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Preface

There are many different approaches to linear algebra, and everyone has their preference. This
document is compiled from the course I taught starting in the Spring of 2020 at Virginia Tech, where
both the book (Linear Algebra: A Modern Introduction 4th Ed. by David Poole) and order of topics
covers were suggested to me by some others in the department. Although not formally stated
anywhere, this class was largely geared towards math-adjacent students (engineering, physics,
computer science, etc.) and so these notes and the presentation are at a lower level of abstraction
(and occasionally rigor) than what one might experience in another introductory linear algebra
course. In hindsight, I probably would have picked both a different text and order in which to
introduce the topics. For example, I would delay the coverage of linear systems. Most students are
already familiar with them, but they are completely unmotivated and their sole purpose seems to be
to introduce a computational tool without any context. On the opposite end of the spectrum, why
are linear transformations introduced so late in the text when they are really one of the most central
objects of study in the whole of linear algebra? In time, I hope to turn these notes into a book which
follows, in my opinion, a more natural and modern treatment of this beatiful subject.

I would like to thank the many students who inadvertently served as my copy editors each semester
as these notes evolved.



1.1 The Geometry and Algebra of Vectors

Especially following Descartes’ seminal contribution La Géométrie, we frequently blur the line
between geometry and algebra — the reader is assuredly familiar with thinking about real numbers as
points on a number line, or as ordered pairs of real numbers as points in the plane. But the real
numbers come equipped with some natural algebraic operations — we can add and multiply them
(hence also subtract and divide them). It’s not unreasonable to ask whether this algebraic structure
continues to ordered pairs of real numbers, but of course doing so requires defining the operations for
ordered pairs of real numbers that are analogous to addition and multiplication. As it turns out that
the naive idea for doing so is very close to correct, although we’ll see that we have to weaken the
notion of multiplication slightly to allow for a meaningful geometric interpretation.

1.1.1 Definitions and Examples

Definition. A | (real) vector space |V, is a set of objects (called | wvectors l) with two
operations ,l vector addition l (denoted +) and | scalar multiplication ] (no symbol) —

satisfying the following properties: for all vectors u, v, w in V' and for all real numbers a, b (called

scalars |),

(a) u+visin V [closure]

(b) u+v=v+u [commutativity]

(c) (u+v)+w=u+(v+w) [associativity]

(d) There is some vector 0, called the [ zero vector ], [additive identity]
so that u+ 0 = u for all vectors u.

(e) For each u in V, there is some vector —u for [additive inverse]
which u+ (—u) = 0.

(f) auisin V [closure]

(g) a(u+v)=au+av [distributivity]

(h) (a+b)u=au+ bu [distributivity]

(i) (a )u = a(bu) [associativity]

(j) lu= [multiplicative identity]

It turns out that vector spaces are very common and you're probably already familiar with many of
them without even knowing it.

Example 1.1.1. The real numbers form a real vector space when endowed with the normal addition
and multiplication operations.

Example 1.1.2. The set of all ordered pairs of real numbers, (z,y), is a real vector space when
endowed with the following operations.

e addition: (z1,y1) + (x2 + y2) = (1 + 22, ¥1 + Y2)

e scalar multiplication: r(x,y) = (rz,ry)



The pair (0,0) is the zero vector in this space.

Example 1.1.3. The set of all polynomials with real coefficients and degree at most n,
a,x" + -+ + a1x + ag, is a vector space when considered the usual addition and scalar multiplication.

e addition: (an,z™+---+ag) + (bpa™ + - +bo) = (an + bp)z"™ + -+ - + (ag + bo)
e scalar multiplication: 7(a,z" + - - + ag) = (ra,)z" + (rag)
The number 0 is the zero vector in this space, and this space is sometimes denoted P".

Example 1.1.4. The set of all continuous real-valued functions on R, f : R — R is a vector space
when considered with the usual function addition and scalar multiplication.

e addition: fi(z) + fo(z) = (fi + f2)(2)
e scalar multiplication: r(f(z)) = (rf)(x)

The function f(z) = 0 is the zero vector in this space, and this space is denoted C(R).

It is straightforward to show that each of the above is a vector space and we leave it as an exercise to
the reader.

1.1.2 Geometric Interpretation of Vector Operations

Now we’ll take a geometric interpretation of vectors to help justify the naturality of the operations of
vector addition and scalar multiplication. Let o = (0,0), p1 = (21,v1), p2 = (22, ¥2) be some points in
the plane. Let (ﬁ be the arrow from o to p;, and similarly let 0_>pg be the arrow from o to ps.
Furthermore, let ps = p; 4+ po (with addition as described in Example ??). Since arrows communicate
to us a notion of length and direction, the arrow 0_>p3, can be described as the total displacement and
direction indicated by placing the two arrows o—ﬁ and @5 “head-to-tail”, as is illustrated in Figure

L1T

A A
D2 P2 e
p3 . D3
[ ]
(o) 05
op} v
—
op1
yat b1
Y Y

Figure 1.1.1: The original vectors (left) and “head-to-tail” vector addition (right).

With p; as before, consider some real number r. By the scalar multiplication operation described in
Example 7?7, we can consider the point py = rp; = (rzy,7y;). As the name suggests, scalar
multiplication by a real number r has the effect of scaling the arrow o?ﬁ . In the case that r > 0, the
arrow @ points in the same direction as (ﬁ and its length is scaled by r. In the case that » < 0, the
arrow op; points in the opposite direction of opj and its length is scaled by Ir|. (See Figure
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Figure 1.1.2: The original vector scaled by r > 0 (left) and r < 0 (right).

We can extend this same idea to ordered n-tuples of real numbers (z1, x9, . .., x,), associating them
with arrows in n-dimensional space (the word “dimension” here should be understood only in an
intuitive sense; the definition will be made precise in a later chapter), which leads us to the following
definition.

Definition. | R"™ |[is the set of arrays with n real entries of the form

x
[xl,...,xn] or

Tn

The x; appearing above are called | components |of the arrays.

Theorem 1.1.5. R" is a vector space R™ is a vector space with addition given by

T (i T1+
2 el I : )
Tn Yn Tn + Yn
with scalar multiplication given by
T T
r =11
T 7Ty
and with zero vector
0
0

Definition. Any vector v in R" may be written as a[ row vector

V:[Ul Un]



or as a[ column vector ]

Each of these presentations represents the same object and should be regarded as the same.
However, certain computations are very much reliant upon the choice of representation. Throughout
this text, we will almost exclusively prefer column vectors and will be very deliberate whenever using
row vectors. One could equally well develop the theory of linear algebra using row vectors, so this is
merely a stylistic choice on the author’s part.

For the sake of concreteness, the remainder of the text will be devoted almost exclusively to
developing the theory of linear algebra using R™. It is a fact that every finite-dimensional vector
space can be regarded being “the same” as R"™, and so there is no loss of generality in making this
specification. Most of these notions do carry over to infinite-dimensional vector spaces, although
there is considerably more prerequisite knowledge and technical detail needed to discuss such things
with any sort of rigor.

1.1.3 Linear combinations

With the operations of addition and scalar multiplication, the fundamental building blocks of any
vector space are linear combinations.

Definition. A vector uin R" is a| linear combination |of the vectors vy,...v, if there are

scalars rq,...,r, so that
u=7rvy+- -+ r,vy.

We say that the linear combination is trivial if ry =ry=---=r, =0.

You can think of a linear combination as some sort of recipe - the v;’s are the ingredients, the r;’s are
the quantities of those ingredients, and u is the finished product.

Definition. In R", there are n vectors

1 0 0

0 1 0
€ = ) € = . ) €, =

0 0 1

which we call the | standard basis vectors for R"

For now, ignore the word basis above; we will give technical meaning to that later. The reason these
are standard is because, when looking to decompose a vector u into a linear combination of vectors,
then simply picking apart the components is probably the most natural thing to try first.
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Example 1.1.6. The vector u = |6 is a linear combination of the standard basis vectors in the
7
following way:
5 5 0 0 1 0 0
u= |6 =1(0| + |6+ 1|0 =5|0] +6[1]| +7 |0 =bes + bey + Teg
7 0 0 7 0 0 1

With the standard basis vectors above, one can be convinced that the linear combination that
appears is the unique such combination. However, in general, linear combinations need not be unique.

1 1
Example 1.1.7. The vector u = |—1]| is a linear combination of the vectors vi = |—1],
0 1
—1 0
vo= | 1 |,and v3 = [0 in multiple ways:
1 1

u=1v; +0vy + (—1)v;3
= 0V1 + (—]_)VQ + 1V3
= (=2)vi + (=3)vy + 5v3

The reader may be wondering precisely when a given vector admits a unique linear combination.

This is a very important discussion with important implications, and so we will postpone this
discussion for a later chapter.

1.1.4 Geometry of Linear Combinations

The reader is probably familiar with the Cartesian grid, which provides a useful geometric depiction
of the algebra. We similarly want to construct a grid that is uniquely suited to a given set of vectors

in F*. We'll call this a| coordinate grid | (which is nonstandard terminology), and its

construction is simple: the lines of the grids should be parallel to the vectors (in standard position)
and the intersections of these grid lines correspond to integer linear combinations of vectors.

Example 1.1.8. The coordinate grid for R? formed from the standard basis vectors e; and e, is the
usual Cartesian grid.




Example 1.1.9. The coordinate grid for R? formed from the vectors v; = [1,1]7 and v, = [1, —1]
is below.

V1‘

Vo

Combined with the geometric intuition about vector addition and scalar multiplication, these
coordinate grids provide us with a way to visually identify the linear combination.

Example 1.1.10. The vector u = [2,4]7 is clearly seen to be a linear combination of the standard
basis vectors e; and es:

u = 2e; + 5e,
.o 1‘ .
- dey fooree u
< Qel >

A\

Example 1.1.11. The vector u = [2,4]” is clearly seen to be a linear combination of the vectors

e [atvae [ 1]

u=3vy — va.
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u
3V1
P >
\ 4

Of course, this coordinate grid can also help to show us when linear combinations are not unique.

Example 1.1.12. The vector u = [2,4]” is clearly seen to be a linear combination of the vectors

2 2 0| . . .
v, = vy = and v3 = in multiple different ways:
0|’ 2|’ 2
u=vy+2vy
= Vg + V3
u u
C o 2 e R VA v N B
. pe . pe . - . . " . pe V3 ’ - pe .
Vo * Vo
< = > < ~ >
oo A Vool
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1.2 Length and Angle: The Dot Product

Definition. For vectors u,v € R"”, the| dot product |of u and v, denoted u-v is

u-v=uvy +- -+ uUy,.
Remark. Note that the dot product of two vectors is a scalar.

The dot product has the following nice properties.

Theorem 1.2.1 (Poole Theorem 1.2). Let u,v,w € R" and let k be some scalar. Then
u-v=v-u

u-(v+w)=(u-v)+ (u-w)

(v+w)-u=(v-u)+ (w-u)

(ku)-v=u-(kv)=k(u-v)

For every u we have that u-u > 0, with equality if and only if u = 0.

G e e =~

Proof. The proof is entirely straightforward and left as an exercise to the reader.

