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Preface

There are many different approaches to linear algebra, and everyone has their preference. This
document is compiled from the course I taught starting in the Spring of 2020 at Virginia Tech, where
both the book (Linear Algebra: A Modern Introduction 4th Ed. by David Poole) and order of topics
covers were suggested to me by some others in the department. Although not formally stated
anywhere, this class was largely geared towards math-adjacent students (engineering, physics,
computer science, etc.) and so these notes and the presentation are at a lower level of abstraction
(and occasionally rigor) than what one might experience in another introductory linear algebra
course. In hindsight, I probably would have picked both a different text and order in which to
introduce the topics. For example, I would delay the coverage of linear systems. Most students are
already familiar with them, but they are completely unmotivated and their sole purpose seems to be
to introduce a computational tool without any context. On the opposite end of the spectrum, why
are linear transformations introduced so late in the text when they are really one of the most central
objects of study in the whole of linear algebra? In time, I hope to turn these notes into a book which
follows, in my opinion, a more natural and modern treatment of this beatiful subject.

I would like to thank the many students who inadvertently served as my copy editors each semester
as these notes evolved.
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1.1 The Geometry and Algebra of Vectors

Especially following Descartes’ seminal contribution La Géométrie, we frequently blur the line
between geometry and algebra – the reader is assuredly familiar with thinking about real numbers as
points on a number line, or as ordered pairs of real numbers as points in the plane. But the real
numbers come equipped with some natural algebraic operations – we can add and multiply them
(hence also subtract and divide them). It’s not unreasonable to ask whether this algebraic structure
continues to ordered pairs of real numbers, but of course doing so requires defining the operations for
ordered pairs of real numbers that are analogous to addition and multiplication. As it turns out that
the näıve idea for doing so is very close to correct, although we’ll see that we have to weaken the
notion of multiplication slightly to allow for a meaningful geometric interpretation.

1.1.1 Definitions and Examples

Definition. A (real) vector space , V , is a set of objects (called vectors ) with two

operations – vector addition (denoted +) and scalar multiplication (no symbol) –

satisfying the following properties: for all vectors u,v,w in V and for all real numbers a, b (called

scalars ),

(a) u + v is in V [closure]

(b) u + v = v + u [commutativity]

(c) (u + v) + w = u + (v + w) [associativity]

(d) There is some vector 0, called the zero vector , [additive identity]

so that u + 0 = u for all vectors u.

(e) For each u in V , there is some vector −u for [additive inverse]
which u + (−u) = 0.

(f) au is in V [closure]

(g) a(u + v) = au + av [distributivity]

(h) (a+ b)u = au + bu [distributivity]

(i) (ab)u = a(bu) [associativity]

(j) 1u = u [multiplicative identity]

It turns out that vector spaces are very common and you’re probably already familiar with many of
them without even knowing it.

Example 1.1.1. The real numbers form a real vector space when endowed with the normal addition
and multiplication operations.

Example 1.1.2. The set of all ordered pairs of real numbers, (x, y), is a real vector space when
endowed with the following operations.

• addition: (x1, y1) + (x2 + y2) = (x1 + x2, y1 + y2)

• scalar multiplication: r(x, y) = (rx, ry)

5



The pair (0, 0) is the zero vector in this space.

Example 1.1.3. The set of all polynomials with real coefficients and degree at most n,
anx

n + · · ·+ a1x+ a0, is a vector space when considered the usual addition and scalar multiplication.

• addition: (anx
n + · · ·+ a0) + (bnx

n + · · ·+ b0) = (an + bn)xn + · · ·+ (a0 + b0)

• scalar multiplication: r(anx
n + · · ·+ a0) = (ran)xn + (ra0)

The number 0 is the zero vector in this space, and this space is sometimes denoted Pn.

Example 1.1.4. The set of all continuous real-valued functions on R, f : R→ R is a vector space
when considered with the usual function addition and scalar multiplication.

• addition: f1(x) + f2(x) = (f1 + f2)(x)

• scalar multiplication: r(f(x)) = (rf)(x)

The function f(x) = 0 is the zero vector in this space, and this space is denoted C(R).

It is straightforward to show that each of the above is a vector space and we leave it as an exercise to
the reader.

1.1.2 Geometric Interpretation of Vector Operations

Now we’ll take a geometric interpretation of vectors to help justify the naturality of the operations of
vector addition and scalar multiplication. Let o = (0, 0), p1 = (x1, y1), p2 = (x2, y2) be some points in
the plane. Let −→op1 be the arrow from o to p1, and similarly let −→op2 be the arrow from o to p2.
Furthermore, let p3 = p1 + p2 (with addition as described in Example ??). Since arrows communicate
to us a notion of length and direction, the arrow −→op3 can be described as the total displacement and
direction indicated by placing the two arrows −→op1 and −→op2 “head-to-tail”, as is illustrated in Figure
1.1.1.

p1

p2

p3

−→op1

−→op2

p1

p2

p3−→op3

Figure 1.1.1: The original vectors (left) and “head-to-tail” vector addition (right).

With p1 as before, consider some real number r. By the scalar multiplication operation described in
Example ??, we can consider the point p4 = rp1 = (rx1, ry1). As the name suggests, scalar
multiplication by a real number r has the effect of scaling the arrow −→op1. In the case that r > 0, the
arrow −→op4 points in the same direction as −→op1 and its length is scaled by r. In the case that r < 0, the
arrow −→op4 points in the opposite direction of −→op1 and its length is scaled by |r|. (See Figure 1.1.2)
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−→op4

−→op1

−→op4

−→op1

Figure 1.1.2: The original vector scaled by r > 0 (left) and r < 0 (right).

We can extend this same idea to ordered n-tuples of real numbers (x1, x2, . . . , xn), associating them
with arrows in n-dimensional space (the word “dimension” here should be understood only in an
intuitive sense; the definition will be made precise in a later chapter), which leads us to the following
definition.

Definition. Rn is the set of arrays with n real entries of the form

[
x1, . . . , xn

]
or

x1
...
xn

 .
The xi appearing above are called components of the arrays.

Theorem 1.1.5. Rn is a vector space Rn is a vector space with addition given byx1
...
xn

+

y1
...
yn

 =

x1 + y1
...

xn + yn

 ,
with scalar multiplication given by

r

x1
...
xn

 =

rx1
...
rxn

 ,
and with zero vector 0

...
0

 .
Definition. Any vector v in Rn may be written as a row vector

v =
[
v1 · · · vn

]
7



or as a column vector

v =

v1
...
vn

 .
Each of these presentations represents the same object and should be regarded as the same.
However, certain computations are very much reliant upon the choice of representation. Throughout
this text, we will almost exclusively prefer column vectors and will be very deliberate whenever using
row vectors. One could equally well develop the theory of linear algebra using row vectors, so this is
merely a stylistic choice on the author’s part.

For the sake of concreteness, the remainder of the text will be devoted almost exclusively to
developing the theory of linear algebra using Rn. It is a fact that every finite-dimensional vector
space can be regarded being “the same” as Rn, and so there is no loss of generality in making this
specification. Most of these notions do carry over to infinite-dimensional vector spaces, although
there is considerably more prerequisite knowledge and technical detail needed to discuss such things
with any sort of rigor.

1.1.3 Linear combinations

With the operations of addition and scalar multiplication, the fundamental building blocks of any
vector space are linear combinations.

Definition. A vector u in Rn is a linear combination of the vectors v1, . . .vn if there are

scalars r1, . . . , rn so that

u = r1v1 + · · ·+ rnvn.

We say that the linear combination is trivial if r1 = r2 = · · · = rn = 0.

You can think of a linear combination as some sort of recipe - the vi’s are the ingredients, the ri’s are
the quantities of those ingredients, and u is the finished product.

Definition. In Rn, there are n vectors

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , · · · en =


0
0
...
1

 .

which we call the standard basis vectors for Rn .

For now, ignore the word basis above; we will give technical meaning to that later. The reason these
are standard is because, when looking to decompose a vector u into a linear combination of vectors,
then simply picking apart the components is probably the most natural thing to try first.
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Example 1.1.6. The vector u =

5
6
7

 is a linear combination of the standard basis vectors in the

following way:

u =

5
6
7

 =

5
0
0

+

0
6
0

+

0
0
7

 = 5

1
0
0

+ 6

0
1
0

+ 7

0
0
1

 = 5e1 + 6e2 + 7e3

With the standard basis vectors above, one can be convinced that the linear combination that
appears is the unique such combination. However, in general, linear combinations need not be unique.

Example 1.1.7. The vector u =

 1
−1
0

 is a linear combination of the vectors v1 =

 1
−1
1

,

v2 =

−1
1
1

, and v3 =

0
0
1

 in multiple ways:

u = 1v1 + 0v2 + (−1)v3

= 0v1 + (−1)v2 + 1v3

= (−2)v1 + (−3)v2 + 5v3

The reader may be wondering precisely when a given vector admits a unique linear combination.
This is a very important discussion with important implications, and so we will postpone this
discussion for a later chapter.

1.1.4 Geometry of Linear Combinations

The reader is probably familiar with the Cartesian grid, which provides a useful geometric depiction
of the algebra. We similarly want to construct a grid that is uniquely suited to a given set of vectors

in Fn. We’ll call this a coordinate grid (which is nonstandard terminology), and its

construction is simple: the lines of the grids should be parallel to the vectors (in standard position)
and the intersections of these grid lines correspond to integer linear combinations of vectors.

Example 1.1.8. The coordinate grid for R2 formed from the standard basis vectors e1 and e2 is the
usual Cartesian grid.

e1

e2
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Example 1.1.9. The coordinate grid for R2 formed from the vectors v1 = [1, 1]T and v2 = [1,−1]T

is below.

v1

v2

Combined with the geometric intuition about vector addition and scalar multiplication, these
coordinate grids provide us with a way to visually identify the linear combination.

Example 1.1.10. The vector u = [2, 4]T is clearly seen to be a linear combination of the standard
basis vectors e1 and e2:

u = 2e1 + 5e2

2e1

4e2
u

Example 1.1.11. The vector u = [2, 4]T is clearly seen to be a linear combination of the vectors

v1 =

[
1
1

]
and v2 =

[
1
−1

]
:

u = 3v1 − v2.

10



u

3v1

−v2

Of course, this coordinate grid can also help to show us when linear combinations are not unique.

Example 1.1.12. The vector u = [2, 4]T is clearly seen to be a linear combination of the vectors

v1 =

[
2
0

]
, v2 =

[
2
2

]
, and v3 =

[
0
2

]
in multiple different ways:

u = v1 + 2v3

= v2 + v3

u

v1

v2

2v3
u

v1

v2
v3

11



1.2 Length and Angle: The Dot Product

Definition. For vectors u,v ∈ Rn, the dot product of u and v, denoted u · v is

u · v = u1v1 + · · ·+ unvn.

Remark. Note that the dot product of two vectors is a scalar.

The dot product has the following nice properties.

Theorem 1.2.1 (Poole Theorem 1.2). Let u,v,w ∈ Rn and let k be some scalar. Then

1. u · v = v · u
2. u · (v + w) = (u · v) + (u ·w)

3. (v + w) · u = (v · u) + (w · u)

4. (ku) · v = u · (kv) = k(u · v)

5. For every u we have that u · u ≥ 0, with equality if and only if u = 0.

Proof. The proof is entirely straightforward and left as an exercise to the reader.

1.2.1 Length

Notice that for a vector v = [x, y] ∈ R2,

v · v = x2 + y2,

which, from the Pythagorean theorem, is precisely the square of the length of v.

v

x

y
√ x

2 +
y
2

Definition. The length (or norm ) of a vector v ∈ Rn is the scalar defined by

‖v‖ =
√

v · v =
√
v2

1 + v2
2 + · · ·+ v2

n
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The following are immediate consequences of the properties of the dot product in Theorem 1.2.1

Theorem 1.2.2 (Poole Theorem 1.3). For v ∈ Rn and a scalar k,

1. ‖v‖ = 0 if and only if v = 0.

