 3
x2 − x3 = 7

Recall that v = [x1, x2, x3]
T (or at least, this is implied). Rewriting v slightly, we have

v =

 0
3
−4

+ t

 1
−1
−1

 =

 t
3− t
−4− t


whence x1 = t, x2 = 3− t, x3 = −4− t. One then quickly checks that{

(t) + (3− t) = 3
(3− t)− (−4− t) = 7

and thus, no matter the value of t, v (as above) is a solution to the given system.

Definition: parametric form

The parametric form of the solution set is when it is written as

{v0 + t1v1 + · · ·+ tnvn where ti ∈ R}

for some vectors vi. The ti terms above are called parameters.
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Solution Set Analysis

Definition: (in)consistency

A system of linear equations is called consistent if it has at least one solution, and inconsistent
if it has no solutions.

Fact. A system of linear equations with real coefficients has one of three possible solution sets:

(a) a unique solution (consistent)

(b) infinitely many solutions (consistent)

(c) no solutions (inconsistent)

You can convince yourself of the above trichotemy by considering how it works for systems of equations
with two variables (whose solution sets are graphically lines in the Cartesian plane). Two lines can
either intersect in a single point (if they are transverse), intersect in infinitely many points (if they
coincide), or no points (if they are parallel). The proof is also very straightforward, but happens to
rely on some algebraic manipulations that aren’t formally covered until Chapter 3. We’ve recorded it
here for posterity.

Proof. Suppose Ax = b has two solutions, x1 and x2. That is, suppose

Ax1 = b (2.1)

and Ax2 = b. (2.2)

The claim is that, for any scalar t, (1− t)x1 + tx2 is also a solution. Indeed,

A[(1− t)x1 + tx2] = A(1− t)x1 + Atx2 (distributive property)

= (1− t)Ax1 + tAx2 (commutativity scalar multiplication)

= (1− t)b+ tb (Equation 2.1 and 2.2)

= [(1− t) + t]b (distributive property)

= b.

Example 2.1.7

Determine whether or not the following system is consistent. If it is consistent, how many
solutions does it have? {

2x − y = 3
x + 3y = 5

Each equation in the linear system can be interpreted as a line in the plane. So first we draw
these lines.
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The lines intersect at the point (2, 1), and it is straightforward to verify that [2, 1]T is a solution,
hence the system is consistent.

Using ad-hoc methods, we see that the first equation is only true when y = 2x− 3. Any solution
to the second equation must thus satisfy x+ 3(2x− 3) = 5, which is true precisely when x = 2.
Using this value in the equation y = 2x − 3 produces y = 1. There are no other options for
solutions, hence it has a unique solution.

Remark. Solutions to a linear system (with two variables) correspond to points of intersections between
the lines represented by the equations. Equations with 3 variables correspond to planes in
3-dimensional space, and solutions correspond again to intersections of these planes.

Example 2.1.8

Determine whether or not the following system is consistent. If it is consistent, how many
solutions does it have? {

x + 3y = 6
2x + 6y = 6

Plotting the lines as in the previous example,

We see that the lines are parallel. It follows then that there are no solutions (because there are
no points of intersection), hence the system is inconsistent.

Example 2.1.9

Determine whether or not the following system is consistent. If it is consistent, how many
solutions does it have? {

3x − 4y = 12
−6x + 8y = −24
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Plotting the lines as in the previous example,

Since the two lines intersect at every point, there are infinitely-many solutions to the system.

Definition: equivalent linear systems

Two systems of linear equations are called equivalent if they have the same solution set.

Example 2.1.10: equivalent systems

Determine which, if any, of the following systems are equivalent.

(a)

{
x + 3y = 5
2x − y = 3

(b)

{
2x − y = 3
x + 3y = 5

(c)

{
x − 3y = 6
2x − y = 3

(d)

{
10x + 30y = 50
2x − y = 3

(e)

{
x + 3y = 5

−7y = −7

(f)

{
10x + 30y = 50
x + 3y = 5

(a)

(b)

(c)

(d)

(e)

(f)

From the above, we see that (a), (b), (d), and (e) all have the solution set

{[
2
1

]}
, hence are

equivalent. (c)’s solution set is

{[
3
3

]}
and (f)’s solution set is

{[
5
0

]
+ t

[
−3
1

]
: where t ∈ R

}
.
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Definition: augmented/coefficient matrix

Given a system of linear equations
a11x1 + a12x2 · · · a1nxn = b1
a21x1 + a22x2 · · · a2nxn = b2

... +
...

...
... =

...
am1x1 + am2x2 · · · amnxn = bm

the corresponding augmented matrix is
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

...
...

am1 am2 · · · amn bm


and the corresponding coefficient matrix is

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn


Remark. If A is the coefficient matrix for some system, x = [x1, . . . , xn]

T is the vector of
indeterminates, and b = [b1, . . . , bm]

T is the column vector of constant terms, we may write Ax = b to
denote the system or

[
A b

]
to represent the augmented matrix.

Remark. We will always be very explicit when we are making claims about augmented matrices
specifically, and we will take care to always draw the line for an augmented matrix. When
programming with matrices, however, the vertical line isn’t there, so you’ll have to be especially careful
when considering whether the matrix you’ve used is representative of an augmented matrix or
something else.

Example 2.1.11

Solve the linear system represented by the augmented matrix below.1 3 5 7
0 2 4 6
0 0 8 16


THERE IS A TYPO IN ROW 2 BELOW AND THE EXAMPLE WORK IS WRONG This
augmented matrix represents the system

x + 3y + 5z = 7
2y − 4z = 6

8z = 16

The “triangular structure” of this system makes it easy to solve. We quickly deduce that

8z = 16 =⇒ z = 2,
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then
2y − 4(2) = 6 =⇒ y = 7,

and finally
x+ 3(7) + 5(2) = 7 =⇒ x = −24.

So the solution is the vector −247
2

.
The technique employed in solving the last system is called back-substitution.

As we’ll see in the next section, our strategy will be to manipulate our systems to obtain this
“triangular structure.”
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2.2 Direct Methods for Solving Linear Systems

2.2.1 Row Operations

In Example 2.1.10 we saw that the following systems were all equivalent, and were derived from the
original system.

[
1 3 5
2 −1 3

]

[
10 30 50
2 −1 3

][
2 −1 3
1 3 5

] [
1 3 5
0 −7 −7

]
R1
↔ R2

1
0
R

1
7→

R
1

−2R
1 +

R
2 7→

R
2

Proposition 2.2.1

Let k be any nonzero real number. The following systems all have the same solution sets:

(a)

{
a11x1 + · · · + a1nxn = b1
a21x1 + · · · + a2nxn = b2

(b)

{
a21x1 + · · · + a2nxn = b2
a11x1 + · · · + a1nxn = b1

(c)

{
ka11x1 + · · · + ka1nxn= kb1
a21x1 + · · · + a2nxn= b2

(d)

{
a11x1 + · · · + a1nxn= b1

(ka11 + a21)x1 + · · · + (ka1n + a2n)xn= kb1 + b2

Definition: Elementary Row Operations

The elementary row operations of a given matrix are the following operations:
1. Row swapping

Swapping Row i and Row j (denoted Ri ↔ Rj).

2. Row scaling
Multiplying Row i by a nonzero constant (denoted kRi 7→ Ri).

3. Row addition
Adding (a multiple of) Row j to Row i (denoted Ri + kRj 7→ Ri).

Remark. These operations are not specific to augmented matrices, but are true of any matrices. In fact,
unless explicitly stated otherwise, you should probably not ever assume that a matrix is augmented.

Remark. The operations above do not necessarily commute; the order in which they are applied is
important.

Given two (augmented) matrices, the above operations do not change the solution set for the
corresponding linear system. So since two linear systems are equivalent if they have the same solution
set, the following is a natural definition.
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Definition: row equivalence

Two matrices A and B are row equivalent if there is a sequence of elementary row operations
transforming A into B.

Example 2.2.2

Show that the following matrices are row equivalent:

A =

1 −1 −1 2
3 −3 2 16
2 −1 1 9

 B =

1 −1 −1 2
0 1 3 5
0 0 5 10


1 −1 −1 2
3 −3 2 16
2 −1 1 9

 −3R1+R2 7→R2−−−−−−−−→

1 −1 −1 2
0 0 5 10
2 −1 1 9


−2R1+R3 7→R3−−−−−−−−→

1 −1 −1 2
0 0 5 10
0 1 3 5


R2↔R3−−−−→

1 −1 −1 2
0 1 3 5
0 0 5 10



2.2.2 (Reduced) Row Echelon Form

That “triangular structure” which made life so easy in Example 2.1.11 is given a special name.

Definition: row echelon form

A matrix is in row echelon form (REF) if it satisfies the following properties:
(a) Any rows consisting entirely of zeroes are at the bottom.

(b) In each nonzero row, the leftmost nonzero entry (the leading entry or pivot) is in a
column to the left of any leading entries below it.

Example 2.2.3

Which of the following matrices are in row echelon form?

(a)

1 0 3 −4 0
0 0 0 0 0
0 1 5 0 1


(b)

2 0 4 0
0 1 −1 4
0 0 0 0


(c)

1 0 1 0
0 0 1 1
0 1 0 0


(d)

0 3 0 4
0 0 5 6
0 0 0 7


(e)

[
1 1 1 1
0 0 0 1

]

(f)


1 0 0 0
1 0 0 0
0 1 1 0
0 0 1 1


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Definition: reduced echelon form

A matrix is in reduced row echelon form (RREF) if it satisfies the following properties:
1. The matrix is already in row echelon form.

2. Each leading entry is 1.

3. Any entries above a leading 1 are 0.

Example 2.2.4

Which of the following matrices are in reduced row echelon form?

(a)

1 0 3 −4 0
0 0 0 0 0
0 1 5 0 1


(b)

2 0 4 0
0 1 −1 4
0 0 0 0


(c)

1 0 1 0
0 0 1 1
0 1 0 0


(d)

0 3 0 4
0 0 5 6
0 0 0 7


(e)

[
1 1 1 0
0 0 0 1

]

(f)


1 0 0 0
1 0 0 0
0 1 1 0
0 0 1 1


Theorem 2.2.5

Every matrix is equivalent to a matrix in (reduced) row echelon form.

Proof. The proof is given by the algorithm below performed on an m× n matrix.

Algorithm 2.2.6: Row Reduction

/*PUTTING MATRIX INTO REF*/

i← 1; /*Row Number*/

j ← 1; /*Column Number*/

while i ≤ m and j ≤ n do
if Column j contains nonzero entries then

Use row swap to move nonzero entry to Row i;
Use row addition to make entries below Row i all zero;
i← i+ 1;
j ← j + 1;

else
j ← j + 1;

end if
end while
/*FURTHER PUTTING MATRIX INTO RREF*/

i← m; /*Row Number*/

j ← n; /*Column Number*/

while i ≥ 1 and j ≥ 1 do
if Column j contains a leading entry then

Use row scaling to make leading entry 1;
Use row addition to make entries above Row i all zero;
i← i− 1;
j ← j − 1;
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else
j ← j − 1;

end if
end while

Definition: row reduction

The process of putting a matrix into reduced row echelon form is called row reduction.

Remark. The row echelon form of a matrix is not unique, but the reduced row echelon form is unique.

Here is a visual of the Row Reduction Algorithm.

Step 1. Look at Rows 1 . . .m in Column 1. If there are any nonzero entries, find it and move it
to Row 1. Then use Row Addition to clear everything below it.

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 −→


3 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 −→


3 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗


Step 2. Look at Rows 2 . . .m in Column 2. There are no nonzero entries here, so we move onto
the next column. We won’t change the range of rows.

3 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

 −→


3 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗


Steps 3 ... n. Repeat the above steps for all remaining columns. Now the matrix is in row
echelon form. 

3 ∗ ∗ ∗ ∗
0 0 2 ∗ ∗
0 0 0 4 ∗
0 0 0 0 19


Step n + 1. Look at Column n. If there is a leading entry, use Row Scaling to make that
leading entry a 1, and then Row Addition to clear everything above it.

3 ∗ ∗ ∗ ∗
0 0 2 ∗ ∗
0 0 0 4 ∗
0 0 0 0 19

 −→


3 ∗ ∗ ∗ ∗
0 0 2 ∗ ∗
0 0 0 4 ∗
0 0 0 0 1

 −→


3 ∗ ∗ ∗ 0
0 0 2 ∗ 0
0 0 0 4 0
0 0 0 0 1


Step n + 2. Look at Column n− 1. If there is a leading entry, use Row Scaling to make that
leading entry a 1, and then Row Addition to clear everything above it.

3 ∗ ∗ ∗ 0
0 0 2 ∗ 0
0 0 0 4 0
0 0 0 0 1

 −→


3 ∗ ∗ ∗ 0
0 0 2 ∗ 0
0 0 0 1 0
0 0 0 0 1

 −→


3 ∗ ∗ 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 1


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Steps n + 3 ... 2n. Repeat the above steps for all remaining columns. Now the matrix is in
reduced row echelon form. 

1 ∗ 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Remark. As a human, you can inject convenient steps into the algorithm above. You do not have to
wait to scale until the end – you can clear fraction denominators/shrink large numbers at any point.
You also have some choice when row swapping – if you can choose between multiple rows for a leading
entry, pick one that already has a leading 1.

Example 2.2.7

Row reduce the following augmented matrix.1 −1 −1 2
3 −3 2 16
2 −1 1 9


1. Working left to right, find the first nonzero column in the matrix.

(The first column is nonzero.)

2. Among all of the rows with nonzero entries in this column, choose one and move it to Row
1.
(We’ll just keep the first row where it is.)

3. Use elementary row operations to clear all other nonzero entries in this column (below Row
1). 1 −1 −1 2

3 −3 2 16
2 −1 1 9

 R2−3R1 7→R2−−−−−−−−→

1 −1 −1 2
0 0 5 10
2 −1 1 9

 (2.3)

R3−2R1 7→R3−−−−−−−−→

1 −1 −1 2
0 0 5 10
0 1 3 5

 (2.4)

(2.5)

4. Ignoring Row 1, find the next nonzero column in this matrix.
(Ignoring Row 1, the second column is now the next nonzero column.)

5. Among all of the rows below Row 1 with nonzero entries in this column, choose one and
move it to Row 2.

R2↔R3−−−−→

1 −1 −1 2
0 1 3 5
0 0 5 10

 (2.6)

6. Use elementary row operations to clear all other nonzero entries in this column (below Row
2).
(Already done.)
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7. Repeat this process until the matrix is in row echelon form.
(Huzzah, the matrix in Equation 2.6 is in row echelon form!)

8. Now scale every row so that the leading term is a 1.

1
5
R3 7→R3−−−−−→

1 −1 −1 2
0 1 3 5
0 0 1 2

 (2.7)

9. Working from left to right, use elementary row operations to clear all nonzero entries above
each leading 1.

R1+R2 7→R1−−−−−−−→

1 0 2 7
0 1 3 5
0 0 1 2

 (2.8)

R1−2R3 7→R1−−−−−−−→

1 0 0 3
0 1 3 5
0 0 1 2

 (2.9)

R2−3R3 7→R2−−−−−−−→

1 0 0 3
0 1 0 −1
0 0 1 2

 (2.10)

Theorem 2.2.8

Matrices A and B are row equivalent if and only if they can be row reduced to the same echelon
form.

Proof. Let α1, α2, . . . , αk be the sequence of row operations that row reduces A, and let β1, β2, . . . , βℓ

be the sequence of row operations that row reduces B. In other words,

αk ◦ · · · ◦ α2 ◦ α1(A) = RREF(A) and βℓ ◦ · · · ◦ β2 ◦ β1(B) = RREF(B).

If A and B are row equivalent, then there is a sequence of row operations σ1, σ2, . . . , σn for which
σn ◦ · · · ◦ σ2 ◦ σ1(A) = B and therefore

βℓ ◦ · · · ◦ β1 ◦ σn ◦ · · · ◦ σ1 ◦ α−11 ◦ · · ·α−1k (RREF(A))

= βℓ ◦ · · · ◦ β1 ◦ σn ◦ · · · ◦ σ1(A)

= βℓ ◦ · · · ◦ β1(B)

= RREF(B)

Since any row operation to a matrix in reduced row echelon form will take it out of reduced row
echelon form, then it must be that RREF(A) = RREF(B). Conversely, if RREF(A) = RREF(B),
then we have a equence of row operations which changes A into B:

β−11 ◦ · · · ◦ β−1ℓ ◦ αk ◦ · · · ◦ α1(A)

= β−11 ◦ · · · ◦ β−1ℓ (RREF(A))

= β−11 ◦ · · · ◦ β−1ℓ (RREF(B))

= B

hence A and B are row equivalent.
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2.2.3 Gaussian Elimination and Gauss–Jordan Elimination

Definition: leading/free variables

Given a linear system with augmented matrix [A|b] in (reduced) row echelon form, the pivot
columns in A correspond to leading variables in the system, and the other nonzero columns in
A correspond to free variables in the system.

Definition: Gaussian/Gauss–Jordan elimination

Gaussian elimination is the following process:
1. Write a linear system as an augmented matrix.

2. Put the matrix into row echelon form.

3. Reinterpret as a linear system and use back-substitution to solve the system for the leading
variables.

Gauss–Jordan elimination is the same process with the second step is replaced by the reduced
row echelon form.

Both processes take about the same amount of time by hand. But since the reduced row echelon form
is unique and most matrix algebra software has an RREF feature, Gauss–Jordan is more efficient in
practice.

Example 2.2.9

Use Gaussian or Gauss–Jordan elimination to find the solution set for the given system. If there
are infinitely-many solutions, put the answer in parametric form.

4x2 + x3 = 21
x1 + 4x2 + x3 = 24
x1 + 2x2 + x3 = 16

INCOMPLETE - ROW STEPS NOT EXPLAINED Applying Gauss–Jordan, we rewrite the
system as an augmented matrix and row reduce.


x1 x2 x3

0 4 1 21
1 4 1 24
1 2 1 16

→
1 2 1 16
1 4 1 24
0 4 1 21


→

1 2 1 16
0 2 0 8
0 4 1 21


→

1 2 1 16
0 1 0 4
0 4 1 21


→

1 2 1 16
0 1 0 4
0 0 1 5


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→

1 2 0 11
0 1 0 4
0 0 1 5



RREF−−−→


x1 x2 x3

1 0 0 3
0 1 0 4
0 0 1 5


We have leading entries in columns 1, 2, and 3, so Our leading variables are x1, x2, x3. Thus we
solve the simpler system 

x1 = 3
x2 = 4

x3 = 5

To get a solution of [x1, x2, x3] = [3, 4, 5]T .

Example 2.2.10

Use Gaussian or Gauss–Jordan elimination to find the solution set for the given system. If there
are infinitely-many solutions, put the answer in parametric form.

−4x1 + x2 − 4x3 = −7
2x1 + 4x3 = 6
−2x1 + x2 = −1

INCOMPLETE - ROW STEPS NOT EXPLAINED Applying Gauss–Jordan, we rewrite the
system as an augmented matrix and row reduce.


x1 x2 x3

−4 1 −4 −7
2 0 4 6
−2 1 0 −1

→
−4 1 −4 −7

1 0 2 3
−2 1 0 −1


→

 1 0 2 3
−4 1 −4 −7
−2 1 0 −1


→

 1 0 2 3
0 1 4 5
−2 1 0 −1


→

1 0 2 3
0 1 4 5
0 1 4 5



RREF−−−→


x1 x2 x3

1 0 2 3
0 1 4 5
0 0 0 0


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We have leading variables in columns 1 and 2, so our leading variables are x1 and x2. We have
free variable x3. We thus solve the simpler system, writing our leading variables in terms of our
free variables {

x1 + 2x3 = 3
x2 + 4x3 = 5

→
{

x1 = −2x3 + 3
x2 = −4x3 + 5

And thus our solutions are vectors of the formx1

x2

x3

 =

−2x3 +3
−4x3 +5
x3

 =

−2x3

−4x3

x3

+

35
0

 = x3

−2−4
1

+

35
0

.
Since x3 can be any real number t, our solution set is thus all of the vectors in the parametric
form x1

x2

x3

 = t

−2−4
1

+

35
0

.
Example 2.2.11

Use Gaussian or Gauss–Jordan elimination to find the solution set for the given system. If there
are infinitely-many solutions, put the answer in parametric form.

−2x1 − 4x3 = −6
x1 − x2 − 2x3 = 4

x2 + 4x3 = 5

INCOMPLETE - ROW STEPS NOT EXPLAINED Applying Gauss–Jordan, we rewrite the
system as an augmented matrix and row reduce.


x1 x2 x3

−2 0 −4 −6
1 −1 −2 4
0 1 4 5

→
1 0 2 3
1 −1 −2 4
0 1 4 5


→

1 0 2 3
0 −1 −4 1
0 1 4 5


→

1 0 2 3
0 −1 −4 1
0 0 0 6


→

1 0 2 3
0 −1 −4 1
0 0 0 1


→

1 0 2 0
0 −1 −4 0
0 0 0 1


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RREF−−−→

1 0 2 0
0 1 4 0
0 0 0 1


Without determining leading/free variables, we examing this new equivalent system

x1 + 2x3 = 0
x2 + 4x3 = 0

0 = 1

and there are no values of x1, x2, x3 which can ever make the third equation true. Hence there
are no solutions to this system.

2.2.4 Rank and Number of Solutions

Definition: rank

The rank of a matrix A is the number of nonzero rows in its (reduced) row echelon form, and is
denoted rank(A).

After row reduction, we saw the following in the last three examples:1 0 0 3
0 1 0 4
0 0 1 5


Example 2.2.9

Unique Solution

1 0 2 3
0 1 4 5
0 0 0 0


Example 2.2.10

Infinitely-Many Solutions

1 0 2 3
0 1 4 5
0 0 0 6


Example 2.2.11

No Solution

With the rank of each of these matrices in mind, we see the following result.

Theorem 2.2.12: Using rank to determine consistency

A linear system [A|b] is consistent if and only if

rank(A) = rank([A|b]).

Corollary 2.2.13

A linear system [A|0] is always consistent.

Definition: homogeneous system

A linear system of the form Ax = 0 or [A|0] is called homogeneous.
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Example 2.2.14

Use Gauss-Jordan elimination to find the solution set for the following homogeneous system.{
x1 − x2 + 3x3 + 4x4 = 0
x1 + x2 − x3 − 2x4 = 0

Creating the augmented matrix and doing the corresponding row operations, we have[
1 −1 3 4 0
1 1 −1 −2 0

]
R2−R1 7→R2−−−−−−−→

[
1 −1 3 4 0
0 2 −4 −6 0

]
1
2
R2 7→R2−−−−−→

[
1 −1 3 4 0
0 1 −2 −3 0

]
R1+R2 7→R1−−−−−−−→

[
1 0 1 1 0
0 1 −2 −3 0

]
From here, we can see that x3 and x4 are free variables, so letting x3 = s and x4 = t, we get that
the solution is 

x1

x2

x3

x4

 =


−s− t
2s+ 3t

s
t

 = s


−1
2
1
0

+ t


−1
3
0
1

.

Observation

Given any linear system,

total number of variables = leading variables + free variables.

After row reduction, we saw the we again examine three recent consistent examples:1 0 0 3
0 1 0 4
0 0 1 5


Example 2.2.9
Unique Solution
0 free variables

0 parameter solution set

1 0 2 3
0 1 4 5
0 0 0 0


Example 2.2.10

Infinitely-Many Solutions
1 free variable

1 parameter solution set

[
1 0 1 1 0
0 1 −2 −3 0

]
Example 2.2.14

Infinitely-Many Solutions
2 free variables

2 parameter solution set

We thus observe the following:

Observation

The number of free variables in a linear system is equal to the number of parameters in the
solution set.
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With the rank of each of these matrices in mind and combining with the above observations, we obtain

Theorem 2.2.15: The Rank Theorem

If [A|b] is a consistent system of linear equations with n variables, then

n = rank(A) + number of parameters in solution set.

Example 2.2.16

Using the rank, determine whether or not the following system is consistent or inconsistent. If it
is consistent, determine how many solutions it has. Verify your answer by finding the solution
set for the given system. 

x1 − x2 + x3 + 4x4 = 0
2x1 + x2 − x3 + 2x4 = 9
3x1 − 3x2 + 3x3 + 12x4 = 0

We set up the augmented matrix and row-reduce1 −1 1 4 0
2 1 −1 2 9
3 −3 3 12 0

 R2−2R1 7→R2−−−−−−−−→

1 −1 1 4 0
0 3 −3 −6 9
3 −3 3 12 0


R3−3R1 7→R3−−−−−−−−→

1 −1 1 4 0
0 3 −3 −6 9
0 0 0 0 0


1
3
R2 7→R2−−−−−→

1 −1 1 4 0
0 1 −1 −2 3
0 0 0 0 0


R1+R2 7→R1−−−−−−−→

1 0 0 2 3
0 1 −1 −2 3
0 0 0 0 0



We observe that rank([A|b]) = rank(A) = 2, hence Theorem 2.2.12 implies this system is
consistent. Moreover, since we have 3 total variables, Theorem 2.2.15 implies that we have at
least one parameter (i.e. infinitely-many solutions). To obtain such solutions explicitly, we work
with the simpler system: {

x1 + 2x4 = 3
x2 − x3 − x4 = 3

Solving for the leading variables, we get{
x1 = 3− 2x4

x2 = 3 + x3 + 2x4
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and hence any solution is of the form
x1

x2

x3

x4

 =


3− 2x4

3 + x3 + 2x4

x3

x4

 =


3
3
0
0

+ x3


0
1
1
0

+ x4


−2
2
0
1


Replacing our free variables x3 and x4 with parameters s and t (respectively), our solution set is


3
3
0
0

+ s


0
1
1
0

+ t


−2
2
0
1

 where s, t ∈ R


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2.3 Spanning Sets and Linear Independence

With the lone exception of R0 = {0}, every vector space has infinitely-many vectors in it, which is way
too many to keep track of at all times. An effective workaround would be to store data about a finite
number of objects and some procedure for recovering all important information about the vectors in
Rn. In particular, what we want to find is a finite collection of vectors {v1, . . . ,vk} (a “basis”) so that
every vector in Rn can be written as a linear combination of these vectors (a “spanning set”) and that
each linear combination is unique (“linear independence”). In this way, given any vector in Rn, our
algorithmic methods for solving linear systems can be employed to recover the linear combinations.