1.2.1 Length
Notice that for a vector v = [z,y] € R?,
vev =212+

which, from the Pythagorean theorem, is precisely the square of the length of v.

Definition. The| length | (or ) of a vector v € R" is the scalar defined by
Ivl=Vv-v= \/vf+t7§+---+v,,2b

12




The following are immediate consequences of the properties of the dot product in Theorem [1.2.1
Theorem 1.2.2 (Poole Theorem 1.3). For v € R™ and a scalar k,

1. ||v]| =0 if and only if v = 0.

2. [|kvl = [K[l[v]-

The following follows from the classical geometry result of the same name.
Theorem 1.2.3 (Triangle Inequality). For u,v € R",

[[u+ v < ffuf] + f|v].

u+v .
< e
u
Y
Definition. A vector v is called a| wunit vector |if |v] =1.

Remark. Every unit vector in R? corresponds to a point on the unit circle. Every unit vector in R3
corresponds to a point on the unit sphere. Generally, every unit vector in R™ corresponds to a point
on the unit (n — 1)-sphere.

%
Let v be any nonzero vector and let ¢ = ||v|| be its length. Then the vector 7 is a unit vector

because

-1

Definition. The process above is called | nmormalization |, and it always produces a vector in

the same direction as v but with unit length.

A

/vl

13



Remark. If ||v|| > 1, then normalization corresponds to shrinking v (pictured above), but if ||v]| < 1,
then normalization stretches v.

Remark. Despite the similarities in name, “normalization” is unrelated to the concept of a “normal
vector.” What you’ll find is that “normal” is probably the most over-used word in mathematics.
Because there aren’t any around me as I type this, I'm going to go ahead and blame the physicists
for the abuse of language.

1.2.2 Distances

Recall that, for two points P(z1,y;) and Q(z2,y2) in the plane, we have that the distance between
them is given by

d(P,Q) = /(1 — x2)> + (11 — y2)?

If we identify the point P(x1,y;) with the vector u = [z, y1] and the point Q(x9,y2) with the vector
v = [z, 2], then the right-hand side of the equation is just [ju — v||. As such, we can define
distances between vectors using the obvious analog.

Definition. Given two vectors u,v € R", the | distance ] between u and v is

d(u,v) = [lu — vl

Remark. Visualizing vectors as arrows emanating from the origin, distance, as above, is actually
measuring the distance between the heads of the arrows.

14



1.2.3 Angles

Consider a triangle AABC and the angle § = LABC' (pictured below)

A

Recall that the law of cosines says
b? = a® + ¢ — 2accos(f)

Replacing the triangle AABC with the triangle formed from vectors u, v, u — v (as in the picture
above on the right), we have

[w—v[* = [[v[* + [[ul* = 2[[ul|]|v]| cos 0
Expanding out the left-hand side of the above equation in terms of dot products, we get
[all* + [Iv]* = 2u- v = [[v[* + [[ul|* — 2[[ul|||v] cos 0

Canceling appropriately and rearranging the equation yields

Definition. For nonzero vectors u,v € R", the| angle |60 between u and v satisfies

u-v

cosf =
[[ul[{[v]]

Example 1.2.4. Compute the angle between the vectors u = [0,3,3]7 and v = [-1,2,1]T.

From the above, we get that

v~ 3v2)(V6)

V3 T
0 = arccos| — | = —.
2 6

The following follows immediately from the definition.

cosf =

u-v 9 @
2

and thus

Corollary 1.2.5. u,v € R" are perpendicular if and only if u-v = 0.

15



2.1 Introduction to Linear Systems

Definition. A | linear equation |in the variables x1,...,x, is an equation that can be written

in the form
axry+ - +apxr, =b

where aq,...,a,,b are all real numbers.

The a;’s are the | coefficients |and bis the| constant term | A| solution |of this

equation is a vector v = [vy,...,v,]7 satisfying

avy + - + ayv, = b.

Example 2.1.1. 4z — y = 2 is an example of a linear equation. And notice we can rearrange it as
y = 4z — 2, which is the equation of a line (hence why we call these “linear”). The vector [1,2]7 is a
solution because

4(1) — (2) = 2.
In fact, for any real number ¢, the vector [t, 4t — 2]T is a solution because
4(t) — (4t — 2) = 2.

This means there are infinitely many possible solutions.

Definition. The collection of all solutions to a linear equation is called the | solution set |of

that equation.

Noticing that

e R R

we can write the solution set to the previous example as
0 1
{ [_2} +1 LJ where t € ]R}

Definition. The | parametric form |of the solution set is when it is written as

{vo+tivi+---+1t,v, where t; €R}
for some vectors v;.

Example 2.1.2. The equation

>x+VMOM6y+z—e
), v/540.6464, and €™ are just real

St (82364423

is a i tion with variabl b ' <—7T
i inear ion wi ri 1
s a linear equation with variables x, ¥y, z because, s 82364423

numbers.

16



Example 2.1.3. The equation

rtay+y+yz =7
is not a linear equation with variables x,y, z because of the xy and yz terms.
Example 2.1.4. The equation

2 +3Y +log(z) =8

is not a linear equation with variables z,y, z because of the z2, 3¥, and log(z) terms.

Definition. A | system of linear equations |is a finite set of linear equations, each with the

same variables (and probably different coefficients). A | solution |of a system of linear equations

is a vector that is simultaneously a solution for each linear equation in the system. A

solution set |is the collection of all possible solutions to the system.

Example 2.1.5. The system
2 — y = 3
r + 3y = 5

has the vector [2,1]7 as a solution; in fact, this is the only solution.

Definition. A system of linear equations is called [ consistent ] if it has at least one solution,

and | inconsistent |if it has no solutions.

Example 2.1.6. The system in Example 2.1.5]is consistent and the solution is unique.

Example 2.1.7. The system

r — y =0
2 — 2y = 0
is consistent. It has the solution [z,y]” = [1,1]T, but this is not the only solution. For any real
number ¢, the vector [t, ] is a solution, so there are infinitely many.

Example 2.1.8. The system

has no solutions.

Definition. Two systems of linear equations are called | equivalent ] if they have the same

solution set.

Notice how easy the next system of equations is to solve by [ back-substitution

17



Example 2.1.9. Consider the system

r + 3y + S5z = 7T
2y — 4z = 6
8z = 16

Because of this kind of “triangular structure,” we quickly deduce z = 2, and then 2y — 4(2) =6
implies that y = 7, and then = 4 3(7) 4+ 5(2) = 7 implies that o = —24.

Since the variables themselves aren’t changing, we can save time and represent any linear system by
a matrix.

Definition. Given a system of linear equations

anry +  apry - AT, = b

a1 T1 +  QwTy - AT, = b
+ oo D=

Ap1T1 + Qa2 - AppTy = bm

the corresponding [ augmented matrix ] is

ayp @iz -0 Qi | by
a1 Qg -+ A2y | by

Am1 AQm2  *° Amn bm

and the corresponding | coefficient matriz |is

a1 Gz - Qin
Q21 Q22 - d2n
m1 Am2 - Amn
Remark. If A is the coefficient matrix for some system and b = [by, ..., b,,]" is the column vector of

constant terms, we may write [A ‘ b} to represent the augmented matrix.

Remark. We will always be very explicit when we are making claims about augmented matrices
specifically, and we will take care to always draw the line for an augmented matrix. When
programming with matrices, however, the vertical line isn’t there, so you’ll have to be especially
careful when considering whether the matrix you’ve used is representative of an augmented matrix or
something else.

Example 2.1.10. The “triangular structure” of the system in Example is also apparent in the
corresponding augmented and coefficient matrices:

1 3 5|7 1 3 5
0 2 4|6 and 0 2 4
0 0 8|16 0 0 8

18



2.1.1 Geometric Interpretation of Linear Systems

Let’s consider a simple system of one linear equation in two variables

{—z+y=2.

The solution set to this equation is all vectors [z, y]T where y = z + 2. Parametrically, we would write

([ s}

To visualize this solution set, we can make a plot in the zy-plane and try to draw all possible
solution vectors.

A

What we find is that the head of all vectors in this solution set live along the line y = x 4+ 2. In this
way, we can say that the equation —z + y = 2 represents a line (because the solution set has one
parameter) in R? (because there are two variables).

In a similar fashion, consider the linear system consisting of one equation in three variables.
{—z—y+z=2.

The solution set to this equation is all vectors [z, y, 2]7 where z = z + y + 2. Parametrically, we
would write

1 0 0
Ofs+ [1|t+ [0] wheres,teR
1 1 2

There are three variables, so the solution set is an object in R3. Because the solution set has two
parameters, it is a 2-dimensional object (a plane).

19



In general, a single equation in n variables corresponds to an (n — 1)-dimensional object in R™.

What if we have two equations?

—r—y+z=2
{ r—y+z2=0
Each equation independently corresponds to a plane in R3, and the solution set is the set of all
points common to both of these planes. Two arbitrary planes in R?® can only come in three
configurations - either they are parallel (and don’t have any points in common), they intersect in a
line, or they are the same plane.

In this case, the linear system above has the solution set

0 -1
11¢t+ [ 0 where t € R
1 1

Since this has only one parameter, it represents a 1-dimensional object (a line) common to both
planes. Geometrically, that means that the system represents two planes intersecting in a line.

20



By thinking of different configurations of planes, and knowing that their intersections correspond to
solution sets, you can convince yourself of the following

Theorem 2.1.11. A system of linear equations with real coefficients has exactly one of the following:

(a) a unique solution (consistent),
(b) infinitely many solutions (consistent), or

(¢) no solutions (inconsistent).

21



2.2 Direct Methods for Solving Linear Systems
2.2.1 Row Operations

Example 2.2.1. In Example 2.1.5] we saw that the system

2 — y = 3
r + 3y = 5

was consistent and had the unique solution [z,y]” = [2,1]7. The following three systems also have
the same (unique) solution [x,y]? = [2,1]7 (this is left as an exercise for the reader), and so they are
all equivalent.

z + 3y 5) 2v — Y 3 2¢c — y = 3
2 — y = 3 100z + 300y = 500 d3r + 2y = 8

Looking more closely, the first systems obtained by merely swapping the equations. The second
system is obtained by scaling the second equation. The third system is obtained by replacing the
second equation with the sum of the first and second equations.

It turns out that this fact isn’t specific to this system, but is generally true of any linear system:
these three operations do not change the solution set of the system! The “elimination method”
(which you may be familiar with from a previous algebra/precalculus class) uses this fact to solve
systems of linear equations. If we think about what this is doing to the corresponding augmented
matrices, we get what we call the elementary row operations.

Definition. The | elementary row operations |of a given matrix are the following operations:

1. Swapping Row ¢ and Row j (denoted R; <> R;).
2. Multiplying Row ¢ by a nonzero constant (denoted kR; — R;).
3. Adding (a multiple of) Row j to Row ¢ (denoted R; + kR; — R;).

Remark. These operations are not specific to augmented matrices, but are true of any matrices. In
fact, unless explicitly stated otherwise, you should probably not ever assume that a matrix is
augmented.