2. ‖kv‖ = |k|‖v‖.

The following follows from the classical geometry result of the same name.

Theorem 1.2.3 (Triangle Inequality). For u,v ∈ Rn,

‖u + v‖ ≤ ‖u‖+ ‖v‖.

u

v

u + v

Definition. A vector v is called a unit vector if ‖v‖ = 1.

Remark. Every unit vector in R2 corresponds to a point on the unit circle. Every unit vector in R3

corresponds to a point on the unit sphere. Generally, every unit vector in Rn corresponds to a point
on the unit (n− 1)-sphere.

Let v be any nonzero vector and let ` = ‖v‖ be its length. Then the vector
v

`
is a unit vector

because ∥∥∥v

`

∥∥∥ =
‖v‖
`

=
`

`
= 1

Definition. The process above is called normalization , and it always produces a vector in

the same direction as v but with unit length.

v

v/‖v‖

13



Remark. If ‖v‖ > 1, then normalization corresponds to shrinking v (pictured above), but if ‖v‖ < 1,
then normalization stretches v.

Remark. Despite the similarities in name, “normalization” is unrelated to the concept of a “normal
vector.” What you’ll find is that “normal” is probably the most over-used word in mathematics.
Because there aren’t any around me as I type this, I’m going to go ahead and blame the physicists
for the abuse of language.

1.2.2 Distances

Recall that, for two points P (x1, y1) and Q(x2, y2) in the plane, we have that the distance between
them is given by

d(P,Q) =
√

(x1 − x2)2 + (y1 − y2)2

If we identify the point P (x1, y1) with the vector u = [x1, y1] and the point Q(x2, y2) with the vector
v = [x2, y2], then the right-hand side of the equation is just ‖u− v‖. As such, we can define
distances between vectors using the obvious analog.

Definition. Given two vectors u,v ∈ Rn, the distance between u and v is

d(u,v) = ‖u− v‖.

Remark. Visualizing vectors as arrows emanating from the origin, distance, as above, is actually
measuring the distance between the heads of the arrows.

v

u− v

u

14



1.2.3 Angles

Consider a triangle 4ABC and the angle θ = ]ABC (pictured below)

A

B

C

c

b

a

θ θ

v

u− v

u

Recall that the law of cosines says

b2 = a2 + c2 − 2ac cos(θ)

Replacing the triangle 4ABC with the triangle formed from vectors u, v, u− v (as in the picture
above on the right), we have

‖u− v‖2 = ‖v‖2 + ‖u‖2 − 2‖u‖‖v‖ cos θ

Expanding out the left-hand side of the above equation in terms of dot products, we get

‖u‖2 + ‖v‖2 − 2u · v = ‖v‖2 + ‖u‖2 − 2‖u‖‖v‖ cos θ

Canceling appropriately and rearranging the equation yields

Definition. For nonzero vectors u,v ∈ Rn, the angle θ between u and v satisfies

cos θ =
u · v
‖u‖‖v‖

Example 1.2.4. Compute the angle between the vectors u = [0, 3, 3]T and v = [−1, 2, 1]T .

From the above, we get that

cos θ =
u · v
‖u‖‖v‖

=
9

(3
√

2)(
√

6)
=

√
3

2

and thus

θ = arccos

(√
3

2

)
=
π

6
.

The following follows immediately from the definition.

Corollary 1.2.5. u,v ∈ Rn are perpendicular if and only if u · v = 0.
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2.1 Introduction to Linear Systems

Definition. A linear equation in the variables x1, . . . , xn is an equation that can be written

in the form

a1x1 + · · ·+ anxn = b

where a1, . . . , an, b are all real numbers.

The ai’s are the coefficients and b is the constant term . A solution of this

equation is a vector v = [v1, . . . , vn]T satisfying

a1v1 + · · ·+ anvn = b.

Example 2.1.1. 4x− y = 2 is an example of a linear equation. And notice we can rearrange it as
y = 4x− 2, which is the equation of a line (hence why we call these “linear”). The vector [1, 2]T is a
solution because

4(1)− (2) = 2.

In fact, for any real number t, the vector [t, 4t− 2]T is a solution because

4(t)− (4t− 2) = 2.

This means there are infinitely many possible solutions.

Definition. The collection of all solutions to a linear equation is called the solution set of

that equation.

Noticing that [
t

4t− 2

]
=

[
0
−2

]
+

[
t
4t

]
=

[
0
−2

]
+ t

[
1
4

]
we can write the solution set to the previous example as{[

0
−2

]
+ t

[
1
4

]
where t ∈ R

}

Definition. The parametric form of the solution set is when it is written as

{v0 + t1v1 + · · ·+ tnvn where ti ∈ R}

for some vectors vi.

Example 2.1.2. The equation

sin
( π

82364423

)
x+
√

540.6464y + z = e71

is a linear equation with variables x, y, z because, sin
( π

82364423

)
,
√

540.6464, and e71 are just real

numbers.
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Example 2.1.3. The equation

x+ xy + y + yz = 7

is not a linear equation with variables x, y, z because of the xy and yz terms.

Example 2.1.4. The equation

x2 + 3y + log(z) = 8

is not a linear equation with variables x, y, z because of the x2, 3y, and log(z) terms.

Definition. A system of linear equations is a finite set of linear equations, each with the

same variables (and probably different coefficients). A solution of a system of linear equations

is a vector that is simultaneously a solution for each linear equation in the system. A

solution set is the collection of all possible solutions to the system.

Example 2.1.5. The system {
2x − y = 3
x + 3y = 5

has the vector [2, 1]T as a solution; in fact, this is the only solution.

Definition. A system of linear equations is called consistent if it has at least one solution,

and inconsistent if it has no solutions.

Example 2.1.6. The system in Example 2.1.5 is consistent and the solution is unique.

Example 2.1.7. The system {
x − y = 0

2x − 2y = 0

is consistent. It has the solution [x, y]T = [1, 1]T , but this is not the only solution. For any real
number t, the vector [t, t]T is a solution, so there are infinitely many.

Example 2.1.8. The system {
x + y = 0
x + y = 2

has no solutions.

Definition. Two systems of linear equations are called equivalent if they have the same

solution set.

Notice how easy the next system of equations is to solve by back-substitution .

17



Example 2.1.9. Consider the system
x + 3y + 5z = 7

2y − 4z = 6
8z = 16

Because of this kind of “triangular structure,” we quickly deduce z = 2, and then 2y − 4(2) = 6
implies that y = 7, and then x+ 3(7) + 5(2) = 7 implies that x = −24.

Since the variables themselves aren’t changing, we can save time and represent any linear system by
a matrix.

Definition. Given a system of linear equations
a11x1 + a12x2 · · · a1nxn = b1

a21x1 + a22x2 · · · a2nxn = b2
... +

...
...

... =
...

am1x1 + am2x2 · · · amnxn = bm

the corresponding augmented matrix is
a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
...

...
...

am1 am2 · · · amn bm


and the corresponding coefficient matrix is

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn



Remark. If A is the coefficient matrix for some system and b = [b1, . . . , bm]T is the column vector of
constant terms, we may write

[
A b

]
to represent the augmented matrix.

Remark. We will always be very explicit when we are making claims about augmented matrices
specifically, and we will take care to always draw the line for an augmented matrix. When
programming with matrices, however, the vertical line isn’t there, so you’ll have to be especially
careful when considering whether the matrix you’ve used is representative of an augmented matrix or
something else.

Example 2.1.10. The “triangular structure” of the system in Example 2.1.9 is also apparent in the
corresponding augmented and coefficient matrices:1 3 5 7

0 2 4 6
0 0 8 16

 and

1 3 5
0 2 4
0 0 8


18



2.1.1 Geometric Interpretation of Linear Systems

Let’s consider a simple system of one linear equation in two variables

{−x+ y = 2.

The solution set to this equation is all vectors [x, y]T where y = x+ 2. Parametrically, we would write{[
1
1

]
t+

[
2
0

]
where t ∈ R

}
.

To visualize this solution set, we can make a plot in the xy-plane and try to draw all possible
solution vectors.

so
lu

tio
n

se
t

What we find is that the head of all vectors in this solution set live along the line y = x+ 2. In this
way, we can say that the equation −x+ y = 2 represents a line (because the solution set has one
parameter) in R2 (because there are two variables).

In a similar fashion, consider the linear system consisting of one equation in three variables.

{−x− y + z = 2.

The solution set to this equation is all vectors [x, y, z]T where z = x+ y + 2. Parametrically, we
would write 

1
0
1

 s+

0
1
1

 t+

0
0
2

 where s, t ∈ R


There are three variables, so the solution set is an object in R3. Because the solution set has two
parameters, it is a 2-dimensional object (a plane).
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x

y

z

so
lu

tio
n

se
t

In general, a single equation in n variables corresponds to an (n− 1)-dimensional object in Rn.

What if we have two equations? {
−x− y + z = 2
x− y + z = 0

Each equation independently corresponds to a plane in R3, and the solution set is the set of all
points common to both of these planes. Two arbitrary planes in R3 can only come in three
configurations - either they are parallel (and don’t have any points in common), they intersect in a
line, or they are the same plane.

In this case, the linear system above has the solution set
0

1
1

 t+

−1
0
1

 where t ∈ R

 .

Since this has only one parameter, it represents a 1-dimensional object (a line) common to both
planes. Geometrically, that means that the system represents two planes intersecting in a line.

20



x

y

z

so
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tio
n

se
t

By thinking of different configurations of planes, and knowing that their intersections correspond to
solution sets, you can convince yourself of the following

Theorem 2.1.11. A system of linear equations with real coefficients has exactly one of the following:

(a) a unique solution (consistent),

(b) infinitely many solutions (consistent), or

(c) no solutions (inconsistent).
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2.2 Direct Methods for Solving Linear Systems

2.2.1 Row Operations

Example 2.2.1. In Example 2.1.5 we saw that the system{
2x − y = 3
x + 3y = 5

was consistent and had the unique solution [x, y]T = [2, 1]T . The following three systems also have
the same (unique) solution [x, y]T = [2, 1]T (this is left as an exercise for the reader), and so they are
all equivalent.{

x + 3y = 5
2x − y = 3

{
2x − y = 3

100x + 300y = 500

{
2x − y = 3
3x + 2y = 8

Looking more closely, the first systems obtained by merely swapping the equations. The second
system is obtained by scaling the second equation. The third system is obtained by replacing the
second equation with the sum of the first and second equations.

It turns out that this fact isn’t specific to this system, but is generally true of any linear system:
these three operations do not change the solution set of the system! The “elimination method”
(which you may be familiar with from a previous algebra/precalculus class) uses this fact to solve
systems of linear equations. If we think about what this is doing to the corresponding augmented
matrices, we get what we call the elementary row operations.

Definition. The elementary row operations of a given matrix are the following operations:

1. Swapping Row i and Row j (denoted Ri ↔ Rj).

2. Multiplying Row i by a nonzero constant (denoted kRi 7→ Ri).

3. Adding (a multiple of) Row j to Row i (denoted Ri + kRj 7→ Ri).

Remark. These operations are not specific to augmented matrices, but are true of any matrices. In
fact, unless explicitly stated otherwise, you should probably not ever assume that a matrix is
augmented.

Given two (augmented) matrices, the above operations do not change the solution set for the
corresponding linear system. So since two linear systems are equivalent if they have the same
solution set, the following is a natural definition

Definition. Two matrices A and B are row equivalent if there is a sequence of elementary

row operations transforming A into B.