2.3.1 Span and Spanning Sets

Definition: span, spanning set

Given a set of vectors S = {v1, . . . ,vk} in a vector space V , we define the span of v1, . . . ,vn to
be the set of all linear combinations of these vectors, and we write

Span(v1, . . . ,vk) or Span(S).

If V = Span(S), then we call S a spanning set for V .

Example 2.3.1

The system in Example 2.2.14 had the solution sets


−1
2
1
0

+ t


−1
3
0
1

 for all real numbers s and t

 .

Describe this solution set using the new “Span” notation.

Observe that the description of the set yields all linear combinations of the two vectors in R4.
The span is, by definition, the set of all linear combinations, so this set can be written more
compactly as

Span



−1
2
1
0

,

−1
3
0
1


 .

As we saw in Example 2.1.1, we can rewrite a linear system
a11x1 + a12x2 + · · · + a1nxn = b1
...

...
...

...
am1x1 + am2x2 + · · · + amnxn = bm
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as an equation of vectors

x1

a11...
am1

+ x2

a12...
am2

+ · · ·+ xn

a1n...
amn

 =

 b1...
bm


In this way a solution to the system corresponds to a linear combination.

Theorem 2.3.2: Poole Theorem 2.4

A system of linear equations
[
A b

]
is consistent if and only if

b ∈ Span(a1, . . . , an),

where ai is the ith column of A.

2.3.2 Understanding Span Geometrically

Example 2.3.3: Spans are vector spaces too

Show that, if V is a (real) vector space and v1, . . . ,vk is some collection of vectors in V , then
the Span(v1, . . . ,vk) is also (real) vector space.

Observe that vector addition and scalar multiplication behave in obvious ways. Let w1, w2 be
vectors in Span(v1, . . . ,vk, that is

w1 = a1v1 + · · ·+ akvk

w2 = b1v1 + · · ·+ bkvk

Then we have that

w1 +w2 = (a1 + b1)v1 + · · ·+ (ak + bk)vk.

Also, for any scalar r,

rw1 = (ra1)v1 + · · ·+ (rak)vk.

It’s clear that the vectors w1 +w2 and rw1 are contained in Span(v1, . . . ,vk). This proves the
closure axioms of a vector space, and verification of the remaining axioms is a tedious (but totally
straightforward) exercise.

Example 2.3.4

Let e1 =

[
1
0

]
, e2 =

[
0
1

]
be the standard basis vectors for R2. Give an intuitive description of

Span(e1, e2). Then justify your description using Theorem 2.3.2.
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By definition, an arbitrary vector in Span(e1, e2) is of the form

xe1 + ye2 = x

[
1
0

]
+ y

[
0
1

]
=

[
x
y

]
and so Span(e1, e2) = R2.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Figure 2.1: The span of e1 and e2 in R2.

To verify that this span is actually R2, we need to show that every vector

[
a
b

]
∈ Span(e1, e2).

Per Theorem 2.3.2, we set up the system and check for a solution.1 0 a
0 1 b
e1 e2


This system has a solution (take x = a, y = b for the explicit solution, or use Theorem 2.2.12),
and it has no free variables (see The Rank Theorem) so the solution is unique. This means, no

matter which vector

[
x
y

]
we pick in R2, we can always find a unique linear combination of e1

and e2 which results in

[
x
y

]
.

Example 2.3.5

Let e1 =

10
0

 and e2 =

01
0

 be standard basis vectors in R3. Give an intuitive description of

Span(e1, e2). Then justify your description using Theorem 2.3.2.

By definition, an arbitrary vector in Span(e1, e2) is of the form

xe1 + ye2 = x

10
0

+ y

01
0

 =

xy
0

.
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and so Span(e1, e2) is just the xy-plane in R3. Notably, this set does not span all of R3, however,
because it is missing vectors with a nonzero 3rd component (i.e. the z-direction).

Figure 2.2: The span of e1 and e2 in R3.

To verify that this span is actually the xy-plane in R3, we need to show that every vectorab
0

 ∈ Span(e1, e2). Per Theorem 2.3.2, we set up the system and check for a solution.

1 0 a
0 1 b
0 0 0
e1 e2


This system has a solution (Theorem 2.2.12), and it has no free variables (see The Rank Theorem)

so the solution is unique. This means, no matter which vector

xy
0

 we pick in R2, we can always

find a unique linear combination of e1 and e2 which results in

xy
0

.
Example 2.3.6

Let v1 =

21
1

, v2 =

−12
1

 and v3 =

34
3

 be vectors in R3. Give an intuitive description of

Span(v1,v2,v3). Then justify your description using Theorem 2.3.2.

By definition, an arbitrary vector in Span(v1,v2,v3) is of the form

xv1 + yv2 + zv3 =

2x− y + 3z
x+ 2y + 4z
x+ y + 3z


It’s a little hard to see what this is from the generic vector given above, so let’s plot the vectors
for a few (hundred) values of x, y, z.
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Figure 2.3: The span of v1, v2 and v3, which is a plane in R3.

Despite being the span of three vectors, the shape formed appears to only be a plane instead of a
3-dimensional objects. To verify that this span is actually a plane and not all of R3, we set up a

linear system to see which

xy
z

 ∈ Span(v1,v2,v3). Per Theorem 2.3.2, we set up the system

and check for a solution. 2 −1 3 x
1 2 4 y
1 1 3 z
v1 v2 v3

 REF−−→

2 −1 3 x
0 5 5 2y − x
0 0 0 x+ 3y − 5z


This consistency of this system depends on the values of x, y, z! In fact, this system has a solution
if and only if x+ 3y − 5z = 0. We note that x+ 3y − 5z = 0 is the equation of a plane in R3,

Example 2.3.7

Let v1 =

11
0

, v2 =

−11
0

 and v3 =

00
1

 be vectors in R3. Give an intuitive description of

Span(v1,v2,v3). Then justify your description using Theorem 2.3.2.

The span is all of R3. To see this, we employ the same tired technique and verify that every
vector [x, y, z]T ∈ R3 is contained in Span(v1,v2,v3): 1 1 0 x

1 −1 0 y
0 0 1 z
v1 v2 v3

 REF−−→

1 1 0 x
0 −2 0 y − x
0 0 1 z


By Theorem 2.2.12, this system always has a solution, hence every vector [x, y, z]T is contained
in the span.

Linear (In)dependence

By now you probably have the question about what “dimension” the span might have, and whether
there’s any relation to the number of vectors used for the spanning set.
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Definition: linear (in)dependence

A set of vectors v1, . . . ,vk in a vector space is linearly dependent if one or more of the vectors
vi can be written as a linear combination of the others. The set is called linearly independent
otherwise.

Remark. “Linear independence” is a way of trying to capture the notion of “different directions” using
only linear combinations.

Remark. The definition of linear dependence says that at least one of the vectors is a linear
combination of the others (i.e. it “depends on the others”), but it does not necessarily imply that
every vector in the set is a linear combination of the others, nor does it imply which one.

Example 2.3.8

Consider the set {
v1 =

[
1
0

]
, v2 =

[
2
0

]
, v3 =

[
1
1

]}
of vectors in R2. Show that this set is linearly dependent, but one of the vectors is not a linear
combination of the others.

Certainly we have that

v1 =
1

2
v2 + 0v3

v2 = 2v1 + 0v3

so the set is linearly independent, but it should be fairly clear to see that v3 is not a linear
combination of v1 and v2.

If we don’t know which vector in a set is a linear combination of the others, how do we check for linear
(in)dependence? Well, notice that if one of the vectors (v1, say) is a linear combination of the others

a2v2 + a3v3 + · · ·+ akvk = v1

then we can rearrange this to write

−v1 + a2v2 + a3v3 + · · ·+ akvk = 0.

In other words, the homogeneous system

x1v1 + x2v2 + x3v3 + · · ·+ xkvk = 0

has a nontrivial solution.

Theorem 2.3.9: Using systems to check for linear (in)dependence

A set of vectors {v1, . . . ,vk} is linearly dependent if and only if the homogeneous system[
v1 · · · vk 0

]
has infinitely many solutions.

A set of vectors {v1, . . . ,vk} is linearly independent if and only if the homogeneous system[
v1 · · · vk 0

]
has a unique solution (the trivial solution).
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Example 2.3.10: Revisiting Example 2.3.4

Is the following set of vectors linearly independent?{
e1 =

[
1
0

]
, e2 =

[
0
1

]}
We employ Theorem 2.3.9 and set up the homogeneous system.[

1 0 0
0 1 0
e1 e2 0

]

By the The Rank Theorem, this system has a unique solution. Therefore the given set of vectors
is linearly independent.

Example 2.3.11: Revisiting Example 2.3.5

Is the following set of vectors linearly independent?e1 =

10
0

, e2 =

01
0


We employ Theorem 2.3.9 and set up the homogeneous system.1 0 0

0 1 0
0 0 0
e1 e2 0


By the The Rank Theorem, this system has a unique solution. Therefore the given set of vectors
is linearly independent.

Example 2.3.12: Revisiting Example 2.3.6

Is the following set of vectors linearly independent?v1 =

21
1

, v2 =

−12
1

, v3 =

34
3


We employ Theorem 2.3.9 and set up the homogeneous system. 2 −1 3 0

1 2 4 0
1 1 3 0
v1 v2 v3 0

 REF−−→

2 −1 3 0
0 5 5 0
0 0 0 0


By the The Rank Theorem, this system has infinitely-many solutions. Therefore the given set of
vectors is linearly dependent.
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Example 2.3.13: Revisiting Example 2.3.7

Is the following set of vectors linearly independent?v1 =

11
0

, v2 =

−11
0

, v3 =

00
1


We employ Theorem 2.3.9 and set up the homogeneous system. 1 −1 0 0

1 1 0 0
0 0 1 0
v1 v2 v3 0

 REF−−→

1 −1 0 0
0 2 0 0
0 0 1 0


By the The Rank Theorem, this system has a unique solution. Therefore the given set of vectors
is linearly independent.

It seems like linear (in)dependence is playing a role in our geometric understanding of the span.
Naively, one would guess that the span of linearly dependent set of k vectors is strictly smaller than
dimension k.

Proposition 2.3.14: Throw Away Redundancies

If v1 is a linear combination of v2, . . . ,vk, then

Span(v1,v2, . . . ,vk) = Span(v2, . . . ,vk).

Proof. Suppose v1 = c2v2 + · · ·+ ckvk and consider an arbitrary linear combination of v1,v2, . . . ,vk:

a1v1 + a2v2 + · · ·+ akvk

= a1(c2v2 + · · ·+ ckvk) + a2v2 + · · ·+ akvk

= (a1c2 + a2)v2 + (a1c3 + a3)v3 + · · ·+ (a1ck + ak)vk

Every combination of v1,v2, . . . ,vk can be rewritten as a linear combination of just v2, . . . ,vk.

Proposition 2.3.15

Given the vector equation
x1v1 + · · ·+ xnvn = 0,

the “redundant” vectors are precisely the vectors corresponding to free variables in the system.

Proof. Suppose vj is a linear combination of the preceding vectors v1, . . . ,vj−1. Then after row
reduction, we have that column j (of the row reduced matrix) is the same linear combination of
columns 1, . . . , j − 1 (of the row reduced matrix), and therefore cannot contain a new pivot.

Remark. The moral of the story is that linear dependence tells us about redundant information in our
set. Moreover, Proposition 2.3.14 suggests that, if we can find these redundant vectors, we can
iteratively throw them away without affecting the span, and ultimately leave ourselved with a linearly
independent set.
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Example 2.3.16: A maximal linearly independent set

Consider the following set of vectors:{
v1 =

[
1
1

]
, v2 =

[
−1
1

]
, v3 =

[
3
−1

]
, v4 =

[
4
−2

]}
.

Use Proposition 2.3.14 to reduce the following dependent set to a linearly dependent set whose
span is the same as Span(v1, . . . ,v4).

This is secretly just Example 2.2.14 again. We have[
1 −1 3 4 0
1 1 −1 −2 0
v1 v2 v3 v4 0

]
R2−R1 7→R2−−−−−−−→

[
1 −1 3 4 0
0 2 −4 −6 0

]
1
2
R2 7→R2−−−−−→

[
1 −1 3 4 0
0 1 −2 −3 0

]
R1+R2 7→R1−−−−−−−→

[
1 0 1 1 0
0 1 −2 −3 0

]
We see that this set of vectors is linearly dependent, and specifically that v3, v4 are “redundant”
per Proposition 2.3.15. Thus v1,v2 is a linearly independent set and

Span(v1,v2) = Span(v1,v2,v3,v4).

Definition: basis

Let V be a vector space. A basis for V is a set of vectors from V , call it B, satisfying both of
the following:
(1) B is a spanning set for V .
(2) B is linearly independent.

Remark. Given v ∈ V and a basis B = {b1, . . . ,bn}, the spanning condition guarantees that

x1b1 + · · ·+ xnbn = v

always has a solution, and inear independence guarantees that the solution is unique.

Moreover, Proposition 2.3.14 assures us that B is the smallest set of vectors with this property.

Example 2.3.17

The vectors {e1, e2} from Example 2.3.4 are a basis for R2 because we showed that they are
linearly independent and that they span R2.

Example 2.3.18

The vectors {e1, e2} from Example 2.3.5 are not a basis for R3 because they do not span R3.
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Example 2.3.19

The vectors {e1, e2} from Example 2.3.5 are a basis for Span(e1, e2) because we showed that
they were linearly independent and they pretty clearly span Span(e1, e2).

Example 2.3.20

The vectors {v1,v2,v3} from Example 2.3.6 are not a basis for R3 because we showed that they
were neither linearly independent nor did they span R3.

Example 2.3.21

The vectors {v1,v2,v3} from Example 2.3.6 are not a basis for Span(v1,v2,v3) because they
are not linearly independent.

Example 2.3.22: Polynomial basis

Show that the following set of polynomials

B = {1, x, x2, . . . , xn}

is a basis for Pn(x), the space of all polynomials in the variable x with degree at most n.

Every polynomial in Pn(x) is of the form

a0 + a1x+ a2x
2 + · · ·+ anx

n

and is thus clearly a linear combination of the polynomials in B. Hence Span(B) = Pn(x).
To see linear independence, write down the 0 polynomial as a linear combination of the polynomials
in B:

t01 + t1x+ t2x
2 + · · ·+ tnx

n = 0 = 0 + 0x+ 0x2 + · · ·+ 0xn.

Clearly this only has a solution when t0 = t1 = · · · = tn = 0, hence is linearly independent.

Example 2.3.23: Polynomial basis

Show that the following set of polynomials

B = {1, 1 + x, 1 + x2}

is a basis for P2(x), the space of all polynomials in the variable x with degree at most 2.

Every polynomial in Pn(x) is of the form

a0 + a1x+ a2x
2

and our goal is to show that this generic polynomial can be written as a linear combination of
the polynomials in B. In other words, we need to find scalars t0, t1, t2 so that

a0 + a1x+ a2x
2 = t0(1) + t1(1 + x) + t2(1 + x2) = (t0 + t1 + t2) + t1x+ t2x

2.
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This produces for us the following linear system:
t0 + t1 + t2 = a0

t1 = a1
t2 = a2

This sytem can be solved in our favorite way to get the unique solution

t0 = a0 − a1 − a2, t1 = a1, t2 = a2,

and it follows that every polynomial can be written as a linear combination. Hence B spans
P2(x).
To see linear independence, write down the 0 polynomial as a linear combination of the polynomials
in B

0 = t0(1) + t1(1 + x) + t2(1 + x2) = (t0 + t1 + t2) + t1x+ t2x
2

which produces for us the homogeneous system
t0 + t1 + t2 = 0

t1 = 0
t2 = 0

and this has only the trivial solution. Thus B is linearly independent.
Therefore B is a basis for P2(x).

Remark. There is nothing unique about a basis.

Example 2.3.24: Infinitely-many bases for R2

Let m and n be any nonzero numbers. Show that

B =

{[
m
0

]
,

[
0
n

]}
is a basis for R2.

INCOMPLETE

Theorem 2.3.25

If V is some vector space with two bases, B1 and B2, then both B1 and B2 contain the same
number of vectors.

Proof Sketch. Set up a system to write B1’s vectors as linear combinations of B2. If B2 has
more vectors, then you’ll find that this system has free variables, i.e., the set B2 will be linearly
dependent.

Definition: dimension

The dimension of V is the number of vectors in any basis for V . We denote this dim(V ).
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Proposition 2.3.26

The dimension of Rn is

Proof. The standard basis {e1, . . . , en} is a basis for Rn and it contains n vectors.



Chapter 3

Matrices

3.1 Matrix Operations

3.1.1 Matrix Basics

Definition: matrix, size, zero matrix

A matrix is an array of numbers (called entries) and has size m× n if it has m rows and n
columns.

A = [aij] =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn


The subscripts on the entries aij tell us that we’re looking at the entry in the ith row and the jth

column.

Notably, rows are numbered top-to-bottom and columns are numbered left-to-right.

Definition: zero matrix

The zero matrix, often denoted 0 is the matrix for which all entries are 0. Its size should be
clear from context, but we may write 0m×n if we need to specify.

Definition: matrix equality

Two matrices A and B are equal if and only if
1. their sizes are equal, and

2. their corresponding entries are all equal.
In this case we write A = B.

50
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Example 3.1.1

Which of the following matrices are equal?

A =

[
1 2 3
4 5 6

]
, B =

[
1 2
4 5

]
C =

[
1 2 3
4 5 6

]
, D =

[
7 8
9 10

]
.

A = C. A and B (and similarly A and D) are not equal because their sizes disagree. B and D
are not equal because their corresponding entries disagree.

Definition: square matrix, diagonal matrix

A matrix is square if it has size n×n and the diagonal of the matrix A = [aij ] (circled below)
are the entries where i = j.

A =

a11 · · · a1n
...

. . .
...

an1 · · · ann


A square matrix is diagonal if the only nonzero entries are along the diagonal. You may see this
written as A = diag(a11, . . . , ann).

Remark. A bit of a subtly – the definition of diagonal just says that nonzero entries must occur along
the diagonal, but the diagonal entries do not necessarily need to be nonzero.

Example 3.1.2

Which of the matrices below are diagonal matrices?

A =

1 0 0
0 2 0
0 0 3

, B =

0 0 0
0 π 0
0 0 0

, C =

1 0 0 0
0 1 0 0
0 0 1 0


A and B are both diagonal because the off-diagonal entries are all zero. C is not diagonal because
it is not a square matrix.

Definition: scalar matrix

A matrix is scalar if it is a diagonal matrix and the diagonal entries are all equal, i.e., the matrix
A = diag(r, r, . . . , r) for some r ∈ R.
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Definition: Kroenecker delta

The Kroenecker delta, denoted δij, δ
j
i , or δ

ij, is the following:

δij =

{
1 if i = j

0 if i ̸= j

Definition:

matrix!identity The identity matrix In is the diagonal n × n matrix with all 1’s along the
diagonal. You may sometimes see this written in terms of the Kroenecker delta as In = [δij].

Example 3.1.3

It may be useful to see exactly how the Kroenecker delta leads to the identity matrix.

I3 = [δij] =

δ11 δ12 δ13
δ21 δ22 δ23
δ31 δ32 δ33

 =

1 0 0
0 1 0
0 0 1



3.1.2 Matrix Operations

Definition: matrix sum

Given two m× n matrices A = [aij] and B = [bij], the sum of A and B is a new m× n matrix
given by

A+B = [aij + bij] =

 a11 + b11 · · · a1n + b1n
...

. . .
...

am1 + bm1 · · · amn + bmn


Example 3.1.4

Let A =

[
1 2 3
15 14 13

]
and B =

[
4 5 6
12 11 110

]
. Compute A+B.

A+B =

[
1 + 4 2 + 5 3 + 6
15 + 12 14 + 11 13 + 10

]
=

[
5 7 11
27 25 23

]
.
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Definition: scalar multiplication

For an m× n matrix A = [aij] and a scalar r, the scalar multiple of A is the m× n matrix

rA = [raij] =

[
ra11 · · · ra1n

...
...

ram1 · · · ramn

]
.

Example 3.1.5

Compute rA given the matrix A =

[
1 2
3 4

]
and the scalar r = 5.

rA =

[
5(1) 5(2)
5(3) 5(4)

]
=

[
5 10
15 20

]

Definition

Subtraction of matrices is then defined in the obvious way: A−B = A+ (−1)B.

3.1.3 Matrix Multiplication

Recall that we said a linear system
a11x1 + a12x2 · · · a1nxn = b1
a21x1 + a22x2 · · · a2nxn = b2

... +
...

... =
...

am1x1 + am2x2 · · · amnxn = bm

Could be written succinctly as a

Ax = b

where A is the matrix of coefficients, x is the vector of variables, and b is a vector of constants. With
our new matrix perspective, however, the above equation looks like the product of an m× n matrix
and an n× 1 matrix, and the resulting output is a m× 1 matrix.

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn


︸ ︷︷ ︸

m×n


x1

x2
...
xn


︸ ︷︷ ︸
n×1

=


b1
b2
...
bm


︸ ︷︷ ︸
m×1

As such, we’ll define the product of a matrix and a vector.
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Definition: Matrix-vector multiplication

The product of an m× n matrix A and a vector x ∈ Rn is a vector in Rm given by

Ax =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn



x1

x2
...
xn

 =


a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

am1x1 + am2x2 + · · ·+ amnxn


Given that matrix is comprised of column vectors, we can extend this product to a product of matrices
in the following way.

Definition: matrix product

The product of an m× n matrix A and an n× p matrix B is the m× p matrix given by

AB =

 A


︸ ︷︷ ︸

m×n

 | |
b1 · · · bp

| |


︸ ︷︷ ︸

n×p

=

 | |
Ab1 · · · Abp

| |


︸ ︷︷ ︸

m×p

where bi is the i
th column of B. The above form is called the form is called the matrix-column

representation of the product AB.

Observation: Matrix Multiplication and Dot Products

The product of matrices can also be written with dot products. The (i, j)-entry of the product
matrix AB is given by the dot product:

rowi(A) · colj(B).

Example 3.1.6

Let A and B be the following matrices

A =

1 2
3 4
5 6

 =

—A1—
—A2—
—A3—

 and B =

[
7 8
9 10

]
=

 | |
b1 b2

| |


Compute the product AB.

AB =

 | |
Ab1 Ab2

| |

 =

A1 · b1 A1 · b2

A2 · b1 A2 · b2

A3 · b1 A3 · b2

 =

23 28
57 64
89 100


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Example 3.1.7

Compute the following matrix products. Is there anything special about the resulting product?

(a) Ae2 =


a b c
d e f
g h j
k ℓ m


01
0

 (b) e2
TA =

[
0 1 0 0

]
a b c
d e f
g h j
k ℓ m


Observation

Let A be any m×n matrix and ei the standard basis vector for Rm or Rn (whichever is appropriate
for the following products to work). Then

� Aei returns the ith column of A, and

� ei
TA returns the ith row of A.

Example 3.1.8

Compute the following matrix products. Is there anything special about the resulting product?

(a) A(Diag) =


a b c
d e f
g h j
k ℓ m


2 0 0
0 3 0
0 0 5

 (b) (Diag)A =


2 0 0 0
0 3 0 0
0 0 5 0
0 0 0 7



a b c
d e f
g h j
k ℓ m


Observation

Let A be any m× n matrix and D a diagonal (either m×m or n× n, whichever is appropriate
for the following products to work). Let λi denote the ith diagonal entry in D. Then

� AD scales the ith column of A by λi, and

� DA scales the ith row of A by λi.

3.1.4 Matrix Powers

Definition

If A is a square matrix, then for any positive integers k we can define the kth power
of the matrix A as repeated multiplication:

Ak = AA · · ·A︸ ︷︷ ︸
k factors

We take the convention that A0 = I, the identity matrix.
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Proposition 3.1.9

The obvious rules of matrix powers hold. Let k, ℓ be nonnegative integers. Then
� AkAℓ = Ak+ℓ, and

�

(
Ak
)ℓ

= Akℓ.

Example 3.1.10

Compute A2 and A3, where A =

[
1 2
3 4

]
.