Given two (augmented) matrices, the above operations do not change the solution set for the
corresponding linear system. So since two linear systems are equivalent if they have the same
solution set, the following is a natural definition

Definition. Two matrices A and B are| row equivalent |if there is a sequence of elementary

row operations transforming A into B.

Example 2.2.2. Using the systems in Example [2.2.1] we will show that the corresponding
augmented matrices are row equivalent:
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G
= @y < %001

1 315 2 3 2 —-1|3
2 =13 100 300 | 500 3 2|8

2.2.2 (Reduced) Row Echelon Form

The following systems are equivalent (it’s again an exercise to the reader to verify this):

T - Yy — z = 2 r -y — 2z = 2 T = 3
v — 3y + 2z = 16 y + 3z = 5 Y = —1
2z — y + 2z =9 5z = 10 z = 2

and thus they correspond to the following row equivalent augmented matrices

1 -1 —-1] 2 1 -1 —-1] 2 1 0 0 3
3 =3 2 |16 0O 1 3|5 01 0]-1
2 -1 119 0 0 5 |10 00 1| 2

The second and third systems are much more useful for actually solving the system because they
have the nice triangular structure that allows us to back-substitute (or in the case of the third one,
simply reading off the solution). Let’s give names to this triangular structure that we like so much.

Definition. A matrix is in | row echelon form | (REF) if it satisfies the following properties:

(a) Any rows consisting entirely of zeros are at the bottom.

(b) In each nonzero row, the first nonzero entry (the | leading entry |[)is in a column to the

left of any leading entries below it. The column containing the leading entry is sometimes

called the | pivot column

Example 2.2.3. The following matrices are in row echelon form.

;

1 2 3 1 2 3 O L2349
00 6 7 8 9

0 4 5 0 4 5

00 o 00 B 00 0 0 10 11
00 00 0 5

Example 2.2.4. The following matrices are not in row echelon form. (Why?)

000 001 2 3
E 3 (5)} 1 30 000 45
0 2 3 00067
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Definition. The [ reduced row echelon form ] (RREF) of a matrix is essentially the same as

the row echelon form with the following additional requirements:

1. Each leading entry is 1.

2. Any entries above a leading 1 are also 0.

Example 2.2.5. The following matrices are in reduced row echelon form.

1 0 3 1 0 0 01 0 3 0 0
0O 0 1 7 0 0

0 1 5 0 1 0

00 0 00 1 00 0 0 1 0
00 0 0 0 1

Example 2.2.6. The following matrices are not in reduced row echelon form. (Why?)

0 4 5
100

w

000 001 2
1 30 000135
2 3 00001

0

Theorem 2.2.7. Every matriz is equivalent to a matriz in (reduced) row echelon form.

The proof of this is actually procedural, so let’s see it done in the context of an example.

Example 2.2.8.

1 -1 -1 2
3 =3 2 |16
2 -1 119

1. Working left to right, find the first nonzero column in the matrix.
The first column is nonzero

2. Among all of the rows with nonzero entries in this column, choose one and move it to Row 1.
We'll just keep the first row where it is

3. Use elementary row operations to clear all other nonzero entries in this column (below Row 1).

1 -1 —1] 2 1 -1 —1]2
3 -3 2 [16] 22l 9 5 |10 (2.2.1)
2 -1 19 2 -1 1 |9]
1 -1 —1| 2]
Mmoo 00 5 |10 (2.2.2)
0 1 3|5

(2.2.3)

4. Ignoring Row 1, find the next nonzero column in this matrix.
Ignoring Row 1, the second column is now the next nonzero column.
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5. Among all of the rows below Row 1 with nonzero entries in this column, choose one and move

it to Row 2.
1 -1 —1]2
Loflo 1 3|5 (2.2.4)
0 0 5 |10

6. Use elementary row operations to clear all other nonzero entries in this column (below Row 2).
Already done.

7. Repeat this process until the matrix is in row echelon form.
Huzzah, the matrix in Equation is in row echelon form!

8. Now scale every row so that the leading term is a 1. The result will be in reduced row echelon
form.

L Rus R -1 —1/2
0 1 3|5 (2.2.5)
0 0 1 |2
9. Working from left to right, use elementary row operations to clear all nonzero entries above
each leading 1.

10 2|7

N (2.2.6)
0 0 1]2]
[1 0 0]3]

N P N (2.2.7)
0 0 1|2

| 10 0| 3

L Blo 1 0| -1 (2.2.8)
00 1|2

Remark. The row echelon form of a given matrix is not unique.

Remark. The reduced row echelon form of a matrix is unique.

Definition. The process described in the example above is called [ row reduction

Theorem 2.2.9 (Poole Theorem 2.1). Matrices A and B are row equivalent if and only if they can
be row reduced to the same echelon form.

2.2.3 Gaussian Elimination and Gauss—Jordan Elimination

Definition. Given a linear system with augmented matrix [A|b] in (reduced) row echelon form, the

pivot columns correspond to l leading variables |in the system, and the other nonzero columns

correspond to | free variables |in the system.
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Definition. [ Gaussian elimination ] is the following process:

1. Write a linear system as an augmented matrix.

2. Put the matrix into row echelon form.

3. Reinterpret as a linear system and use back-substitution to solve the system for the leading

variables.

Definition. | Gauss—Jordan Elimination |is the following process:

1. Write a linear system as an augmented matrix.
2. Put the matrix into reduced row echelon form.

3. Reinterpret as a linear system and solve the system.

Both processes take about the same amount of time by hand. But since the reduced row echelon form
is unique and matrix algebra software has an RREF feature, Gauss—Jordan is usually more practical.

Example 2.2.10. Use Gaussian—Jordan elimination to find the solution set for the given system

Ty — Xy + x3 + 4dxs
2$1 + Ty — T3 + 2134
35(]1 — 3£U2 + 3(133 + 12.734

We set up the augmented matrix and row-reduce

1 -1 1 410 1 -1
2 1 —1 2|9 2oy 3
3 =3 3 1210 _3 -3
‘ 1 —1

R3—3R1+— R3 0 3

0 0
LRy Ry _1 —1

3 0 1

0 0

[1 0

Ri1+Ro+— Ry O 1

10 0

The corresponding system is

T -+ 25(]4 =
L2 — I3 — T4 =

Solving for the leading variables, we get

.%'1:3—2.’124
I2:3+Lg+2’L4
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and hence any solution is of the form

Ty 3 — 21’4 3 0 —2
r3| T3 10 T 1 T 0
Ty Ty 0 0 1

3 0 —2

+t where s,t € R

2
0
1

What we have seen is that both row echelon form and reduced row echelon form are useful in the
same way, but both have pros and cons. Row echelon form isn’t unique and, in the case of
augmented matrices, it takes a little bit more work to solve the system at the end. Reduced row
echelon form is unique and makes the solution at the end easier, but requires more steps initially.

2.2.4 Rank and Number of Solutions

Example 2.2.11. In Example [2.1.8| we stated that the system
r + vy =0
r + y = 2

was inconsistent. Look at what happens when we set up the augmented matrix and row-reduce:

1 10| Re—Ri—Ry |1 110
1 1(2 0 02

That last row corresponds to the linear equation 0 = 2, which is patently false. This means there
can’t possibly be a solution to the system, i.e., it is inconsistent. We state this observation as a
proposition.

Proposition 2.2.12. Let [A ‘ b} be a system of linear equations. If the i row of A is all zeroes and
the i entry of b is nonzero, then the system is inconsistent.

One might ask if we can say anything about a consistent system from its (reduced) row echelon form.
To answer this, we first introduce the following definition.

Definition. The | rank |of a matrix A is the number of nonzero rows in its (reduced) row
echelon form, and is denoted Rank(A).

Example 2.2.13. The rank of the coefficient matrix in Example [2.1.8|is 1, and the rank of the
coefficient matrix in Example 77 is 2.

Theorem 2.2.14 (Poole Theorem 2.2 - The Rank Theorem). If A is the coefficient matriz of a
consistent system of linear equations with n variables, then

n = Rank(A) + number of free variables.
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Remark. It turns out this theorem is actually just a special interpretation of a much more powerful
theorem called the “Rank-Nullity Theorem,” but that discussion will have to wait for a later section.

Definition. A system of linear equations, [A|b] is| homogeneous |if b=0. It is

non-homogeneous | otherwise.

Remark. Homogeneous systems are nice because they ALWAYS have at least one solution, which is

the zero vector (sometimes called the | trivial solution |).

Theorem 2.2.15. If [A|0] is a homogeneous system of m linear equations and n variables, where
m < n, then the system has infinitely many solutions.

Proof. Since the system is homogeneous, it has at least one solution. Since Rank(A) < m, then by
the Rank Theorem

number of free variables = n — Rank(A4) >n —m >0
and a nonzero number of free variables implies that there are infinitely-many solutions. O
Example 2.2.16. Use Gauss-Jordan elimination to find the solution set for the given system

$1—.T2+3l’3+4l’4:0
IL‘1+Z)’J2—I3—25L’4:0

Creating the augmented matrix and doing the corresponding row operations, we have

1 -1 3 4 |0| Ry-Ri»R, |1 =1 3 4]0
1 1 -1 =210 0 2 -4 —610
sRem Ry 1 —1 3 4 |0

0O 1 -2 —=3|0

RitRem |10 11 10

01 =2 =310

From here, we can see that x5 and x4 are free variables, so letting 3 = s and x4 = t, we get that the
solution is

T —s—t -1 -1
To| |25+ 3t 2 3
sl T s [T T o
T4 t 0 1

The way this last example differs from Example 2.2.10]is that we have exactly as many free variables
as we have vectors in the linear combination (instead of also having the extra constant vector added
on). This is more ideal because, with the usual vector operations, the collection of all of these
solutions is actually a vector space! We will explore this idea a bit further in the next section.
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2.3 Spanning Sets and Linear Independence
2.3.1 Span and Spanning Sets

Notice that we can rewrite the linear system

anry + appre + -+ apr, = b
Am1T1 + QmaX2 + - + Qpp®y = bm
as an equation of vectors
a11 12 A1n by
T : + 29 : + -4, : =
am1 Am2 Amn bm

In this way a solution to the system corresponds to a linear combination.

Theorem 2.3.1 (Poole Theorem 2.4). A system of linear equations [A ‘ b} is consistent if and only
if b is a linear combination of the columns of A.

The number of solutions to the system also tells us how many ways we can make such a linear
combination. If there is a unique solution, then there is exactly one way. If there are infinitely-many
solutions, there are infinitely-many ways to make the linear combination, so it may be reasonable to
ask more qualitative questions about the set of all possible linear combinations and study the space
of linear combinations instead.

Definition. Given a set of vectors S = {vq,..., vk} in a vector space V, we define the [ span |of

V1,...,Vn to be the set of all linear combinations of these vectors, and we write Span(vy, ..., vg) or

Span(S). If V"= Span(S5), then we call S a| spanning set |for V

With this definition, we can restate Theorem [2.3.1| as follows:

Theorem 2.3.2. A system of linear equations [A ‘ b] 1s consistent if and only if b is in
Span(ay,...,a,) (where a; is the i column of A).