Example 2.2.2. Using the systems in Example 2.2.1, we will show that the corresponding
augmented matrices are row equivalent:
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[
2 −1 3
1 3 5

]

[
1 3 5
2 −1 3

] [
2 −1 3

100 300 500

] [
2 −1 3
3 2 8

]R 1
↔
R 2

1
0
0
R

2
7→
R

2

R
1 +
R
2 7→

R
2

2.2.2 (Reduced) Row Echelon Form

The following systems are equivalent (it’s again an exercise to the reader to verify this):
x − y − z = 2

3x − 3y + 2z = 16
2x − y + z = 9


x − y − z = 2

y + 3z = 5
5z = 10


x = 3

y = −1
z = 2

and thus they correspond to the following row equivalent augmented matrices1 −1 −1 2
3 −3 2 16
2 −1 1 9

 1 −1 −1 2
0 1 3 5
0 0 5 10

 1 0 0 3
0 1 0 −1
0 0 1 2


The second and third systems are much more useful for actually solving the system because they
have the nice triangular structure that allows us to back-substitute (or in the case of the third one,
simply reading off the solution). Let’s give names to this triangular structure that we like so much.

Definition. A matrix is in row echelon form (REF) if it satisfies the following properties:

(a) Any rows consisting entirely of zeros are at the bottom.

(b) In each nonzero row, the first nonzero entry (the leading entry ) is in a column to the

left of any leading entries below it. The column containing the leading entry is sometimes

called the pivot column .

Example 2.2.3. The following matrices are in row echelon form.

 1 2 3
0 4 5
0 0 0

  1 2 3
0 4 5
0 0 6




0 1 2 3 4 5
0 0 6 7 8 9

0 0 0 0 10 11
0 0 0 0 0 5



Example 2.2.4. The following matrices are not in row echelon form. (Why?)

[
2 4 5
1 0 0

] 0 0 0
1 3 0
0 2 3

 0 0 1 2 3
0 0 0 4 5
0 0 0 6 7


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Definition. The reduced row echelon form (RREF) of a matrix is essentially the same as

the row echelon form with the following additional requirements:

1. Each leading entry is 1.

2. Any entries above a leading 1 are also 0.

Example 2.2.5. The following matrices are in reduced row echelon form.

 1 0 3
0 1 5
0 0 0

  1 0 0
0 1 0
0 0 1




0 1 0 3 0 0
0 0 1 7 0 0
0 0 0 0 1 0
0 0 0 0 0 1



Example 2.2.6. The following matrices are not in reduced row echelon form. (Why?)

[
0 4 5
1 0 0

] 0 0 0
1 3 0
0 2 3

 0 0 1 2 3
0 0 0 1 5
0 0 0 0 1



Theorem 2.2.7. Every matrix is equivalent to a matrix in (reduced) row echelon form.

The proof of this is actually procedural, so let’s see it done in the context of an example.

Example 2.2.8. 1 −1 −1 2
3 −3 2 16
2 −1 1 9


1. Working left to right, find the first nonzero column in the matrix.

The first column is nonzero

2. Among all of the rows with nonzero entries in this column, choose one and move it to Row 1.
We’ll just keep the first row where it is

3. Use elementary row operations to clear all other nonzero entries in this column (below Row 1).1 −1 −1 2
3 −3 2 16
2 −1 1 9

 R2−3R1 7→R2−−−−−−−−→

1 −1 −1 2
0 0 5 10
2 −1 1 9

 (2.2.1)

R3−2R1 7→R3−−−−−−−−→

1 −1 −1 2
0 0 5 10
0 1 3 5

 (2.2.2)

(2.2.3)

4. Ignoring Row 1, find the next nonzero column in this matrix.
Ignoring Row 1, the second column is now the next nonzero column.
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5. Among all of the rows below Row 1 with nonzero entries in this column, choose one and move
it to Row 2.

R2↔R3−−−−→

1 −1 −1 2
0 1 3 5
0 0 5 10

 (2.2.4)

6. Use elementary row operations to clear all other nonzero entries in this column (below Row 2).
Already done.

7. Repeat this process until the matrix is in row echelon form.
Huzzah, the matrix in Equation 2.2.4 is in row echelon form!

8. Now scale every row so that the leading term is a 1. The result will be in reduced row echelon
form.

1
5
R3 7→R3−−−−−→

1 −1 −1 2
0 1 3 5
0 0 1 2

 (2.2.5)

9. Working from left to right, use elementary row operations to clear all nonzero entries above
each leading 1.

R1+R2 7→R1−−−−−−−→

1 0 2 7
0 1 3 5
0 0 1 2

 (2.2.6)

R1−2R3 7→R1−−−−−−−→

1 0 0 3
0 1 3 5
0 0 1 2

 (2.2.7)

R2−3R3 7→R2−−−−−−−→

1 0 0 3
0 1 0 −1
0 0 1 2

 (2.2.8)

Remark. The row echelon form of a given matrix is not unique.

Remark. The reduced row echelon form of a matrix is unique.

Definition. The process described in the example above is called row reduction .

Theorem 2.2.9 (Poole Theorem 2.1). Matrices A and B are row equivalent if and only if they can
be row reduced to the same echelon form.

2.2.3 Gaussian Elimination and Gauss–Jordan Elimination

Definition. Given a linear system with augmented matrix [A|b] in (reduced) row echelon form, the

pivot columns correspond to leading variables in the system, and the other nonzero columns

correspond to free variables in the system.
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Definition. Gaussian elimination is the following process:

1. Write a linear system as an augmented matrix.

2. Put the matrix into row echelon form.

3. Reinterpret as a linear system and use back-substitution to solve the system for the leading
variables.

Definition. Gauss–Jordan Elimination is the following process:

1. Write a linear system as an augmented matrix.

2. Put the matrix into reduced row echelon form.

3. Reinterpret as a linear system and solve the system.

Both processes take about the same amount of time by hand. But since the reduced row echelon form
is unique and matrix algebra software has an RREF feature, Gauss–Jordan is usually more practical.

Example 2.2.10. Use Gaussian–Jordan elimination to find the solution set for the given system
x1 − x2 + x3 + 4x4 = 0

2x1 + x2 − x3 + 2x4 = 9
3x1 − 3x2 + 3x3 + 12x4 = 0

We set up the augmented matrix and row-reduce1 −1 1 4 0
2 1 −1 2 9
3 −3 3 12 0

 R2−2R1 7→R2−−−−−−−−→

1 −1 1 4 0
0 3 −3 −6 9
3 −3 3 12 0


R3−3R1 7→R3−−−−−−−−→

1 −1 1 4 0
0 3 −3 −6 9
0 0 0 0 0


1
3
R2 7→R2−−−−−→

1 −1 1 4 0
0 1 −1 −2 3
0 0 0 0 0


R1+R2 7→R1−−−−−−−→

1 0 0 2 3
0 1 −1 −2 3
0 0 0 0 0



The corresponding system is {
x1 + 2x4 = 3

x2 − x3 − x4 = 3

Solving for the leading variables, we get{
x1 = 3− 2x4

x2 = 3 + x3 + 2x4
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and hence any solution is of the form
x1

x2

x3

x4

 =


3− 2x4

3 + x3 + 2x4

x3

x4

 =


3
3
0
0

+ x3


0
1
1
0

+ x4


−2
2
0
1


Replacing our free variables x3 and x4 with parameters s and t (respectively), our solution set is


3
3
0
0

+ s


0
1
1
0

+ t


−2
2
0
1

 where s, t ∈ R


What we have seen is that both row echelon form and reduced row echelon form are useful in the
same way, but both have pros and cons. Row echelon form isn’t unique and, in the case of
augmented matrices, it takes a little bit more work to solve the system at the end. Reduced row
echelon form is unique and makes the solution at the end easier, but requires more steps initially.

2.2.4 Rank and Number of Solutions

Example 2.2.11. In Example 2.1.8, we stated that the system{
x + y = 0
x + y = 2

was inconsistent. Look at what happens when we set up the augmented matrix and row-reduce:[
1 1 0
1 1 2

]
R2−R1 7→R2−−−−−−−→

[
1 1 0
0 0 2

]
That last row corresponds to the linear equation 0 = 2, which is patently false. This means there
can’t possibly be a solution to the system, i.e., it is inconsistent. We state this observation as a
proposition.

Proposition 2.2.12. Let
[
A b

]
be a system of linear equations. If the ith row of A is all zeroes and

the ith entry of b is nonzero, then the system is inconsistent.

One might ask if we can say anything about a consistent system from its (reduced) row echelon form.
To answer this, we first introduce the following definition.

Definition. The rank of a matrix A is the number of nonzero rows in its (reduced) row

echelon form, and is denoted Rank(A).

Example 2.2.13. The rank of the coefficient matrix in Example 2.1.8 is 1, and the rank of the
coefficient matrix in Example ?? is 2.

Theorem 2.2.14 (Poole Theorem 2.2 - The Rank Theorem). If A is the coefficient matrix of a
consistent system of linear equations with n variables, then

n = Rank(A) + number of free variables.
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Remark. It turns out this theorem is actually just a special interpretation of a much more powerful
theorem called the “Rank-Nullity Theorem,” but that discussion will have to wait for a later section.

Definition. A system of linear equations, [A|b] is homogeneous if b = 0. It is

non-homogeneous otherwise.

Remark. Homogeneous systems are nice because they ALWAYS have at least one solution, which is

the zero vector (sometimes called the trivial solution ).

Theorem 2.2.15. If [A|0] is a homogeneous system of m linear equations and n variables, where
m < n, then the system has infinitely many solutions.

Proof. Since the system is homogeneous, it has at least one solution. Since Rank(A) ≤ m, then by
the Rank Theorem

number of free variables = n− Rank(A) ≥ n−m > 0

and a nonzero number of free variables implies that there are infinitely-many solutions.

Example 2.2.16. Use Gauss-Jordan elimination to find the solution set for the given system{
x1 − x2 + 3x3 + 4x4 = 0
x1 + x2 − x3 − 2x4 = 0

Creating the augmented matrix and doing the corresponding row operations, we have[
1 −1 3 4 0
1 1 −1 −2 0

]
R2−R1 7→R2−−−−−−−→

[
1 −1 3 4 0
0 2 −4 −6 0

]
1
2
R2 7→R2−−−−−→

[
1 −1 3 4 0
0 1 −2 −3 0

]
R1+R2 7→R1−−−−−−−→

[
1 0 1 1 0
0 1 −2 −3 0

]
From here, we can see that x3 and x4 are free variables, so letting x3 = s and x4 = t, we get that the
solution is 

x1

x2

x3

x4

 =


−s− t
2s+ 3t
s
t

 = s


−1
2
1
0

+ t


−1
3
0
1



The way this last example differs from Example 2.2.10 is that we have exactly as many free variables
as we have vectors in the linear combination (instead of also having the extra constant vector added
on). This is more ideal because, with the usual vector operations, the collection of all of these
solutions is actually a vector space! We will explore this idea a bit further in the next section.
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2.3 Spanning Sets and Linear Independence

2.3.1 Span and Spanning Sets

Notice that we can rewrite the linear system
a11x1 + a12x2 + · · · + a1nxn = b1

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm

as an equation of vectors

x1

a11
...
am1

+ x2

a12
...
am2

+ · · ·+ xn

a1n
...

amn

 =

 b1
...
bm


In this way a solution to the system corresponds to a linear combination.

Theorem 2.3.1 (Poole Theorem 2.4). A system of linear equations
[
A b

]
is consistent if and only

if b is a linear combination of the columns of A.

The number of solutions to the system also tells us how many ways we can make such a linear
combination. If there is a unique solution, then there is exactly one way. If there are infinitely-many
solutions, there are infinitely-many ways to make the linear combination, so it may be reasonable to
ask more qualitative questions about the set of all possible linear combinations and study the space
of linear combinations instead.