A2 =

[
1 2
3 4

]2
=

[
1 2
3 4

][
1 2
3 4

]
=

[
7 10
15 22

]
and

A3 = A2A =

[
7 1
15 22

][
1 2
3 4

]
=

[
37 54
81 118

]
.

Notably, A2 ̸=
[
12 22

32 42

]
and A3 ̸=

[
13 23

33 43

]
.

3.1.5 Transpose

Definition: matrix transpose

If A = [aij ] is an m× n matrix, then its transpose, denoted AT is the n×m matrix who (i, j)th

entry is aji. In other words, one obtains AT by turning A’s rows into columns and vice versa.

Visually, the transpose amounts to flipping the matrix across the red line below

DRAW LINE USING nicematrix tikz codeafter

A =

[
1 2 3
4 5 6

]
flip−→

1 4
2 5
3 6

 = AT

Remark. We don’t really give much motivation for the matrix transpose at this level. It’s related to
something called the dual space for a vector space, but this is beyond the scope of this course. The
important feature is encoded in the following exercise.

Exercise 3.1.11

Let A be an aribtrary m× n matrix, v an arbitrary vector in Rn, and w an arbitrary vector in
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Rm. Show that

(Av) ·w = v · (ATw).

Definition: symmetric matrix

A matrix A is symmetric if A = AT .

Example 3.1.12

Determine which of the following matrices is/are symmetric.

A =

[
1 2
2 3

]
B =

[
1 2
3 4

]
.

AT =

[
1 2
2 3

]
BT =

[
1 3
2 4

]
.

Since A = AT , then A is symmetric. Since B ̸= BT , then B is not symmetric.

Remark. If A has size m× n, then AT has size n×m, so the only way that A = AT is if m = n. In
other words, symmetric matrices are always square matrices.

Example 3.1.13

Let A =

1 2
3 4
5 6

. Compute ATA and AAT . Do you notice anything interesting?

ATA =

[
1 3 5
2 4 6

]1 2
3 4
5 6


=

[
35 44
44 56

]

AAT =

1 2
3 4
5 6

[1 3 5
2 4 6

]

=

 5 11 17
11 25 39
17 39 61


What’s interesting to notice is that, while A is not symmetric (and not even square), both AAT

and ATA are symmetric (and hence also a square matrix). These particular matricesOB are
useful when considering inner products and outer products of vectors, respectively, although we
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won’t be covering either of those ideas in this course.
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3.2 Matrix Algebra

Theorem 3.2.1: Poole Theorem 3.2 - Algebraic Properties of Matrix Addition and
Scalar Multiplication

Let A,B,C be m× n matrices and let c, d ∈ R. The following are true:
(a) A+B = B + A

(b) (A+B) + C = A+ (B + C)

(c) A+Om×n = A

(d) A+ (−A) = Om×n

(e) c(A+B) = cA+ cB

(f) (c+ d)A = cA+ dA

(g) c(dA) = (cd)A

(h) 1A = A

Remark. In short, Theorem 3.2.1 above says that m× n matrices form a real vector space (see
page ??). For this reason, it is sometimes denoted Rm×n .

3.2.1 Properties of Matrix Multiplication

Matrix multiplication is not commutative in general, and it is often the case that AB ̸= BA. This fact
clear if A ∈ Rm×n and B ∈ Rn×m where m ̸= n (just compare the sizes of AB and BA), but is possibly
less obvious in the case where A,B are both square matrices. It is an exercise to find an example of
this in the case of 2× 2 matrices.

So what properties does matrix multiplication have?

Theorem 3.2.2: Poole Theorem 3.3 - Properties of Matrix Multiplication

Let A,B,C be matrices (whose sizes are such that the following exist) and k ∈ R a scalar. Then
(a) A(BC) = (AB)C

(b) A(B + C) = AB + AC

(c) (A+B)C = AC +BC

(d) k(AB) = (kA)B = A(kB)

(e) ImA = A = AIn (if A is m× n)

Remark. This theorem implies that Rn×n is a fancy object called a (non-commutative) algebra.
Informally, this is a vector space with an additional operation that lets us multiply two vectors
together (which, if you look closely, isn’t a feature of vector spaces normally). This is outside the scope
of the course, but it may be interesting to you to know that such things exist and that these properties
are not unique to Rn×n.

The proof of this theorem will require the properties of the dot product (recall Theorem 1.2.1).
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Proof. For simplicity, we’ll introduce some notation. For a matrix M
� (this one is standard notation) Mij denotes the (i, j)th entry of M ,

� (this is nonstandard notation) rowi(M) denotes the ith row of M , and

� (this is nonstandard notation) colj(M) denotes the jth column of M .
(a) Note that AB has size m × p and BC has size n × r, hence both (AB)C and A(BC) have

size m× r, and thus they are equal if they’re corresponding coefficients are equal.

((AB)C)ij =

p∑
k=1

(AB)ikCkj =

p∑
k=1

(
n∑

ℓ=1

AiℓBℓk

)
Ckj =

p∑
k=1

n∑
ℓ=1

AiℓBℓkCkj = · · ·

· · · =
n∑

ℓ=1

p∑
k=1

AiℓBℓkCkj =
n∑

ℓ=1

Aiℓ

(
p∑

k=1

BℓkCkj

)
=

n∑
ℓ=1

Aiℓ (BC)ℓj = (A(BC))ij

(b) Let A ∈ Rm×n and B,C ∈ Rn×p. Notice that A(B + C) and AB + AC have the same size,
hence they are equal if they have the same corresponding elements.

(A(B + C))ij = rowi(A) · colj(B + C)

= rowi(A) · (colj(B) + colj(C))

= rowi(A) · colj(B) + rowi(A) · colj(C) = (AB)ij + (AC)ij.

(c) Let A,B ∈ Rm×n and C ∈ Rn×p. Notice that (A + B)C and AC + BC have the same size,
hence they are equal if they have the same corresponding elements.

((A+B)C)ij = rowi(A+B) · colj(C)

= (rowi(A) + rowi(Bi)) · colj(C)

= rowi(A) · colj(C) + rowi(B) · colj(C) = (AC)ij + (BC)ij.

(d) Let A ∈ Rm×n, B ∈ Rn×p, and k ∈ R. Notice that k(AB), (kA)B and A(kB) all have the
same size m× p, hence they are equal if they have the same corresponding elements.

(k(AB))ij = k (rowi(A) · colj(B))

= rowi(kA) · colj(B) = ((kA)B)ij

= rowi(A) · colj(kB) = (A(kB))ij

(e) Let A ∈ Rm×n. Writing the m×m identity matrix Im = [δij] using the Kroenecker delta (c.f.
page ??), we note that ImA and A have the same size, hence they are equal if they have the
same corresponding elements.

(ImA)ij = rowi(Im) · colj(A)
= δi1A1j + δi2A2j + · · ·+ δimAmj

= δiiAij (the only nonzero term in the sum)

= Aij

Similarly, for the n× n identity matrix In,

(AIn)ij = rowi(A) · colj(In)
= Ai1δ1j + Ai2δ2j + · · ·+ Ainδnj

= Aijδjj (the only nonzero term in the sum)

= Aij
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Example 3.2.3

Let A =

[
1 2 3
4 5 6

]
, B =

 3 2
1 0
−1 −2

, and C =

[
1 −2
3 −4

]
. Compute A(BC) and (AB)C to verify

that the products are equal.

A(BC) =

[
1 2 3
4 5 6

] 3 2
1 0
−1 −2

[1 −2
3 −4

]
=

[
1 2 3
4 5 6

] 9 −14
1 −2
−7 10


=

[
−10 12
−1 −6

]
and

(AB)C =

[1 2 3
4 5 6

] 3 2
1 0
−1 −2

[1 −2
3 −4

]

=

([
2 −4
11 −4

])[
1 −2
3 −4

]
=

[
−10 12
−1 −6

]

Example 3.2.4

Let A =

[
1 2 3
4 5 6

]
, B =

 3 2
1 0
−1 −2

. Compute (AB)T , BTAT , and ATBT to check which of

these are equal.

(AB)T =

[1 2 3
4 5 6

] 3 2
1 0
−1 −2

T

=

[
2 −4
11 −4

]T
=

[
2 11
−4 −4

]
and

BTAT =

[
3 1 −1
2 0 −2

]1 4
2 5
3 6

 =

[
2 11
−4 −4

]
and

ATBT =

1 4
2 5
3 6

[3 1 −1
2 0 −2

]
=

11 1 −9
16 2 −12
21 3 −15


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So clearly (AB)T = BTAT , but (AB)T ̸= ATBT .

Theorem 3.2.5: Poole Theorem 3.4 - Properties of the Transpose

Let A and B be matrices (whose sizes are such that the indicated operations can be performed)
and let k be a scalar. Then
(a) (AT )T = A

(b) (kA)T = k(AT )

(c) (Ar)T = (AT )r for all nonnegative integers r.

(d) (A+B)T = AT +BT

(e) (AB)T = BTAT

Proof. We use the same notation as in the proof of Theorem 3.2.2.
(a) If A has size m × n, then AT has size n ×m, and then (AT )T has size m × n. Thus these

matrices are equal if they have equal corresponding entries.

((AT )T )ij = (AT )ji = Aij

(b) If A ∈ Rm×n, then kA ∈ Rm×n and thus (kA)T has size n ×m. As well, since AT has size
m× n, then kAT has size m× n.

((kA)T )ij = (kA)ji = kAji = k(AT )ij

(c) Let A,B ∈ Rm×n. It is straightforward to see that (A + B)T and AT , BT have size n ×m.
Then

((A+B)T )ij = (A+B)ji = Aji +Bji = (AT )ij + (BT )ij = (AT +BT )ij

(d) Let A ∈ Rm×n and B ∈ Rn×p. Note that (AB)T an BTAT both have the same size, hence they
are equal if their corresponding entries are equal.(

(AB)T
)
ij
= (AB)ji

= rowj(A) · coli(B)

= colj(A
T ) · rowi(B

T )

= rowi(B
T ) · colj(AT ) = (BTAT )ij.

(e) This is a corollary of item (d).
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3.3 The Inverse of a Matrix

Recall that division of real numbers
r

a
is actually just multiplication of real numbers a−1r where a−1 is

a real number satisfying aa−1 = a−1a = 1.

Definition: matrix inverse

For an nonzero n× n matrix A, the inverse of A, denoted A−1, is the n× n matrix satisfying

AA−1 = A−1A = In.

If the inverse exists, we say that A is invertible.

Fact. Not every nonzero matrix is invertible – the zero matrix is an obvious example. We’ll devote the
latter half of this section to exploring when a matrix is invertible.

Remark. We only define inverses for square matrices.

Theorem 3.3.1: Poole Theorem 3.6

The inverse is unique.

Proof. Suppose X, Y are both inverses of A. Then

X = X(In) = X(AY ) = (XA)Y = (In)Y = Y.

Theorem 3.3.2: Poole Theorem 3.9 - Properties of Inverses

If A,B are invertible n× n matrices and c ∈ R is some nonzero scalar, then
a. A−1 is invertible and (A−1)−1 = A.

b. cA is invertible and (cA)−1 = 1
c
A−1.

c. AB is invertible and (AB)−1 = B−1A−1.

d. AT is invertible and (AT )−1 = (A−1)T .

e. An is invertible for all positive integers n and (Ak)−1 = (A−1)k.

Proof. Since inverses are unique, and matrices are invertible if their inverses exist, then each of these
is essentially proven by merely checking that the multiplication checks out.

a. (A−1)(A) = In

b. (cA)(1
c
A−1) = c

c
AA−1 = In.

c. (AB)(B−1A−1) = AInA
−1 = AA−1 = In.

d. AT (A−1)T = (A−1A)T = ITn = In

e. (Ak)(A−1)k = A · · ·A︸ ︷︷ ︸
k

A−1 · · ·A−1︸ ︷︷ ︸
k

= A · · ·A︸ ︷︷ ︸
k−1

InA
−1 · · ·A−1︸ ︷︷ ︸

k−1

= · · · = In

Remark. Because of the above theorem, some will use the notation A−n (for n a positive integer) and
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A−T (the transpose) to mean the obvious things:

A−n = (A−1)n = (An)−1

A−T = (AT )−1 = (A−1)T

3.3.1 Computing the Inverse

Given an invertible matrix A = [Aij], our goal is to solve for a matrix X = [xij] is a matrix of
indeterminates in the equation AX = In. This equation yields a linear system (with n2 equations and
n2 unknowns) 

∑n
k=1 a1kxk1 = 1∑n
k=1 a1kxk2 = 0

...∑n
k=1 aikxkj = δij (the Kroenecker delta, c.f. ??)

...∑n
k=1 ankxkn = 1

and you can use standard techniques to solve this system.

Example 3.3.3

Find A−1 given A =

[
1 2
3 4

]
.

Let X =

[
x1 x2

x3 x4

]
be a matrix of indeterminates. Then the matrix equation

AX = I2[
x1 + 2x3 x2 + 2x4

3x1 + 4x3 3x2 + 4x4

]
=

[
1 0
0 1

]
yields the system 

x1 + 2x3 = 1
x2 + 2x4 = 0

3x1 + 4x3 = 0
3x2 + 4x4 = 1

And solving this in the usual way, we get that there is a unique solution x1 = −2, x2 = 1, x3 =
3
2
,

x4 = −1
2
. So

A−1 =

[
−2 1
3
2
−1

2

]
.
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Writing X =

 | | · · · |
x1 x2 · · · xn

| | | |

 and In =

 | | · · · |
e1 e2 · · · en
| | | |

, we get

AX =

 | | |
Ax1 Ax2 · · · Axn

| | | |

 =

 | | · · · |
e1 e2 · · · en
| | | |


and so solving for X in the matrix equation AX = In is akin to solving n linear systems Axj = ej. But
wait, since we’d be doing the same row operations in every system, we can make life even easier and
just make a really wide augmented matrix encoding all of these ej’s to the right of the vertical line. | | | | | | | |

x1 x2 · · · xn e1 e2 · · · en
| | | | | | | |

.
Theorem 3.3.4: Gauss–Jordan for finding inverses

If A is an invertible n× n matrix, then A−1 is achieved by row reducing the system
[
A I

]
. In

particular [
A I

] RREF−−−−→
[
I A−1

]
.

We apply this technique to the matrix we saw previously

Example 3.3.5: Revisiting Example 3.3.3

Compute the inverse for A =

[
1 2
3 4

]
.

Employing the Gauss–Jordan technique,

[
A I

]
=

[
1 2 1 0
3 4 0 1

]
R2−3R1 7→R2−−−−−−−→

[
1 2 1 0
0 −2 −3 1

]
−1
2
R2 7→R2−−−−−−→

[
1 2 1 0
0 1 3

2
−1

2

]
R1−2R2 7→R1−−−−−−−→

[
1 0 −2 1
0 1 3

2
−1

2

]
=
[
I A−1

]
One can, of course, do the above process for generic 2× 2 matrices, which yields the following result.
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Theorem 3.3.6: Poole Theorem 3.8

If A =

[
a b
c d

]
and ad− bc ̸= 0, then A is invertible and the inverse is given by

A−1 =
1

ad− bc

[
d −b
−c a

]
.

Proof. Using the Gauss-Jordan method above,[
a b 1 0
c d 0 1

]
1
a
R1 7→R1−−−−−→

[
1 b

a
1
a

0
c d 0 1

]
R2−cR1 7→R2−−−−−−−→

[
1 b

a
1
a

0
0 ad−bc

a
− c

a
1

]
a

ad−bc
R2 7→R2

−−−−−−−−→
[
1 b

a
1
a

0
0 1 − c

ad−bc
a

ad−bc

]
R1− b

a
R2 7→R1−−−−−−−−→

[
1 0 d

ad−bc − b
ad−bc

0 1 − c
ad−bc

a
ad−bc

]

You could do this same system-solving process for larger matrices, but the formulas are significantly
worse.

Exercise 3.3.7: Inverting a 3× 3

Assuming A =

a b c
d e f
g h j

 is invertible, verify that

A−1 =
1

aej + bfg + cdh− afh− bdj − ceg

 (ej − fh) (−bj + ch) (bf − ce)
(−dj + fg) (−aj + cg) (−af + cd)
(dh− eg) (−ah+ bg) (ae− bd)

.
Definition: elementary matrix

An elementary matrix is a matrix obtained by performing an elementary row operation on the
identity matrix.

Fact. Elementary matrices are always invertible (and the inverse is an elementary matrix obtained by
performing the inverse row operation.

Elementary matrices perform elementary row operations via matrix multiplication
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Example 3.3.8

Let k be a scalar. Describe the row operations that each of the following matrices encodes:1 0 0
0 0 1
0 1 0

 1 0 k
0 1 0
0 0 1

 1 0 0
0 k 0
0 0 1


We try the computations:1 0 0

0 0 1
0 1 0

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

 =

a11 a12 a13 a14
a31 a32 a33 a34
a21 a22 a23 a24


so the first matrix encodes the row operation R2 ↔ R3.1 0 k

0 0 1
0 1 0

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

 =

(a11 + ka31) (a12 + ka32) (a13 + ka33) (a14 + ka34)
a21 a22 a23 a24
a31 a32 a33 a34


so the second matrix encodes the row operation R1 + kR3 7→ R1.1 0 0

0 k 1
0 1 0

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

 =

 a11 a12 a13 a14
ka21 ka22 ka23 ka24
a31 a32 a33 a34


so the third matrix encodes the row operation kR2 7→ R2.

As such, if one can row reduce A to the identity, then the sequence of row operations must be encoded
in a sequence of elementary matrices Ei. That is

EnEn−1 · · ·E2E1A = I

It follows then that
A−1 = (EnEn−1 · · ·E2E1).

Example 3.3.9

Given A =

[
1 2
3 4

]
. Use elementary matrices to compute A−1.

In the following string of equalities, we’ll denote the row reduction on the left-hand side and the
corresponding product by elementary matrices on the right-hand side.[

1 2
3 4

]
= A[

1 2
R2 − 3R1 7→ R2 0 −2

]
=

[
1 0
−3 1

]
A
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[
1 2

−1
2
R2 7→ R2 0 1

]
=

[
1 0
0 −1

2

][
1 0
−3 1

]
A[

1 0
R1 − 2R2 7→ R1 0 1

]
=

[
1 −2
0 1

][
1 0
0 −1

2

][
1 0
−3 1

]
A

I2 =

[
−2 1
3
2
−1

2

]
A

so again we get that A−1 =

[
−2 1
3
2
−1

2

]
.

3.3.2 Using inverse to solve systems

If A is an invertible n× n matrix, then

Ax = b =⇒ A−1Ax = A−1b =⇒ x = A−1b

Hence the system Ax = b has the solution x = A−1b. Moreover, since A−1 is unique, we expect this
solution to be unique.

Theorem 3.3.10: Poole Theorem 3.7

If A is an invertible n× n matrix, then
� for every b ∈ Rn, the linear system Ax = b is consistent, and

� Ax = b has the unique solution x = A−1b.

Example 3.3.11

Use the inverse to solve the system Ax = b, where A =

[
1 4
3 13

]
and b =

[
1
7

]
.

We could solve this the old way, or we can try our nifty new method. We quickly deduce that
A−1 is given by

A−1 =

[
13 −4
−3 1

]
(which can be seen either by appealing to Theorem 3.3.6 or using the Gauss-Jordan Method).
Hence the solution is

x = A−1b =

[
13 −4
−3 1

][
1
7

]
=

[
−15
4

]
.

Example 3.3.12

Can we use the inverse to solve the following system?

{
x + y = 1
−x − y = −1
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Notice that this system is equivalent to the system {x + y = 1}, which has infinitely-many
solutions. Notice also that the coefficient matrix for this system is

A =

[
1 1
−1 −1

]
which isn’t invertible (because otherwise, attempting to apply Theorem 3.3.6 we would be dividing
by 0).

Remark. The astute reader may be wondering if it’s worth it to find the inverse. After all, the same row
operations will yield the solution anyway, so finding the inverse and then doing matrix multiplication
seems like extra steps. While that’s true, the crucial difference is now we can solve other systems
involving the same coefficient matrix without row reducing multiple times. That is, by computing A−1

only once, it is effortless to solve three different Ax = b1, Ax = b2, and Ax = b2. Employing
Gauss–Jordan on each system separately would take roughly three times as long finding the inverse.

3.3.3 When a matrix is invertible – The Fundamental Theorem

Putting it all together, we can wrap it up into the following theorem

Theorem 3.3.13: Poole Theorem 3.12 - The Fundamental Theorem of Invertible
Matrices: Pt I

Let A be an n× n matrix. The following are equivalent:
(a) A is invertible.

(b) A is row equivalent to In (i.e. its reduced row echelon form is In).

(c) A is the product of elementary matrices.

(d) Ax = b has a unique solution for every b ∈ Rn.

(e) Ax = 0 has only the trivial solution.

(f) The columns of A are linearly independent.

For part (d) above, we saw that it worked in one particular example. In fact, it’s true for all b because,
if A is row equivalent to the identity, then rank(A) = rank(

[
A b

]
) = n – hence it’s consistent – and

the system only has n variables, so by the rank theorem there is a unique solution.
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3.5 Subspaces, Basis, Dimension, and Rank

We’ve thought about solution sets as spans of vectors and also, alternatively, as lines and planes in
3-dimensional space. Now we’ll formalize these ideas so that we can talk about these things in more
generality. Recall the definition of a real vector space:

Definition: (real) vector space

A (real) vector space V is a set of objects (called vectors) with two operations vector addition
(denoted +) and scalar multiplication (no symbol) satisfying the following properties: For all
vectors u,v,w and real numbers a, b (called scalars),
(a) u+ v is in V [closure of addition]

(b) u+ v = v + u [commutativity of addition]

(c) (u+ v) +w = u+ (v +w) [associativity of +]

(d) There is some vector 0, called the zero vector, [additive identity]
so that u+ 0 = u for all vectors u.

(e) For each u in V , there is some vector −u for [additive inverse]
which u+ (−u) = 0.

(f) au is in V [closure of scalar mult.]

(g) a(u+ v) = au+ av [distributivity]

(h) (a+ b)u = au+ bu [distributivity]

(i) (ab)u = a(bu) [associativity of scalar mult.]

(j) 1u = u [scalar mult. identity]

With this in mind, we introduce the following definition:

Definition: vector subspace

Let V be a vector space and let W be a subset of vectors in V . We say that W is a subspace of
V if it is also a vector space (with the same vector addition/scalar multiplication operations).

In order to check that a set of vectors is a subspace, one would have to check all of the axioms of the
vector space definition – eww. Instead, here is an equivalent characterization of a subspace (note: this
is typically a theorem in most textbooks, but your book presents it as the definition).

Proposition 3.5.1: 3-Step Subspace Test

Let V be a vector space with zero vector 0. A subset U of V is a subspace of V if and only if the
following three conditions are satisfied:

1. U contains 0.
2. If U contains two vectors u1 and u2, then u also contains the sum u1 + u2.

We say that U is “closed under addition.”
3. If U contains a vector u, then for any scalar k, W also contains the scalar multiple ku.

We say that U is “closed under scalar multiplication.”

Remark. U must satisfy all of the above to be a subspace. If U fails to satisfy one or more of the
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above criteria, then it is not a subspace.

Example 3.5.2

Every vector space V is a subspace of itself.

Example 3.5.3: Trivial Vector Space

For any vector space V with zero vector denoted 0, the set {0} is a subspace of V (sometimes
called the trivial subspace).

This is straightforward to check using the 3-Step Subspace Test.
1. U contains 0 by definition.

2. Since 0+ 0 = 0, then U contains 0+ 0.

3. For any scalar k, we have that k0 = 0, so U contains k0.

Example 3.5.4: xy-Plane in R3

Let U be the set of all vectors in R3 of the form

xy
0

. Then U is a subspace of R3.

1. Clearly U contains 0 =

00
0

.
2. Suppose U contains both u1 =

x1

y1
0

 and u2 =

x2

y2
0

. Since u1 + u2 =

x1 + x2

y1 + y2
0

, then U

contains u1 + u2.

3. Suppose U contains u =

xy
0

 and k is any scalar. Since ku =

kxky
0

 then U contains ku.

By the 3-Step Subspace Test, U is a subspace of R3.

Example 3.5.5

Let U be the set of all vectors in R3 of the form

 x
y

x+ y

. Is U a subspace of R3?

1. Clearly U contains 0 =

00
0

.
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2. Suppose U contains both u1 =

 x1

y1
x1 + y1

 and u2 =

 x2

y2
x2 + y2

. Since u1 + u2 = x1 + x2

y1 + y2
(x1 + x2) + (y1 + y2)

, then U contains u1 + u2.

3. Suppose U contains u =

 x
y

x+ y

 and k is any scalar. Since ku =

 kx
ky

kx+ ky

 then U

contains ku.
By the 3-Step Subspace Test, U is a subspace of R3.

Example 3.5.6: z = 1 Plane in R3

Let U be the set of all vectors in R3 of the form

xy
1

. Then U is not a subspace of R3.

So long as U fails one or more criteria of the 3-Step Subspace Test, it will fail to be a subspace
of R3.

1. U does not contains

00
0

.
2. Suppose U contains both u1 =

x1

y1
1

 and u2 =

x2

y2
1

. Since u1 + u2 =

x1 + x2

y1 + y2
2

, then U

does not contains u1 + u2.