Exercise 2.3.1. If V is a (real) vector space and vy, ..., vy is some collection of vectors in V', then
the set Span(vy,...,vy) is also (real) vector space.

Example 2.3.3. Let e; = [1,0]7,e3 = [0, 1]7 be the standard basis vectors for R?. By definition, an
arbitrary vector in Span(ej, ez) is of the form

rey +yes = I =+ 1 0 = |*
req J2—./0 Jl—y

and so Span(e;, es) = R”.
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Example 2.3.4. Let e; = [1,0,0]” and e; = [0,1,0]” be standard basis vectors in R3. Span(e;, es)
is the collection of all vectors in R? of the form [z, y, 0], which is just the zy-plane. This set does not
span R?, however, because it is missing all vectors with a nonzero 3'¢ coordinate (i.e. the z-direction).

Example 2.3.5. For any two vectors u, v in R? (with u not a scalar multiple of v), then Span(u,v)
is a plane through the origin in R3.

Example 2.3.6. Consider the set S = {el = {(1)} ,€p = {ﬂ ,V = {ﬂ } Then

Span(ey,eq, v) = {ae; + bey + cv : a,b,cER}:{{Zij : a,b,cER}

But since a, b, c can take the values of any real number, then so can a + ¢ and b + ¢. Renaming

x=a+ cand y = b+ ¢, then we exactly have that Span(ej, ez, v) is the collection of all vectors
[z,y]", which is still R2,

So the spanning set can, in some sense, contain redundant information, and the span may have lower
“dimension” (whatever that means intuitively) than the number of vectors in the spanning set.
We can ask a similar question about this same set of vectors

Example 2.3.7. Does the set S above span R??
Of course, we know the answer is "yes”, but it may be good to see it explicitly. Asking whether it

spans R? is equivalent to asking whether every w = [z, y]” in R? is a linear combination of e;, ey, v.
By Theorem [2.3.2] this is equivalent to checking that the following system is consistent:
e ey V| w 01 1

51,}
Y
I

This system is already in reduced row echelon form, and it is clearly consistent. Moreover, it follows

from the Rank Theorem ([2.2.14]) that it has infinitely many solutions, and thus there are

infinitely-many ways to write w as a linear combination of ey, es, v. In particular:

[;ﬂ =(z—ter+ (y—t)ea +tv for any real number ¢.
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1 1 0
Example 2.3.8. Do the vectors vi = |0]|,vo= |1]|,v3= |1| span R3?
1 0 1

We are asking whether every vector w = [z, y, 2|7 € R? is in Span(vy, v, v3), so by Theorem m
this is equivalent to checking that the following system is consistent:

] 1 1 0|z
vi vo vy3|lw|=1[1 0 1]y
R R TR
Row reducing this augmented matrix, we get
11 0lz 1 00| $(z4+y—2)
RREF
10 1|yl—=1010]| 3(z—y+2)
0 1 1]z 00 1]|L(-z+y+2)

Which is consistent and has a unique solution. Hence R = Span(vy, vy, v3).

1 1 2
Example 2.3.9. Do the vectors vi = |0, vo = [1|, v3 = [1]| span R3?
1 0 1

As before, we apply Theorem [2.3.2] and checking that the following system is consistent:

11 2
vi vo vy |w| =11 0 1
01 1

ISEENS

Row reducing a bit, we get
11 2|z 11 2 x
10 1]yl 2 o -1 1| —2+y
01 1]z 0 0 0 |z—2+y

and so this system is inconsistent when z — 2 + y # 0! In particular, this means the vector [0,0, 1] is
not in Span(vy, va, v3)

So what is the span of these vectors? Well, it’s precisely the vectors [z, y, z| for which the system is
consistent, i.e., the plane z — z 4+ y = 0.
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2.3.2 Linear (In)dependence

Suppose we can write one vector w as a linear combination of u and v, say w = au + bv. Then w
“depends” on u and v. Clearly we can rewrite this as

W = au+ bv — au+bv —w =0,

and so we introduce the following definition.

Definition. A set of vectors vy,..., vy in a vector space is| linearly dependent |if there are

scalars ay, ..., ay (not all zero) such that

a1vy + -+ apvkg = 0.

A set of vectors that is not linearly dependent is called | linearly independent

Remark. 1t is always true that the equation above holds if a; = --- = a; = 0, so linearly dependence
says that there is some other collection of a;’s for which the equation is also true. In this way, linear
independence can be thought of as saying that the only way the above equation is true is if
ayp=---=a; =0.

Example 2.3.10. The set {vy = [1,1]7,vo = [2,1]7, vz = [1,2]7} is linearly dependent because

V2+V3—3V1:0.

It should be clear from the way we defined linear dependence that the idea is to capture when one
vector can be written as a linear combination of the others. In the above example we can easily write
V3 = %Vz + %Vz. In fact, this is an equivalent characterization of linear dependence.

Theorem 2.3.11 (Poole Theorem 2.5). The set of vectors S = {v1,...Vk} in a vector space is
linearly dependent if and only if at least one of the vectors can be written as a linear combination of
the others.
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The proof of this fact is essentially exactly what happens in the example, so we provide it fully
below. The hard part is that we have to prove two separate things (because the statement of the
theorem is a “biconditional statement”).

Proof. 1f S is linearly dependent, then we can find scalars aq, ..., a;, not all zero, so that
a1vy + -+ apvg = 0.

Since one of the coefficients a; # 0, then we can rearrange this as
ay Ai—1 Ait1 ay

Vi:_ivl_...ivifl_ Vi_.._ivk
a; a; a; a;

Conversely, suppose vy is nonzero and is a linear combination of the remaining vectors in S. Then
there are constants as, . .., ax, not all zero, for which

Vi = Q9Vg + + -+ arpVk
which rearranges to
—V1+asve + - +apvik = 0.

hence S is linearly dependent. ]

Remark. The above theorem is actually a bit subtle. It doesn’t say that every vector can be written
as a linear combination of the others, just that there’s at least one that can be written this way.

Exercise 2.3.2. Give an example of a dependent set of three vectors in R, {u, v, w}, for which u is
not a linear combination of v and w

Why is linear independence important?

It all comes down to uniqueness. If vy, ..., v, are linearly independent and b € Span(vy,...,vy),
then linear independence of {vy,..., vy} tells us that the linear combination

b:ClV1+"'+CnVn

is actually the unique one representing b. This is great because it means that if two people can agree
on a particular (ordered) linearly independent set of vectors, then we can make a vector of the
coefficients [c1, ..., c,|T that unambiguously represents the vector b. Contrast this with the following
example:

Example 2.3.12. Consider the vectors vi = [1,0]7, vy = [0, 1]T, vz = [1,1]T. Clearly, the set
{v1,Vva,vs} is linearly dependent. Notably, we have

0= Vi + Vg — V3.
So we can write b = [3,1]7 in multiple ways, say,

b:3V1+1V2—|—0V3
b:b—|—0:4V1+2V2—1V3
b:b+2025V1+3V2—2V3

and if we tried to refer to b as just a vector of its coefficients, we could have that [3,1,0]7,
4,2, —1]7, and [5, 3, —2] all represent the same vector.
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This particular idea will become especially important when we discuss bases for a vector space, but
along the way there are also several other ideas that we will see are reliant upon the notion of linear
independence.

2.3.3 Using Matrices to Determine Linear (In)dependence

Given a collection of vectors {vy,..., vy}, determining linear (in)dependence comes down to finding
whether (or not) there exist nonzero real numbers z1, ..., z, such that

rivi+--+x,vp=0

and this equivalent to checking whether or not the following system has any nontrivial solutions (i.e.
solutions other than the zero vector).

Vi -+ Vp 0

Theorem 2.3.13 (Poole Theorem 2.6). Let vq, ...V be vectors in R™ and let A be the n x m
matriz with these vectors as its columns, A = [vy,...,vm]. Then that collection of vectors is linearly
dependent if and only if the homogeneous system [A|O] has at least one nontrivial solution.

The following theorem is logically equivalent to the above, but is stated to make the connection
between this system and linear independence completely clear.

Theorem 2.3.14. Let vy, ... vy be vectors in R™ and let A be the n X m matrixz with these vectors
as its columns, A = [v1,...,Vvm]. Then that collection of vectors is linearly independent if and only if
the homogeneous system [A|0] has no nontrivial solutions.

Example 2.3.15. Consider the column vectors v; = [0,1,2]7, vo = [2,1,3]7, v3 = [2,0,2]T. We can
check for linear (in)dependence by row reducing [v1, va, v3|0] and checking the number of solutions.

0 2 2|0 1 1 00
[vi va va|0]= |1 1 00| 2% 1o 2 2]0
2 3 2|0 2 3 210
L 1 1 010
§R2>—>R2
—— {01 110
R:§—2R1’—>R3 0 1 2 O
[1 0 —1]0
fzfenf, g 1 1 |0
R3s—Ro+—R3 _O 1 0
[1 0 0]0
FatFs =R, 1 00
Ro—R3+—Ro _O 1 O
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The system thus has no nontrivial solutions (because there are no free variables). By Theorem

2.3.14} the set {v1,va,vs} is linearly independent.

Example 2.3.16. Consider the column vectors v; = [0,1,2]7, vo = [2,1,3]T, v3 = [2,0,1]T. We can
check linear dependence by using Gaussian (or Gauss-Jordan) Elimination:

02 2|0 10 —1]0
[vi v2 va|0]=|1 1 0oj0o| ™5 (01 10
2 3 1]0 00 010

It’s an exercise to the reader to check that the reduced row echelon form is correct. The system thus
has no nontrivial solutions. By Theorem [2.3.13| the set {vy, vy, v3} is linearly dependent. Of course,
this isn’t hard to see, as vo = v{ + V3.

Example 2.3.17. Let v; = [1,1]7, vo = [1, —1]7, v3 = [z, y] be column vectors in R?. Using the
same method from Theorem [2.3.13| we can check for linear dependence via Gaussian (or
Gauss-Jordan) Elimination:

0

0

It’s an exercise to the reader to check that the reduced row echelon form is correct. The system has
nontrivial solutions for every vector [z,y]”, so by Theorem [2.3.13| the set {vy,vq, v3} is linearly
dependent.

<

1 1 =z

|:V1 Vo V30:|:|:1 1 y

0| rrer |1 0 %
0 0 1 &%

w‘—‘,—m
<

Of course, three nonzero vectors in R? being linearly dependent doesn’t sound too unreasonable - the
corresponding linear system must have rank at most 2 and thus at least one free variable. We deduce
from this the following result:

Theorem 2.3.18 (Poole Theorem 2.8). If m > n, then any set of m vectors in R™ is linearly
dependent.
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3.1 Matrix Operations

3.1.1 Matrix Basics

Definition. A | matriz I is an array of numbers (called | entries l) and has| size |mxn

if it has m rows and n columns.

aix Q2 - Qip

Q21 Q22 -+ Q2p
A = [ay]

Am1 Am2 **° Amnp

The subscripts on the entries a;; tell us that we’re looking at the entry in the " row and the j*"
column (counted top-to-bottom, left-to-right).