Definition. Given a set of vectors S = {v1, . . . ,vk} in a vector space V , we define the span of

v1, . . . ,vn to be the set of all linear combinations of these vectors, and we write Span(v1, . . . ,vk) or

Span(S). If V = Span(S), then we call S a spanning set for V

With this definition, we can restate Theorem 2.3.1 as follows:

Theorem 2.3.2. A system of linear equations
[
A b

]
is consistent if and only if b is in

Span(a1, . . . , an) (where ai is the ith column of A).

Exercise 2.3.1. If V is a (real) vector space and v1, . . . ,vk is some collection of vectors in V , then
the set Span(v1, . . . ,vk) is also (real) vector space.

Example 2.3.3. Let e1 = [1, 0]T , e2 = [0, 1]T be the standard basis vectors for R2. By definition, an
arbitrary vector in Span(e1, e2) is of the form

xe1 + ye2 = x

[
1
0

]
+ y

[
0
1

]
=

[
x
y

]
and so Span(e1, e2) = R2.
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Example 2.3.4. Let e1 = [1, 0, 0]T and e2 = [0, 1, 0]T be standard basis vectors in R3. Span(e1, e2)
is the collection of all vectors in R3 of the form [x, y, 0], which is just the xy-plane. This set does not
span R3, however, because it is missing all vectors with a nonzero 3rd coordinate (i.e. the z-direction).

x

y

z

e1
e2

Example 2.3.5. For any two vectors u,v in R3 (with u not a scalar multiple of v), then Span(u,v)
is a plane through the origin in R3.

Example 2.3.6. Consider the set S =

{
e1 =

[
1
0

]
, e2 =

[
0
1

]
,v =

[
1
1

]}
. Then

Span(e1, e2,v) = {ae1 + be2 + cv : a, b, c ∈ R} =

{[
a+ c
b+ c

]
: a, b, c ∈ R

}
But since a, b, c can take the values of any real number, then so can a+ c and b+ c. Renaming
x = a+ c and y = b+ c, then we exactly have that Span(e1, e2,v) is the collection of all vectors
[x, y]T , which is still R2.

So the spanning set can, in some sense, contain redundant information, and the span may have lower
“dimension” (whatever that means intuitively) than the number of vectors in the spanning set.

We can ask a similar question about this same set of vectors

Example 2.3.7. Does the set S above span R2?

Of course, we know the answer is ”yes”, but it may be good to see it explicitly. Asking whether it
spans R2 is equivalent to asking whether every w = [x, y]T in R2 is a linear combination of e1, e2,v.
By Theorem 2.3.2, this is equivalent to checking that the following system is consistent: | | | |

e1 e2 v w
| | | |

 =

[
1 0 1 x
0 1 1 y

]
This system is already in reduced row echelon form, and it is clearly consistent. Moreover, it follows

from the Rank Theorem (2.2.14) that it has infinitely many solutions, and thus there are
infinitely-many ways to write w as a linear combination of e1, e2,v. In particular:[

x
y

]
= (x− t)e1 + (y − t)e2 + tv for any real number t.
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Example 2.3.8. Do the vectors v1 =

1
0
1

, v2 =

1
1
0

, v3 =

0
1
1

 span R3?

We are asking whether every vector w = [x, y, z]T ∈ R3 is in Span(v1,v2,v3), so by Theorem 2.3.2,
this is equivalent to checking that the following system is consistent: | | | |

v1 v2 v3 w
| | | |

 =

1 1 0 x
1 0 1 y
0 1 1 z


Row reducing this augmented matrix, we get1 1 0 x

1 0 1 y
0 1 1 z

 RREF−−−→

1 0 0 1
2
(x+ y − z)

0 1 0 1
2
(x− y + z)

0 0 1 1
2
(−x+ y + z)


Which is consistent and has a unique solution. Hence R3 = Span(v1,v2,v3).

Example 2.3.9. Do the vectors v1 =

1
0
1

, v2 =

1
1
0

, v3 =

2
1
1

 span R3?

As before, we apply Theorem 2.3.2 and checking that the following system is consistent: | | | |
v1 v2 v3 w
| | | |

 =

1 1 2 x
1 0 1 y
0 1 1 z


Row reducing a bit, we get 1 1 2 x

1 0 1 y
0 1 1 z

 REF−−→

1 1 2 x
0 −1 −1 −x+ y
0 0 0 z − x+ y


and so this system is inconsistent when z − x+ y 6= 0! In particular, this means the vector [0, 0, 1] is
not in Span(v1,v2,v3)

So what is the span of these vectors? Well, it’s precisely the vectors [x, y, z] for which the system is
consistent, i.e., the plane z − x+ y = 0.
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2.3.2 Linear (In)dependence

Suppose we can write one vector w as a linear combination of u and v, say w = au + bv. Then w
“depends” on u and v. Clearly we can rewrite this as

w = au + bv =⇒ au + bv −w = 0,

and so we introduce the following definition.

Definition. A set of vectors v1, . . . ,vk in a vector space is linearly dependent if there are

scalars a1, . . . , ak (not all zero) such that

a1v1 + · · ·+ akvk = 0.

A set of vectors that is not linearly dependent is called linearly independent .

Remark. It is always true that the equation above holds if a1 = · · · = ak = 0, so linearly dependence
says that there is some other collection of ai’s for which the equation is also true. In this way, linear
independence can be thought of as saying that the only way the above equation is true is if
a1 = · · · = ak = 0.

Example 2.3.10. The set
{
v1 = [1, 1]T ,v2 = [2, 1]T ,v3 = [1, 2]T

}
is linearly dependent because

v2 + v3 − 3v1 = 0.

It should be clear from the way we defined linear dependence that the idea is to capture when one
vector can be written as a linear combination of the others. In the above example we can easily write
v3 = 1

3
v2 + 1

3
v2. In fact, this is an equivalent characterization of linear dependence.

Theorem 2.3.11 (Poole Theorem 2.5). The set of vectors S = {v1, . . .vk} in a vector space is
linearly dependent if and only if at least one of the vectors can be written as a linear combination of
the others.
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The proof of this fact is essentially exactly what happens in the example, so we provide it fully
below. The hard part is that we have to prove two separate things (because the statement of the
theorem is a “biconditional statement”).

Proof. If S is linearly dependent, then we can find scalars a1, . . . , ak, not all zero, so that

a1v1 + · · ·+ akvk = 0.

Since one of the coefficients ai 6= 0, then we can rearrange this as

vi = −a1

ai
v1 − · · ·

ai−1

ai
vi−1 −

ai+1

ai
vi − · · · −

ak
ai

vk.

Conversely, suppose v1 is nonzero and is a linear combination of the remaining vectors in S. Then
there are constants a2, . . . , ak, not all zero, for which

v1 = a2v2 + · · ·+ akvk

which rearranges to

−v1 + a2v2 + · · ·+ akvk = 0.

hence S is linearly dependent.

Remark. The above theorem is actually a bit subtle. It doesn’t say that every vector can be written
as a linear combination of the others, just that there’s at least one that can be written this way.

Exercise 2.3.2. Give an example of a dependent set of three vectors in Rn, {u,v,w}, for which u is
not a linear combination of v and w

Why is linear independence important?

It all comes down to uniqueness. If v1, . . . ,vn are linearly independent and b ∈ Span(v1, . . . ,vn),
then linear independence of {v1, . . . ,vn} tells us that the linear combination

b = c1v1 + · · ·+ cnvn

is actually the unique one representing b. This is great because it means that if two people can agree
on a particular (ordered) linearly independent set of vectors, then we can make a vector of the
coefficients [c1, . . . , cn]T that unambiguously represents the vector b. Contrast this with the following
example:

Example 2.3.12. Consider the vectors v1 = [1, 0]T , v2 = [0, 1]T , v3 = [1, 1]T . Clearly, the set
{v1,v2,v3} is linearly dependent. Notably, we have

0 = v1 + v2 − v3.

So we can write b = [3, 1]T in multiple ways, say,

b = 3v1 + 1v2 + 0v3

b = b + 0 = 4v1 + 2v2 − 1v3

b = b + 20 = 5v1 + 3v2 − 2v3

...

and if we tried to refer to b as just a vector of its coefficients, we could have that [3, 1, 0]T ,
[4, 2,−1]T , and [5, 3,−2]T all represent the same vector.
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This particular idea will become especially important when we discuss bases for a vector space, but
along the way there are also several other ideas that we will see are reliant upon the notion of linear
independence.

2.3.3 Using Matrices to Determine Linear (In)dependence

Given a collection of vectors {v1, . . . ,vn}, determining linear (in)dependence comes down to finding
whether (or not) there exist nonzero real numbers x1, . . . , xn such that

x1v1 + · · ·+ xnvn = 0

and this equivalent to checking whether or not the following system has any nontrivial solutions (i.e.
solutions other than the zero vector). v1 · · · vn 0


Theorem 2.3.13 (Poole Theorem 2.6). Let v1, . . .vm be vectors in Rn and let A be the n×m
matrix with these vectors as its columns, A = [v1, . . . ,vm]. Then that collection of vectors is linearly
dependent if and only if the homogeneous system [A|0] has at least one nontrivial solution.

The following theorem is logically equivalent to the above, but is stated to make the connection
between this system and linear independence completely clear.

Theorem 2.3.14. Let v1, . . .vm be vectors in Rn and let A be the n×m matrix with these vectors
as its columns, A = [v1, . . . ,vm]. Then that collection of vectors is linearly independent if and only if
the homogeneous system [A|0] has no nontrivial solutions.

Example 2.3.15. Consider the column vectors v1 = [0, 1, 2]T , v2 = [2, 1, 3]T , v3 = [2, 0, 2]T . We can
check for linear (in)dependence by row reducing [v1,v2,v3|0] and checking the number of solutions.

[
v1 v2 v3 0

]
=

0 2 2 0
1 1 0 0
2 3 2 0

 R1↔R2−−−−→

1 1 0 0
0 2 2 0
2 3 2 0



1
2
R2 7→R2−−−−−−−−→

R3−2R1 7→R3

1 1 0 0
0 1 1 0
0 1 2 0



R1−R2 7→R1−−−−−−−→
R3−R2 7→R3

1 0 −1 0
0 1 1 0
0 0 1 0



R1+R3 7→R1−−−−−−−→
R2−R3 7→R2

1 0 0 0
0 1 0 0
0 0 1 0


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The system thus has no nontrivial solutions (because there are no free variables). By Theorem
2.3.14, the set {v1,v2,v3} is linearly independent.

Example 2.3.16. Consider the column vectors v1 = [0, 1, 2]T , v2 = [2, 1, 3]T , v3 = [2, 0, 1]T . We can
check linear dependence by using Gaussian (or Gauss-Jordan) Elimination:

[
v1 v2 v3 0

]
=

0 2 2 0
1 1 0 0
2 3 1 0

 RREF−−−→

1 0 −1 0
0 1 1 0
0 0 0 0



It’s an exercise to the reader to check that the reduced row echelon form is correct. The system thus
has no nontrivial solutions. By Theorem 2.3.13 the set {v1,v2,v3} is linearly dependent. Of course,
this isn’t hard to see, as v2 = v1 + v3.

Example 2.3.17. Let v1 = [1, 1]T , v2 = [1,−1]T , v3 = [x, y]T be column vectors in R2. Using the
same method from Theorem 2.3.13 we can check for linear dependence via Gaussian (or
Gauss-Jordan) Elimination:

[
v1 v2 v3 0

]
=

[
1 1 x 0
1 −1 y 0

]
RREF−−−→

[
1 0 x−y

2
0

0 1 x+y
2

0

]

It’s an exercise to the reader to check that the reduced row echelon form is correct. The system has
nontrivial solutions for every vector [x, y]T , so by Theorem 2.3.13 the set {v1,v2,v3} is linearly
dependent.