3. Suppose U contains u =

xy
1

 and k is any scalar. Since ku =

kxky
k

, then whenever k ̸= 1,

U does not contain ku.
As a matter of fact, U fails every criterion of the 3-Step Subspace Test.

Example 3.5.7: unit disk in R2

Let W be the unit disk in R2. That is, W =

{[
x
y

]
: x2 + y2 ≤ 1

}
. Is W a subspace of R2?

W contains

[
1
0

]
, but for any k > 1, the vector k

[
1
0

]
=

[
k
0

]
is not in W . Therefore U is not a

subspace.
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Example 3.5.8: Polynomial Subspaces

Let P2 be the set of polynomials of degree at most 2 and P3 the set of all polynomials of degree
at most 3. Every polynomial p(x) = a2x

2 + a1x+ a0 in P2 is also a polynomial in P3:

p(x) = 0x3 + a2x
2 + a1x+ a0.

Is P2 is a subspace of P3?

With the usual operations of polynomial addition and scalar multiplication (see Example 1.1.3),
one can use the 3-Step Subspace Test to check that P2 is a subspace of P3. The idea comes
down to the fact that the sum and scalar multiple of degree-2 polynomials always results in a
degree-2 polynomial (hence it is closed under both addition and salar multiplication). In fact,
this same argument shows that Pm is a subspace of Pn whenever m < n.

Example 3.5.9

Let U be the set of all vectors in R3 of the form

 x
y

sin(x)

. Is U a subspace of R3?

Consider u =

 π/2
0

sin(π/2)

 =

π/20
1

. Then 2u =

π0
2

, and this is not in U because sin(π) ̸= 2.

This subset fails to be closed under addition, hence by the 3-Step Subspace Test, U is not a
subspace of R3.

Example 3.5.10

Let W be the finite set W =

{[
0
0

]
,

[
1
6

]}
. W is not a subspace of R2.

Let w =

[
1
6

]
. Notice that W does not contain kw unless k = 0 or k = 1, hence by the 3-Step

Subspace Test, W is not a subspace of R2.

3.5.1 Geometry of Subspaces of Rn

At this point, subspaces have only been described purely algebraically, so what do they look like
geometrically?

Example 3.5.11: Subspace in Example 3.5.3

The set {0}, i.e. the trivial subspace (c.f. Example 3.5.3). This is a subspace of R3 (in fact, of
Rn for an n).
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This is just a point – the origin.

x

y

z

Example 3.5.12: Subspace in Example 3.5.4

Example 3.5.4 is the xy-plane. This is a subspace of R3.

x

y

z

Example 3.5.13: Subspace in Example 3.5.5

Example 3.5.5 is the some skewed plane through the origin. This is a subspace of R3.

x

y

z
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Example 3.5.14: Non-Subspace in Example 3.5.6

Example 3.5.6 is parallel to the xy-plane but does not pass through the origin. This is not a
subspace of R3.

1

Example 3.5.15: Non-Subspace in Example 3.5.7

Example 3.5.7 passes through the origin, but it doesn’t extend infinitely-far in any direction.
This is not a subspace of R2.

Picture Here

Example 3.5.16: Non-Subspace in Example 3.5.9

Example 3.5.9 passes through the origin, but is this wonky curvy surface. This is not a subspace
of R3.

−1

1

So what we’re gathering is that nontrivial subspaces have to look like infinite, “flat” objects through
the origin. In fact, the three conditions of the 3-Step Subspace Test essentially tell us this:

1. The subspace must pass through the origin.

2. The subspace must be “flat”.

3. The subspace must contain infinitely-many vectors and extend infinitely-far in every possible
direction (trivial subspace excepted).

For now we’ll simply state this as a fact, and the proof will follow from our later discussion of bases:

Theorem 3.5.17

Every subspace of Rn is a copy of Rm where 0 ≤ m ≤ n.
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3.5.2 The Four Fundamental Subspaces Associated with Matrices

With the notion of a ”subspace” in mind, let’s try to revisit some ideas involving matrices. First, a
simple result.

Theorem 3.5.18: Poole Theorem 3.19

Let v1, . . . ,vk ∈ Rn. Then Span(v1, . . . ,vk) is a subspace of Rn.

Proof. For simplicitly, let W = Span(v1, . . . ,vk).
1. Since 0 = 0v1 + · · ·+ 0vk, then 0 ∈ W .

2. Let u = c1v1 + · · ·+ ckvk and w = d1v1 + · · ·+ dkvk be vectors in W . Then

u+w = (c1 + d1)v1 + · · ·+ (ck + dk)vk.

Since u+w is a linear combination of the vectors vi, then u+w ∈ W .

3. Let u be as above and c ∈ R be some scalar. Then

cu = (cc1)v1 + · · ·+ (cck)vk.

Since cu is a linear combination of the vectors vi, then cu ∈ W .

Definition: column space, row space

Let A be an m× n matrix.
1. The column space of A is a subspace of Rm spanned by the columns of A. We denote it

as Col(A).

2. The row space of A is a subspace of Rn spanned by the rows of A. We denote it as
Row(A)

Remark. Since we will prefer to think about and compute with column vectors whenever possible, it
may be more useful to define Row(A) := Col(AT ).

Theorem 3.5.19: Poole Theorem 3.21

Let A be an m× n matrix and let N be the set of solutions to the homogeneous system Ax = 0.
Then N is a subspace of Rn.

Proof. We appeal to the 3-Step Subspace Test.
1. Clearly x = 0 is a solution to the homogeneous system.

2. Let x1,x2 be in N . Then

A(x1 + x2) = Ax1 + Ax2 = 0+ 0 = 0.

so N is closed under addition.

3. Let x be in N and k be a scalar. Then

A(kx) = k(Ax) = k0 = 0

so N is closed under scalar multiplication.
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Definition: null space, left null space

Let A be an m× n matrix.
1. The null space of A is the set of solutions to the homogeneous system Ax = 0. It is a

subspace of Rn and is denoted Null(A).
(In some texts, it is called the kernel of A and is denoted ker(A).)

2. The left null space of A is the set of solutions to the homogeneous system ATx = 0. It
is a subspace of Rm and is denoted Null(AT ).
(In some texts, it is called the cokernel of A and is denoted coker(A).)

Remark. We won’t be overly concerned with the left null space of A in this class. I’ll mention it again
in Chapter 5 to try to justify why it’s considered a “fundamental subspace.”

Example 3.5.20

Compute Col(A), Row(A), and Null(A) for A =

1 2 4
1 2 4
1 2 4

.
Letting ai denote the ith column of A, we see that a3 = 2a2 = 4a1, hence

Col(A) = Span

11
1

 .

Similarly, letting Ai denote the ith row of A, we see that A3 = A2 = A1, hence

Row(A) = Span([1, 2, 4]) .

Examining the homogeneous system Ax = 0,

[
A 0

]
=

1 2 4 0
1 2 4 0
1 2 4 0

 R3−R1 7→R3−−−−−−−→
R2−R1 7→R2

1 2 4 0
0 0 0 0
0 0 0 0


we see that A has rank 1 (hey wait, that’s how many vectors span both Row(A) and Col(A)...
weird), hence there are two free variables in this system, x2 = s and x3 = t. We thus get that
the solution set is of the formx1

x2

x3

 =

−2s− 4t
s
t

 = s

−21
0

+ t

−40
1


hence

Null(A) = Span

−21
0

,
−40

1

 .
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Definition: basis for a subspace

Let W be a subspace of a vector space and let B = {w1, . . . , wk} be a set of vectors in W . B is a
basis for W if and only if

1. W = Span(B) and
2. B is a linearly independent set.

Remark. This definition is the same as a basis for a vector space, as previously defined. We’ve simply
restated in terms of subspaces to highlight the fact that the basis vectors have to come from the
subspace.

Example 3.5.21

Given A =

1 2 4
1 2 4
1 2 4

, the matrix in Example 3.5.20, find a basis for Col(A), for Row(A), and

for Null(A).

INCOMPLETE

3.5.3 Strategies For Finding Bases

Finding a basis for the column space

1. Row reduce the matrix (just row-echelon form is fine)

2. Identify the “pivot columns” (those which contain a leading entry/pivot)

3. Your basis is the pivot columns from the original matrix.

Remark. It’s important that we take as a basis the vectors from the original matrix. Our row
operations fundamentally alter the columns (but preserve relationships between columns), so almost
certainly the column space of A is different from the column space of RREF(A). For example

A =

[
0 0
1 1

]
and RREF(A) =

[
1 1
0 0

]
The column space of A is the y-axis in R2, whereas the column space of RREF(A) is the x-axis in R2.

Example 3.5.22

Find basis for the column space of A =


1 1 3 1 6
2 −1 0 1 −1
−3 2 1 −2 1
4 1 6 1 3
v1 v2 v3 v4 v5

.
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By definition Col(A) = Span(columns of A), so the “span” condition of the basis is checked
off. All we have to do now is find a linearly independent set of vectors in this span. Using the
“Proposition 2.3.14” result, we can do this by checking for linear independence in A’s columns,
and simply removing all vectors which do not correspond to a leading entry in RREF(A).

RREF(A) =


1 0 1 0 −1
0 1 2 0 3
0 0 0 1 4
0 0 0 0 0
c1 c2 c3 c4 c5


Using the reduced row echelon form, we see that columns c3 and c5 are linear combinations of
the other columns. Notably,

c3 = 1c1 + 2c2 and c5 = −1c1 + 3c2 + 4c4

Letting v1, . . . ,v5 be the columns of A, we have the same linear dependencies

v3 = 1v1 + 2v2 and v5 = −1v1 + 3v2 + 4v4

(and you can check that this is true). Hence Col(A) = Span(v1,v2,v4) and {v1,v2,v4} is a
linearly independent set. Hence

{v1,v2,v4} =




1
2
−3
4

,


1
−1
2
1

,


1
1
−2
1




is a basis for Col(A).

Finding a basis for the null space

1. Row reduce the matrix (just row-echelon form is fine)

2. Solve the system Ax = 0.

3. Write the solution set as a parameterized linear combination of k vectors (where k is the
number of free variables).

4. Take these k vectors as a basis for Null(A).

Finding a basis for the left null space

1. Transpose the matrix.

2. Find a basis for the null space of the transpose.

Remark. It is actually always true that the vectors one gets from the parametric form are linearly
independent, and this is easy to see from the previous example. We specifically chose our vectors to
correspond to the free variables x3 and x5. The vector corresponding to x3 has a 1 in the third
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component and a 0 in the fifth component. Similarly, the vector corresponding to x5 has a 1 in the
fifth component and a 0 in the third component. There is no way that a scalar multiple of one vector
can be transformed into the other (because we can’t turn 0’s into 1’s).

More generally, there will be exactly one vector on each list with a number other than 0 in a
prescribed component, so it cannot be a linear combination of the others.

Example 3.5.23

Find basis for the null space of A =


1 1 3 1 6
2 −1 0 1 −1
−3 2 1 −2 1
4 1 6 1 3

, the same matrix from Exam-

ple 3.5.22.

Notice that

RREF(A) =


1 0 1 0 −1
0 1 2 0 3
0 0 0 1 4
0 0 0 0 0


When we go to solve the system

Ax = A


x1

x2

x3

x4

x5

 = 0

we see that x3 and x5 are free variables and

x1 = −x3 + x5,

x2 = −2x3 − 3x5,

x4 = −4x5.

By setting x3 = s and x5 = t, we can parameterize the solution set as

x =


x1

x2

x3

x4

x5

 =


−s+ t
−2s− 3t

s
−4t
t

 = s


−1
−2
1
0
0

+ t


1
−3
0
−4
1

 = sv1 + tv2.

Clearly Null(A) = Span(v1,v2) and it is straightforward to check that {v1,v2} are linearly
independent, hence

{v1,v2} =




−1
−2
1
0
0

,


1
−3
0
−4
1




is a basis for Null(A).
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Example 3.5.24

Find a basis for the subspace W = Span

 1
−1
0

,
−22

0

,
11
1

,
20
1

.

Put these vectors into the columns of a matrix A. Now, by definition, W = Col(A). Employ the
usual technique.

Example 3.5.25

Find a basis for the subspace W =


xy
z

 ∈ R3 such that x+ y + z = 0

.

Notice that the defining equation is a linear system, which we can write as

Ax =
[
1 1 1

]xy
z

 =
[
0
]
= 0.

In this way, we see that W = Null(A). Now find a basis for this null space.

3.5.4 Dimension and Rank

Theorem 3.5.26: Poole Theorem 3.23 - The Basis Theorem

Let W be a subspace of a vector space V with two different bases B1 and B2. Then B1 and B2
have the same number of vectors.

In other words, the number of basis vectors is unique, and we have the obvious definition from before,
applied to subspaces:

Definition: dimension of a subspace

The dimension of a subspace W is the number of vectors in a basis for W . We denote this
dim(W ).

What’s the dimension of the column space and the dimension of the row space? Observe the following
correspondence:

dim(Col(A)) = # linearly independent columns in A

= # leading entries in RREF(A)

= # nonzero rows in RREF(A)

= rank(A).
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Definition: rank, again

The rank of a matrix A is the dimension of its column space (denoted rank(A)). If A has size
n× n and rank(A) = n, then sometimes we say that A has full rank.

Now let’s think about what row operations are actually doing to the rows: they are just
adding/subtracting linear combinations of rows to get rid of dependencies. For example1 2 3

4 5 6
7 8 9

 RREF−−−−→

1 0 −1
0 1 2
0 0 0


Looking at the transpose of this last matrix, we have 1 0 0

0 1 0
−1 2 0


and clearly the first and second columns are linearly independent! In other words,

Theorem 3.5.27: Poole Theorem 3.24

For any matrix A, dim(Row(A)) = dim(Col(A)).

or equivalently

Theorem 3.5.28: Poole Theorem 3.25

For any matrix A, rank(A) = rank(AT )

The row space and column space dimensions get a cool name, but what about the null space? Well...

Definition: nullity

The nullity of a matrix A is the dimension of its null space. We denote it by nullity(A).

Theorem 3.5.29: Poole Theorem 3.26 - Rank–Nullity

If A is an m× n matrix, then rank(A) + nullity(A) = n.

It would be good to compare this to the original The Rank Theorem. Every “free variable” in our
linear system produces a basis vector for the null space. So if the original rank theorem said “leading
variables + free variables = total variables,” then one can see how this relates to the rank, nullity, and
number of columns.

This also allows us to add to the Fundamental Theorem of Invertible Matrices.
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Theorem 3.5.30: Fundamental Theorem of Invertible Matrices, Pt II

Suppose A is an n× n matrix. The following are equivalent:
(a) A is invertible.

...
(g) The column vectors of A span Rn.

(h) The column vectors of A form a basis for Rn.

(i) The row vectors of A are linearly independent.

(j) The row vectors of A span Rn.

(k) The row vectors of A form a basis for Rn.

(l) rank(A) = n

(m) nullity(A) = 0

3.5.5 Coordinates

Recall that span and linear independence culminate in the following:

Theorem 3.5.31

Let V be a vector space with an ordered basis B = {b1, . . . ,bn}. For every vector v ∈ V , there
is a unique linear combination of B-basis vectors such that

v = k1b1 + · · ·+ anbn.

Definition: coordinates, coordinate vector (with respect to a basis)

The coefficients ki in the previous theorem are called the coordinates of v with respect to
the B and the column vector

[v]B =

k1...
kn


is called the coordinate vector of v with respect to B.

The whole idea is that a basis is just providing a reference for how one can travel in a space, sothe
coordinates are communicating the directions.

Example 3.5.32

Let P (0, 0) and Q(3, 1) be points in the plane and consider the vector v =
−→
PQ. Write the

coordinate vector of v with respect to the standard basis for R2 (which you might denote as
E = {e1, e2}).
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P (0,0)

Q(3,1)

e1

e2 v

Figure 3.1: v in the E-basis.

v = 3e1 + 1e2

hence

[v]E =

[
3
1

]
.

Example 3.5.33

Let P (0, 0) and Q(3, 1) be points in the plane and consider the vector v =
−→
PQ. Write the

coordinate vector of v with respect to the basis B = {b1,b2} =
{[

1
1

]
,

[
1
−1

]}
for R2.

P (0,0)

Q(3,1)b1

b2

v

Figure 3.2: v in the B-basis.

v = 2b1 + 1b1

then

[v]B =

[
2
1

]
.

Remark. We typically don’t write the subscript E for vectors when they are written in the standard
basis. In fact, unless otherwise specified, all vectors should be thought of as being written in the
standard basis.

Example 3.5.34

Let v =

32
1

. Find [v]B where B =


 1
−1
2
b1

,
 1
0
3
b2

,
 2
−1
6
b3


.
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We just need to solve the system k1b1 + k2b2 + k3b3 = v. Indeed, 1 1 2 3
−1 0 −1 2
2 3 6 1

 RREF−−−−→

1 0 0 8
0 1 0 15
0 0 1 −10



and thus
[
v
]
B =

 8
15
−10

.
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3.6 Introduction to Linear Transformations

Definition: linear transformation

A transformation (aka function or map) is a function T with domain Rn and codomain Rm,
written

T : Rn → Rm.

T is a linear transformation if
1. T (u+ v) = T (u) + T (v) for all u,v ∈ Rm, and

2. T (kv) = kT (v) for all scalars k ∈ R and vectors v ∈ Rm.

Remark. The “codomain” is where the range lives; these are generally not the same. For example,
f(x) = x2 is a function from R to R, but the range of the function is only nonnegative real numbers.

Example 3.6.1: Identity transformation

Show that T : Rn → Rn given by T (v) = v is a linear transformation.

Let u,v be vectors in Rn and k a scalar. Then

T (u+ v) = u+ v = T (u) + T (v)

T (ku) = ku = kT (u)

Example 3.6.2: Trivial transformation

Show that T : Rn → Rm given by T (v) = 0 is a linear transformation.

Let u,v be vectors in Rn and k a scalar. Then

T (u+ v) = 0 = 0+ 0 = T (u) + T (v)

and

T (ku) = 0 = k0 = T (u)

Example 3.6.3: dot product/linear functional

Let w be some fixed vector in Rn. Show that the function

φ : Rn → R
φ(x) = x ·w

is a linear transformation.

Let u,v be vectors in Rn and let k be any scalar. It follows from the Properties of the Dot
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Product that

φ(u+ v) = (u+ v) ·w = (u ·w) + (v ·w) = φ(u) + εj(v)

and

φ(kv) = (kv) ·w = k(v ·w) = k φ(v)

Exercise 3.6.4: derivative

Let Pn(x) be the space of degree-n polynomials. Show that the derivative function

d

dx
: Pn(x)→ Pn−1(x)

is a linear transformation.

Recall that polynomials are differentiable. Let p(x) and q(x) be degree-n polynomials and let k
be any scalar. Then, from Calc I

d

dx

(
p(x) + q(x)

)
=

d

dx

(
p(x)

)
+

d

dx

(
q(x)

)
and

d

dx

(
k p(x)

)
= k

d

dx

(
p(x)

)

Example 3.6.5: matrix transformation

Let A be any 3× 2 matrix. Show that the following map is a linear transfmroation:

TA : R2 → R3

TA(x) = Ax

Let u,v be vectors in R2, and let k be a scalar. Then the result follows from previously established
facts about matrix operations (Theorems 3.2.1 and 3.2.2):

T (u+ v) = A(u+ v) = Au+ Av = T (u) + T (v)

and

T (kv) = A(kv) = k(Av) = kT (v).

The work done in the previous example proves a more general result.
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Theorem 3.6.6

If A is an m× n matrix, then the function

TA : Rn → Rm

TA(x) = Ax

is a linear transformation.

Let B = {b1, . . . ,bn} be a basis for Rn and let T : Rn → Rm be a linear transformation. For any
vector v in Rn, where

v = a1b1 + · · ·+ anbn

we have

T (v) = a1T (b1) + · · ·+ anT (bn)

and so in this way

range(T ) = Span(T (b1), . . . , T (bn))

that is, everything about the function is determined by what happens to the basis B. Let’s look at the
particular case of the standard basis.

Let v =

v1...
vn

 and write E = {e1, . . . , en} for the standard basis in Rn. Suppose that T : Rn → Rm is

a linear transformation, and write T (ei) = ai, where ai is a vector in Rm. Then we have

T (v) = T


v1...
vn


 = T (v1e1 + · · ·+ vnen)

= v1T (e1) + · · ·+ vnT (en)

= v1a1 + · · ·+ vnan

= v1


a11
a21
...

am1

+ · · ·+ vn


a1n
a2n
...

amn

 =


a11 · · · a1n
a21 · · · a2n
...

...
am1 · · · amn


v1...
vn

 = Av

Woah. That means that every single linear transformation is just multiplication by a matrix.

Theorem 3.6.7: Linear Transformations Are Matrices

Let T : Rn → Rm be a linear transformation. Then we can write T (x) = Ax where A is the
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m× n matrix whose ith column is the column vector T (ei), i.e.

A =

 | | | |
T (e1) T (e2) · · · T (en)
| | | |

.
Remark. This is why we like column vectors. If we took row vectors as the standard, we’d have to
write T (x) = xA, and that just looks silly.

Definition: standard matrix

The matrix in the above theorem is called the standard matrix for T . We may sometimes
write [T ] to denote the standard matrix of T .

Remark. This matrix is “standard” because it uses the standard basis. As we’ve seen, one can obtain
coordinate vectors for different bases, and you’ll still be able to get a matrix representing the linear
transformation. As you can imagine, notation for this can get kind of clunky.

Theorem 3.6.8: matrix multiplication is function composition

If T1 : Rn → Rm and T2 : Rp → Rn are two linear transformations, then[
T1 ◦ T2

]
=
[
T1

][
T2

]
That is, matrix multiplication is just a composition of functions.

Proof. Let x ∈ Rp. Then

(T1 ◦ T2)(x) = T1(T2(x)) = T1

([
T1

]
x
)
= [T1][T2]x

and thus we get the following:
1. (T1 ◦ T2) : Rp → Rm is a linear map and

2. the standard matrix is given by [T1 ◦ T2] = [T1][T2], an m× p matrix.

Example 3.6.9

Let S and T be the linear transformations below:

S : R2 → R2 T : R2 → R2

S

([
x
y

])
=

[
x+ y
x− y

]
T

([
x
y

])
=

[
3x− y
2y

]
Find the standard matrix for S, the standard matrix for T , and the standard matrix for S ◦ T .
Use this to verify Theorem 3.6.8.

The standard matrix for S is[
S
]
=

[
S

([
1
0

])
S

([
0
1

])]
=

[
1 1
1 −1

]
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The standard matrix for T is[
T
]
=

[
T

([
1
0

])
T

([
0
1

])]
=

[
3 −1
0 2

]
The product of these matrices is [

T
][
S
]
=

[
2 4
2 −2

]
Now, the composition is

T ◦ S
([

x
y

])
= T

([
x+ y
x− y

])
=

[
3(x+ y)− (x− y)

2(x− y)

]
=

[
2x+ 4y
2x− 2y

]
and thus the standard matrix for T ◦ S is[

T ◦ S
]
=

[
(T ◦ S)

([
1
0

])
(T ◦ S)

([
0
1

])]
=

[
2 4
2 −2

]
.

3.6.1 Types of Linear Transformations of R2

Example 3.6.10: reflection about x-axis

A Reflection about the x-axis, Rx, is a linear transformation of R2.

P

1

1
Rx

P

Explicitly, it sends a points (x, y) to (x,−y), hence the transformation is given by

Rx

([
x
y

])
=

[
x
−y

]
The standard matrix for Rx is thusly given by

[Rx] =

[
Rx

([
1
0

])
Rx

([
0
1

])]
=

[
1 0
0 −1

]
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Exercise 3.6.11

Show that reflection about the y-axis is also a linear transformation and find the standard matrix
for this.

Example 3.6.12: rotation

Rotation by an angle θ about the origin, Rθ, is a linear transformation of R2.

P

1

1
Rθ

P

θ

For this one, we’ll first find the standard transformation matrix. Note that e1 = [cos(0), sin(0)]T

and e2 = [cos(π
2
), sin(π

2
)]T . So rotation by an angle θ should add θ to the angle arguments of

sine and cosine, i.e.

[Rθ] =

[
Rθ

([
cos(0)
sin(0)

])
Rθ

([
cos(π

2
)

sin(π
2
)

])]
=

[
cos(0 + θ) cos(π

2
+ θ)

sin(0 + θ) sin(π
2
+ θ)

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
hence the linear transformation is given by

Rθ

([
x
y

])
=

[
x cos(θ)− y sin(θ)
x sin(θ) + y cos(θ)

]

Example 3.6.13

A dilation (with dilation factor k) is a transformation Dk that expands out from the origin
by a factor of k.
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P

1

1
Dk

P

k

k

Explicitly, it sends a point (x, y) to a point (kx, ky) so for vectors,

Dk

([
x
y

])
=

[
kx
ky

]
The standard matrix for Dk is given by

[Dk] =

[
Dk

([
1
0

])
Dk

([
0
1

])]
=

[
k 0
0 k

]
.

Example 3.6.14: horizontal shear

A horizontal shear (with shear factor m), Sm, is a transformation that slides the top edge of
the unit square m units to the right (making a parallelogram).