Fact. Two matrices are equal if and only if both (1) their sizes are equal and (2) their corresponding
entries are all equal.

Remark. Tt’s common to write R™*" represents the collection of m x n matrices with real number
entries.

Example 3.1.1. Consider the matrices

123 12 7 8
A_[456]’ B_LLJ’ and C_{g 10}

A # B because their sizes are different, and A # C because their corresponding entries are not equal.

Definition. A matrix A = [a;;] is| square |if it has size n x n. The | diagonal of A |is all of

the entries where ¢ = j:

Ap1 -+ Qpp

A square matrix is called [ diagonal |if the only nonzero entries are along the diagonal. You may

see this written as A = diag(aq,. .., auy)-

A bit of a subtly — the definition of diagonal just says that nonzero entries must occur along the
diagonal, but the diagonal entries do not necessarily need to be nonzero.

Example 3.1.2. The matrices

1
A: 0 and B =
0

S N O
w o O
o O O
o N O
o O O

are both diagonal because every entry off of the diagonal is 0.

Definition. A matrix is if it is a diagonal matrix and the diagonal entries are all equal,
i.e., the matrix A = diag(r,r,...,r) for some r € R.
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Definition. The [ zero matriz ], often denoted O is the matrix for which all entries are 0. Its

size should be clear from context, but we may write O,,«, if we need to specify.

Definition. The[ Kroenecker delta ], denoted 9,5,

1 ifi=j,
Oij = e
0 ifi#j.

Definition. The [ identity matriz ] 1, is the diagonal n x n matrix with all 1’s along the

67, or 0% is the following:

diagonal. You may sometimes see this written as I,, = [d;;].

Example 3.1.3. It may be useful to see exactly how the Kroenecker delta leads to the identity
matrix.

011 012 013 100
I3 = [5@'] = (521 522 (523 =101 0

3.1.2 Matrix Operations

Definition. Given two m x n matrices A = [a;;] and B = [b;}], the [ matriz sum |is

ain +bu o0 ai, + by
A+B:[aij+bij]: ’
Am1 + bml o Amn + bmn
1 2 3 7T 8 9
Example 3.1.4. For A = [4 5 6] and B = [10 1 12],

A+B:[1+7 2+38 3+9}_{8 10 m}

4+10 5+11 6+12 14 16 18

Remark. When adding two matrices, they must have the same size.

Definition. For a matrix A = [a;;] and a scalar 7, the [ scalar multiple of A |is the matrix

rA = [ra;]
Example 3.1.5. Given the matrix A = [é ﬂ and the scalar r = 5,
_15(1) 5(2)] |5 10
TA_E@)M@B 20| -

Definition. With the notion of addition and scalar multiplication, subtraction of matrices is then
defined in the obvious way:

A—B=A+(-1)B.

Remark. The zero matrix satisfies the properties you want it to: A+ O =Aand A—A=0
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3.1.3 Matrix Multiplication

A one-variable linear equation looks like
ar =b

where a, b are constants, x is some indeterminate, and ax is good old-fashioned multiplication. If we
have a linear system

anTi +  aipTy o AT, = b

a1 Ty +  QpTy - AT, = b
+ fry

Ap1T1 + AQmaZa2 - Appdy = bm

it would be convenient to write it in a similar form. We thus define the product of a matriz and
a vector so that the above system is captured by the equation

Ax=Db
where
aip Qi -0 Aip T by
A Q21 G2 -+ d2n Cox= T2 . and b= ba
Am1 Am2 ' Qmp T bm

In other words, b; = Row;(A) - x. We take this idea and extend it to products of two matrices.

Definition. Given an m x n matrix A and an n X p matrix B with columns b;, the

matrixz product |of A and B is the n x p matrix

.

(And the above form is called the | matriz-column representation |of the product AB.) More

explicitly, if A has row vectors A;, then AB is the m X p matrix with entries

A;-b; A;-by - A;-b,
ap o | At A A
Am-by An-by -+ AL b,
Example 3.1.6. Let A and B be the following matrices
1 2] [ Ay - |
A= 3 4] = 7A27 and B = |:9 10:| = b1 b2
5 6 —As— | |

We thus have that the product AB is

| | A;-b;y A;-b, 23 28
AB = |Aby Aby| = |Ay-by Ay -by| = |57 64
\ | As-b;y As-by 89 100
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Remark. Two matrices A, B can be multiplied even if their sizes are different. As long as the number
of columns of A is equal to the number of rows of B, then the product AB exists. Moreover

A B =AB

mxXn nxp mxp

Fact. If A is an m X n matrix, then we have that
I, A=A and Al, = A

and it is for this reason that we call [,, the identity matrix.

3.1.4 Matrix Powers

If A is a square matrix, then for positive integers k, then we can define the power of a matrix in the
intuitive way,

AP = AA.. A
| S ——
k factors
and the usual rules for exponents hold:
° ArAs — A'r+s
° (AT‘)S — Ars

1 2
3 4

e~ -2 -6 Y

35 a2, |7 10][1 2] [37 54
A _AA_[15 22] {3 4]_[81 118]

Example 3.1.7. If A = [ ], then

and

3.1.5 Transpose

Definition. If A = [a;;] is an m X n matrix, then its [ transpose ], AT is the n x m matrix who

')th

(4,7)™ entry is a;;. In other words, one obtains A7 by turning A’s rows into columns and vice versa.

Visually, the transpose amounts to flipping the matrix across the red line below

A:{l 2 3} flip, T

W DN =
S U
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Definition. A matrix A is [ symmetric ] if A=AT.

Example 3.1.8. Consider the matrices

1 2 1 2
A:{z 3} 32[3 4}'
One sees A is symmetric and B is not.

Remark. If A has size m x n, then AT has size n x m, so the only way that A = A" is if m = n. In
other words, symmetric matrices are always square matrices.

1 2
Example 3.1.9. Let A= [3 4|. Compute ATA and AAT.
5 6

I
S
I
|
1
N =
- W
S Ot
| I
LW =
(SR V)

t

1 2
AAT— |3 4 B i 21
5 6
5 11 17
= |11 25 39
17 39 61

What’s interesting to notice is that, while A is not symmetric (and not even square), both
AAT and AT A are symmetric (and hence also a square matrix). These particular matrices are useful

when considering inner products and outer products of vectors, respectively, although we won’t be
covering either of those ideas in this course.
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3.2 Matrix Algebra

Theorem 3.2.1 (Poole Theorem 3.2 - Algebraic Properties of Matrix Addition and Scalar
Multiplication). Let A, B,C € R™*" and let ¢,d € R. The following are true:

(a) A+ B=B+ A

(b) (A+B)+C=A+(B+(C)
(¢c) A4 Oy = A

(@) A+ (~4) = Op,

(e) c(A+ B) =cA+cB

(f) (c+d)A=cA+dA

(9) c(dA) = (cd) A

(h) 1A= A

Remark. In short, Theorem above says that R™*" is a real vector space (see page 77).

3.2.1 Properties of Matrix Multiplication

Matrix multiplication is not commutative in general, and it is often the case that AB # BA. This
fact clear if A € R™*" and B € R"*"™ where m # n (just compare the sizes of AB and BA), but is
possibly less obvious in the case where A, B are both square matrices. It is an exercise to find an
example of this in the case of 2 x 2 matrices.

10

Exercise 3.2.1. Let A = a b and B =
c d 11

that AB = BA?

} . What conditions must a, b, ¢, d satisfy to ensure

So what properties does matrix multiplication have?

Theorem 3.2.2 (Poole Theorem 3.3 - Properties of Matrix Multiplication). Let A, B, C' be matrices
(whose sizes are such that the following exist) and k € R a scalar. Then

(a) A(BC) = (AB)C

(b) A(B+C)=AB+ AC

(c) (A+ B)C = AC + BC

(d) k(AB) = (kA)B = A(kB)

(e) [,A=A=Al, (if Aism xn)
Remark. This theorem implies that R™*™ is a fancy object called a (non-commutative) algebra.
Informally, this is a vector space with an additional operation that lets us multiply two vectors
together (which, if you look closely, isn’t a feature of vector spaces normally). This is outside the

scope of the course, but it may be interesting to you to know that such things exist and that these
properties are not unique to R™*",

The proof of this theorem will require the properties of the dot product (recall Proposition [1.2.1]).
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Proof. For simplicity, we’ll introduce some notation. For a matrix M
e (this one is standard notation) M;; denotes the (4, 7)™ entry of M,
e row;(M) denotes the i row of M, and
e col;(M) denotes the j™ column of M.

(a) Note that AB has size m x p and BC has size n x r, hence both (AB)C and A(BC') have size
m X r, and thus they are equal if they’re corresponding coefficients are equal.

P P n p n
(AB)C)y = 3 (AB)aCiy = (Z AﬂB"“) Ol =D > AuBuCiy = -
k=1 k=1 \/¢=1 k=1 (=1

p n p n
c = AuBuCrj =Y Au (Z B%ckj) = Ay (BC), = (A(BC))y
/=1 k=1 /=1

(=1 k=1

(b) Let A € R™™ and B, C € R"*P. Notice that A(B + C) and AB + AC have the same size,
hence they are equal if they have the same corresponding elements.
(A(B + (C)),;; = row;(A) - col;(B + C)
= row;(A) - (col;(B) + col;(C))

(c) Let A, B € R™™ and C' € R"*?. Notice that (A + B)C and AC + BC have the same size,
hence they are equal if they have the same corresponding elements.
((A+ B)C),;; = row;(A + B) - col;(C)
= (row;(A) + row;(B;)) - col;(C)
= row;(A) - col;(C) 4+ row;(B) - col;(C) = (AC);; + (BC),;.

(d) Let A € R™", B € R™P and k € R. Notice that k(AB), (kA)B and A(kB) all have the same
size m X p, hence they are equal if they have the same corresponding elements.
(k(AB)),, = k (row;(4) - col;(B))
= row;(kA) - col;(B) = ((kA)B),
B) =

= row;(A) - col;(k (A(kB))

]

(e) Let A € R™*™. Writing the m x m identity matrix I,,, = [J;;] using the Kroenecker delta (c.f.
page , we note that I,,A and A have the same size, hence they are equal if they have the
same corresponding elements.

(ImA);; = row;(I,) - col;(A)
= (Sf,;lAlj + (51‘214% + -4 (SZ‘/,,,,A,,U‘
= 0;iA;j (the only nonzero term in the sum)

f— A’Lj
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Similarly, for the n x n identity matrix I,,,
(A[n)ij = row;(A) - col;(1,,)
= Ai101j + Aidaj + - + Ainlny

= A;i0j; (the only nonzero term in the sum)
= Ay
O
1 2 3 32 1
Example 3.2.3. Let A = [4 5 61’ B=]1 0],and C= {3 4]. Then
-1 -2
L2 g (] 2 o
A(BC) = 5 6 1 0 {3 _4]
I\ [-1 —2
1 2 3 9 -—-14
“ 14 5 6 b=
-7 10
(10 12
-1 -6

and

(AB)C — [1 2 3] i’ 32 [1 2]

SETE
-2 5]

Theorem 3.2.4 (Poole Theorem 3.4 - Properties of the Transpose). Let A and B be matrices (whose
sizes are such that the indicated operations can be performed) and let k be a scalar. Then

(a) (AT)" = A

(b) (EA)" = k(A")

(c) (A+ B)T = AT + BT

(d) (AB)T = BT AT

(e) (A")T = (AT)" for all nonnegative integers r.