Of course, three nonzero vectors in R2 being linearly dependent doesn’t sound too unreasonable - the
corresponding linear system must have rank at most 2 and thus at least one free variable. We deduce
from this the following result:

Theorem 2.3.18 (Poole Theorem 2.8). If m > n, then any set of m vectors in Rn is linearly
dependent.
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3.1 Matrix Operations

3.1.1 Matrix Basics

Definition. A matrix is an array of numbers (called entries ) and has size m× n
if it has m rows and n columns.

A = [aij] =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn


The subscripts on the entries aij tell us that we’re looking at the entry in the ith row and the jth

column (counted top-to-bottom, left-to-right).

Fact. Two matrices are equal if and only if both (1) their sizes are equal and (2) their corresponding
entries are all equal.

Remark. It’s common to write Rm×n represents the collection of m× n matrices with real number
entries.

Example 3.1.1. Consider the matrices

A =

[
1 2 3
4 5 6

]
, B =

[
1 2
4 5

]
, and C =

[
7 8
9 10

]
.

A 6= B because their sizes are different, and A 6= C because their corresponding entries are not equal.

Definition. A matrix A = [aij] is square if it has size n× n. The diagonal of A is all of

the entries where i = j:

A =

a11 · · · a1n

...
. . .

...
an1 · · · ann


A square matrix is called diagonal if the only nonzero entries are along the diagonal. You may

see this written as A = diag(a11, . . . , ann).

A bit of a subtly – the definition of diagonal just says that nonzero entries must occur along the
diagonal, but the diagonal entries do not necessarily need to be nonzero.

Example 3.1.2. The matrices

A =

 1 0 0
0 2 0
0 0 3

 and B =

 0 0 0
0 7 0
0 0 0


are both diagonal because every entry off of the diagonal is 0.

Definition. A matrix is scalar if it is a diagonal matrix and the diagonal entries are all equal,

i.e., the matrix A = diag(r, r, . . . , r) for some r ∈ R.
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Definition. The zero matrix , often denoted O is the matrix for which all entries are 0. Its

size should be clear from context, but we may write Om×n if we need to specify.

Definition. The Kroenecker delta , denoted δij, δ
j
i , or δij, is the following:

δij =

{
1 if i = j,

0 if i 6= j.

Definition. The identity matrix In is the diagonal n× n matrix with all 1’s along the

diagonal. You may sometimes see this written as In = [δij].

Example 3.1.3. It may be useful to see exactly how the Kroenecker delta leads to the identity
matrix.

I3 = [δij] =

δ11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 δ33

 =

1 0 0
0 1 0
0 0 1


3.1.2 Matrix Operations

Definition. Given two m× n matrices A = [aij] and B = [bij], the matrix sum is

A+B = [aij + bij] =

 a11 + b11 · · · a1n + b1n
...

. . .
...

am1 + bm1 · · · amn + bmn

 .
Example 3.1.4. For A =

[
1 2 3
4 5 6

]
and B =

[
7 8 9
10 11 12

]
,

A+B =

[
1 + 7 2 + 8 3 + 9
4 + 10 5 + 11 6 + 12

]
=

[
8 10 12
14 16 18

]
.

Remark. When adding two matrices, they must have the same size.

Definition. For a matrix A = [aij] and a scalar r, the scalar multiple of A is the matrix

rA = [raij]

Example 3.1.5. Given the matrix A =

[
1 2
3 4

]
and the scalar r = 5,

rA =

[
5(1) 5(2)
5(3) 5(4)

]
=

[
5 10
15 20

]
.

Definition. With the notion of addition and scalar multiplication, subtraction of matrices is then
defined in the obvious way:

A−B = A+ (−1)B.

Remark. The zero matrix satisfies the properties you want it to: A+O = A and A− A = O
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3.1.3 Matrix Multiplication

A one-variable linear equation looks like

ax = b

where a, b are constants, x is some indeterminate, and ax is good old-fashioned multiplication. If we
have a linear system 

a11x1 + a12x2 · · · a1nxn = b1

a21x1 + a22x2 · · · a2nxn = b2
... +

...
. . .

... =
...

am1x1 + am2x2 · · · amnxn = bm

it would be convenient to write it in a similar form. We thus define the product of a matrix and
a vector so that the above system is captured by the equation

Ax = b

where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn

 , x =


x1

x2
...
xn

 , and b =


b1

b2
...
bm

 .
In other words, bi = Rowi(A) · x. We take this idea and extend it to products of two matrices.

Definition. Given an m× n matrix A and an n× p matrix B with columns bi, the

matrix product of A and B is the n× p matrix

AB =

 | | |
Ab1 Ab2 · · · Abp

| | |

 .
(And the above form is called the matrix-column representation of the product AB.) More

explicitly, if A has row vectors Ai, then AB is the m× p matrix with entries

AB =


A1 · b1 A1 · b2 · · · A1 · bp

A2 · b1 A2 · b2 · · · A2 · bp
...

...
. . .

...
Am · b1 Am · b2 · · · Am · bp


Example 3.1.6. Let A and B be the following matrices

A =

1 2
3 4
5 6

=

—A1—
—A2—
—A3—

 and B =

[
7 8
9 10

]
=

 | |
b1 b2

| |


We thus have that the product AB is

AB =

 | |
Ab1 Ab2

| |

 =

A1 · b1 A1 · b2

A2 · b1 A2 · b2

A3 · b1 A3 · b2

 =

23 28
57 64
89 100


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Remark. Two matrices A,B can be multiplied even if their sizes are different. As long as the number
of columns of A is equal to the number of rows of B, then the product AB exists. Moreover

A
m×n

B
n×p

= AB
m×p

Fact. If A is an m× n matrix, then we have that

ImA = A and AIn = A

and it is for this reason that we call In the identity matrix.

3.1.4 Matrix Powers

If A is a square matrix, then for positive integers k, then we can define the power of a matrix in the
intuitive way,

Ak = AA · · ·A︸ ︷︷ ︸
k factors

and the usual rules for exponents hold:

• ArAs = Ar+s

• (Ar)s = Ars

Example 3.1.7. If A =

[
1 2
3 4

]
, then

A2 =

[
1 2
3 4

]2

=

[
1 2
3 4

] [
1 2
3 4

]
=

[
7 10
15 22

]
and

A3 = A2A =

[
7 10

15 22

] [
1 2
3 4

]
=

[
37 54
81 118

]
.

3.1.5 Transpose

Definition. If A = [aij] is an m× n matrix, then its transpose , AT is the n×m matrix who

(i, j)th entry is aij. In other words, one obtains AT by turning A’s rows into columns and vice versa.

Visually, the transpose amounts to flipping the matrix across the red line below

A =

[
1 2 3
4 5 6

]
flip−→

 1 4
2 5
3 6

 = AT
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Definition. A matrix A is symmetric if A = AT .

Example 3.1.8. Consider the matrices

A =

[
1 2
2 3

]
B =

[
1 2
3 4

]
.

One sees A is symmetric and B is not.

Remark. If A has size m× n, then AT has size n×m, so the only way that A = AT is if m = n. In
other words, symmetric matrices are always square matrices.

Example 3.1.9. Let A =

1 2
3 4
5 6

. Compute ATA and AAT .

ATA=

[
1 3 5
2 4 6

] 1 2
3 4
5 6


=

[
35 44
44 56

]

AAT=

 1 2
3 4
5 6

[ 1 3 5
2 4 6

]

=

 5 11 17
11 25 39
17 39 61


What’s interesting to notice is that, while A is not symmetric (and not even square), both

AAT and ATA are symmetric (and hence also a square matrix). These particular matrices are useful
when considering inner products and outer products of vectors, respectively, although we won’t be
covering either of those ideas in this course.
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3.2 Matrix Algebra

Theorem 3.2.1 (Poole Theorem 3.2 - Algebraic Properties of Matrix Addition and Scalar
Multiplication). Let A,B,C ∈ Rm×n and let c, d ∈ R. The following are true:

(a) A+B = B + A

(b) (A+B) + C = A+ (B + C)

(c) A+Om×n = A

(d) A+ (−A) = Om×n

(e) c(A+B) = cA+ cB

(f) (c+ d)A = cA+ dA

(g) c(dA) = (cd)A

(h) 1A = A

Remark. In short, Theorem 3.2.1 above says that Rm×n is a real vector space (see page ??).

3.2.1 Properties of Matrix Multiplication

Matrix multiplication is not commutative in general, and it is often the case that AB 6= BA. This
fact clear if A ∈ Rm×n and B ∈ Rn×m where m 6= n (just compare the sizes of AB and BA), but is
possibly less obvious in the case where A,B are both square matrices. It is an exercise to find an
example of this in the case of 2× 2 matrices.

Exercise 3.2.1. Let A =

[
a b
c d

]
and B =

[
1 0
1 1

]
. What conditions must a, b, c, d satisfy to ensure

that AB = BA?

So what properties does matrix multiplication have?

Theorem 3.2.2 (Poole Theorem 3.3 - Properties of Matrix Multiplication). Let A,B,C be matrices
(whose sizes are such that the following exist) and k ∈ R a scalar. Then

(a) A(BC) = (AB)C

(b) A(B + C) = AB + AC

(c) (A+B)C = AC +BC

(d) k(AB) = (kA)B = A(kB)

(e) ImA = A = AIn (if A is m× n)

Remark. This theorem implies that Rn×n is a fancy object called a (non-commutative) algebra.
Informally, this is a vector space with an additional operation that lets us multiply two vectors
together (which, if you look closely, isn’t a feature of vector spaces normally). This is outside the
scope of the course, but it may be interesting to you to know that such things exist and that these
properties are not unique to Rn×n.

The proof of this theorem will require the properties of the dot product (recall Proposition 1.2.1).
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Proof. For simplicity, we’ll introduce some notation. For a matrix M

• (this one is standard notation) Mij denotes the (i, j)th entry of M ,

• rowi(M) denotes the ith row of M , and

• colj(M) denotes the jth column of M .

(a) Note that AB has size m× p and BC has size n× r, hence both (AB)C and A(BC) have size
m× r, and thus they are equal if they’re corresponding coefficients are equal.

((AB)C)ij =

p∑
k=1

(AB)ikCkj =

p∑
k=1

(
n∑
`=1

Ai`B`k

)
Ckj =

p∑
k=1

n∑
`=1

Ai`B`kCkj = · · ·

· · · =
n∑
`=1

p∑
k=1

Ai`B`kCkj =
n∑
`=1

Ai`

(
p∑

k=1

B`kCkj

)
=

n∑
`=1

Ai` (BC)`j = (A(BC))ij

(b) Let A ∈ Rm×n and B,C ∈ Rn×p. Notice that A(B + C) and AB + AC have the same size,
hence they are equal if they have the same corresponding elements.

(A(B + C))ij = rowi(A) · colj(B + C)

= rowi(A) · (colj(B) + colj(C))

= rowi(A) · colj(B) + rowi(A) · colj(C) = (AB)ij + (AC)ij.

(c) Let A,B ∈ Rm×n and C ∈ Rn×p. Notice that (A+B)C and AC +BC have the same size,
hence they are equal if they have the same corresponding elements.

((A+B)C)ij = rowi(A+B) · colj(C)

= (rowi(A) + rowi(Bi)) · colj(C)

= rowi(A) · colj(C) + rowi(B) · colj(C) = (AC)ij + (BC)ij.

(d) Let A ∈ Rm×n, B ∈ Rn×p, and k ∈ R. Notice that k(AB), (kA)B and A(kB) all have the same
size m× p, hence they are equal if they have the same corresponding elements.