P

1

1
Sm

m 1

1 P

In particular, it sends (x, y) to the point (x+my, y),

Sm

([
x
y

])
=

[
x+my

y

]
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The standard matrix for Sm is given by

[Sm] =

[
Sm

([
1
0

])
Sm

([
0
1

])]
=

[
1 m
0 1

]

Example 3.6.15: projection onto the x-axis

A projection (onto the x-axis) is a transformation Proje1 that sends the vector [x, y] to the
vector [x, 0].

P

1

1
Proje1

1

0

Since

Proje1

([
x
y

])
=

[
x
0

]
The standard matrix for Proje1 is given by

[Proje1 ] =

[
Proje1

([
1
0

])
Proje1

([
0
1

])]
=

[
1 0
0 0

]

Example 3.6.16: composition of simpler transformations

Find the matrix corresponding to a reflection of R2 across the line y = x.

A reflection across the line y = x sends

[
1
0

]
to

[
0
1

]
and vice versa, so the standard matrix for

this transformation is [
0 1
1 0

]
.

Alternatively, notice that we can think about a reflection about this line as a composition of
the following moves: first rotate the line y = x to y = 0, reflect across this line, then rotate
y = 0 back to y = x. This latter interpretation is somehow easier because we know all of the
component matrices in the product.
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y
=
x

P

1

1 Rπ/4 ◦Rx ◦R−π/4 P

P P

R−π/4

Rx

Rπ/4

We have that

[R−π/4] =

[
cos
(
−π

4

)
− sin

(
−π

4

)
sin
(
−π

4

)
cos
(
−π

4

) ] = 1√
2

[
1 1
−1 1

]
[Rx] =

[
1 0
0 −1

]
[Rπ/4] =

[
cos
(
π
4

)
− sin

(
π
4

)
sin
(
π
4

)
cos
(
π
4

) ] = 1√
2

[
1 −1
1 1

]
Now we have that

[Rπ/4 ◦Rx ◦R−π/4] = [Rπ/4][Rx][R−π/4] =
1

2

[
1 −1
1 1

][
1 0
0 −1

][
1 1
−1 1

]
=

[
0 1
1 0

]
.

Exercise 3.6.17

Give a geometric description of the following matrices’ behavior on R3 (i.e. on the vectors
[x, y, z]T ).

1.

1 3
0 1

2

 2.

 cos θ 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 3.

−1 2
3



One-to-One, Onto, Invertibility

Not every matrix is square, so visualizing their behavior in a smooth way isn’t really feasible. We aim
to say something, then, about them in general.
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Definition: range, kernel

Let T : Rn → Rm be a linear transformation. The range of T is the set of all possible outputs

range(T ) = {T (x) for all x in Rn}

and the kernel of T is the collection of vectors in the domain which are sent to the zero vector:

ker(T ) = {x in Rn so that T (x) = 0}

Remark. The range can loosely be interpreted as “vector information retained by T” and the kernel
represents “vector information lost by T .”

We make the following connection with the standard matrix, we have

Proposition 3.6.18

Let T : Rn → Rm have standard matrix A. Then
� range(T ) = Col(A).

� ker(T ) = Null(A).

Definition: one-to-one, onto

A transformation T : Rn → Rm is one-to-one (or injective) if, for every vector v ∈ Rn, there is
a unique w ∈ Rm for which T (v) = w. T is onto (or surjective) if, for every w ∈ Rm, there is
at least one v ∈ Rn for which T (v) = w.

Remark. Maybe the right way to think about it is this: “one-to-one” means that the range of T is a
copy of Rn living inside of Rm, and “onto” means that the range of T is all of Rm. In either case, this
suggests that the range of T is as large as can be

For linear transformations, we have a more convenient way of thinking about these notions.

Example 3.6.19

Consider the linear transformation T : R2 → R3 with standard matrix A. Sketch a diagram
showing all possible ranges of T . When is T one-to-one? When is T onto?

Since Col(A) = range(T ), then range(T ) is a subspace of R3 whose dimension is equal to rank(A).
Since A is a 3× 2 matrix, there are only three options for the rank: 0, 1, and 2. In turn, there
are only three possible types of subspaces representing the range:
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x

y

domain(T ) = R2

range(T ) ∼= R0

rank(A) = 0
range(T ) ∼= R1

rank(A) = 1
range(T ) ∼= R2

rank(A) = 2

Let {e1, e2} be the standard basis for R2, the domain of T . Note that {T (e1), T (e2)} are precisely
the columns of A.

Suppose that rank(A) = k where k < 2. Then {T (e1), T (e2)} is not a linearly independent set in
R3, so there are constants c1, c2 for which

c1T (e1) + c2T (e2) = 0

c2T (e2) = −c1T (e1)
T (c2e2) = T (−c1e1)

and hence we have two different vectors with the same output - T is not one-to-one in these cases.

T clearly cannot be onto since the range is, as most, a 2-dimensional subspace of R3.

This idea motivates the following

Theorem 3.6.20: one-to-one and rank

A linear transformation T : Rn → Rm with standard matrix A is one-to-one if and only if
rank(A) = n.

And following from Rank–Nullity,

Corollary 3.6.21

A linear transformation T : Rn → Rm with standard matrix A is one-to-one if and only if
nullity(A) = 0.
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Example 3.6.22

Consider the linear transformation T : R3 → R2 with standard matrix A. Sketch a diagram
showing all possible ranges of T . When is T one-to-one? When is T onto?

Since Col(A) = range(T ), then range(T ) is a subspace of R2 whose dimension is equal to rank(A).
Since A is a 2× 3 matrix, there are only three options for the rank: 0, 1, and 2. In turn, there
are only three possible types of subspaces representing the range:

domain(T ) ∼= R3

x

y

range(T ) = R2

rank(A) = 2

x

y

range(T ) ∼= R1

rank(A) = 1

x

y

domain(T ) ∼= R0

rank(A) = 0

Let {e1, e2, e3} be the standard basis for R3, the domain of T . Note that {T (e1), T (e2), T (e3)}
are precisely the columns of A.

Suppose that rank(A) = k where k < 2. Then {T (e1), T (e2)} is not a linearly independent set in
R3, so there are constants c1, c2 for which

c1T (e1) + c2T (e2) = 0

c2T (e2) = −c1T (e1)
T (c2e2) = T (−c1e1)

and hence we have two different vectors with the same output - T is not one-to-one in these cases.

T clearly cannot be onto since the range is, as most, a 2-dimensional subspace of R3.

Theorem 3.6.23: onto and rank

A linear transformation T : Rn → Rm is onto if and only if rank(A) = m.

Example 3.6.24

Let T : R2 → R2 be the projection onto the first coordinate:

T

([
x
y

])
=

[
x
0

]
with standard matrix A =

[
1 0
0 0

]
.

Is T one-to-one? Is T onto?



CHAPTER 3. MATRICES 98

It should be clear that any vector of the form [0, y]T is sent to 0, but this can be seen by explicitly
computing

Null(A) =

{[
0
y

]
: y ∈ R

}
.

By a quick rank/nullity computation, one also sees that T is neither one-to-one nor onto.

Corollary 3.6.25

A is invertible if and only if T : Rn → Rn is both one-to-one and onto.

Proof. By the fundamental theorem of invertible matrices, A is invertible if and only if rank(A) = n,
and from Theorems 3.6.20 and 3.6.23, this is true if and only if TA : Rn → Rn is both one-to-one
and onto.

Theorem 3.6.26: Poole Theorem 3.12 - The Fundamental Theorem of Invertible
Matrices: Pt III

Let A ∈ Rn×n. The following are equivalent:
(a A is invertible.

...
(n) T (x) = Ax is an invertible linear transformation.

Definition: invertible linear transformation

A linear transformation T : Rn → Rn is invertible (as a function) if its standard matrix A is
invertible. In this case, T−1 : Rn → Rn has standard matrix A−1.

This is completely reasonable:

(T ◦ T−1)(x) = AA−1x = x = A−1Ax = (T−1 ◦ T )x

Example 3.6.27: rotations are invertible

Let Rθ : R2 → R2 be the rotation of the plane by an angle of θ. Find the inverse transformation.

Intuitively, the inverse transformation is R−θ, the rotation of the plane by an angle of −θ. We
can also see this by Looking at the standard matrices

[
Rθ

]
=

[
cos θ − sin θ
sin θ cos θ

]

[
Rθ

]−1
=

1

cos2 θ + sin2 θ

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
=

[
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]
=

[
cos θ sin θ
− sin θ cos θ

]
=
[
R−θ

]
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3.7 Applications

3.7.1 Markov Chains

Remark. I have chosen to handle this section after discussing eigenvalues/eigenvectors/diagonalization.
As such, the presentation in these notes is slightly different than the course textbook.

Example 3.7.1

Researchers have found that Democratic (D) voters are 70% likely to continue voting Democratic
in the next election, 10% likely to vote Republican in the next election, and 20% likely to vote
Independent in the next election. Similar data was compiled for Republican (R) and Independent
(I) voters, and can be modeled in the following graph:

D

I

R 0.20.3

0.1

0.1

0.1

0.2

0.7

0.5

0.8

If there are D0 Democratic voters, R0 Republican voters, and I0 Independent voters in this
current election cycle, how many of each will there be for the next election cycle? How many will
there be after k election cycles?

We can write

D1 = 0.7(D0) + 0.1(R0) + 0.3(I0)

R1 = 0.1(D0) + 0.8(R0) + 0.2(I0)

I1 = 0.2(D0) + 0.1(R0) + 0.5(I0)

or, as a matrix/vectors

x1 =

D1

R1

I1

 =

0.7 0.1 0.3
0.1 0.8 0.2
0.2 0.1 0.5

D0

R0

I0

 = Px0

It follows that, after k elections cycles, xk = P kx0.
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Example 3.7.2

Given the process described in Example 3.7.1, let D0 = 1000, R0 = 800 and I0 = 300. Compute
xk for a few values of k. What happens as k →∞?

x1 =

870800
430

, x20 ≈

764859
477

, x100 ≈

764859
477

, x1000 ≈

764859
477


What we notice is that the vector xk = P kx0 seems to stop changing as k →∞. Hence

x = lim
k→∞

P kx0 ≈

764859
477



If you’re interested in playing around with this yourself, say with different initial conditions or a
different number of steps in the Markov chain process, you can use the Matlab code below:

transMat = [ 0.7 0.1 0.3 ; 0.1 0.8 0.2 ; 0.2 0.1 0.5 ]; %transition matrix

x0 = [ 1000 ; 800 ; 300 ]; %initial state vector [D0,R0,I0]

maxLoop = 100; %number of iterations in Markov chain

for k=1:maxLoop

transpose(transMat^k*x0) %outputs xk = [Dk,Rk,Ik], kth step in Markov chain process

end

Now, if limk→∞ P kx0 exists and equals some vector x, then

x = lim
k→∞

P kx0 = lim
k→∞

P k+1x0 = P
(
lim
k→∞

P kx0

)
= Px.

(where one of the equalities above follows from a fact we haven’t proved – linear transformations are
continuous).

Definition: Markov chains

The vector x0 in the last example is known as the initial state vector, A is known as the
transition matrix, and the entire process above is called a Markov chain (with 3 states).

Since Markov chains specifically model probablistic scenarios, the types of transition matrix and state
vectors are fundamentally related to probability. As such, they get special names.we have special
names for these types of vectors and matrices.

Definition: stochastic matrix, probability vector

A vector with all nonnegative entries that sum to 1 is called a probability vector. A square
matrix with probability column vectors is called a stochastic matrix. A stochastic matrix A is
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called a regular stochastic matrix if there is some power k for which Ak has all strictly-positive
entries.

Remark. Every transition matrix in this class will be a regular stochastic matrix; don’t worry about
the formality of this. One motivation is that ensures that your transition matrix is not a block
diagonal matrix, which means that you’re modeling two completely unrelated/independent probablistic
scenarios.

From our example, we observe the following

Proposition 3.7.3: entries of stochastic matrices

If A is a stochastic matrix, and k is some (positive) integer, then then (i, j)-entry of Ak represents
the probability that object switches to state i from state j after k iterations. This can easily be
found with the formula

ei
TAkej.

The motivation for this formula is that an object in state j means that it has a 100% chance of being
in state j and a 0% chance of being in any other state, so this is the vector ej. To find the ith

component of a vector, one can just multiply by ei
T .

Theorem 3.7.4: The Fundamental Theorem of Markov Chains

For a regular stochastic matrix P , there is a unique steady state probability vector.

Corollary 3.7.5

A regular stochastic matrix P always has an eigenvalue of 1, which has geometric multiplicity 1.

Taking a limit of Ak as k →∞ is really hard because finding a Computing high powers of matrices is
hard. One could use diagonalization, but it turns out that there’s an easier way of obtaining steady
state vectors. Observe that

Px = x

Px = Ix

Px− Ix = 0

(P − I)x = 0

which is a fairly simple linear system that can be solved in the usual way. The problem you’ll run into
is that this system is under-determined and there will be infinitely-many choices for x. One natural
choice is to require x to also be a probability vector, and this is natural because

Remark. We note that, if x0 is a probability vector, then P kx0 is as well, so it’s also natural to set up
your Markov chain with the initial state vector as a probability vector.

Example 3.7.6

Find the steady-state probability vector for the Markov chain in Example 3.7.1.
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We can write (P − I)x = 0 as an augmented matrix and solve it in the usual way.

[
P − I 0

]
=

−0.3 0.1 0.3 0.0
0.1 −0.2 0.2 0.0
0.2 0.1 −0.5 0.0

 RREF−−−−→

1.0 0.0 −1.6 0.0
0.0 1.0 −1.8 0.0
0.0 0.0 0.0 0.0


so our steady state vector has the form

x =

1.6t1.8t
t


for some real number t. Requiring x to be a probability vector gives 1.6t+ 1.8t+ t = 1, hence
t = 1

4.4
≈ 0.227, and thus

x ≈

0.3640.409
0.227


Remark. With the above in mind, taking scaling the probability vector by 2100, we obtain the original
limit. Ultimately this tells us that, no matter nonzero vector x0 we picked, there will always be a
scalar λ ∈ R for which lim

k→∞
P kx0 = λx.



Chapter 4

Eigenvalues and Eigenvectors

4.1 Introduction to Eigenvalues and Eigenvectors

4.1.1 Motivation - Geometric and Computational

In Section 3.6, we saw that we could think about the geometry of the plane after applying a 2× 2
matrix (see Examples 3.6.10 and 3.6.12 to 3.6.15). In 3 dimensions, this becomes harder to “see”, and
in n > 3 dimensions, this is probably virtually impossible for most to “see.” We’d like to get an
understanding of what multiplication by an n× n matrix is doing to Rn, even if we can’t perfectly
visualize it.

Observe the following  −3 2 2
−14 8 5
2 −1 2

 0
−1
1

 =

 0
−3
3

 = 3

 0
−1
1


and  −3 2 2

−14 8 5
2 −1 2

12
0

 =

12
0

 = 1

12
0


In other words, this 3× 3 matrix, while hard to describe generally, could be given a somewhat intuitive
description:

� it scales/dilates by a factor of 3 in the direction of [0,−1, 1]T , and
� it scales/dilates by a factor of 1 in the direction of [1, 2, 0]T .

Example 4.1.1

Let A be the 3× 3 matrix

 5 0 0
21 5 3
−5 −2 0

. In which directions does A scale/dilate by 2? By 3?

By 5?

103
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We compute a bunch of null spaces.

Null(A− 2I) = Null

 3 0 0
21 3 3
−5 −2 −2

 = Null

1 0 0
0 1 1
0 0 0

 = Span

 0
1
−1


Null(A− 3I) = Null

 2 0 0
21 2 3
−5 −2 −3

 = Null

1 0 0
0 2 3
0 0 0

 = Span

 0
−3
2


Null(A− 5I) = Null

 0 0 0
21 0 3
−5 −2 −5

 = Null

7 0 1
0 7 15
0 0 0

 = Span

 −1−15
7


So we can say that A stretches in the direction [0, 1,−1]T by a factor of 2, it stretches in the
direct [0, 3, 2]T by a factor of 3, and it stretches in the direction of [−1,−15, 7]T by a factor of 5.

The three vectors we found above actually end up being a basis for R3! (This is left as an exercise to
check). And this is an awful convenient basis because it makes it easy to figure out images of linear
transformations without having to multiply by the matrix.

Example 4.1.2

Let B =


 0

1
−1


b1

,

 0
−3
2


b2

,

 −1−15
7


b3

 be the the basis from the previous problem, and let T be the

linear transformation defined as follows

T (b1) = 2b1, T (b2) = 3b2, T (b3) = 5b3.

Find

T

16
0

 .

We can guess T is just multiplication by the matrix A from the previous example, and we get

T (x) =

 5 0 0
21 5 3
−5 −2 0

16
0

 =

 5
51
−17

.
However, since we’re not told about this matrix A and finding it might be a chore, we can try
another way.

It’s an exercise to see that 16
0

 = 3b1 + 2b2 − b3



CHAPTER 4. EIGENVALUES AND EIGENVECTORS 105

so by properties of linear transformations

T

16
0

 = T (3b1 + 2b2 − b3)

= 3T (b1) + 2T (b2)− T (b3)

= 3(2b1) + 2(3b2)− (5b3)

=

 5
51
−17


So it must be that A is precisely the standard matrix for T , but we didn’t have to compute it at
all.

Example 4.1.3

With all of the same vectors/matrices as in the previous example, compute

(T ◦ · · · ◦ T︸ ︷︷ ︸
1357

)

16
0

 .

Knowing that

T (x) = A

16
0

, where A =

 5 0 0
21 5 3
−5 −2 0


we must have that

(T ◦ · · · ◦ T︸ ︷︷ ︸
1357

)

16
0

 = A1357

16
0

.
Clearly computing such a large power of a matrix is unreasonable by hand, so instead we turn to
thinking about this basis again.

A1357

16
0

 = A1357 (3b1 + 2b2 − b3)

= A1356 (3Ab1 + 2Ab2 − Ab3)

= A1356 (3(2)b1 + 2(3)b2 − (5)b3)

= A1355 (3(2)Ab1 + 2(3)Ab2 − (5)Ab3)

= A1355
(
3(2)2b1 + 2(3)2b2 − (5)2b3

)
...

= A
(
3(2)1355Ab1 + 2(3)1355Ab2 − 51355Ab3

)
= A

(
3(2)1356b1 + 2(3)1356b2 − 51356b3

)
= 3(2)1356Ab1 + 2(3)1356Ab2 − 51356Ab3



CHAPTER 4. EIGENVALUES AND EIGENVECTORS 106

= 3(2)1357b1 + 2(3)1357b2 − 51357b3

=

 51357

3 · 21357 − 6 · 31357 + 15 · 51357
−3 · 21357 + 4 · 31357 − 7 · 51357



=



3179039206181914934261027201098644538227754356634066214229264660247752633249694638171860271963943813
9979729989719483756313092265515479828862585088764805469841432413644922018007106716531119051690353568
6219847229775824541601813631214504774699908796564679333609508326052356404602836588590278832973891486
5067948676596100579342276597434628615958506999412808941001719448105647066943653202479324194864702033
3771486857217721800685406316605021418695670648409019759142759857096526297844676843284681451889552748
6311347143011215791981935909576642700119940346320329906238603735526254483556233818301781640172441734
8484729361068016540597998832367227142643842421425027414378682811532441256749630953163132178753359819
9665108413033133171029830358003193956833939698036455221540115866399293929460403624894786911416386396
3333663095959220380059822475876747882198099580266289891423048436583265729962822253490467937475747721
651491047023530001069957506842911243438720703125

4768558809272872401391540801647966807341631534951099321343896990371628949874541957257790407945915720
9969594984579225634469638398273219743293877633147208204762148620467383027010660074796678577535530352
9329770844663736812402720446821757162049863194847019000414262489078534606904254882885418249460837229
7431434979997918505956964022622671770857166711667206875557523500491867478971771256887319975035925942
2040197089312187630398383187906603277026131763994996234630191792502223111375849448110727107351686160
1805833638936869415093739699310837438461426483887598118563378236293145165827406646103046940922952574
4416704942275632728302886931145806978277553705932668953970188384909417777300970904284736798856935004
3241387387097013451671204236527342741706543372300920906036746498473738497047557484817494869768119696
3941088428076741493566679832092178490834694640584602689603355442254840136574272273943392182639620551
37723325522407288331997531004951781794646954567113

−222532744432734045398271904076905117675942804964384634996048526217342684327478624672030219037476066
9798581099280363862941916458586083588020380956213536382888900268955144541260497470157178333618324749
8035389306084307717912126954185015334228993615759527553352665582823664948322198561201319518308172404
0543390538368644883016862636918472592911722570795429523473783316589621753256475154384774939156454001
8122868533570947521339330023028956242574205331480729156201063139928858628531522599344194429467777085
7661454867833424313630303505558659234463738423491368616888392437147464237567166539975641982254136100
5249208188800714061637504095402070550217852983254598917190733677456766048997797807743345790394334457
9091101172742200040321841506589515110298920417288838283969245312149041002303861601599202057384416267
8971919330595870079050353513176069603035131696095586125826339633416024902210812036957113752191475031
589697877879879488647908157674007187023138577047239


Let’s give names to these “stretching” ideas.

Definition: eigenvalues, eigenvectors

Let A be an n× n matrix. A scalar λ is an eigenvalue of A if there is a nonzero vector v ∈ Rn

so that Av = λv. Such a vector is called an eigenvector of A corresponding to λ.

Remark. The prefix eigen– is not a name, but is derived from German and means “own” as in the
sense of characterizing an intrinsic property; a less literal translation would be along the lines
of“special” or “characteristic.”

Remark. The eigenvectors are not unique. If u is an eigenvector corresponding to λ and v = ku for
some scalar k, then

Av = A(ku) = kAu = kλu = λ(ku) = λv.

For any n× n matrix A, if there is a vector v for which Av = λv (where λ is some scalar), then we
can say a little bit about this vector.

Av = λv

Av − λv = 0

Av − λIv = 0

(A− λI)v = 0

so v is in Null(A− λI)

Definition: eigenspace

Let A be an n× n matrix and λ an eigenvalue with corresponding eigenvectors v1, . . . ,vk. The
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eigenspace, corresponding to λ, denoted Eλ, is

Eλ := Span(v1, . . . ,vk)

or equivalently

Eλ := Null(A− λI).

Remark. The eigenspace is comprised entirely of eigenvectors and the zero vector.

Remark. It may at first seem surprising that any linear combination of the above vi’s is still an
eigenvector for λ, but it is a straightforward computation to see that it is true:

A(c1v1 + · · ·+ ckvk) = c1Av1 + · · ·+ ckAvk

= c1λv1 + · · ·+ ckλvk

= λ(c1v1 + · · ·+ ckvk).

Example 4.1.4

A =

[
−3 2
3 2

]
has eigenvector

[
−2
1

]
. Find the corresponding eigenvalue.

[
−3 2
3 2

][
−2
1

]
=

[
8
−4

]
= λ

[
−2
1

]
hence the corresponding eigenvalue is λ = −4.

Example 4.1.5

Show that 3 is another eigenvalue of A =

[
−3 2
3 2

]
and find an eigenvector corresponding to

λ = 3.

We need to find a vector v such that

Av = 3v =⇒ Av − 3v = 0 =⇒ (A− 3I)v = 0

so really we need to compute Null(A− 3I).

[
A− 3I 0

]
=

[
−6 2 0
3 −1 0

]
RREF−−−→

[
3 −1 0
0 0 0

]

So a vector v is in Null(A− 3I) if it has the form

[
t
3t

]
. As such, any nonzero vector of this form

is an eigenvector of A corresponding to 3.
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4.1.2 Geometry of Eigenvectors

Eigenvectors are those vectors whose directions aren’t changed, but are merely scaled (and we’re
considering v and −v to have the same “direction”). It follows that eigenspaces are subspaces that are
preserved or stabilized by the linear transformation.

Example 4.1.6

Using A =

[
−3 2
3 2

]
as before, notice that the vectors [−2, 1]T and [1, 3]T do not change direction

after a transformation, but are merely scaled.
Note: we consider v and −v to be in the “same direction”.

Figure 4.1: Before applying transformation A. Figure 4.2: After applying transformation A.

Since eigenvectors correspond to directions that are unchanged, one can approximate them by
plottinga number of vectors in all directions, apply the transformation, and look for those vectors
whose directions have changed the least. Often one plots them “head-to-tail” so that the vector v
emanates from the origin, and the vector Av is plotted emanating from the head of v. Then the
lengths of v and Av can be compared to estimate the eigenvalue. The next example shows this.

Example 4.1.7

Let A =

[
2 1
1 2

]
.

The image below shows number of unit vectors v (in black) and then the vectors Av (in blue)
emanating from the heads of v. Use this information to estimate the eigenvectors and eigenvalues
for A, then verify algebraically.
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Figure 4.3: Vectors v and Av drawn head-to-tail. The directions that appear to be unchanged have been highlighted.

We see that the eigenvectors appear to be in the directions of u1 =

[
−1
1

]
and u2 =

[
1
1

]
. Moreover,

looking at the lengths of Au1 and Au2 relative to the lengths of u1 and u2 (respectively), one
would guess that the corresponding eigenvalues are 1 and 3, respectively.
We verify our conjecture:[

2 1
1 2

][
−1
1

]
=

[
−1
1

]
and

[
2 1
1 2

][
1
1

]
=

[
3
3

]
= 3

[
1
1

]
.

