Math 2114: Introduction to Linear Algebra Spring 2024

Last revised May 15, 2024

Instructor:	Joseph Wells, PhD	Phone:	540-231-6536
	(He/Him/His)	Homepage:	personal.math.vt.edu/jwells13
Office:	439 McBryde Hall	Email:	Joseph.Wells@vt.edu
Text:	Linear Algebra: A Modern Introduction, 4th ed. by Poole (w/ WebAssign access)		
Supplemental Text:	<i>Elementary Linear Algebra</i> , 8th ed. by Larson		
Canvas:	https://canvas.vt.edu/courses/187483		
WebAssign Site:	https://www.webassign.net		
Course Website:	https://www.math.vt.edu/undergrad-math/courses/math-2114.html		

Course Content and Delivery:

This course covers: Vector and matrix algebra, systems of linear equations, linear equations, linear independence, bases, matrices, determinants, eigenvalues and eigenvectors, orthonormal bases, rank, linear transformations, diagonalization, and some applications of all of the above. This is an *inperson course*.

Per Math Department policy, no further specifics of this course policy sheet may be made publicly available.

Tentative Schedule

Week 1	M.L.K. Junior Day §1.1 - The Geometry and Algebra of Vectors §1.2 - Length and Angle: The Dot Product §2.1 - Introduction to Linear Systems
Week 2	§2.1 - Introduction to Linear Systems§2.2 - Direct Methods for Solving Linear Systems
Week 3	§2.2 - Direct Methods for Solving Linear Systems§2.3 - Spanning Sets and Linear Independence
Week 4	§3.1 - Matrix Operations Exam 1 Review
Week 5	Exam 1 §3.2 - Matrix Algebra §3.3 - The Inverse of a Matrix
Week 6	§3.3 - The Inverse of a Matrix§3.5 - Subspaces, Basis, Dimension, and Rank
Week 7	§3.5 - Subspaces, Basis, Dimension, and Rank§6.3 - Change of Basis§3.6 - Introduction to Linear Transformations
Week 8	Spring Break
Week 9	§3.6 - Introduction to Linear Transformations Exam 2 Review
Week 10	Exam 2 §4.1 - Introduction to Eigenvalues and Eigenvectors §4.2 - Determinants
Week 11	§4.2 - Determinants §4.3 - Eigenvalues and Eigenvectors of $n\times n$ Matrices
Week 12	§4.3 - Eigenvalues and Eigenvectors of $n\times n$ Matrices §4.4 - Similarity and Diagonalization
Week 13	§3.7 - Applications (Markov Chains) Exam 3 Review
Week 14	Exam 3 §5.1 - Orthogonality in \mathbb{R}^n §5.2 - Orthogonal Complements and Projections

- Week 15 §5.2 Orthogonal Complements and Projections
 - §5.3 The Gram–Schmidt Process and QR-Factorization
 - §7.3 Least Squares
- Week 16 Final Exam Review