(k(AB))ij = k (rowi(A) · colj(B))

= rowi(kA) · colj(B) = ((kA)B)ij

= rowi(A) · colj(kB) = (A(kB))ij

(e) Let A ∈ Rm×n. Writing the m×m identity matrix Im = [δij] using the Kroenecker delta (c.f.
page 37), we note that ImA and A have the same size, hence they are equal if they have the
same corresponding elements.

(ImA)ij = rowi(Im) · colj(A)

= δi1A1j + δi2A2j + · · ·+ δimAmj

= δiiAij (the only nonzero term in the sum)

= Aij
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Similarly, for the n× n identity matrix In,

(AIn)ij = rowi(A) · colj(In)

= Ai1δ1j + Ai2δ2j + · · ·+ Ainδnj

= Aijδjj (the only nonzero term in the sum)

= Aij

Example 3.2.3. Let A =

[
1 2 3
4 5 6

]
, B =

 3 2
1 0
−1 −2

, and C =

[
1 −2
3 −4

]
. Then

A(BC) =

[
1 2 3
4 5 6

] 3 2
1 0
−1 −2

[1 −2
3 −4

]
=

[
1 2 3
4 5 6

] 9 −14
1 −2
−7 10


=

[
−10 12
−1 −6

]
and

(AB)C =

[1 2 3
4 5 6

] 3 2
1 0
−1 −2

[1 −2
3 −4

]

=

([
2 −4
11 −4

])[
1 −2
3 −4

]
=

[
−10 12
−1 −6

]

Theorem 3.2.4 (Poole Theorem 3.4 - Properties of the Transpose). Let A and B be matrices (whose
sizes are such that the indicated operations can be performed) and let k be a scalar. Then

(a) (AT )T = A

(b) (kA)T = k(AT )

(c) (A+B)T = AT +BT

(d) (AB)T = BTAT

(e) (Ar)T = (AT )r for all nonnegative integers r.

Proof. We use the same notation as in the proof of Theorem 3.2.2.

(a) If A has size m× n, then AT has size n×m, and then (AT )T has size m× n. Thus these
matrices are equal if they have equal corresponding entries.

((AT )T )ij = (AT )ji = Aij
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(b) If A ∈ Rm×n, then kA ∈ Rm×n and thus (kA)T has size n×m. As well, since AT has size
m× n, then kAT has size m× n.

((kA)T )ij = (kA)ji = kAji = k(AT )ij

(c) Let A,B ∈ Rm×n. It is straightforward to see that (A+B)T and AT , BT have size n×m. Then

((A+B)T )ij = (A+B)ji = Aji +Bji = (AT )ij + (BT )ij = (AT +BT )ij

(d) Let A ∈ Rm×n and B ∈ Rn×p. Note that (AB)T an BTAT both have the same size, hence they
are equal if their corresponding entries are equal.(

(AB)T
)
ij

= (AB)ji

= rowj(A) · coli(B)

= colj(A
T ) · rowi(B

T )

= rowi(B
T ) · colj(A

T ) = (BTAT )ij.

(e) This is a corollary of item (d).

Example 3.2.5. Let A =

[
1 2 3
4 5 6

]
, B =

 3 2
1 0
−1 −2

. Then

(AB)T =

[1 2 3
4 5 6

] 3 2
1 0
−1 −2

T

=

[
2 −4
11 −4

]T
=

[
2 11
−4 −4

]

and

BTAT =

[
3 1 −1
2 0 −2

]1 4
2 5
3 6

 =

[
2 11
−4 −4

]

and

ATBT =

1 4
2 5
3 6

[3 1 −1
2 0 −2

]
=

11 1 −9
16 2 −12
21 3 −15


So clearly (AB)T = BTAT , but (AB)T 6= ATBT in general.
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3.3 The Inverse of a Matrix

Motivation: If a, b ∈ R and x is some unknown and we wanted to solve for x in the equation

ax = b,

we would do so multiplying both sides by a−1 = 1
a

to get that x = a−1b. We’d like to be able to do
this same thing for the system of linear equations

Ax = b

where A ∈ Rn×n and b ∈ Rn. But alas, we don’t have a notion of division of matrices.

Let’s think – if a ∈ R is some nonzero number, then a−1 is just some other real number for which
aa−1 = a−1a = 1. Since the n× n identity matrix In plays the role of 1, multiplicatively, then the
natural way to define the matrix we desire is

Definition. For an nonzero n× n matrix A, the inverse of A , denoted A−1, is the n× n
matrix satisfying

AA−1 = A−1A = In.

If the inverse exists, we say that A is invertible .

Fact. Not every nonzero matrix is invertible, and we’ll devote the latter half of this section to
exploring when a matrix is invertible.

Remark. We only define inverses for square matrices. You will explore what happens in your
homework for non-square matrices.

Theorem 3.3.1 (Poole Theorem 3.6). The inverse is unique.

Proof. Suppose A ∈ Rn×n is invertible, with inverses X and Y . Then

X = X(In) = X(AY ) = (XA)Y = (In)Y = Y.

Theorem 3.3.2 (Poole Theorem 3.9). If A,B ∈ Rn×n are invertible and c ∈ R is some nonzero
scalar, then

a. A−1 is invertible and (A−1)−1 = A.

b. (cA)−1 = 1
c
A−1

c. (AB)−1 = B−1A−1

d. AT is invertible and (AT )−1 = (A−1)T

e. An is invertible for all positive integers n and (Ak)−1 = (A−1)k

Proof. Since inverses are unique, and matrices are invertible if their inverses exist, then each of these
proven by merely checking that the multiplication is correct.

a. (A−1)(A) = In
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b. (cA)(1
c
A−1) = c

c
AA−1 = In.

c. (AB)(B−1A−1) = AInA
−1 = AA−1 = In.

d. AT (A−1)T = (A−1A)T = ITn = In.

e. (Ak)(A−1)k = A · · ·A︸ ︷︷ ︸
k

A−1 · · ·A−1︸ ︷︷ ︸
k

= A · · ·A︸ ︷︷ ︸
k−1

InA
−1 · · ·A−1︸ ︷︷ ︸

k−1

= · · · = In.

Remark. Because of the above theorem, some will use the notation A−n (for n a positive integer) and
A−T (the transpose) to mean the obvious things:

A−n = (A−1)n = (An)−1

A−T = (AT )−1 = (A−1)T

3.3.1 Finding A−1

If A = [aij] is given and X = [xij] is a matrix of unknowns indeterminates that we hope to solve,
then by comparing the entries, the matrix equation AX = In yields a linear system (with n2

equations and n2 unknowns)

∑n
k=1 a1kxk1 = 1∑n
k=1 a1kxk2 = 0

...∑n
k=1 aikxkj = δij (the Kroenecker delta)

...∑n
k=1 ankxkn = 1

and you can use standard techniques to solve this system. But this system is huge and “sparse” (that
is, the coefficient matrix has many 0’s). Instead, let’s write X and In in terms of their column vectors

X =

 | | |
x1 x2 · · · xn
| | |

 and In =

 | | |
e1 e2 · · · en
| | |


Now we have that

AX = In | | |
Ax1 Ax2 · · · Axn
| | |

 =

 | | |
e1 e2 · · · en
| | |


and so rather than one massive system, we can deduce from this n smaller systems

Ax1 = e1, Ax2 = e2, . . . Axn = en.

But of course, if we do something like Gauss–Jordan elimination to solve each of these, we’re always
doing the same row reduction steps on the coefficient matrix! So if we just write the augmented
matrix [A|In], then our row reduction will allow us to simultaneously solve all of these systems. In
particular, because A is invertible, we have that RREF(A) = In (this isn’t obvious, so you’ll have to
trust me), and so row reducing [A|In] yields [In|A−1].
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Definition. Suppose A ∈ Rn×n is invertible. The Gauss–Jordan method is the following

procedure for finding the inverse:

1. Write the augmented matrix [A|In].

2. Row reduce fully to put A into RREF.

3. You now have [In|A−1].

Example 3.3.3. Find A−1 given A =

[
1 2
3 4

]
.

[
A I2

]
=

[
1 2 1 0
3 4 0 1

]
R2−3R1 7→R2−−−−−−−→

[
1 2 1 0
0 −2 −3 1

]
−1
2
R2 7→R2−−−−−−→

[
1 2 1 0
0 1 3

2
−1

2

]
R1−2R2 7→R1−−−−−−−→

[
1 0 −2 1
0 1 3

2
−1

2

]
=
[
I2 A−1

]
And we can check that the result is indeed the inverse:[

1 2
3 4

] [
−2 1

3
2
−1

2

]
=

[
1 0
0 1

]
.

One can, of course, do the above process for generic 2× 2 matrices, which yields the following result.

Theorem 3.3.4 (Poole thm 3.8). If A =

[
a b
c d

]
, then the inverse is given by A−1 = 1

ad−bc

[
d −b
−c a

]
,

provided ad− bc 6= 0.

Proof. Using the Gauss-Jordan method above,[
a b 1 0
c d 0 1

]
1
a
R1 7→R1−−−−−→

[
1 b

a
1
a

0

c d 0 1

]
R2−cR1 7→R2−−−−−−−→

[
1 b

a
1
a

0

0 ad−bc
a

− c
a

1

]
a

ad−bc
R2 7→R2

−−−−−−−−→

[
1 b

a
1
a

0

0 1 − c
ad−bc

a
ad−bc

]
R1− b

a
R2 7→R1−−−−−−−−→

[
1 0 d

ad−bc − b
ad−bc

0 1 − c
ad−bc

a
ad−bc

]

You could do this same system-solving process for larger matrices, but the formulas are significantly
worse.

How does this help us solve our system?

If A is invertible and Ax = b then, by design, it should have the solution x = A−1b. Moreover, since
A−1 is unique, we expect this solution to be unique.
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Theorem 3.3.5 (Poole Theorem 3.7). If A is an invertible n× n matrix, then for every b ∈ Rn, the
linear system Ax = b is consistent and has the unique solution x = A−1b.

Example 3.3.6. Solve the system Ax = b given A =

[
1 4
3 13

]
and b =

[
1
7

]
.

We could solve this the old way, or we can try our nifty new method. We quickly deduce that A−1 is
given by

A−1 =

[
13 −4
−3 1

]
(which can be seen either by appealing to Theorem 3.3.4 or using the Gauss-Jordan Method). Hence
the solution is

x = A−1b =

[
13 −4
−3 1

] [
1
7

]
=

[
−15

4

]
.

Example 3.3.7. Solve the system {
x + y = 1
−x − y = −1

Notice that this system is equivalent to the system {x+ y = 1}, which has infinitely-many solutions.
Notice also that the coefficient matrix for this system is

A =

[
1 1
−1 −1

]
which isn’t invertible (because otherwise, attempting to apply Theorem 3.3.4 we would be dividing
by 0).

Okay, so tell me, when is A invertible?

Putting it all together, we can wrap it up into the following theorem

Theorem 3.3.8 (Poole Theorem 3.12 - The Fundamental Theorem of Invertible Matrices: Pt I). Let
A ∈ Rn×n. The following are equivalent:

a. A is invertible.

b. A is row equivalent to In (i.e. its reduced row echelon form is In).

c. A is the product of elementary matrices.

d. Ax = b has a unique solution for every b ∈ Rn.

e. Ax = 0 has only the trivial solution.

f. The columns of A are linearly independent.

For part (c) above, we saw that it worked in one particular example. In fact, it’s true for all b
because, if A is row equivalent to the identity, then it will never have a row of all 0’s in its
row-reduced form (which is precisely what happened in the cases that Ax = b had no solutions or
infinitely many solutions).
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3.3.2 Elementary Matrices

Definition. An elementary matrix is a matrix obtained by performing an elementary row

operation on the identity matrix.

The other way to think about it is that, given a matrix A ∈ Rm×n, an elementary matrix E ∈ Rm×m

is one for which the product EA has the same effect as doing an elementary row operation on A.

One can then get the inverse as the product of all of the elementary matrices.