4.1.3 Computing eigenvalues for a given matrix

An eigenvalue λ is a scalar for which Null(A− λI) contains nonzero vectors. In other words, if A is an
n× n matrix, then λ is an eigenvalue if and only if

nullity(A− λI) > 0 or rank(A− λI) < n.

Example 4.1.8

Find the eigenvalues for A =

1 2 3
0 4 5
0 0 6

.

Looking at A− λI =

1− λ 2 3
0 4− λ 5
0 0 6− λ

the eigenvalues are λ = 1, 4, 6 because...

(λ = 1) A− I =

0 2 3
0 3 5
0 0 5

 has only two nonzero columns, hence rank is at most 2.
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(λ = 4) A− 4I =

−3 2 3
0 0 5
0 0 2

 has the first and second columns as scalar multiples of each

other, hence the rank is as most 2.

(λ = 6) A− 6I =

−5 2 3
0 −1 5
0 0 0

 has a row of all zeroes, hence the rank is at most 2.

λ ̸= 1,4,6 A− λI is in row echelon form with no rows of zeroes, so it must have rank 3.

Example 4.1.9

Find all eigenvalues for A =

[
−3 2
3 2

]
.

We have that

A− λI =

[
−3− λ 2

3 2− λ

]
3R1 7→R1−−−−−−−−→

(−3−λ)R2 7→R2

[
3(−3− λ) 6
3(−3− λ) (−3− λ)(2− λ)

]
−R1+R2 7→R2−−−−−−−−→

[
3(−3− λ) 6

0 (−3− λ)(2− λ)− 6

]

Observe that

(−3− λ)(2− λ)− 6 = −6− 2λ+ 3λ+ λ2 − 6 = λ2 + λ− 12 = (λ+ 4)(λ− 3)

so rank(A− λI) < 2 when λ = −4, 3.

As well, our first row operation implicitly assumed that −3− λ ̸= 0 (since multiplying by 0 is
not a row operation), so we should check the case that λ = −3:

rank(A− (−3)I) = rank

([
0 2
3 5

])
= rank

([
3 5
0 2

])
= 2

and therefore our only eigenvalues are

λ = −4, 3.

Exercise 4.1.10

Let A =

−4 2 6
0 −3 2
0 3 2

 and B =

−4 0 7
0 −3 2
0 3 2

.
1. Find all eigenvalues for A. For each eigenvalue, λ, find a basis for the eigenspace Eλ.

2. Find all eigenvalues for B. For each eigenvalue, λ, find a basis for the eigenspace Eλ.

Of course, if A− λI has rank less than n, then A− λI is not invertible, and for a 2× 2 matrix
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A =

[
a b
c d

]
, we know that A is not invertible precisely when ad− bc = 0.

Example 4.1.11

Find all eigenvalues for A =

[
−3 2
3 2

]
.

0 = det(A− λI)

= det

([
−3− λ 2

3 2− λ

])
= (−3− λ)(2− λ)− 6

= λ2 + λ− 12.

Using our favorite method of solving for the zeroes of this polynomial, we exactly see that its
zeroes are λ = −4, 3, which are precisely the eigenvalues we expected to get from the previous
examples.

We ought to give a name to that ad− bc quantitiy.

Definition: determinant (of a 2× 2 matrix)

If A =

[
a b
c d

]
, the determinant of A is a real number, det(A), given by

det(A) = ad− bc

4.1.4 Foreshadowing – A Basis of Eigenvectors

Example 4.1.12

Let A =

[
2 1
1 2

]
. As we saw in Example 4.1.7, the eigenvectors for A were [−1, 1]T and [1, 1]T

(with eigenvalues 1 and 3, respectively). The images below show the result of applying A to
R2, first drawn with the coordinate grid from the standard basis, and then again drawn with
the coordinate grid coming from our “eigenbasis.” The eigenbasis figure shows that this matrix

A behaves a bit like a diagonal matrix

[
1 0
0 3

]
as it simply stretches the grid in two different

directions.
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Figure 4.4: Before applying transformation A.
(Shown using the standard coordinate grid.)

Figure 4.5: After applying transformation A.
(Shown with the transformed standard coordinate grid.)

Figure 4.6: Before applying transformation A.
(Shown using the “eigengrid”.)

Figure 4.7: After applying transformation A.
(Shown with the transformed “eigengrid”.)
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4.2 Determinants

4.2.1 The Determinant - A Geometric Perspective

We motivate this by looking at where the determinant comes from in the 2× 2 case.

Let A =

[
a b
c d

]
. For purposes of illustration, we will assume that a > c > 0 and d > b > 0.

1
2
bd 1

2
bd

bc

bc

1
2
ac

1
2
ac

(0, 0)

(a, c)

(b, d)

(a+ b, c+ d)

The (signed) area of the parallelogram above is

area = (a+ b)(c+ d)− 2bc− bd− ac = ad− bc. = det

([
a b
c d

])
.

Armed with this geometric interpretation, we get a means of generalizing the definition to higher
dimensions.

Definition: determinant

The determinant of an n× n matrix A the signed n-dimensional volume of the n-dimensional
parallelepiped formed by the columns of A.
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4.2.2 Computing the determinant of an n× n matrix, Part 1

Example 4.2.1: block diagonal 3× 3

Find the determinant of the matrix A =

2 1 0
1 2 0
0 0 2


Drawing out the parallelepiped, we see that this is actually an “extruded object” - like a cylinder
or a rectangular prism, it’s just the area of the base parallelogram times the depth/height. In
our case, the blue parallelogram is entirely contained in the xy-plane, and the third column is
perpendicular to it.

x

y

z

col
1

co
l
2

co
l 3

Volume = Area × Depth

So

det(A) = det

2 1 0
1 2 0
0 0 2

 = (2)

(
det

[
2 1
1 2

])
= (2)(4− 1) = 6.

Of course, this nice setup doesn’t happen in general, and so you can ask what happens when the
columns are placed more generally in space. With a bit of playing around naively in R3, one could
probably come up with the formula relating the volume to the areas of the three parallelograms
forming the sides of the parallelepiped, in which case the determinant of the 3× 3 should be related to
the determinants of smaller matrices contained within the 3× 3. In this way, one can iteratively
compute the determinants of large n× n matrices.

Definition: minor, submatrix

For an n×n matrix A, the (i, j)-minor of A, denoted Mi,j , is the determinant of the submatrix
formed by removing row i and column j from A.
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Example 4.2.2

For A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

, find the (2, 1)-minor.

The (2, 1)-minor is

M2,1 = det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 = det

[
a12 a13
a32 a33

]
= a12a33 − a32a13.

Remark. Your book uses the notation detAij to denote the (i, j)-minor, but I think it just makes
things more confusing, especially since Aij is common notation to represent the (i, j) entry of A.

Theorem 4.2.3: Laplace’s Theorem - cofactor expansion

The determinant of an n× n matrix A can be computed along the ith row as the sum

detA = (−1)i+1ai1Mi,1 + (−1)i+2ai2Mi,2 + · · ·+ (−1)i+nainMi,n.

or along the jth column as the sum

detA = (−1)1+ja1jM1,j + (−1)2+ja2jM2,j + · · ·+ (−1)n+janjMn,j.

The quantity (−1)i+jMi,j is sometimes called the (i, j)-cofactor and the above sums are called
cofactor expansions.

Since the determinant is always the same whether expanding along rows or columns, and row become
columns via the transpose, then we quickly deduce the following important fact:

Corollary 4.2.4

det(A) = det(AT )

Example 4.2.5

For A =

 3 1 4
−1 5 −9
2 6 5

, compute detA using cofactor expansion and expanding along the first

row.

detA = a11M1,1 − a12M1,2 + a13M1,3

= 3det

 3 1 4
−1 5 −9
2 6 5

− 1 det

 3 1 4
−1 5 −9
2 6 5

+ 4det

 3 1 4
−1 5 −9
2 6 5


= 3det

[
5 −9
6 5

]
− 1

[
−1 −9
2 5

]
+ 4det

[
−1 5
2 6

]
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= 3(79)− 1(13) + 4(−16) = 160.

Example 4.2.6

With the same matrix as before, A =

 3 1 4
−1 5 −9
2 6 5

, compute detA by expanding along the

second column and see that this is the same number as in Example 4.2.5.

detA = −a12M1,2 + a22M2,2 − a32M3,2

= −1 det

 3 1 4
−1 5 −9
2 6 5

+ 5det

 3 1 4
−1 5 −9
2 6 5

− 6 det

 3 1 4
−1 5 −9
2 6 5


= −1 det

[
−1 −9
2 5

]
+ 5

[
3 4
2 5

]
− 6 det

[
3 4
−1 −9

]
= −1(13) + 5(7)− 6(−23) = 160.

Remark. The powerful thing about Cofactor expansion is that the specific choice of row or column to
use doesn’t matter, so you get to pick the one most convenient to you (which, ideally, is the
row/column with the most 0’s).

Example 4.2.7

Compute det


2 3 5 7
0 11 13 17
0 0 19 23
0 0 0 29

.
We do cofactor expansion along the first column (twice)

det


2 3 5 7
0 11 13 17
0 0 19 23
0 0 0 29

 = 2det

11 13 17
0 19 23
0 0 29


= 2(11) det

[
19 23
0 29

]
= 2(11)(19)(29)

The last example is essentially the proof of the following:

Proposition 4.2.8: Determinants of triangular matrices

If A is an upper/lower-triangular (hence also diagonal) matrix, then det(A) is the product of the
diagonal entries.
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4.2.3 The Determinant: A Functional Perspective

Instead of defining the determinant purely geometrically, one can instead think of it as a multivariable
function, that inputs n different vectors simultaneously, and outputs a single real number. That is,

given a matrix A =

 | |
a1 · · · an

| |

, one defines

Fdet(a1, . . . , an) = det(A).

Proposition 4.2.9

Fdet(e1, e2, . . . , en) = det(In) = 1.

Algebraic Proof of Proposition 4.2.9. The identity matrix is a diagonal matrix with all 1’s along the
diagonal. It follows from Proposition 4.2.8 that det(I) = (1)(1) · · · (1)︸ ︷︷ ︸

n times

= 1.

Geometric Proof of Proposition 4.2.9. The volume of the unit n-cube is one.

Proposition 4.2.10

det(A) is multilinear (it behaves like a linear transformation in each column). Specifically, for
all u,w,v1, . . . ,vn in Rn and all scalars k,

Fdet(kv1,v2, . . . ,vn) = kFdet(v1,v2, . . . ,vn)

...

Fdet(v1, . . . ,vn−1, kvn) = kFdet(v1, . . . ,vn−1,vn)

and

Fdet(u+w,v2, . . . ,vn) = Fdet(u,v2, . . . ,vn) + Fdet(w,v2, . . . ,vn)

...

Fdet(v1, . . . ,vn−1, ku+w) = Fdet(v1, . . . ,vn−1,u) + Fdet(v1, . . . ,vn−1,w)

One can prove this using the cofactor expansion formula, but it’s probably easiest to see using a 2× 2
matrix.

Algebraic Proof of Proposition 4.2.10. Addition: This is a straightforward computation.

det

[
(a1 + a2) b
(c1 + c2) d

]
= (a1 + a2)d− b(c1 + c2)

= a1d− bc1 + a2d− bc2

= det

[
a1 b
c1 d

]
+ det

[
a2 b
c2 d

]
and det

[
a (b1 + b2)
c (d1 + d2)

]
= a(d1 + d2)− (b1 + b2)c

= ad1 − b1c+ ad2 − b2c



CHAPTER 4. EIGENVALUES AND EIGENVECTORS 118

= det

[
a b1
c d1

]
+ det

[
a b2
c d2

]
and that for any scalar k,

det

[
ka b
kc d

]
= (kad− bkc) = k(ad− bc) = k det

[
a b
c d

]
and det

[
a kb
c kd

]
= (akd− kbc) = k(ad− bc) det

[
a b
c d

]
.

Geometric Proof of Proposition 4.2.10. Addition: (drawn only in the case of the first column)

[
a1
c1

]
[
b
d

]
+

[
a2
c2

]

[
b
d

]

=

=

[
a1
c1

]

[
a2
c2

] [
a1 + a2
c1 + c2

]

[
b
d

]

scalar multiplication: (drawn in the case that k = 2)

[
a
c

] [
2a
2c

]

[
b
d

]



CHAPTER 4. EIGENVALUES AND EIGENVECTORS 119

Proposition 4.2.11

The determinant is alternating (that is, it switches sign whenever columns are swapped).

Fdet(v1, . . . ,vi, . . . ,vj, . . . ,vn) = −Fdet(v1, . . . ,vj, . . . ,vi, . . . ,vn).

Proof. Alternating: it is a straightforward computation to show that

det

[
a b
c d

]
= (ad− bc) = −(bc− ad) = − det

[
b a
d c

]
.

Remark. There is no geometric proof of the alternating condition; while it does have geometric
meaning (it encodes orientation), we essentially define this geometric meaning from the algebraic
condition, so a geometric argument would be circular. But to give at least a geometric interpretation
to this orientation business, the 2-dimensional perspective is that the first column tells you how to
travel around your parallelogram, and a positive determinant indicates you’re traveling
counterclockwise, whereas a negative determinant indicates that you’re traveling clockwise.

(0, 0)

(a, c)

(b, d)

(a+ b, c+ d)

[
a b
c d

] (0, 0)

(a, c)

(b, d)

(a+ b, c+ d)

[
b a
d c

]

From the functional properties of the determinant we have that

Theorem 4.2.12

det(A) = 0 if and only if A has linearly dependent columns.

and by Corollary 4.2.4

Theorem 4.2.13

det(A) = 0 if and only if A has linearly dependent rows.

As such, we can add this to our theorem...
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Theorem 4.2.14: The Fundamental Theorem of Invertible Matrices: Pt IV

Let A ∈ Rn×n. The following are equivalent:
(a) A is invertible.

...
(o) det(A) ̸= 0.

4.2.4 Computing the determinant of a n× n Matrix, Version 2

Observation

Combined with det(A) = det(AT ) (Corollary 4.2.4), the functional properties of the determinant
imply that modifying the rows of A make (tractible) modifications to det(A).

This, in turn, gives us a new strategy for computing the determinant using row operations (because
once our matrix is in row echelon form, it is easy to compute the determinant.

Theorem 4.2.15: Determinants and Row Operations

Let A be an n×n matrix. For simplicity in the formulas below, we introduce the notation “ A
row op

”

to denote the matrix equivalent A after it has had a specified row operation applied to it. Then
we have the following:

1. Swapping Row i and Row j:

det

(
A

Ri↔Rj

)
= − det(A)

2. Multiplying Row i by a nonzero constant k:

det

(
A

kRi 7→Ri

)
= k det(A)

3. Adding (a multiple of) Row j to Row i:

det

(
A

Ri+kRj 7→Ri

)
= det(A)

Example 4.2.16

Compute the determinant of A =

 2 6 0
−1 1 1
−1 −3 1

 using row operations.
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det(A) = det

 2 6 0
−1 1 1
−1 −3 1

 (initial matrix)

1

2
det(A) = det

 1 3 0
−1 1 1
−1 −3 1

 (1
2
R1 7→ R1)

1

2
det(A) = det

 1 3 0
0 4 1
−1 −3 1

 (R1 +R2 7→ R2)

1

2
det(A) = det

1 3 0
0 4 1
0 0 1

 (R1 +R3 7→ R3)

1

2
det(A) = det

1 3 0
0 4 0
0 0 1

 (R2 −R3 7→ R2)

1

2
det(A) = det

1 3 0
0 4 0
0 0 1

 (R2 −R3 7→ R2)

1

8
det(A) = det

1 3 0
0 1 0
0 0 1

 (1
4
R2 7→ R2)

1

8
det(A) = det

1 0 0
0 1 0
0 0 1

 = 1 (R1 − 3R2 7→ R1)

from which it follows that det(A) = 8.

4.2.5 Properties of Determinants and Determinants for Special Types of
Matrices

Recall that there are three types of elementary matrices, call them

E
swap

, E
k scalek

, E
add

,

corresponding to the three types of elementary row operations – row swapping, row scaling by k, and
row addition. We see that

det

(
E

swap

)
= −1, det

(
E

k scale

)
= k, det

(
E
add

)
= 1,

and so since multiplication by an elementary matrix corresponds to a row operation, we get the
following:
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Lemma 4.2.17

If A is any n× n matrix and E is any n× n elementary matrix, then

det(EA) = det(E) det(A)

Theorem 4.2.18: Poole Theorems 4.7 - 4.10

If A and B are n× n matrices and k is a scalar, then
1. det(AB) = (detA)(detB),

2. det(kA) = kn(detA),

3. and if A is invertible, detA−1 =
1

detA
.

Sketch of Proof. 1. If B scales the unit cube to a parallelepiped and scales the volume by det(B),
then A further changes this parallelepiped and scales the volume by det(A). Thus AB scales
the volume by det(A) det(B). Alternatively, one can see this using Lemma 4.2.17:
If A is not invertible, then it has linearly dependent columns and det(A) = 0. Moreover,
AB also has linearly dependent columns (think about the matrix-column representation), so
det(AB) = 0.
If B is not invertible, essentially the same argument applies.
If both A and B are invertible, then they are products of elementary matrices, so Lemma 4.2.17
applies.

2. If each edge of the paralellepiped is scaled by a factor of k, then the whole volume is scaled by
a factor of kn.

3. Given the first part, 1 = det(I) = det(AA−1) = det(A) det(A−1).

Example 4.2.19

Verify each part of the Theorem 4.2.18 using

A =

[
3 −1
8 −2

]
, B =

[
2 1
1 2

]
, and k = 5.

1. detA = −6 + 8 = 2, detB = 4− 1 = 3, and

det(AB) = det

[
5 1
14 4

]
= 6 = (2)(3) = (detA)(detB).

2. det kA = det

[
15 −5
40 −10

]
= 50 = 25(2) = k2 detA.

3. detAT = det

[
3 8
−1 −2

]
= −6 + 8 = 2 = detA

4. detA−1 = det

[
−1 1

2

−4 3
2

]
= −3

2
+ 2 =

1

2
=

1

detA



CHAPTER 4. EIGENVALUES AND EIGENVECTORS 123

4.3 Eigenvalues and Eigenvectors of n× n Matrices

We’ve already seen eigenvalues and eigenvectors for 2× 2 matrices, but now that we have defined
determinants for n× n matrices, we’ll extend these definitions accordingly.

Definition: eigenvalues, eigenvectors, eigenspace

If A is a square matrix, then det(A− xI) is a polynomial with indeterminate x and is called the
characteristic polynomial of A (which we’ll denote as CharA(x)). The eigenvalues of A are
precisely the roots of the characteristic polynomial. For each eigenvalue λ, the corresponding
eigenspace is Eλ = Null(A− λI) and the nonzero vectors in Eλ are eigenvectors.

Remark. Non-square matrices do not have eigenvalues/eigenvectors, because if v ∈ Rn is an eigenvector
for A, then Av = λv implies that v ∈ Rn as well, hence A is n× n. Non-square matrices have
something called singular values which, in some sense, play the role of eigenvalues, but this is outside
of the scope of this course.

Example 4.3.1: Revisiting Example 4.1.8

Find the eigenvalues and eigenvectors for A =

1 2 3
0 4 5
0 0 6

.
Using Proposition 4.2.8, upper/lower-triangular (and hence also diagonal) matrices have simple
determinants:

CharA(x) = det(A− xI) =

1− x 2 3
0 4− x 5
0 0 6− x

 = (1− x)(4− x)(6− x)

so the eigenvalues are λ = 1, 4, 6.

Proposition 4.3.2: Poole - Theorem 4.15

The diagonal entries of an upper/lower-triangular (and hence also diagonal) matrix are the
diagonal entries.

Proof. If A is triangular, then by Proposition 4.2.8, the characteristic polynomial is

CharA(λ) = det(A− λI) = (a11 − λ)(a22 − λ) · · · (ann − λ).

Proposition 4.3.3: The determinant is the product of the eigenvalues

If A is an n × n square matrix with eigenvalues λ1, . . . , λn (not necessarily all distinct), then
detA = λ1λ2 · · ·λn, the product of all of the eigenvalues.

Proof. Since
CharA(x) = det(A− xI) = (λ1 − x)(λ2 − x) · · · (λn − x)
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then
det(A) = det(A− 0I) = (λ1 − 0)(λ2 − 0) · · · (λn − 0) = λ1λ2 · · ·λn.

From this it follows that we have yet another test for invertibility:

Theorem 4.3.4: The Fundamental Theorem of Invertible Matrices: Pt V

Let A ∈ Rn×n. The following are equivalent:
(a) A is invertible.

...
(p) 0 is not an eigenvalue of A.

Example 4.3.5

Find the eigenvalues and eigenvectors for A =

2 12 10
0 −4 −4
1 2 1

.
We first compute det(A− xI) via cofactor expansion along the first column.

CharA(x) = det(A− xI) = det

2− x 12 10
0 −4− x −4
1 2 1− x


= (2− x) det

[
−4− x −4

2 1− x

]
+ 1det

[
12 10

−4− x −4

]
= (2− x) ((−4− x)(1− x) + 8) + 1 (−48− 10(−4− x))

= −
(
x3 + x2 − 12x

)
= −x(x+ 4)(x− 3)

The characteristic polynomial factors nicely and the eigenvalues are −4, 0, 3. The corresponding
eigenspaces are

E−4 = Null(A+ 4I) = Null

6 12 10
0 0 −4
1 2 5

 = Span

−21
0

 ,

E0 = Null(A− 0I) = Null

2 12 10
0 −4 −4
1 2 1

 = Span

 1
−1
1

 ,

E3 = Null(A− 3I) = Null

−1 12 10
0 −7 −4
1 2 −2

 = Span

22−4
7

 .
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Example 4.3.6

Let A =

3 −2 −40 2 7
0 0 2

 and B =

3 −2 −40 2 0
0 0 2

. Both matrices have the same characteristic

polynomials:
CharA(x) = CharB(x) = (3− x)(2− x)2.

Do they have the same eigenvectors?

We first compute the eigenspaces for the matrix A.

E3(A) = Null(A− 3I) = Null

0 −2 −40 −1 7
0 0 −1

 = Span

10
0

 ,

E2(A) = Null(A− 2I) = Null

1 −2 −40 0 7
0 0 0

 = Span

21
0


Now we compute the eigenspaces for the matrix B.

E3(B) = Null(A− 3I) = Null

0 −2 −40 −1 0
0 0 −1

 = Span

10
0

 ,

E2(B) = Null(A− 2I) = Null

1 −2 −40 0 0
0 0 0

 = Span

21
0

,
40
1


They do not share the same eigenvectors.

Notice that the above 3× 3 matrices each had eigenvalues 3, 2, 2 (counted with multiplicity). But in
one of them, the eigenspace E2 was 2-dimensional, and in the other the eigenspace E2 was
1-dimensional. We should give some names to what we’ve witnessed.

Definition: algebraic multiplicity, geometric multiplicity

The algebraic multiplicity of an eigenvalue λ is the multiplicity as a root of the characteristic
polynomial (i.e., the number of times that the factor (λ − x) appears in the characteristic
polynomial CharA(x) ), and the geometric multiplicity is the dimension of the eigenspace Eλ,
i.e., nullity(A− λI).

Remark. There’s no good notation for algebraic and geometric multiplicity, so for simplicity we’ll write
AlgMult(λ) and GeoMult(λ), respectively.

Example 4.3.7

What are the algebraic and geometric multiplicities of the eigenvalues of matrix A and B in
Example 4.3.6?



CHAPTER 4. EIGENVALUES AND EIGENVECTORS 126

AlgMultA(3) = 1 AlgMultB(3) = 1

GeoMultA(2) = 2 GeoMultB(2) = 2

These two different notions of multiplicity will be important in the next section. We’ll note that if A is
an n× n matrix, then the sum of all of the algebraic multiplicities will always be n.

Theorem 4.3.8

If λ1, . . . , λm are distinct eigenvalues with eigenvectors v1, . . . ,vm (respectively), then the set
{v1, . . . ,vm} is linearly independent.

Proof. We prove this only in the case that m = 2. Consider

x1v1 + x2v2 = 0

The goal is to show that x1, x2 = 0. We can do two different things to this equation: multiply it all
by A, and multiply it all by λ1.

A (x1v1 + x2v2) = x1λ1v1 + x2λ2v2 = 0

λ1 (x1v1 + x2v2) = x1λ1v1 + x2λ1v2 = 0

Subtracting these equations from each other yields

x2(λ1 − λ2)v2 = 0.

So if λ2 ̸= λ1 and v2 ̸= 0, then it must be that x2 = 0 (and this forces x1 = 0).
Therefore {v1,v2} is a linearly independent set.

4.3.1 Relationship to Matrix Operations

It is natural to ask about the interplay between eigenvalues/eigenvectors and matrix operations like
inversion and exponentiation.

Write

A =

[
0 18
8 0

]
=

[
0 2
2 0

][
4 0
0 9

]
= LU

It is easy to see (although the reader should verify) that A, L, and U have the following eigenvalues:

A L U

α1 = −12 λ1 = −2 µ1 = 4

α2 = 12 λ2 = 2 µ2 = 9

det(A) = −144 det(L) = −4 det(U) = 36

Given that det(A) = det(L) det(U), we might have naively hoped that a product of matrices would
have eigenvalues that are products of eigenvalues – that αi = λjµk – but that’s not the case. sad
trombone noises.
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However, things are nice with matrix powers!