Proof. We use the same notation as in the proof of Theorem [3.2.2

(a) If A has size m x n, then AT has size n x m, and then (AT)T has size m x n. Thus these
matrices are equal if they have equal corresponding entries.

(AT)D)y; = (AT)ji = Ay
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(b) If A € R™" then kA € R™™ and thus (kA)T has size n x m. As well, since AT has size
m x n, then kAT has size m x n.

(kA)T)ij = (kA)ji = kAj; = k(AT);;

(c) Let A, B € R™*". Tt is straightforward to see that (A+ B)T and AT, BT have size n x m. Then

(A+B)")i; = (A+ B)ji = Aji + Bjy = (A")y; + (B")y; = (AT + BT);

(d) Let A € R™"™ and B € R™?. Note that (AB)” an BT AT both have the same size, hence they
are equal if their corresponding entries are equal.

((AB)T) = (AB);
ow;(A) - col,(B)
= col, (A ) - row;(BT)
= row;(B") - col;(A") = (BT A")j;.

(e) This is a corollary of item (d).

12 3 32
Example 3.2.5. Let A = [4 5 6},B: 1 0 |. Then
-1 —2]
T
3 2 T
r [l 2 3 12 -4 12 11
(AB)_LLSGlO |11 -4 |-4 —4
-1 =2
and
1 4
3 1 —1 2 11
w3 R -1
2 0 -2 3 6 —4 —4
and
1 4 1 1 -9
ATBT = |2 5 B (1) :ﬂ: 16 2 —12
3 6 21 3 —15

So clearly (AB)T = BT AT but (AB)T # AT BT in general.
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3.3 The Inverse of a Matrix

Motivation: If a,b € R and z is some unknown and we wanted to solve for x in the equation

axr = b,

we would do so multiplying both sides by a=! = 1 to get that = a~'b. We'd like to be able to do

T a

this same thing for the system of linear equations
Ax=Db

where A € R™" and b € R”. But alas, we don’t have a notion of division of matrices.

Let’s think — if @ € R is some nonzero number, then a~! is just some other real number for which

aa~' = a~'a = 1. Since the n x n identity matrix I,, plays the role of 1, multiplicatively, then the

natural way to define the matrix we desire is

Definition. For an nonzero n x n matrix A, the| inverse of A |, denoted A™!, is the n x n

matrix satisfying

AA = A7tA=1,.

If the inverse exists, we say that A is [ invertible ]

Fact. Not every nonzero matrix is invertible, and we’ll devote the latter half of this section to
exploring when a matrix is invertible.

Remark. We only define inverses for square matrices. You will explore what happens in your

homework for non-square matrices.

Theorem 3.3.1 (Poole Theorem 3.6). The inverse is unique.

Proof. Suppose A € R™ " is invertible, with inverses X and Y. Then

X = X(I,) = X(AY) = (XA)Y = (I,)Y =Y.

Theorem 3.3.2 (Poole Theorem 3.9). If A, B € R™™ are invertible and ¢ € R is some nonzero
scalar, then

a. A7Y is invertible and (A~ = A.

b. (cA)t =141

. (AB)"'=B71A™!

d. AT is invertible and (AT)™1 = (A~HT

e. A" is invertible for all positive integers n and (A¥)~t = (A~1)k

o

Proof. Since inverses are unique, and matrices are invertible if their inverses exist, then each of these
proven by merely checking that the multiplication is correct.

a. (A1)(A) = I,
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b. (cA) (1A =<AAt =],

c. (AB)(B'A™Y) = A, A" = AA = I,

d. AT(AY)T = (A1A)T = 1T = ],,.

e (ANA =4 A A=A ALAT AT ==,
k k k—1 k—1

]

Remark. Because of the above theorem, some will use the notation A" (for n a positive integer) and
A~T (the transpose) to mean the obvious things:

AT = (AT = (A
A—T — (AT)—l — (A—I)T

3.3.1 Finding A~!

If A= Ja;]is given and X = [z;5] is a matrix of unknowns indeterminates that we hope to solve,
then by comparing the entries, the matrix equation AX = I,, yields a linear system (with n?
equations and n? unknowns)

( n
Yoheg G1pT =1

n
Y oheg G1eTrz =0

> QikTr; = 0y (the Kroenecker delta)

n
(D ket nkin =1

and you can use standard techniques to solve this system. But this system is huge and “sparse” (that
is, the coefficient matrix has many 0’s). Instead, let’s write X and I,, in terms of their column vectors

|
X=1I|x1 X2 - X, and [,=|e e --- e,
. | | |
Now we have that
AX =1,
| | | . |
AXl AX2 cee AXn = |€e1 €y --- €y

and so rather than one massive system, we can deduce from this n smaller systems
AXl = ey, AX2 = €9, e AXn = €e,.

But of course, if we do something like Gauss—Jordan elimination to solve each of these, we're always
doing the same row reduction steps on the coefficient matrix! So if we just write the augmented
matrix [A|I,], then our row reduction will allow us to simultaneously solve all of these systems. In
particular, because A is invertible, we have that RREF(A) = I,, (this isn’t obvious, so you’ll have to
trust me), and so row reducing [A|7,,] yields [I,|A1].
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Definition. Suppose A € R"*" is invertible. The [ Gauss—Jordan method ] is the following
procedure for finding the inverse:

1. Write the augmented matrix [A|l,].
2. Row reduce fully to put A into RREF.

3. You now have [I,,|A71].

Example 3.3.3. Find A~! given A = E) ﬂ

A| L] = 1 2|1 0] ResrisRe [1 2 | 1 0
273 40 1 o —2| -3 1
FRe—Re [1 2)1 0
0 15 =

Ri—2RRy |1 0 =2 1 ~

o 1] _5}:[12141}

And we can check that the result is indeed the inverse:
[1 2] {—2 1}_[1 0]
3.4/ 2 —3 0 1]

One can, of course, do the above process for generic 2 x 2 matrices, which yields the following result.

Theorem 3.3.4 (Poole thm 3.8). If A = {(cl b

provided ad — be # 0.

d —b
. . . -1 _ 1
d} , then the inverse is given by A™" = ——- {—c a } )

Proof. Using the Gauss-Jordan method above,

a b|1 0] tRimeR
c d|0 1

HI

QU Sl

O Q-

=

Q| —_—1

C

1L 0
Ro—cR1— R a
_—

0 ad—bc | ¢ 1

1

1
" 0
__c a
ad—bc  ad—bc
d b
ad—bc ad—bc

" ad—bc ad—bc

a
ad—be Ro R

b
1
R17§R2HR1 1 0
1

]

You could do this same system-solving process for larger matrices, but the formulas are significantly
worse.

How does this help us solve our system?

If A is invertible and Ax = b then, by design, it should have the solution x = A~'b. Moreover, since
A~1 is unique, we expect this solution to be unique.
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Theorem 3.3.5 (Poole Theorem 3.7). If A is an invertible n X n matriz, then for every b € R™, the
linear system Ax = b is consistent and has the unique solution x = A~ 'b.

Example 3.3.6. Solve the system Ax = b given A = [:1)) 143} and b = [;] :

We could solve this the old way, or we can try our nifty new method. We quickly deduce that A~! is
given by

S [13 -4
a8

(which can be seen either by appealing to Theorem or using the Gauss-Jordan Method). Hence
the solution is
o [13o—aqn] [-15
x=A"b= { R N T e A

Example 3.3.7. Solve the system

z + vy =1
—r — y = —1

Notice that this system is equivalent to the system {x + y = 1}, which has infinitely-many solutions.
Notice also that the coefficient matrix for this system is

1 1
=[5
which isn’t invertible (because otherwise, attempting to apply Theorem we would be dividing
by 0).

Okay, so tell me, when is A invertible?

Putting it all together, we can wrap it up into the following theorem

Theorem 3.3.8 (Poole Theorem 3.12 - The Fundamental Theorem of Invertible Matrices: Pt I). Let
A € R™™. The following are equivalent:

a. A s invertible.

b. A is row equivalent to I, (i.e. its reduced row echelon form is I,).
c. A is the product of elementary matrices.

d. Ax = b has a unique solution for every b € R™.

e. Ax = 0 has only the trivial solution.

f. The columns of A are linearly independent.

For part (c) above, we saw that it worked in one particular example. In fact, it’s true for all b
because, if A is row equivalent to the identity, then it will never have a row of all 0’s in its
row-reduced form (which is precisely what happened in the cases that Ax = b had no solutions or
infinitely many solutions).
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3.3.2 Elementary Matrices

Definition. An [ elementary matrix ] is a matrix obtained by performing an elementary row

operation on the identity matrix.

The other way to think about it is that, given a matrix A € R™*", an elementary matrix £ € R"™*™
is one for which the product F'A has the same effect as doing an elementary row operation on A.

One can then get the inverse as the product of all of the elementary matrices.

1

Example 3.3.9. Given A = {3 4

1 . Use elementary matrices to compute A~

In the following string of equalities, we’ll denote the row reduction on the left-hand side and the
corresponding product by elementary matrices on the right-hand side.

1 2]
{3 4] =4
Ro-3RisRs |1 2] [1 0] 4
0 —2] N -3 1
LRy Ry 1 2] . (1 0| 1 0 A
0 1 N 0 —%_ -3 1
Ri—2RsR, |1 0] B (1 —2][1 0O 1 0 A
"o T o 1]lo =i [-3 1
—2 1
L 2 2

. -2 1
so again we get that A=! = { 3 l] .
2 2

If we write the elementary matrices above as Ey, Fy, F3, respectively, (so that A~ = E3E,E)) then
applying them to the matrix equation AX = I looks something like the following

AX =1
EAX = F,
EyE\AX = By F,y
EsEyFhAX = E3Ey By
IX = EsEy By
X = EsEy By

What this tells us is that computing the inverse can just be done with row operations on an
augmented matrix [A|I] until we get [[|A™!] (and hence provides proof that the Gauss-Jordan
Method works).
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3.5 Subspaces, Basis, Dimension, and Rank

We’ve thought about solution sets as spans of vectors and also, alternatively, as lines and planes in
3-dimensional space. Now we’ll formalize these ideas so that we can talk about these things in more
generality. Recall the definition of a real vector space:

Definition. A | (real) vector space |V is a set of objects (called | wvectors I) with two
operations l vector addition I (denoted +) and[ scalar multiplication ] (no symbol)
satisfying the following properties: For all vectors u, v, w and real numbers a, b (called ),

(a) u+visin V [closure of addition]
(b) u+v=v-+u [commutativity of addition]
(c) (u+v)+w=u+(v+w) [associativity of +]
(d) There is some vector 0, called the zero vector, [additive identity]
so that u+ 0 = u for all vectors u.
(e) For each u in V| there is some vector —u for [additive inverse]
which u + (—u) = 0.
(f) auisin V [closure of scalar mult.]
(g) a(u+v)=au+av [distributivity]
(h) (a+b)u=au+bu [distributivity]
(i) (a )u = a(bu) [associativity of scalar mult.]
(j) lu= [scalar mult. identity]

From this definition, Theorem ?7? can be restated as
Theorem 3.5.1 (Restatement of Poole Theorem 1.1). R™ is a real vector space.