Example 3.3.9. Given A =

[
1 2
3 4

]
. Use elementary matrices to compute A−1.

In the following string of equalities, we’ll denote the row reduction on the left-hand side and the
corresponding product by elementary matrices on the right-hand side.[

1 2
3 4

]
= A

R2−3R1 7→R2−−−−−−−→
[
1 2
0 −2

]
=

[
1 0
−3 1

]
A

−1
2
R2 7→R2−−−−−−→

[
1 2
0 1

]
=

[
1 0
0 −1

2

] [
1 0
−3 1

]
A

R1−2R2 7→R1−−−−−−−→
[
1 0
0 1

]
=

[
1 −2
0 1

] [
1 0
0 −1

2

] [
1 0
−3 1

]
A

I2 =

[
−2 1

3
2
−1

2

]
A

so again we get that A−1 =

[
−2 1

3
2
−1

2

]
.

If we write the elementary matrices above as E1, E2, E3, respectively, (so that A−1 = E3E2E1) then
applying them to the matrix equation AX = I looks something like the following

AX = I

E1AX = E1

E2E1AX = E2E1

E3E2E1AX = E3E2E1

IX = E3E2E1

X = E3E2E1

What this tells us is that computing the inverse can just be done with row operations on an
augmented matrix [A|I] until we get [I|A−1] (and hence provides proof that the Gauss-Jordan
Method works).
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3.5 Subspaces, Basis, Dimension, and Rank

We’ve thought about solution sets as spans of vectors and also, alternatively, as lines and planes in
3-dimensional space. Now we’ll formalize these ideas so that we can talk about these things in more
generality. Recall the definition of a real vector space:

Definition. A (real) vector space V is a set of objects (called vectors ) with two

operations vector addition (denoted +) and scalar multiplication (no symbol)

satisfying the following properties: For all vectors u,v,w and real numbers a, b (called scalars ),

(a) u + v is in V [closure of addition]

(b) u + v = v + u [commutativity of addition]

(c) (u + v) + w = u + (v + w) [associativity of +]

(d) There is some vector 0, called the zero vector, [additive identity]
so that u + 0 = u for all vectors u.

(e) For each u in V , there is some vector −u for [additive inverse]
which u + (−u) = 0.

(f) au is in V [closure of scalar mult.]

(g) a(u + v) = au + av [distributivity]

(h) (a+ b)u = au + bu [distributivity]

(i) (ab)u = a(bu) [associativity of scalar mult.]

(j) 1u = u [scalar mult. identity]

From this definition, Theorem ?? can be restated as

Theorem 3.5.1 (Restatement of Poole Theorem 1.1). Rn is a real vector space.

Remark. As it turns out, it’s entirely sufficient to just think about Rn when discussing
(finite-dimensional) real vector spaces, so if it’s more comfortable for you, any time you read “vector
space,” you can replace it with “Rn” in your mind and not lose any understanding.

With this in mind, we introduce the following definition:

Definition. Let V be a vector space and let W be a subset of vectors in V . We say that W is a

subspace of V if it is also a vector space (with the same vector addition/scalar multiplication

operations).

In order to check that a set of vectors is a subspace, one would have to check all of the axioms of the
vector space definition – eww. Instead, here is an equivalent characterization of a subspace (note:
this is typically a theorem in most textbooks, but your book presents it as the definition).
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Definition. Let V be a vector space and let W be a subset of vectors in V . W is a subspace

of V if it has the following properties:

1. 0 is in W (where 0 is the same zero vector in V ).

2. If u,v ∈ W , then u + v ∈ W . [closure of addition]

3. If u ∈ W and k ∈ R is a scalar, then ku ∈ W . [closure of scalar multiplication]

(where vector addition and scalar multiplication in W are the same operations for V ).

Example 3.5.2. Every vector space V is a subspace of itself.

Example 3.5.3. For any vector space V , the set {0} is a subspace of V (sometimes called the

trivial subspace ).

Example 3.5.4. Let W be the set of all vectors in R3 of the form [x, y, 0]T . Then W is a subspace of
R3 because

1.

0
0
0

 ∈ W
2.

x1

y1

0

+

x2

y2

0

 =

x1 + x2

y1 + y2

0

 ∈ W
3. k

xy
0

 =

kxky
0

 ∈ W
Example 3.5.5. Let W be the set of all vectors in R3 of the form [x, 0, z]T . Then W is a subspace of
R3 (and the justification for this is nearly identical to the example above).

Remark. You may notice that, in the previous two examples, the subspaces were each defined by only
two real numbers and both were planes (one was the xy-plane and the other was the xz-plane). You
may be inclined to call either of these “R2,” but really they’re both copies of R2 living inside of R3.
In fact, any plane in R3 is just a copy of R2. As such, there is no canonical choice of plane, so it
really doesn’t make sense to call any of these infinitely-many planes “R2.”

Example 3.5.6. Let W be the set of all vectors in R3 of the form [x, y, 1T . Then W is not a
subspace of R3 because:

1.

0
0
0

 /∈ W

2.

x1

y1

1

+

x2

y2

1

 =

x1 + x2

y1 + y2

2

 /∈ W

3. For any k 6= 1, k

xy
1

 =

kxky
k

 /∈ W .

Theorem 3.5.7 (Poole Theorem 3.19). Let v1, . . . ,vk ∈ Rn. Then Span(v1, . . . ,vk) is a subspace of
Rn.
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Proof. For simplicity, let W = Span(v1, . . . ,vk). We check that W satisfies the criteria for the
definition of a subspace.

1. Since 0 = 0v1 + · · ·+ 0vk, then 0 ∈ W .

2. Let u = c1v1 + · · ·+ ckvk and w = d1v1 + · · ·+ dkvk be vectors in W . Then

u + w = (c1 + d1)v1 + · · ·+ (ck + dk)vk.

Since u + w is a linear combination of the vectors vi, then u + w ∈ W .

3. Let u be as above and r ∈ R be some scalar. Then

ru = (rc1)v1 + · · ·+ (rck)vk.

Since ru is a linear combination of the vectors vi, then ru ∈ W .

3.5.1 Subspaces Associated with Matrices

Armed with the notion of a “subspace” in mind, let’s try to revisit some ideas involving matrices.
First, a new definition

Definition. Let A be an m× n matrix.

1. The column space of A is a subspace Rm spanned by the columns of A. We denote it

as Col(A).

2. The row space of A is a subspace of Rn spanned by the rows of A. We denote it as

Row(A)

Remark. Since we will prefer to think about column vectors whenever possible, it may be more useful
to define Row(A) := Col(AT ).

Theorem 3.5.8 (Poole Theorem 3.21). Let A be an m× n matrix and let N be the set of solutions
to the homogeneous system Ax = 0. Then N is a subspace of Rn.

Proof. As before, we will approach by showing that N satisfies the three subspace criteria.

1. Homogeneous systems always have te trivial solution, hence N contains 0.

2. Let x1,x2 be in N . Then

A(x1 + x2) = Ax1 + Ax2 = 0 + 0 = 0.

so N is closed under addition.

3. Let x be in N and k be a scalar. Then

A(kx) = k(Ax) = k0 = 0

so N is closed under scalar multiplication.
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Definition. N , as above, is called the null space of A , and is denoted Null(A). (In some

texts, it is called the kernel of A and is denoted ker(A).)

Exercise 3.5.1. If W is the set of solutions to the system Ax = b where b is not the zero vector, is
W a subspace of Rn?

Example 3.5.9. Compute Col(A), Row(A), and Null(A) for A =

1 2 4
1 2 4
1 2 4

.

Letting ai denote the ith column of A, we see that a3 = 2a2 = 4a1, hence

Col(A) = Span

1
1
1

 .

Similarly, letting Ai denote the ith row of A, we see that A3 = A2 = A1, hence

Row(A) = Span([1, 2, 4]) .

Examining the homogeneous system Ax = 0,

[
A 0

]
=

1 2 4 0
1 2 4 0
1 2 4 0

 R3−R1 7→R3−−−−−−−→
R2−R1 7→R2

1 2 4 0
0 0 0 0
0 0 0 0


we see that A has rank 1, hence there are two free variables in this system, x2 = s and x3 = t. We
thus get that the solution set is of the formx1

x2

x3

 =

−2s− 4t
s
t

 = s

−2
1
0

+ t

−4
0
1


hence

Null(A) = Span

−2
1
0

 ,
−4

0
1

 .

Definition. Let W be a subspace of a vector space and B = {w1, . . . , wk} a set of vectors in W . B is

a basis for W if

1. W = Span(B) and

2. B is a linearly independent set.

Remark. Since every vector space is a subspace of itself, this definition is valid for all vector spaces.
We’ve merely stated it in terms of subspaces to make it clear that the basis vectors must each be
contained in that subspace.

Example 3.5.10. The standard basis vectors ei in Rn form a basis for Rn. We refer to

E = {e1, . . . , en} as the standard basis for Rn.
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Example 3.5.11. Find basis for the column space A =


1 1 3 1 6
2 −1 0 1 −1
−3 2 1 −2 1
4 1 6 1 3

.

Let ai represent the ith column vector for A and let rj denote the jth column vector for RREF(A).
So we have

A =


1 1 3 1 6
2 −1 0 1 −1
−3 2 1 −2 1
4 1 6 1 3

 =

 | | |
a1 a2 · · · a5

| | |



and RREF(A) =


1 0 1 0 −1
0 1 2 0 3
0 0 0 1 4
0 0 0 0 0

 =

 | | |
r1 r2 · · · r5

| | |


Notice that we clearly have

r3 = 1r1 + 2r2 and r5 = −1r1 + 3r2 + 4r4,

whence

a3 = 1a1 + 2a2 and a5 = −1a1 + 3a2 + 4a4.

(and you can check that this is true, just to confirm). It follows that

Col(A) = Span(a1, a2, a3, a4, a5) = Span(a1, a2, a4).

Moreover,

RREF(
[
a1 a2 a4 0

]
) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


and so {a1, a2, a4} is a linearly independent set. Hence

{a1, a2, a4} =




1
2
−3
4

 ,


1
−1
2
1

 ,


1
1
−2
1




is a basis for Col(A).

Strategy for finding a basis for the column space of a matrix:

1. Row reduce the matrix (just row-echelon form is fine)

2. Take as a basis every column (in the original matrix) which contains a leading entry.

Remark. It’s important that you take the basis vectors from the columns of the original matrix. For

example, Col

([
1 0
1 0

])
= Span!

([
1
1

])
, but Col(RREF(A)) = Col

([
1 0
0 0

])
= Span

([
1
0

])
54



Example 3.5.12. Find basis for the null space of A =


1 1 3 1 6
2 −1 0 1 −1
−3 2 1 −2 1
4 1 6 1 3

.

Notice that

RREF(A) =


1 0 1 0 −1
0 1 2 0 3
0 0 0 1 4
0 0 0 0 0


When we go to solve the system

Ax = A


x1

x2

x3

x4

x5

 = 0

we see that x3 and x5 are free variables and

x1 = −x3 + x5,

x2 = −2x3 − 3x5,

x4 = −4x5.

By setting x3 = s and x5 = t, we can parameterize the solution set as

x =


x1

x2

x3

x4

x5

 =


−s+ t
−2s− 3t

s
−4t
t

 = s


−1
−2
1
0
0

+ t


1
−3
0
−4
1

 = sv1 + tv2.

Clearly Null(A) = Span(v1,v2) and it is straightforward to check that {v1,v2} are linearly
independent, hence

{v1,v2} =




−1
−2
1
0
0

 ,


1
−3
0
−4
1




is a basis for Null(A).

Strategy for finding a basis for the null space of a matrix A:

1. Row reduce the matrix.

2. Solve the system Ax = 0.

3. Write the solution set in parametric form {v1t1 + · · ·+ vktk : t1, . . . , tk ∈ R}. (You should
have as many parameters as free variables.)