Example 4.3.9

Consider A =

[
1 −2
1 4

]
. Find the eigenvalues and eigenvectors for both A−1 and A2.

The characteristic polynomial is

CharA(x) = (2− x)(3− x)

hence the eigenvalues are 2, 3 and the corresponding eigenspaces are

E2 = Span

([
−2
1

])
and E3 = Span

([
−1
1

])
.

With A as above, we have that A−1 =
1

6

[
4 2
−1 1

]
and the eigenvalues are 1

2
, 1
3
– reciprocals of

A’s eigenvalues. What’s more, notice that

A−1
[
−2
1

]
=

1

2

[
−2
1

]
and A−1

[
−1
1

]
=

1

3

[
−1
1

]
so the reciprocal eigenvalues of A−1 have the same eigenvectors as the eigenvalues of A! With A

as before, we have that A2 =

[
−1 −10
5 14

]
and the eigenvalues are 4, 9 – squares of A’s eigenvalues.

What’s more, notice that

A2

[
−2
1

]
= 22

[
−2
1

]
and A2

[
−1
1

]
= 32

[
−1
1

]
so the squared eigenvalues of A2 have the same eigenvectors as the eigenvalues of A!

One may wonder if the results above hold for 3× 3 matrices

Exercise 4.3.10

Let A =

2 3 4
0 5 6
0 0 7

. The reader is invited to check that

A2 =

4 21 54
0 25 72
0 0 49

 and A−1 =

1
2
− 3

10
− 1

35

0 1
5
− 6

35

0 0 1
7

.
Find the eigenvalues for A and A2 and A−1.

INCOMPLETE Eigenvalues of A are 2, 5, 7 with eigenvectors [1, 0, 0], [1, 1, 0], [13, 15, 5], respec-
tively.
Eigenvalues of A2 are 22, 52, 72 with eigenvectors [1, 0, 0], [1, 1, 0], [13, 15, 5], respectively.
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Eigenvalues of A−1 are 2−1, 5−1, 7−1 with eigenvectors [1, 0, 0], [1, 1, 0], [13, 15, 5], respectively.

Exercise 4.3.11

Let A =

 0 1 1
−3 4 3
3 −1 2

. The reader is invited to check that

A2 =

 0 3 5
−3 10 15
9 −3 4

 and A−1 =
1

6

11 −3 −1
15 −3 −3
−9 2 3

.
Find the eigenvalues and eigenvectors for A,A2, A−1.

det(A− xI) = −x3 + 6x2 − 11x+ 6 = (1− x)(2− x)(3− x)

det(A2 − xI) = −x3 + 14x2 − 49x = (1− x)(4− x)(9− x)

det(A−1 − xI) =
1

6

(
−6x3 + 11x2 − 6x+ 1

)
=

1

6
=

1

6
(1− x)(1− 2x)(1− 3x)

= (1− x)

(
1

2
− x

)(
1

3
− x

)

INCOMPLETE

Theorem 4.3.12

Let A be a square matrix with eigenvalue λ and corresponding eigenvector v.
1. For any positive integer n, λn is an eigenvalue of An with corresponding eigenvector v.

2. If A is invertible, then 1
λ
is an eigenvalue of A−1 with corresponding eigenvector v.

The above theorem also makes sense geometrically. Each application of the transformation A stretches
its eigenvector v by a factor of λ:
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v
λv

λ2v

A A

A2 = A ◦ A

Similarly, each application of A−1 “undoes” the stretching of its eigenvector v by a factor of λ (i.e.,
stretches instead by a factor of 1

λ
: The above theorem also makes sense geometrically. Each application

of A stretches its eigenvector by a factor of λ

v

1
λ
v

A−1
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4.4 Similarity and Diagonalization

Before jumping in, it would be good to see what our target goal is. Recall the following figures drawn

in Example 4.1.12. The figures below show the matrix A =

[
2 1
1 2

]
applied to R2, first using the

coordinate grid from the standard basis, and then again using the coordinate grid formed by the
eigenvectors [−1, 1]T and [1, 1]T . The second set of figures shows that this matrix A behaves a bit like

a diagonal matrix

[
1 0
0 3

]
as it simply stretches the grid in two different directions.

Figure 4.8: Before applying transformation A.
(Shown using the standard coordinate grid.)

Figure 4.9: After applying transformation A.
(Shown with the transformed standard coordinate grid.)

Figure 4.10: Before applying transformation A.
(Shown using the “eigengrid”.)

Figure 4.11: After applying transformation A.
(Shown with the transformed “eigengrid”.)
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As we saw in the previous section, triangular and diagonal matrices were very nice from a
computational standpoint, so it would be nice to convert a matrix into triangular form in a meaningful
way. We already know that we can do this with row reduction, but this process does not preserve
eigenvalues (any invertible matrix row reduces to the identity, for example), so in this section we will
look at another process that does retain the useful eigen-information.

Definition: similar matrices

Two n×n matrices A and B are called similar if there is an invertible n×n matrix P for which
P−1AP = B. We sometimes write “A ∼ B” to mean “A is similar to B.” We also sometimes
refer to the product P−1AP as “conjugation of A by P .”

Remark. Such a P is not unique. For example, P−1IP = I is true for every invertible matrix P .

Example 4.4.1

Show that A =

[
2 3
1 4

]
and B =

[
1 0
0 5

]
are similar.

With P =

[
−3 1
1 1

]
, we have

P−1AP =

[
−3 1
1 1

]−1[
2 3
1 4

][
−3 1
1 1

]
=

1

−4

[
1 −1
−1 −3

][
2 3
1 4

][
−3 1
1 1

]
=

[
1 0
0 5

]
= B

Example 4.4.2

Show that matrices A =

[
1 0
0 −1

]
and B =

[
1 0
0 1

]
are not similar.

If they were, we could find a matrix P =

[
x y
z w

]
for which B = P−1AP . In this case, we would

have [
1 0
0 1

]
=

1

xw − yz

[
w −y
−z x

][
1 0
0 −1

][
x y
z w

]
=

1

xw − yz

[
wx+ yz 2wy
−2xz −wx− yz

]
and it’s impossible that both (wx+yz) = 1 and (−wx−yz) = 1 (otherwise wx+yz = −(wx+yz),
hence wx+ yz = 0).
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Example 4.4.3

Show that the matrices R =

[
1 0
0 −1

]
and A =

[
0 1
1 0

]
are siilar.

Just as before, we solve

A

[
x y
z w

]
=

[
x y
z w

]
R

which yields x = z and y = −w. So we can pick our favorite x and y-values satisfying these
conditions so long as we don’t accidentally pick our determinant to be 0. Forcing the determinant
to be 1

P =
1√
2

[
1 −1
1 1

]
=

[
cos
(
π
4

)
− sin

(
π
4

)
sin
(
π
4

)
cos
(
π
4

) ].
Remark. Think of what the above suggests. R is the matrix that reflects over the x-axis, and A is the
matrix that reflects over the line y = x. Given that they’re both simple reflections, they are similar
from a geometric perspective. But moreover, P is precisely the matrix that rotates counter-clockwise
by π

4
, i.e., the matrix that takes the x-axis to the line y = x. So the relationship

A = PRP−1

means that, to perform A, we first rotate y = x to the x-axis, reflect across the x-axis, and rotate the
x-axis back up to y = x.

4.4.1 Properties of similarity and similar matrices

Theorem 4.4.4: Poole Theorem 4.21

Let A,B,C be n× n matrices.
(a) reflexive: A ∼ A.

(b) symmetric: If A ∼ B then B ∼ A.

(c) transitive: If A ∼ B and B ∼ C then A ∼ C.

Each of the following properties are easily verified, say with the matrices from Example 4.4.1.

Theorem 4.4.5: Poole Theorem 4.22

Let A and B be similar n× n matrices. Then
(a) detA = detB

(b) A is invertible if and only if B is invertible.

(c) A and B have the same rank.

(d) A and B have the same characteristic polynomial.

(e) A and B have the same eigenvalues.

(f) Am ∼ Bm for any positive integer m.
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Partial proof sketch. Let P be a matrix for which B = P−1AP .

(a) detB = det(P−1AP ) = (detP−1) (detA) (detP ) =

(
1

detP

)
(detA) (detP ) = detA

(b) B−1 = (P−1AP )−1 = P−1A−1(P−1)−1 = P−1A−1P

(c) This follows from the fact that for any invertible matrix P , rank(A) = rank(PA) = rank(AP ).

(d) CharB(x) = det(B − xI) = det(P−1AP − xP−1IP ) = det(P−1(A− xI)P ) = det(A − xI) =
CharA(x)

(e) A and B have the same characteristic polynomials

(f) Bm = (P−1AP ) · · · (P−1AP )︸ ︷︷ ︸
m

= P−1A · · ·A︸ ︷︷ ︸
m

P = P−1AmP

To check whether two given matrices A and B are similar requires finding the matrix P satisfying
P−1AP = B, which as we saw from Example 4.4.2, could be quite laborious. The above theorem is
actually most useful for showing that two matrices are not similar (in fact, no single part of the
theorem is enough to deduce that two matrices are similar).

Example 4.4.6

Use Theorem 4.4.5 to argue why matrices A =

[
1 0
0 −1

]
and B =

[
1 0
0 1

]
from Example 4.4.2 are

not similar.

A and B are not similar because detA = −1 and detB = 1.

Example 4.4.7

Use Theorem 4.4.5 to argue why matrices A =

[
2 0
0 3

]
and B =

[
1 0
0 6

]
are not similar.

Although both matrices have the same rank (rankA = rankB = 2) and determinant (detA =
detB = 6), they are not similar because their characteristic polynomials are different (CharA(x) =
(x− 2)(x− 3) and CharB(x) = (x− 1)(x− 6)).

4.4.2 Diagonalization

Definition: diagonalizable

A matrix A is diagonalizable if it is similar to a diagonal matrix D, i.e. if there is some
invertible matrix P so that P−1AP = D.

Example 4.4.8

From Example 4.4.1, A =

[
2 3
1 4

]
is diagonalizable since it is similar to the diagonal matrix
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B =

[
1 0
0 5

]
.

Notice that the characteristic polynomial of A above is

CharA(x) = det(A− xI) = (2− x)(4− x)− 3 = x2 − 6x+ 5 = (x− 1)(x− 5)

and thus B contains A’s eigenvalues along the diagonal. This gives us a clue as to how one can go
about finding the matrix P used to conjugate A into a diagonal matrix (if possible).

Theorem 4.4.9: Poole Theorem 4.23

Let A be an n× n matrix. Then A is diagonalizable if and only if A has n linearly independent
eigenvectors.

More precisely, D = P−1AP if and only if the columns of P are the eigenvectors of A and if the
(i, i) entry of D is the eigenvalue corresponding to the ith column of P .

I won’t sketch the proof, but the core observation is the following:

If P−1AP = D, then this rearranges to AP = PD. So if pi is the ith column of P and λi is the (i, i)
entry in D, then

AP = PD

A

 | | |
p1 · · · pn

| | |

 =

 | | |
p1 · · · pn

| | |


λ1

. . .

λn


 | | |
Ap1 · · · Apn

| | |

 =

 | | |
λ1p1 · · · λnpn

| | |


and so Api = λipi, hence the λi are eigenvalues for A with corresponding eigenvectors pi. We also see
that P is invertible if and only if all n of the eigenvectors pi are linearly independent.

Example 4.4.10

Determine whether or not the following matrix is diagonalizable: A =

3 1 0
0 3 1
0 0 3

.
The characteristic polynomial for A is

det(A− λI) = det

3− λ 1 0
0 3− λ 1
0 0 3− λ

 = (3− λ)3
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so A has an single eigenvalue of 3 with algebraic multiplicity 3. The corresponding eigenspace is

E3 = Null(A− 3I) = Span

10
0

 .

and so the eigenvalue 2 has geometric multiplicity 1. This means that there are not enough
linearly independent eigenvectors to form our invertible matrix P (the one for which P−1AP is a
diagonal matrix), hence A is not diagonalizable.

Example 4.4.11

Determine whether or not the following matrix is diagonalizable: A =

 4 −3 −3
3 −2 −3
−1 1 2

.

det(A− λI) = det

4− λ −3 −3
3 −2− λ −3
−1 1 2− λ

 = −(λ− 1)2(λ− 2)

and the eigenvalues are 1 and 2 (with algebraic multiplicities 2 and 1, respectively). The
corresponding eigenspaces are

E1 = Null(A− I) = Span

11
0

,
10
1

 E2 = Null(A− 2I) = Span

−3−3
1


and so the eigenvalues 1 and 2 have geometric multiplicities 2 and 1 (respectively). It is readily
seen that the vectors we used to define E1 are linearly independent, so the following matrix is
invertible:

P =

1 1 −3
1 0 −3
0 1 1

.
We then diagonalize A:

P−1AP =

1 0 0
0 1 0
0 0 2

.
What these examples have highlighted is that a matrix may only fail to be diagonalizable if it has
repeated eigenvalues.

Theorem 4.4.12: Poole Theorem 4.24

Let A be an n× n matrix with distinct eigenvalues λ1, . . . , λk Let Bi be the basis for Eλi
. The

union of the Bi’s (i.e. the collection of all basis vectors in the Bi’s) is a linearly independent set.
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Corollary 4.4.13: Poole Theorem 4.25

If A is an n× n matrix with n distinct eigenvalues, then A is diagonalizable.

What is it about the repeated eigenvalues that causes the failure of diagonalizability of a matrix
A ∈ Rn×n? Well, we need there to be n linearly independent eigenvectors, so we need the geometric
multiplicity for each eigenvalue to be as large as possible.

Lemma 4.4.14: Poole Lemma 4.26

For every eigenvalue λ,
1 ≤ GeoMult(λ) ≤ AlgMult(λ)

All of this culminates in the following result:

Theorem 4.4.15: Diagonalization Theorem

Let A be an n× n matrix with distinct eigenvalues λ1, . . . , λk. The following are equivalent:
a. A is diagonalizable.

b. The union of the basis vectors from each Eλi
is a set of n vectors. In other words,

n =
k∑

i=1

dim(Eλi
).

c. For each i, GeoMult(λi) = AlgMult(λi).

Example 4.4.16

Let A =

 3 −1 2
3 −1 6
−2 2 −2

. Determine whether or not A is diagonalizable. If it is, find an invertible

matrix P and a diagonal matrix D for which P−1AP = D.

A has characteristic polynomial

det(A− λI) = (2− λ)2(4− λ).

The eigenvalue 2 has geometric multiplicity 2 and the eigenvalue 4 has geometric multiplicity
1, By the Diagonalization Theorem, A is diagonalizable – you can verify that an appropriate
conjugating matrix is

P =

−1 −2 1
−3 0 1
2 1 0

.
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Example 4.4.17

Let A =

1 0 2
0 3 4
0 0 3

. Determine whether or not A is diagonalizable. If it is, find an invertible

matrix P and a diagonal matrix D for which P−1AP = D.

A has characteristic polynomial

det(A− λI) = (1− λ)(3− λ)2.

Both eigenvalues 1 and 3 have geometric multiplicity 1, so by the Diagonalization Theorem, A is
not diagonalizable.

4.4.3 Computational power of diagonal matrices

Notice that for a diagonal matrix D = diag(d1, . . . , dn) and any positive integer k,

Dk =

d
k
1

. . .

dkn

.
Moreover, if D is invertible, then

D−k =

d
−k
1

. . .

d−kn

 =


1
dk1

. . .
1
dkn

.
This is instantaneous. For a general n× n matrix A, computing Ak in the usual way is extremely
computationally expensive. However, if A is diagonalizable, we can write P−1AP = D, hence

Dk = (P−1AP )k = P−1AkP =⇒ Ak = PDkP−1.

In this way, computing the kth power of A is only as computationally difficult as diagonalizing A. (For
the record, this is actually very fast.)

Example 4.4.18

Let A =

[
11 −6
15 −8

]
. Find a general formula for Ak.

One can readily check that A has eigenvalues 1, 2, hence is diagonalizable (and since the
eigenvalues are all nonzero, A is invertible). Through the usual methods, we can obtain

A =

[
3 2
5 3

][
1 0
0 2

][
3 2
5 3

]−1
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whence, for any integer k,

Ak =

[
3 2
5 3

][
1k 0
0 2k

][
3 2
5 3

]−1
=

[
3 2
5 3

][
1 0
0 2k

][
−3 2
5 −3

]
=

[
−9 + 10(2k) 6− 6(2k)
−15 + 15(2k) 10− 9(2k)

]
.



Chapter 5

Orthogonality

5.1 Orthogonality in Rn

Recall from Corollary 1.2.7 that two vectors u and v in Rn are perpendicular/orthogonal if and only if
u · v = 0.

Definition: orthogonal set

A set of vectors {v1, . . . ,vk} in Rn is called orthogonal if vi · vj = 0 whenever i ̸= j. An
orthogonal set of vectors is said to be orthonormal if, additionally, vi · vi = 1 for every i.

Example 5.1.1

The standard basis {e1, . . . , en} for Rn is an orthogonal set.

This is straightforward and left as an exercise

Example 5.1.2

Verify that the set

v1 =

 1
−1
0

, v2 =

11
1

, v3 =

−1−1
2

 is an orthogonal set of vectors in R3.

This is straightforward to verify:

v1 · v2 = v2 · v1 = (1)(1) + (−1)(1) + (0)(1) = 0

v1 · v3 = v3 · v1 = (1)(−1) + (−1)(−1) + (0)(2) = 0

v2 · v3 = v3 · v2 = (1)(−1) + (1)(−1) + (1)(2) = 0

Theorem 5.1.3: Orthogonal =⇒ Linearly Independent

If {v1, . . . ,vk} is an orthogonal set of nonzero vectors in Rn, then it is linearly independent.

139
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Proof. Let ai be scalars so that

0 = a1v1 + · · ·+ akvk.

We aim to show that each ai = 0. Toward that goal, notice that for each i = 1, . . . , k, we have

0 = 0 · vi = (a1v1 + · · ·+ akvk) · vi

= a1(v1 · vi) + · · ·+ ak(vk · vi) [distributive property]

Since the vi’s form an orthogonal set, we have that most of the dot products above are 0, so the
equation above reduces to

0 = ai(vi · vi)

And since each vi is nonzero, then vi · vi ̸= 0, so it must be that ai = 0.

Definition: orthogonal basis

A basis B for Rn is an orthogonal (resp. orthonormal) basis if it is also an orthogonal (resp.
orthonormal) set.

Example 5.1.4

The sets in Examples 5.1.1 and 5.1.2 are orthogonal bases.

Remark. The definition of an orthogonal basis also applies to subspaces.

Since every finite-dimensional vector space has a basis, one may be led to ask the following:

Question 5.1.5: Motivation for Chapter 5

Does every vector (sub)space have an orthogonal basis?

To answer, we need to revisit the dot product.

5.1.1 The Dot Product (Revisited)

Up until now, the dot product has been a purely algebraic operation. Since orthogonality is
fundamentally a geometric condition, then we should find a geometric description of the dot product
by way of two similar examples.

Example 5.1.6

Let

v =

[
x
y

]
and u =

[
1
0

]
.

Compute u · v.
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u

v

x

u · v = x, which is just the first component of
v.

Example 5.1.7

Let

v =

[
x
y

]
and u =

[
2
0

]
.

Compute u · v.

u

v

2x

u · v = 2x, which is the first component of v,
scaled by ∥u∥ = 2.

Loosely-speaking: the dot product u · v is the “length of the shadow that v casts on u, scaled by the
length of u.” (Of course, since u · v = v · u, then the symmetric interpretation is also valid.) One can
also see this interpretation using the angle formulation

u · v = |u| |v| cos θ︸ ︷︷ ︸
where |v| cos θ is interpreted as “the amount of v in the direction of u.”

5.1.2 Orthogonal Projections Onto Vectors

Let’s formalize this notion of a “shadow“ cast by v onto u keeping in mind two things:

1. u should be normalized to be a unit vector so as to preserve the length of v’s shadow, and

2. the shadow of a vector should also be a vector in the direction of u (i.e. a scalar multiple of u).
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Definition: (orthogonal) projection onto a vector

Given two vectors u and v (with u ̸= 0), the (orthogonal) projection of v onto u is the
vector proju(v) given by

proju(v) =

(
u

∥u∥
· v
)

u

∥u∥
=
(u · v
u · u

)
u.

Example 5.1.8

Let u = [4,−1]T and v = [3, 5]T . Find proju(v).

Using the formula from the definition we have

proju(v) =
(u · v
u · u

)
u =

(
7

17

)
u =

[
28/17
−7/17

]
.

v

uproju(v)

v
−
p
ro
j u
(v
)

Remark. As the notation suggests, for any nonzero vector u, the projection onto u is a function:

proju : Rn → Rn.

Exercise 5.1.9

Show that the function proju : Rn → Rn is a linear transformation.
Hint: this follows from the bilinearity of the dot product.

Example 5.1.10

Let u =

[
1
1

]
. Compute

proju(e1) and proju(e2)

where e1, e2 are the standard basis vectors for R2. Then find the standard matrix for the function
proju( ).
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INCOMPLETE WORK

proju(e1) =
1√
2

[
1
1

]
and proju(e2) =

1√
2

[
1
1

]
.

Standard matrix:

[proju( )] =

 | |
proju(e1) proju(e2)
| |

 =
1√
2

[
1 1
1 1

]
.
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5.2 Orthogonal Complements and Orthogonal Projections

Our goal will ultimately be to come up with a procedure for finding an orthogonal basis for a subspace.
In doing this, we first need to introduce the following notion.

5.2.1 Orthogonal Complement

Definition: orthogonal complement

Let W be a subspace of Rn. A vector v ∈ Rn is orthogonal to W if it is orthogonal to every
vector w ∈ W . The collection of all vectors orthogonal to W is a subspace called the orthogonal
complement of W and is denoted W⊥.

Theorem 5.2.1: Poole Theorem 5.9

Let W be a subspace of Rn.
1. W⊥ is also a subspace of Rn.

2. (W⊥)⊥ = W

3. The only vector common to both W and W⊥ is 0 (we say that W and W⊥ have “trivial
intersection”).

4. If W = Span(w1, . . . ,wk), then W⊥ is the set of vectors perpendicular to each wi.

Proof. 1. Suppose w ∈ W and that u,v are orthogonal to W . It is then straightforward to check
that

� 0 ·w = 0

� (u+ v) ·w = 0

� kv ·w = 0 for any scalar k

and thus it follows that the collection of all vectors orthogonal to W is indeed a subspace.

2. [INCOMPLETE]

3. [INCOMPLETE]

4. [INCOMPLETE]

Example 5.2.2

Suppose W is the xy-plane in R3 (i.e. the set of vectors [x, y, 0]T ). Find W⊥
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Item #4 in Theorem 5.2.1 tells us that, if we can find a basis for W , then we just have to figure
out when a given vector is perpendicular to our basis vectors. In this case, we have

W = Span


 1

0
0
w1

,
 0

1
0
w2




. Suppose v = [v1, v2, v3] is an element of W⊥. Then

v ·w1 = 0 =⇒ v1 = 0

v ·w2 = 0 =⇒ v2 = 0

So all vectors v in W⊥ have the form

v =

 0
0
v3

.
In other words, W⊥ is the z-axis in R3.

When finding the basis for a subspace W , we found it convenient to encode it as the column space of a
matrix A. Can we use this matrix to find the orthogonal complement as well?

Theorem 5.2.3: Poole Theorem 5.10

Let A be an m× n matrix. Then Null(A) = (rowA)⊥ and Null(AT ) = (colA)⊥.

Proof. If A is an m× n matrix with rows A1, . . . ,Am and x ∈ Rn, then

Ax =

—A1—
...

—Am—

x =

A1 · x
...

Am · x


so Ax = 0 precisely when Ai · x = 0 for each i = 1, . . . ,m.

As such, solving for the orthogonal complement can be done by explicitly solving for the null space of
the appropriate matrix of vectors.

Exercise 5.2.4

Suppose W = Col

1 0
0 1
0 0

 is the xy-plane in R3 (i.e. the set of vectors [x, y, 0]T ). Verify that

W⊥ is the z-axis using this new null space technique.
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Example 5.2.5

Let W = Span

12
3

,
 2
−1
0

 be a plane in R3. Find W⊥.

We observe that W =

1 2
2 −1
3 0

. Applying ??,

W⊥ = Null

([
1 2 3
2 −1 0

])
.

Since

RREF

([
1 2 3
2 −1 0

])
=

[
1 0 3/5
0 1 6/5

]

we deduce that W⊥ = Span

3/56/5
−1

.

Example 5.2.6

Let W = Span



1
0
1
0

,

1
1
0
0


 be a plane in R4. Find W⊥.

INCOMPLETE

5.2.2 Orthogonal Projections Onto Subspaces

Notice that the vector v − proju(v) is perpendicular to u,

proju(v)

b− proju(v)

u

v
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which we can verify algebraically:

(v − proju(v)) · u = v · u−
(u · v
u · u

)
u · u

= v · u− u · v
= u · v − u · v
= 0.

Since the dot product of these vectors is 0, by Corollary 1.2.7 they must be perpendicular.