Remark. As it turns out, it’s entirely sufficient to just think about R™ when discussing
(finite-dimensional) real vector spaces, so if it’s more comfortable for you, any time you read “vector
space,” you can replace it with “R™” in your mind and not lose any understanding.

With this in mind, we introduce the following definition:

Definition. Let V' be a vector space and let W be a subset of vectors in V. We say that W is a

subspace |of V if it is also a vector space (with the same vector addition/scalar multiplication

operations).

In order to check that a set of vectors is a subspace, one would have to check all of the axioms of the
vector space definition — eww. Instead, here is an equivalent characterization of a subspace (note:
this is typically a theorem in most textbooks, but your book presents it as the definition).
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Definition. Let V be a vector space and let W be a subset of vectors in V. W is a[ subspace ]

of V if it has the following properties:

1. 0is in W (where O is the same zero vector in V).
2. fu,veW, thenu+vel. [closure of addition]
3. fue W and k € R is a scalar, then ku € W. [closure of scalar multiplication]
(where vector addition and scalar multiplication in W are the same operations for V).
Example 3.5.2. Every vector space V is a subspace of itself.

Example 3.5.3. For any vector space V', the set {0} is a subspace of V' (sometimes called the

trivial subspace |).

Example 3.5.4. Let W be the set of all vectors in R? of the form [z, y,0]”. Then W is a subspace of
R3 because

[0
1. [0 e W
_0
E2 T2 Ty + 79
2.yl Hly| =ty eW
0 0 0
T kx
3.k |yl = [ky| ew
0 0

Example 3.5.5. Let W be the set of all vectors in R? of the form [z, 0, z]7. Then W is a subspace of
R3 (and the justification for this is nearly identical to the example above).

Remark. You may notice that, in the previous two examples, the subspaces were each defined by only
two real numbers and both were planes (one was the xy-plane and the other was the zz-plane). You
may be inclined to call either of these “R2” but really they're both copies of R? living inside of R3.
In fact, any plane in R? is just a copy of R?. As such, there is no canonical choice of plane, so it
really doesn’t make sense to call any of these infinitely-many planes “R2.”

Example 3.5.6. Let W be the set of all vectors in R? of the form [z,y,17. Then W is not a
subspace of R? because:

[0
1. o] ¢w
0
-ZL’1 ZTo T+ T2
2. |+ |y = |ty ¢W
1 1 2
x kx
3. Forany k # 1, k |y| = |ky| ¢ W.
1 k
Theorem 3.5.7 (Poole Theorem 3.19). Let vy,...,vx € R". Then Span(vy, ..., Vi) is a subspace of

R"™.
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Proof. For simplicity, let W = Span(vy,...,vk). We check that W satisfies the criteria for the
definition of a subspace.

1. Since 0 =0vy + -+ - + Ovy, then 0 € W.

2. Letu=c1vi + -+ vk and w = dyvy + - - - + dp vk be vectors in W. Then
u+w=(c;+dy)vy+ -+ (cx + d) V.

Since u + w is a linear combination of the vectors v;, then u+w € W.

3. Let u be as above and r € R be some scalar. Then
ra = (rc))vy + -+ + (reg) vi.

Since ru is a linear combination of the vectors vj, then ru € W.

3.5.1 Subspaces Associated with Matrices

Armed with the notion of a “subspace” in mind, let’s try to revisit some ideas involving matrices.
First, a new definition

Definition. Let A be an m X n matrix.

1. The| column space of A |is a subspace R™ spanned by the columns of A. We denote it
as Col(A).

2. The| row space of A |is a subspace of R™ spanned by the rows of A. We denote it as
Row(A)

Remark. Since we will prefer to think about column vectors whenever possible, it may be more useful
to define Row(A) := Col(AT).

Theorem 3.5.8 (Poole Theorem 3.21). Let A be an m X n matriz and let N be the set of solutions
to the homogeneous system Ax = 0. Then N is a subspace of R™.

Proof. As before, we will approach by showing that IV satisfies the three subspace criteria.

1. Homogeneous systems always have te trivial solution, hence N contains 0.

2. Let x1,x2 be in N. Then
A<X1+X2) :AX1+AX2 =0+0=0.

so NN is closed under addition.

3. Let x bein N and k be a scalar. Then
A(kx) = k(Ax) = k0 =0

so N is closed under scalar multiplication.
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Definition. N, as above, is called the [ null space of A ], and is denoted Null(A4). (In some
texts, it is called the kernel of A and is denoted ker(A).)

Exercise 3.5.1. If W is the set of solutions to the system Ax = b where b is not the zero vector, is
W a subspace of R"?

Example 3.5.9. Compute Col(A), Row(A), and Null(A) for A =

—
N DN DN
= e

Letting a; denote the i*® column of A, we see that ag = 2a, = 4a;, hence

1
Col(A) = Span| |1
1

Similarly, letting A; denote the i*® row of A, we see that Ag = Ay = Ay, hence
Row(A) = Span([1,2,4]).

Examining the homogeneous system Ax = 0,

12 4]0 12 4]0
[Al0]= |1 2 4]0| =fa=fs g o 00
12 4)0] =77 1o 0 00

we see that A has rank 1, hence there are two free variables in this system, zo = s and 3 =t. We
thus get that the solution set is of the form

T —2s — 4t —2 —4
To| = s =s| 1| +t}| 0
hence
-2 —4
Null(A) = Span 11,10
0 1
Definition. Let W be a subspace of a vector space and B = {wy, ..., wi} a set of vectors in W. B is

al| basts |for W if

1. W = Span(B) and

2. B is a linearly independent set.

Remark. Since every vector space is a subspace of itself, this definition is valid for all vector spaces.
We’ve merely stated it in terms of subspaces to make it clear that the basis vectors must each be
contained in that subspace.

Example 3.5.10. The standard basis vectors e; in R" form a basis for R". We refer to

E={e1,...,e,} as the| standard basis |for R".
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1 1 3 1 6

. . 2 -1 0 1 -1

Example 3.5.11. Find basis for the column space A = 3 9 1 -9 1
4 1 6 1 3

Let a; represent the i column vector for A and let r; denote the j* column vector for RREF(A).
So we have

[ 1 1 3 1 6 | | |
2 -1 0 1 -1
A=13 201 2 1| 7|2 2 a

4 1 6 1 3 ] |
(1 0 1 0 —1 | |
0120 3

and RREF(A) = 0001 4 1"‘1 1"‘2 r|5
0000 0

Notice that we clearly have
rg = Ir; + 2ry and rs = —1r; + 3ry + 4ry,
whence
az = la; + 2as, and as = —la; + 3as + 4ay.
(and you can check that this is true, just to confirm). It follows that

Col(A) = Span(ay, ay, ag, a4, a5) = Span(ay, as, ay).

Moreover,
10 0[]0
01 00
RREF([a1 az a4 [0])= |, o ||/
00 00
and so {aj,ag, a4} is a linearly independent set. Hence
1 1 1
2 -1 1
{31732734} == —3!> ) N )
4 1 1

is a basis for Col(A).

Strategy for finding a basis for the column space of a matrix:

1. Row reduce the matrix (just row-echelon form is fine)

2. Take as a basis every column (in the original matrix) which contains a leading entry.

Remark. 1t’s important that you take the basis vectors from the columns of the original matrix. For

ot [1 1) = pan 1] ). commrcay - ([} 1) - oo [1]
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1 1 3 1 6
. . 2 -1 0 1 -1
Example 3.5.12. Find basis for the null space of A = 3 92 1 -2 1
4 1 6 1 3
Notice that
1 01 0 -1
0120 3
RREF(A) = 0001 4
00 0O0 O
When we go to solve the system
€
o)
Ax = A 3| = 0
Ty
Ts
we see that x3 and x5 are free variables and
1 = —T3 + Ty,
To = —2J/3 - 3[1)57
T4 = —4xs.
By setting x3 = s and x5 = t, we can parameterize the solution set as
T —s+t —1 1
To —2s5 — 3t -2 -3
X = |x3| = S =s| 1| +t| 0| =svy+1tva.

Clearly Null(A) = Span(vy, va) and it is straightforward to check that {vq, va} are linearly
independent, hence

—1 1
-2 -3
{v1,va} = 1 0
0 —4
0 1

is a basis for Null(A).

Strategy for finding a basis for the null space of a matrix A:

1. Row reduce the matrix.
2. Solve the system Ax = 0.

3. Write the solution set in parametric form {vit; + -+ vl : t1,... & € R}. (You should
have as many parameters as free variables.)

4. Take {vy,..., vy} as a basis for Null(A).
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3.5.2 Dimension and Rank

Question: How many bases can a vector space have?
Answer: Infinitely-many.

. o] . .
Exercise 3.5.2. Show that, for any nonzero real numbers m,n, the set { {Tg} , [n} } is a basis for
R2.

Maybe the better question is

Question: How many vectors must a basis have? Can two different bases have different numbers of
vectors?

Example 3.5.13. Suppose V is a subspace of R* and it has two different bases, B; = {u;, us} and
B, = {V1,V2,V3}-

Since B; is a basis, we can write each of the By-basis vectors as a linear combination of the B;-basis
vectors

Vi = a1y + ag1Uz
Vo = 1201 -+ 922U29

V3 = a13U1 + o3z
Now if we consider the vector equation
0 =2,Vy + T9Vy + 23V3 (3.5.1)

it should be that the only solution is when each of the z; = 0 (since the we claim the v;’s are linearly
independent). Notice, however, that

0= T1V1 + ToVe + X3Vy
0= :Ul((zuul -+ ClgllIQ) + 3112(6112111 + (L22L12) -+ ZL’3((L131,11 -+ CL23112)

0 = (a1 + @122 + a1323)Uy + (2121 + a22T2 + A23%3)Us

Since the u;’s are linearly independent, we must have that

a1 + 122 + a13xr3 = 0
a21T1 + 99T 9 + 933 = 0

which is a homogeneous linear system in 3 variables (and only 2 equations). From the Rank
Theorem, it follows that there are infinitely many solutions [z1, 2, z3]7 and, in particular, there is a

nonzero vector solution. This means there are nonzero coefficients x1, x5, r3 satisfying Equation
(3.5.1), hence By is a linearly dependent set and therefore is not a basis.

Theorem 3.5.14 (Poole Theorem 3.23 - The Basis Theorem). Let V' be a vector space with two
different bases By and By. Then By and By have the same number of vectors.

Because the number of vectors in the basis is invariant of the choice of basis, we can define the
following term.
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Definition. The [ dimension ] of a vector space V' is the number of vectors in a basis for V. We
denote this dim(V').

Remark. The trivial vector space {0} is defined to have dimension 0.