So, for two vectors u,v ∈ R2, we have that proju(v) is a vector contained in Span(u), and
v − proju(v) is contained in u⊥. In this way, we can “decompose” v into a sum of two vectors. If
W = Span(u) then we have

v = proju(v)︸ ︷︷ ︸
in W

+(v − proju(v))︸ ︷︷ ︸
in W⊥

The following definition extends the idea of orthogonal projection onto an entire subspace.

Definition

Let W be a subspace of Rn and {w1, . . . ,wk} an orthogonal basis for W . For a vector v ∈ Rn,
the orthogonal projection of v onto W is

projW (v) = projw1
(v) + · · ·+ projwk

(v)

and the component of v orthogonal to W is

perpW (v) = v − projW (v) = projW⊥(v).

The orthogonal decomposition of v with respect to W is the formula

v = projW (v)︸ ︷︷ ︸
in W

+perpW (v)︸ ︷︷ ︸
in W⊥

.

Remark. While perpW (v) is reasonable notation, I can’t say it’s particularly common, and certainly
“v − projW (v)” or “projW⊥(v)” are less ambiguous.

Example 5.2.7

Suppose W is the xy-plane in R3 and let v = [3, 4, 5]T . Find the orthogonal decomposition of v.

projW (v) = proje1(v) + proje2(v) = 3e1 + 4e2 = [3, 4, 0]T .

hence

⊥W (v) = v − projW (v) = [0, 0, 5]T .

Visually,
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x

y

z

v

projW (v)
proje1(v)

proje2(v)

Example 5.2.8

Suppose w1 =

 2
−2
2

, w2 =

−20
2

, and v =

34
5

 are vectors in R3 and W = Span(w1,w2).

Compute projW (v).

We first check that w1 ·w2 = 0, whence {w1,w2} is an orthogonal basis for W . To compute the
projection of v onto W

projW (v) = projw1
(v) + projw2

(v)

=

(
v ·w1

w1 ·w1

)
w1 +

(
v ·w2

w2 ·w2

)
w2

=

(
6− 8 + 10

12

)
w1 +

(
−6 + 10

8

)
w2

=
2

3
w1 +

3

4
w2 =

1

6
[−1,−8, 17]T

Visually,
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x

y

z

v

projW (v)

projw1
(v)

projw2
(v)

Proposition 5.2.9: Projections to find linear combinations

If a subspace W of Rn, w ∈ W , then projW (w) = w.
Moreover, if {b1, . . . ,bk} is an orthogonal basis for W , then

w = projb1
(w) + · · ·+ projbk

(w) =

(
w · b1

b1 · b1

)
b1 + · · ·+

(
w · bk

bk · bk

)
bk.

Example 5.2.10

Let W = Span




b1

1
0
1

,


b2

1
1
−1


 be a plane in R2 and w =

 1
−1
3

 a vector in W . Write w as a

linear combination of b1 and b2.

INCOMPLETE
w = 2u1 − u2.

Example 5.2.11

Show that the equation Proposition 5.2.9 doesn’t work if one has a non-orthogonal basis.

W = Span

10
1

,
12
3

 and w =

22
4

.
Proposition 5.2.12

perpW (v) is orthogonal to W
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Proof. Let W be a subspace of Rn with orthogonal basis {w1, . . . ,wk} and let v be any vector in
Rn. We have to show that ⊥W (v) is perpendicular to every vector in W , so let w be an arbitrary
vector in W . By a previous theorem, we can write

w = projw1
(w) + · · ·+ projwk

(w)

so

perpW (v) ·w =
(
v − projw1

(v)− · · · − projwk
(v)
)
·
(
projw1

(w) + · · ·+ projwk
(w)

)
Since the wi’s are an orthogonal set, then projwi

(v) · projwj
(w) = 0 whenever i ̸= j, so the only

remaining terms in the above expansion are of the form

v · projwi
(w) = v ·

(
w ·wi

wi ·wi

)
wi =

(w ·wi)(v ·wi)

wi ·wi

and projwi
(v) · projwi

(w) =

(
v ·wi

wi ·wi

)
wi ·

(
w ·wi

wi ·wi

)
wi =

(w ·wi)(v ·wi)

wi ·wi

and these terms all cancel.
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5.3 The Gram–Schmidt Process and the QR Factorization

5.3.1 Gram–Schmidt

It sure would be nice to be able to find an orthogonal basis for every subspace, huh? Maybe finally
answer Question 5.1.5?

Observation 5.3.1.1

Suppose {b1,b2} is a basis for W , then the vector

b2 − projb1
(b2) = b2 −

(
b1 · b2

b1 · b1

)
b1

is
1. a linear combination {b1,b2}, and
2. is perpendicular to b1

and therefore {
b1, b2 − projb1

(b2)

}
is an orthogonal basis for W ...

Exercise 5.3.1

Let b1 =

34
0

, b2 =

11
2

 be vectors in R3 and let W = Span(b1,b2). Verify that

{
b1, b2 − projb1

(b2)

}
is an orthogonal basis for W .

First we compute:

b2 − projb1
(b2) =

11
2

−
21/2528/25

0

 =

 4/25
−3/25

2


1. INCOMPLETE - check linear independence. Suppose

x

34
0

+ y

 4/25
−3/25

2

 =

00
0

.
2. INCOMPLETE - check span independence. Let

v = a

34
0

+ b

11
2


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be an arbitrary vector in W . We attempt to solve

x

34
0

+ y

 4/25
−3/25

2

 = v.

3. We check the dot product 34
0

 · y

 4/25
−3/25

2

 =
12

25
− 12

25
+ 0 = 0

and therefore the vectors are orthogonal.
It follows that {

b1, b2 − projb1
(b2)

}
is a basis for W , as desired.

As it turns out, the above observation/exercise can be extended into any dimension, and this iterative
process is known as the Gram-Schmidt orthogonalization.

Theorem 5.3.2: Gram–Schmidt orthogonalization

Let B = {b1, . . . ,bk} be a basis for W , a subspace of Rn.
1. Let x1 = b1, and let W1 = Span(x1).

2. For each i = 2, ..., k, set

xi = bi − projWi−1
(bi) and Wi = Span(x1, . . . ,xi).

For each i, {x1, . . . ,xi} is an orthogonal basis for Wi and the process terminates after, at most,
k steps, where Wk = W .

Remark. The basis produced by the Gram–Schmidt orthogonalization process is not unique, as every
step required a choice of basis vector bi. In R2 for example, running the procedure on the basis{[

1
0

]
,

[
1
1

]}
will produce either the standard basis or the basis{[

1
1

]
,

[
1/2
−1/2

]}
,

depending on which vector you used in step 1.

Remark. One can always scale the basis elements to have norm 1, further producing an orthonormal
basis. Sometimes Gram–Schmidt orthogonalization is defined by insisting one normalize each vector
along the way, in which case the word’ “orthogonalization” should be replaced by
“orthonormalization.”
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Example 5.3.3

Find an orthonormal basis for W = Span




b1

1
2
2
0

,


b2

0
1
2
2

,


b3

2
0
1
2


.

We choose

x1 = [1, 2, 2, 0]T

and we set W1 = Span(x1). Then

x2 = [0, 1, 2, 2]T − projW1
([0, 1, 2, 2]T )

= [0, 1, 2, 2]T − projx1
([0, 1, 2, 2]T )

= [0, 1, 2, 2]T −
[
2

3
,
4

3
,
4

3
, 0

]T
=

[
−2

3
,−1

3
,
2

3
, 2

]T
and we set W2 = Span(x1,x2). Then

x3 = [2, 0, 1, 2]T − projW2
([2, 0, 1, 2]T )

= [2, 0, 1, 2]T − projx1
([2, 0, 1, 2]T )− projx2

([2, 0, 1, 2]T )

= [2, 0, 1, 2]T −
[
4

9
,
8

9
,
8

9
, 0

]T
−
[
−4

9
,−2

9
,
4

9
,
4

3

]T
=

[
2,−2

3
,−1

3
,
2

3

]T
.

and {x1,x2,x3} is an orthogonal basis for W . To form an orthonormal basis, we normalize each
of these vectors, hence an orthonormal basis for W is


1/3
1/3
2/3
0

,

−2/3

√
5)

−1/3
√
5

2/3
√
5

2/
√
5

,


2/
√
5

−2/3
√
5

−1/3
√
5

2/3
√
5


 .

Remark. If at any step in the Gram-Schmidt process, you find that

xi = bi − projWi−1
(bi) = 0,

then you should completely skip xi and move on. The zero vector cannot be a basis vector.
This also tells you that bi is a linear combination of b1, . . . ,bi−1.
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Example 5.3.4

Find an orthonormal basis for W = Span



b1

1
−1
−1
1

,

b2

2
1
0
1

,

b3

5
1
−1
3

,

b4

2
0
1
2


.

INCOMPLETE x3 = 0, so the orthonormal basis will only involve x1,x2,x4.

5.3.2 QR Factorization

If A is an m× n matrix with linearly independent columns (implying m ≥ n), then applying the
Gram–Schmidt process to the columns yields a useful factorization of A.

Theorem 5.3.5: QR Factorization

Let A be an m×n matrix with linearly independent columns. Then there exists an m×n matrix
Q and an n× n matrix R so that

� Q has orthogonal/orthonormal columns,

� R is upper-triangular,

� and A = QR.

The proof is constructive. Let {A1, . . . ,An} be the columns of A and let {Q1, . . . ,Qn} be the
orthonormal basis produced from applying Gram-Schmidt to the Ai’s. Notice that in the
Gram-Schmidt process, we have

Q1 = c1A1

Q2 = c2

(
A2 −

(
Q1 ·A2

Q1 ·Q1

)
Q1

)
Q3 = c3

(
A3 −

(
Q1 ·A3

Q1 ·Q1

)
Q1 −

(
Q2 ·A3

Q2 ·Q2

)
Q2

)
...

where the ci’s are all the scalars normalizing the vectors.

Since all of the dot products are just scalars, we can write

rij =

1/cj if i = j(
Qi ·Aj

Qi ·Qi

)
if i ̸= j

and rearrange the above equations to be

A1 = r11Q1

A2 = r12Q1 + r22Q2
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A3 = r13Q1 + r23Q2 + r33Q3

...

The above system can be represented as the following matrix product:

A =

 | |
A1 · · · An

| |

 =

 | |
Q1 · · · Qn

| |



r11 r12 · · · r1n

r22 · · · r2n
. . .

...
rnn

 = QR

Remark. We can always take the diagonal entries rii to be positive: if rii < 0, then simply replace Qi

with −Qi.

Remark. Since Q is m× n with orthonormal columns, then QTQ = In, so in fact R = QTA, saving us
some time in computing R.

Example 5.3.6

Compute the QR factorization of A =

12 −51 −4
6 167 68
−4 24 41


We first apply the Gram-Schmidt process to the columns. Let Ai denote the ith column of A.
We take x1 = A1. Letting W1 = Span(x1),

x2 = A2 − projW1
(A2) = [−69, 158, 30]T .

Letting W2 = Span(x1,x2),

x3 = A3 − projW2
(A3) =

[
58

5
,−6

5
, 33

]T
.

Now {x1,x2,x3} is an orthogonal basis for R3. Letting Qi =
xi

∥xi∥
, we form the orthogonal

matrix

Q =

 | | |
Q1 Q2 Q3

| | |

 =


6

7
− 69

175

58

175
3

7

158

175
− 6

175

−2

7

6

35

33

35


and

R = QTA =

14 21 14
0 175 70
0 0 35

.
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Vector Spaces

6.3 Change of Basis

Let’s start with a real-world scenario: A hiker leaving basecamp and headed up a mountain to a
rendezvous point. He realizes partway through his trip that he forgot his compass (oh no!) and isn’t
sure which way is North, thus can’t navigate to the particular rendezvous point he had in mind. He
has been keeping track of how many steps he’s taken forward/backward and left/right, but he doesn’t
know his precise location. Using his satellite phone, he calls back to basecamp and relays this
information to them. Basecamp detects his precise location, but their coordinates are in terms of miles
and North/East/South/West cardinal directions (as well as vertically upward). How can the person at
basecamp tell the hiker which way to go and how many steps to take to get to the rendezvous point?

If basecamp and the hiker could just agree on a set of directions and an appropriate notion of distance,
then this would be easy. Our goal is to figure out how to translate between their various coordinate
systems (bases). This will literally save a fictional hiker’s life.

Example 6.3.1

Basecamp is using the standard basis directions (and miles):

e1 =

10
0

, e2 =

01
0

, e3 =

00
1

.
The hiker is using the following relative (forward, right, up) directions (also in miles):a

f =
1

3000

11
1

, r =
1

3000

 1
−2
1

, u =

00
1

.
If basecamp says that the rendezvous point is at location 5e1 − e2 + 5e3, how many steps and in
which direction(s) will the hiker need to go to get from basecamp to the rendezvous point?

athe scale factor 1
3000 is because one takes about 3000 steps per mile.

156
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This question really comes down to finding a solution to x, y, z for which

xf + yr+ zu = 5e1 − e2 + 5e3

or, written as a matrix equation, | | |f r u
| | |

xy
z

 =

 5
−1
5


The fundamental theorem of invertible matrices tells us that since the hiker’s directions H =
{f , r,u} are a basis, then the matrix  | | |f r u

| | |


is invertible. Hence the system can be solved with the inverse:xy

z

 =

 | | |f r u
| | |

−1 5
−1
5

 =

90006000
0


This means that the hiker has to walk 9000 steps forward and 6000 steps to the right to get from
basecamp to the rendezvous point.

x

y

z

x

y

z

Figure 6.1: On the left, traveling to the rendezvous point via the standard basis. On the right, traveling to the rendezvous point in the H
basis (i.e., on the mountain plane).

Exercise 6.3.2

If the hiker in Example 6.3.1 has already walked 7000 steps forward and 1234 steps to the right,
how many steps (and in which directions) should he walk to get to the rendezvous point?

Let’s examine Example 6.3.1 while thinking about coordinates:

� The vector

 5
−1
5

 provides the coordinates for the location, written in the standard basis.
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� Each of the vectors f , r, u are written in the standard basis.

� The vector

xy
z

 =

90006000
0

 provides the coordinates for the location, written in the hiker’s

coordinate basis H.

� The matrix

 | | |f r u
| | |

−1 has the effect of converting the location from the standard basis into

the H-basis.

Definition: change of basis matrix

Let B = {b1, . . . ,bn} and C = {c1, . . . , cn} be two ordered bases for Rn. The n× n matrix

P
C←B

=

 | | |
[b1]C · · · [bn]C
| | |


is called the change-of-basis matrix from B to C. It has the effect of every vector v in Rn:

P
C←B

[v]B = [v]C.

Remark. There is no standard notation for the standard basis, so we’ll use E .

Proposition 6.3.3: Basic Properties of Change-of-Basis Matrices

Given two different bases for Rn, B and C, the following are true

�

(
P
C←B

)−1
= P
B←C

, and

�

(
P
C←E

)(
P
E←B

)
= P
C←B

,

where E is the standard basis.

Remark. The important takeaway is the following: almost certainly the vectors within two bases B and
C are communicated to you written in the standard basis. So changing bases to/from the standard
basis is quite easy:

P
E←B

=

 | | |
b1 · · · bn

| | |

 P
E←C

=

 | | |
c1 · · · cn
| | |


Thus the change of basis matrix is given by a simple matrix product.

P
C←B

=
(
P
E←C

)−1(
P
E←B

)
=

 | | |
c1 · · · cn
| | |

−1 | | |
b1 · · · bn

| | |


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Theorem 6.3.4: A formula for a change-of-basis matrix

Let B = {b1, . . . ,bn} and C = {c1, . . . , cn} be basis for Rn. Then

P
C←B

=

 | | |
c1 · · · cn
| | |

−1 | | |
b1 · · · bn

| | |

.
Example 6.3.5

Let B =


[
1
1

]
b1

,

[
1
−1

]
b2

 and C =


[
1
−2

]
c1

,

[
−3
3

]
c2

 be bases for R2.

1. Let v =

[
−3
2

]
. Find

[
v
]
B and

[
v
]
C
, the coordinate representation of v with respect to the

B and C-bases, respectively.
2. Compute the change of basis matrix P

C←B
.

3. Verify that your change of basis matrix in the previous does what you expect it to do:[
v
]
C = P

C←B

[
v
]
B

1.

2.

3. By the above remark,

P
C←B

=

[
1 −3
−2 3

]−1[
1 1
1 −1

]
=

1

−3

[
3 3
2 1

][
1 1
1 −1

]
=

[
−2 0

−1 −1
3

]

This makes sense algebraically: Notice that[
1
1

]
b1

= −2
[
1
−2

]
c1

−
[
1
−1

]
c2

and

[
1
−1

]
b2

= 0

[
1
−2

]
c1

− 1

3

[
−3
3

]
c2

and we have [
−2 0

−1 −1
3

]
[b1]B =

[
−2 0

−1 −1
3

][
1
0

]
=

[
−2
−1

]
= [b1]C[

−2 0

−1 −1
3

]
[b2]B =

[
−2 0

−1 −1
3

][
0
1

]
=

[
0

−1
3

]
= [b2]C



Chapter 7

Distances and Approximation

7.2.1 Least Squares

By now the power of linear algebra should be apparent, so we’d like to try to use this tool in many
real-world applications.

Example 7.2.1

Find the equation of the line passing through the points P1(0, 1) and P2(2, 5).

PICTURE HERE

Writing down the equation of a line as y = mx+ b, we can plug in the point values, and then
we’ll be left finding the slope and intercept of this line.{

y1 = mx1 + b
y2 = mx2 + b

−→
{

1 = m(0) + b
5 = m(2) + b

−→
[
1
5

]
︸︷︷︸

b

=

[
0 1
2 1

]
︸ ︷︷ ︸

A

[
m
b

]
︸︷︷︸

x

Using standard techniques, one sees that the solution is[
m
b

]
=

[
2
1

]
i.e. the line y = 2x+ 1.

Example 7.2.2

Find the equation of the line passing through the points P1(0, 1), P2(2, 5), and P3(1, 1).

PICTURE HERE
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Writing down the equation of a line as y = mx+ b, we can plug in the point values, and then
we’ll be left finding the slope and intercept of this line.

y1 = mx1 + b
y2 = mx2 + b
y3 = mx3 + b

−→


1 = m(0) + b
5 = m(2) + b
1 = m(1) + b

−→

15
1


︸︷︷︸

b

=

0 1
2 1
1 1


︸ ︷︷ ︸

A

[
m
b

]
︸︷︷︸

x

Using standard techniques, one sees that there is no solution. Oh no!

In practice, we’re usually interested in finding the best-fit line, which is an approximate solution to a
system Ax = b (and, as the name suggests, is the best approximation).



Appendix C

Complex Numbers

Some matrices may have complex eigenvalues (what does that mean geometrically? hmmm...), so
below is an list of important properties of complex numbers.

Definition

Let i =
√
−1, the so-called imaginary unity. A complex number is a number z = a + bi

where a and b are real numbers. a is called the real part and b is called the imaginary part of
z. The conjugate of z is the complex number z = a− bi.

Complex Addition. The sum two complex numbers z1 and z2 is done via by adding the real
and imaginary parts separately:

z1 + z2 = (a1 + b1i) + (a2 + b2i) = (a1 + a2) + i(b1 + b2).

Addition is commutative.

Complex Multiplication . The product of two complex numbers follows the usual distributive
law:

z1z2 = (a1 + b1i)(a2 + b2i)

= a1a2 + a1b2i+ a2b2i+ b1b2i
2

= (a1a2 − b1b2) + (a1b2 + a2b1)i.

Multiplication is commutative.

Complex Division. Noting that zz is a real number for any z, division of complex numbers is
done by multiplying by the conjugate and scaling by 1/zz:

z1
z2

=
z1z2
z2z2

=
1

z2z2
(z1z2) =

1

a22 + b22
((a1a2 + b1b2) + (−a1b2 + a2b1)i)

Example C.0.1

Let z1 = 2 + i, z2 = 3 + 4i. Compute
1. z1 + z2
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2. z1z2

3. z2z2

4.
z1
z2

1. z1 + z2 = 2 + i+ 3 + 4i = 5 + 5i

2. z1z2 = (2 + i)(3 + 4i) = 6 + 8i+ 3i− 4 = 2 + 11i

3. z2z2 = (3 + 4i)(3− 4i) = 9− 12i+ 12i+ 16 = 9 + 16 = 25.

4.
z1
z2

=
2 + i

3 + 4i
=

(2 + i)(3− 4i)

(3 + 4i)(3− 4i)
=

10− 5i

9 + 16
=

2

5
− 1

5
i

C.1 Matrices with complex eigenvalues

It is entirely possible that matrices with real number entries have imaginary eigenvalues. Here is a
useful fact to keep in mind:

Fact. If z is a complex eigenvalue (with nonzero imaginary part), then so is z.

Example C.1.1

Let A =

[
3 −4
2 −1

]
. Show that λ = 1± 2i are eigenvalues for A.

Begin by computing the characteristic polynomial

CharA(x) = det(A−xI) = det

[
3− x −4
2 −1− x

]
= (3−x)(−1−x)+8 = x2−2x−3+8 = x2−2x+5.

The roots of this polynomial can be found using the quadratic formula

x =
2±

√
4− 4(1)(5)

2
=

2±
√
−16

2
=

2± 4i

2
= 1± 2i.

Example C.1.2: Example C.1.1 Continued

Let A =

[
3 −4
2 −1

]
, the matrix from Example C.1.1. Find eigenvectors for A.

In the last example, we saw that A had eigenvalues 1 + 2i and 1− 2i. Now we find eigenvectors
by computing the eigenspaces:

E1+2i = Null(A− (1 + 2i)) and E1−2i = Null(A− (1− 2i)).
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First we do some row reduction

A− (1 + 2i) =

[
3− (1 + 2i) −4

2 −1− (1 + 2i)

]
=

[
2− 2i −4

2 −2− 2i

]
=

[
2(1− i) −4

2 −2(1 + i)

]
−(1−i)R2 7→R2−−−−−−−−→

[
2(1− i) −4
−2(1− i) 2(1 + i)(1− i)

]
=

[
2(1− i) −4
−2(1− i) 4

]
R1+R2 7→R2−−−−−−−→

[
2(1− i) −4

0 0

]
It follows that

E1+2i = Null(A− (1 + 2i)) = Span

([ 4
2(1−i)
1

])
= Span

([
4(1+i)

2(1−i)(1+i)

1

])
= Span

([
1 + i
1

])
.

As well,

A− (1− 2i) =

[
3− (1− 2i) −4

2 −1− (1− 2i)

]
=

[
2 + 2i −4

2 −2 + 2i

]
=

[
2(1 + i) −4

2 −2(1− i)

]
−(1+i)R2 7→R2−−−−−−−−→

[
2(1 + i) −4
−2(1 + i) 2(1 + i)(1− i)

]
=

[
2(1 + i) −4
−2(1 + i) 4

]
R1+R2 7→R2−−−−−−−→

[
2(1 + i) −4

0 0

]
It follows that

E1−2i = Null(A− (1− 2i)) = Span

([ 4
2(1+i)

1

])
= Span

([
4(1−i)

2(1+i)(1−i)
1

])
= Span

([
1− i
1

])
.
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diagonalizable, 133
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elementary row operations, 25
elimination

Gauss–Jordan, 31
Gaussian, 31

free variable, 31

geometric multiplicity, 125

homogeneous system, 34
horizontal shear, 92

imaginary part, 162
imaginary unit, 162

leading variable, 31
linear combination, 5
linear dependence, 43
linear equation, 15
linear independence, 43
linear system, 15

consistent, 20
inconsistent, 20
parametric form of solutions, 19
solution parameters, 19
solution set, 15
solution to, 15

linear systems
equivalent, 22

linear transformation, 86
invertible, 98
kernel, 95
one-to-one, 95
onto, 95
range, 95

Markov chain, 100
initial state vector, 100
transition matrix, 100

matrix, 50
diagonal, 51
diagonal of, 51
entries, 50
equality, 50
powers, 55
scalar matrix, 51
size, 50
square, 51
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symmetric, 57
zero matrix, 50, 51

matrix inverse, 63
matrix operations

multiplication, 54
sum, 52
transpose, 56

minor
of a matrix, 114

notation
proju( ), 142

null space, 77
nullity, 82

orthogonal basis, 140
orthogonal complement, 144
orthogonal projection

onto a subspace, 147
onto a vector, 142

orthogonal set, 139
orthonormal set, 139

probability vector, 100
projection, 142

QR Factorization, 154

rank, 34, 82
Rank Theorem, 36
real part, 162
reduced row echelon form, 27
reflection, 90
regular stochastic matrix, 100
rotation, 91
row equivalence, 26
row reduction, 28

row space, 76
row vector, 5

similar matrices, 131
span, 38
spanning set, 38
standard matrix

for a linear transformation, 89
stochastic matrix, 100
submatrix, 114
symbols

C(R), 4
In, 52
Q, 2
R, 2
Rm×n, 59
Z, 2
∈, 2
R, 3
Rn, 4
Pn(R), 3

Theorems
Fundamental Theorem of Invertible

Matrices, 69, 98, 120, 124
Rank–Nullity Theorem, 82
Three-Step Subspace Test, 70

trivial subspace, 71

vector space, 2, 70
scalar, 2
scalar multiplication, 2
subspace of, 70
vector, 2
vector addition, 2
zero vector, 2
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