Example 3.5.15. dim(R") = n.

1 1 0
Example 3.5.16. Let V = Span| |0], (0], (O be a subspace of R3. What is the dimension of
1 0 1

Clearly the first vector is a linear combination of the other two (which are linearly independent), so

dim(V) = 2.

Theorem 3.5.17 (Poole Theorem 3.24). For a matriz A, dim(Row(A)) = dim(Col(A)).
Definition. The of a matrix A is the dimension of its column space (denoted Rank(A)).
If A has size n x n and Rank(A) = n, then sometimes we say that A has full rank.

Remark. This new notion of rank still agrees with our old notion, because the number of linearly

independent rows in A is the same as the number of nonzero rows in RREF(A) and
dim(Row(A)) = dim(Col(A)).

Theorem 3.5.18 (Poole Theorem 3.25). For any matriz A, Rank(A) = Rank(A”).

Proof. Since Row(A) = Col(AT), then Rank(A) = dim(Row(A)) = dim(Col(AT)) = Rank(AT). O

1 2 3
Example 3.5.19. Show that B=<{ (0], | 1 |,] 1 is a basis for R3
1 -2 -3
1 2 3
We consider the matrix A= [0 1 1 | and compute its rank.
1 -2 -3
1 2 3 1 2 3
0 1 1| By o1
1 -2 -3 0 —4 —6
12 3
R3+4Ro— R3

—— [0 1 1
0 0 =2

Thus Rank(A) = 3. Hence the columns of A span a 3-dimensional subspace of R?, i.e. Col(A) = R3.
Since the columns of A are linearly independent and span R3, B is a basis for R?.

1 2 3
Exercise 3.5.3. Show that B = —11,(0], =7 is not a basis for R3.
1 2 3
Definition. The | nullity |of a matrix A is the dimension of its null space. We denote it by

nullity(A).
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Example 3.5.20. Find the nullity of the matrix A constructed in example [3.5.19]

Row reducing, we have

1 2 100
A=10 1 1| EEEE 1o 1 0
1 —2 -3 00 1

Hence the homogeneous system Ax = 0 has only the unique solution, and therefore

nullity(A) = dim(Null(A4)) = dim({0}) = 0.
Theorem 3.5.21 (Rank-Nullity). If A is an m x n matriz, then

Rank(A) + nullity(A) = n.

Theorem 3.5.22 (Fundamental Theorem of Invertible Matrices, Pt II). Suppose A is ann X n
matrix. The following are equivalent:

a. A is invertible.

b. A is row equivalent to I, (i.e. its reduced row echelon form is I,,).
c. A is the product of elementary matrices.

d. Ax = b has a unique solution for every b € R".

e. Ax = 0 has only the trivial solution.

Tk

The columns of A are linearly independent.
g. The column vectors of A span R™.

h. The column vectors of A form a basis for R™.

.

The row vectors of A are linearly independent.
The row vectors of A span R™.

The row vectors of A form a basis for R™.
Rank(A) =n

m. nullity(A) =0

~ & =

3.5.3 Rank/Nullity of (Special Types of) Symmetric Matrices

Recall that, for any matrix A, we had that AT A and AAT were always symmetric. As you might
have hoped, many of the properties of AT A and AAT are ultimately governed by the properties of A.

Theorem 3.5.23 (Poole Theorem 3.28). For any matriz A, Null(A) = Null(AT A) and
Null(A”) = Null(AA7).

Proof. Suppose x € Null(A). Then

Ax =0
ATAx = ATo=0
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so x € Null(AT A). Conversely, suppose x € Null(ATA). Then
ATAx =0
xT AT Ax = x70 = [0]
(Ax)T(Ax) = [0]
Notice that vI'v = [v - v], so the above line implies that Ax = 0, hence x € Null(A).
The proof of the second equality is the same mutatis mutandzis. O

Using the fact that Rank(A) = Rank(A”) and the Rank-Nullity Theorem, we have the following
immediate consequence

Corollary 3.5.24. For any matriz A, Rank(AT A) = Rank(A) = Rank(A”) = Rank(AA”).

Example 3.5.25. Let A = E 8], clearly Rank(A) = 1. But also

Rank(ATA) = Rank( [3 8}) =1

ok = i 1) < (! 1)) <.

3.5.4 Coordinates

The following is a consequence of the Fundamental Theorem of Invertible Matrices, but we’ll state it
to be explicit

Theorem 3.5.26. Let V' be a vector space with an ordered basis B = {v1,...,vk}. For every vector
u €V, there is a unique linear combination of B-basis vectors such that

u=cvy+--+ CpVg.

Definition. The ¢; in the previous theorem are called the

coordinates of u with respect to B |and the column vector

.

C1
[uls =
Ck

is called the[ coordinate vector of u with respect to B

Example 3.5.27. Let P(0,0) and (3, 1) be points in the plane and consider the vector v = f@
Given the standard basis £ = {e, ey} for R?  we can write

vV = 381 + 182

-]
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Example 3.5.28. With P, Q, v as above, we consider now the basis B = {b;, by} = { [1] , [_11} }

for R2. Since
v = 2b; + 1by

then

v]s = E} :

Visually, the previous two examples just give a bit of formality to the hand-wavy “coordinate grid”
discussion from Section 1.1

A A
J T SR e N e X < Ve
h €1 - h "
b,
oo e oo N . }
v in the &E-basis. v in the B-basis.

Remark. We typically don’t write the subscript £ for vectors when they are written in the standard
basis.

Coordinates are actually very important in practice. On Earth, for example, exactly what does “1
unit in the z-direction” even mean? 1 meter north? 1 mile east? There’s no universal agreement, so
all measurements are really only relative. (In physics terms, we might say that these choices
constitute a frame of reference.) It will be important that we figure out how to convert between
these coordinate frames.
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6.3 Change of Basis
0

e {1

basis for R%. Let v be a vector in R? emanating from the origin to the point (z,y). By thinking in
terms of coordinate grids, is straightforward to see that

} } be the standard basis for R? and let B = {bl = [ﬂ ,by = [_11} } another

x
v=rxe +yes — [v]g= [y}

v— ($;y> b1+(x;y)b2 — V] = [i]

We could always figure out how to convert between [v]e or [v]s by just solving for a linear
combination, but that can be cumbersome. Instead, notice that

8

bi=lei+1ley —> [bi]s = H (6.3.1)
by—1lei —ley —> [bols = {_11] (6.3.2)

We then have that

And so we have that the matrix

E+B

Py i ]

has the feature that it converts vectors from the B-basis to the £-basis.

Example 6.3.1. With £ and B above, find the coordinate representation of v = [3,1]7 in both

bases, and verify that BP‘g converts these representations accordingly.
“—

One can easily verify that

3 1
[V]e = L} and [Vl = {2}
and from Equation 77, one can also readily see that
1 1
[bl]g = |:_1:| and [bg]g = |:1:| .

Thus
e ale| wla= [ Y= [ 1] [ =[] = e

Our choice to write the matrix columns in the £-basis was just for convenience. If we had two
non-standard bases, we could also do the same thing, hence we take the following definition
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Definition. Let B = {bi,...,b,} and C = {cq1,...,cn} be two ordered bases for R". The n x n
matrix

is called the [ change-of-basis matriz ] from B to C. It has the effect

<P>szhb

C+B

Example 6.3.2. Let B = {bl = E] , by = [ 11]} and C = {cl = [_12} ,Cq = [_33]} be bases for

R2. Compute the change of basis matrix Pp. g.

We need to find [bq]c and [be]c.

-2
bl = —202 — C1 — [bl]C = |: :|

1 0
b2 = 0C2 — 502 — [bz]c = |: :|

SO

Pee = [[bilc [b2]c] = [:? 0%] .

Proposition 6.3.3. Given two different bases for R™, B and C, the following are true

-1
° < P ) = P, and
C+B B<«+C

* (L)L) =
C+& E+B C+B

where £ is the standard basis.

The first feature should be obvious - since the columns of the change of basis matrix are a basis, the
matrix is invertible. Hence

Wk:(P

CeB) [V]B — <CEB> R [V]C - [V}B

The composition seems obvious if you think about the notation as representing a function, but we’ll
use an example to demonstrate it.

Example 6.3.4. Using the bases from the previous example, we already computed CPB. It is
+—

straightforward to see that
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Then

Remark. 1t is extremely fast to find change-of-basis matrices to the standard basis, and inversion is
also a fairly quick operation, so as shown in the previous example, these two facts above make it very
quick to find a change-of-basis matrix between arbitrary bases.
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3.6 Introduction to Linear Transformations

Definition. A | transformation |(aka| function ]orl map l) is a function T with

domain R™ and codomain R™, written

T:R" = R™.

T is a[ linear transformation ] if

1. T(u+v)=T(u)+ T(v) for all u,v € R", and
2. T(kv) = kT(v) for all scalars k € R and vectors v € R".

Example 3.6.1 (| Identity transformation |). T : R™ — R" given by T'(v) = v is a linear

transformation.

Example 3.6.2 (| Trivial transformation |). T : R™ — R™ given by T(v) = 0 is a linear

transformation.

Example 3.6.3. Suppose T : R! — R! is a linear transformation. Thinking about it as a function
from R to R, we can try to compute its derivative. Indeed,
T(x+h)—T(z) T(x)+ hT(1) = T(z)

R h —

so T is differentiable and has a constant derivative. We thus know that T'(x) = mx + b, for some real
numbers m, b. Then

1. T(z1 + x3) = mxy + mag + b = (maxy +b) + (mxy +b) = T'(21) + T(x2) (precisely when b = 0),
and

2. T(kx) = mkx + b= k(mz + b) = kT (x) (precisely when b = 0)

so T is a linear transformation only when b = 0.

Remark. In general, the above argument shows that every component in T(v) = T'([vy, ..., v,]) looks
like a linear combination of the v;’s.

Theorem 3.6.4. If A € R"™*", then the transformation

Ty : R" — R™
Ty(x) = Ax

s a linear transformation.

Proof. This follows quickly from the properties of matrix operations:

1. TA(Xl + Xg) == A(Xl + X2) == AXI -+ AX2 = TA(Xl) + TA(Xl)
2. Ty(kx) = A(kx) = kAx = kT x(x)
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Example 3.6.5. Consider the map
Tyh:R> = R®
Ty(x) = Ax

1 2
where A = |3 4. Find the range and the kernel of T
5 6

We can write

v x|+ 2.’1]2 1 2
TAQ;D = |32, +4xy| =21 |3] + 25 |4
2 5:(;1 + 61’2 5 6

The range of Ty then is just

Range(T,) = {TA([ﬂ> . where z,y € R}

where z,y € R 3 = Col(A).

I

=

W

+

<
D = DN

5

This tell us that the rank of A corresponds exactly to the dimension of Range(7).
Similarly, the kernel of T is precisely the set of vectors in R? for which

T(x)=Ax=0
hence ker(7T") = Null(A).

Remark. The null space is a subspace of the domain of T'.

As it turns out, we can write every linear transformation as multiplication by a matrix.

Theorem 3.6.6. Let T : R" — R™ be a linear transformation. Then