4. Take {v1, . . . ,vk} as a basis for Null(A).
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3.5.2 Dimension and Rank

Question: How many bases can a vector space have?
Answer: Infinitely-many.

Exercise 3.5.2. Show that, for any nonzero real numbers m,n, the set

{[
m
0

]
,

[
0
n

]}
is a basis for

R2.

Maybe the better question is

Question: How many vectors must a basis have? Can two different bases have different numbers of
vectors?

Example 3.5.13. Suppose V is a subspace of R4 and it has two different bases, B1 = {u1,u2} and
B2 = {v1,v2,v3}.

Since B1 is a basis, we can write each of the B2-basis vectors as a linear combination of the B1-basis
vectors

v1 = a11u1 + a21u2

v2 = a12u1 + a22u2

v3 = a13u1 + a23u2

Now if we consider the vector equation

0 = x1v1 + x2v2 + x3v3 (3.5.1)

it should be that the only solution is when each of the xi = 0 (since the we claim the vi’s are linearly
independent). Notice, however, that

0 = x1v1 + x2v2 + x3v3

0 = x1(a11u1 + a21u2) + x2(a12u1 + a22u2) + x3(a13u1 + a23u2)

0 = (a11x1 + a12x2 + a13x3)u1 + (a21x1 + a22x2 + a23x3)u2

Since the ui’s are linearly independent, we must have that{
a11x1 + a12x2 + a13x3 = 0

a21x1 + a22x2 + a23x3 = 0

which is a homogeneous linear system in 3 variables (and only 2 equations). From the Rank
Theorem, it follows that there are infinitely many solutions [x1, x2, x3]T and, in particular, there is a
nonzero vector solution. This means there are nonzero coefficients x1, x2, x3 satisfying Equation
(3.5.1), hence B2 is a linearly dependent set and therefore is not a basis.

Theorem 3.5.14 (Poole Theorem 3.23 - The Basis Theorem). Let V be a vector space with two
different bases B1 and B2. Then B1 and B2 have the same number of vectors.

Because the number of vectors in the basis is invariant of the choice of basis, we can define the
following term.
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Definition. The dimension of a vector space V is the number of vectors in a basis for V . We

denote this dim(V ).

Remark. The trivial vector space {0} is defined to have dimension 0.

Example 3.5.15. dim(Rn) = n.

Example 3.5.16. Let V = Span

1
0
1

 ,
1

0
0

 ,
0

0
1

 be a subspace of R3. What is the dimension of

V ?

Clearly the first vector is a linear combination of the other two (which are linearly independent), so
dim(V ) = 2.

Theorem 3.5.17 (Poole Theorem 3.24). For a matrix A, dim(Row(A)) = dim(Col(A)).

Definition. The rank of a matrix A is the dimension of its column space (denoted Rank(A)).

If A has size n× n and Rank(A) = n, then sometimes we say that A has full rank.

Remark. This new notion of rank still agrees with our old notion, because the number of linearly
independent rows in A is the same as the number of nonzero rows in RREF(A) and
dim(Row(A)) = dim(Col(A)).

Theorem 3.5.18 (Poole Theorem 3.25). For any matrix A, Rank(A) = Rank(AT ).

Proof. Since Row(A) = Col(AT ), then Rank(A) = dim(Row(A)) = dim(Col(AT )) = Rank(AT ).

Example 3.5.19. Show that B =


1

0
1

 ,
 2

1
−2

 ,
 3

1
−3

 is a basis for R3

We consider the matrix A =

1 2 3
0 1 1
1 −2 −3

 and compute its rank.

1 2 3
0 1 1
1 −2 −3

 R3−R1 7→R3−−−−−−−→

1 2 3
0 1 1
0 −4 −6


R3+4R2 7→R3−−−−−−−→

1 2 3
0 1 1
0 0 −2


Thus Rank(A) = 3. Hence the columns of A span a 3-dimensional subspace of R3, i.e. Col(A) = R3.
Since the columns of A are linearly independent and span R3, B is a basis for R3.

Exercise 3.5.3. Show that B =


 1
−1
1

 ,
2

0
2

 ,
 3
−7
3

 is not a basis for R3.

Definition. The nullity of a matrix A is the dimension of its null space. We denote it by

nullity(A).

57



Example 3.5.20. Find the nullity of the matrix A constructed in example 3.5.19.

Row reducing, we have

A =

1 2 3
0 1 1
1 −2 −3

 RREF−−−−→

1 0 0
0 1 0
0 0 1


Hence the homogeneous system Ax = 0 has only the unique solution, and therefore
nullity(A) = dim(Null(A)) = dim({0}) = 0.

Theorem 3.5.21 (Rank–Nullity). If A is an m× n matrix, then

Rank(A) + nullity(A) = n.

Theorem 3.5.22 (Fundamental Theorem of Invertible Matrices, Pt II). Suppose A is an n× n
matrix. The following are equivalent:

a. A is invertible.

b. A is row equivalent to In (i.e. its reduced row echelon form is In).

c. A is the product of elementary matrices.

d. Ax = b has a unique solution for every b ∈ Rn.

e. Ax = 0 has only the trivial solution.

f. The columns of A are linearly independent.

g. The column vectors of A span Rn.

h. The column vectors of A form a basis for Rn.

i. The row vectors of A are linearly independent.

j. The row vectors of A span Rn.

k. The row vectors of A form a basis for Rn.

l. Rank(A) = n

m. nullity(A) = 0

3.5.3 Rank/Nullity of (Special Types of) Symmetric Matrices

Recall that, for any matrix A, we had that ATA and AAT were always symmetric. As you might
have hoped, many of the properties of ATA and AAT are ultimately governed by the properties of A.

Theorem 3.5.23 (Poole Theorem 3.28). For any matrix A, Null(A) = Null(ATA) and
Null(AT ) = Null(AAT ).

Proof. Suppose x ∈ Null(A). Then

Ax = 0

ATAx = AT0 = 0
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so x ∈ Null(ATA). Conversely, suppose x ∈ Null(ATA). Then

ATAx = 0

xTATAx = xT0 = [0]

(Ax)T (Ax) = [0]

Notice that vTv = [v · v], so the above line implies that Ax = 0, hence x ∈ Null(A).

The proof of the second equality is the same mutatis mutandis.

Using the fact that Rank(A) = Rank(AT ) and the Rank-Nullity Theorem, we have the following
immediate consequence

Corollary 3.5.24. For any matrix A, Rank(ATA) = Rank(A) = Rank(AT ) = Rank(AAT ).

Example 3.5.25. Let A =

[
1 0
1 0

]
; clearly Rank(A) = 1. But also

Rank(ATA) = Rank

([
2 0
0 0

])
= 1

Rank(AAT ) = Rank

([
1 1
1 1

])
= Rank

([
1 1
0 0

])
= 1.

3.5.4 Coordinates

The following is a consequence of the Fundamental Theorem of Invertible Matrices, but we’ll state it
to be explicit

Theorem 3.5.26. Let V be a vector space with an ordered basis B = {v1, . . . ,vk}. For every vector
u ∈ V , there is a unique linear combination of B-basis vectors such that

u = c1v1 + · · ·+ ckvk.

Definition. The ci in the previous theorem are called the

coordinates of u with respect to B and the column vector

[u]B =

c1
...
ck


is called the coordinate vector of u with respect to B .

Example 3.5.27. Let P (0, 0) and Q(3, 1) be points in the plane and consider the vector v =
−→
PQ.

Given the standard basis E = {e1, e2} for R2, we can write

v = 3e1 + 1e2

hence

[v]E =

[
3
1

]
.
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Example 3.5.28. With P,Q,v as above, we consider now the basis B = {b1,b2} =

{[
1
1

]
,

[
1
−1

]}
for R2. Since

v = 2b1 + 1b1

then

[v]B =

[
2
1

]
.

Visually, the previous two examples just give a bit of formality to the hand-wavy “coordinate grid”
discussion from Section 1.1

e1

e2
v

v in the E-basis.

b1

b2

v

v in the B-basis.

Remark. We typically don’t write the subscript E for vectors when they are written in the standard
basis.

Coordinates are actually very important in practice. On Earth, for example, exactly what does “1
unit in the x-direction” even mean? 1 meter north? 1 mile east? There’s no universal agreement, so
all measurements are really only relative. (In physics terms, we might say that these choices
constitute a frame of reference.) It will be important that we figure out how to convert between
these coordinate frames.
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6.3 Change of Basis

Let E =

{[
1
0

]
,

[
0
1

]}
be the standard basis for R2 and let B =

{
b1 =

[
1
1

]
,b2 =

[
1
−1

]}
another

basis for R2. Let v be a vector in R2 emanating from the origin to the point (x, y). By thinking in
terms of coordinate grids, is straightforward to see that

v = xe1 + ye2 =⇒ [v]E =

[
x
y

]
v =

(
x+ y

2

)
b1 +

(
x− y

2

)
b2 =⇒ [v]b =

[
x+y

2

x−y
2

]

We could always figure out how to convert between [v]E or [v]B by just solving for a linear
combination, but that can be cumbersome. Instead, notice that

b1 = 1e1 + 1e2 =⇒ [b1]E =

[
1
1

]
(6.3.1)

b2 = 1e1 − 1e2 =⇒ [b2]E =

[
1
−1

]
(6.3.2)

We then have that [
[b1]E [b2]E

]
[v]B =

[
1 1
1 −1

][x+y
2

x−y
2

]
=

[
x
y

]
= [v]E

And so we have that the matrix

P
E←B

:=

[
[b1]E [b2]E

]
has the feature that it converts vectors from the B-basis to the E-basis.

Example 6.3.1. With E and B above, find the coordinate representation of v = [3, 1]T in both
bases, and verify that P

B←E
converts these representations accordingly.

One can easily verify that

[v]E =

[
3
1

]
and [v]B =

[
1
2

]
and from Equation ??, one can also readily see that

[b1]E =

[
1
−1

]
and [b2]E =

[
1
1

]
.

Thus [
[b1]E [b2]E

]
[v]B =

[
1 1
−1 1

]
[v]B =

[
1 1
−1 1

] [
1
2

]
=

[
3
1

]
= [v]E .

Our choice to write the matrix columns in the E-basis was just for convenience. If we had two
non-standard bases, we could also do the same thing, hence we take the following definition
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Definition. Let B = {b1, . . . ,bn} and C = {c1, . . . , cn} be two ordered bases for Rn. The n× n
matrix

P
C←B

=

 | | |
[b1]C [b2]C · · · [bn]C
| | |

 .
is called the change-of-basis matrix from B to C. It has the effect

(
P
C←B

)
[v]B = [v]C.

Example 6.3.2. Let B =

{
b1 =

[
1
1

]
,b2 =

[
1
−1

]}
and C =

{
c1 =

[
1
−2

]
, c2 =

[
−3
3

]}
be bases for

R2. Compute the change of basis matrix PC←B.

We need to find [b1]C and [b2]C.

b1 = −2c2 − c1 =⇒ [b1]C =

[
−2
−1

]
b2 = 0c2 −

1

3
c2 =⇒ [b2]C =

[
0
−1

3

]
so

PC←B = [[b1]C [b2]C] =

[
−2 0
−1 −1

3

]
.

Proposition 6.3.3. Given two different bases for Rn, B and C, the following are true

•
(
P
C←B

)−1

= P
B←C

, and

•
(
P
C←E

)(
P
E←B

)
= P
C←B

,

where E is the standard basis.

The first feature should be obvious - since the columns of the change of basis matrix are a basis, the
matrix is invertible. Hence

[v]C =
(
P
C←B

)
[v]B =⇒

(
P
C←B

)−1

[v]C = [v]B

The composition seems obvious if you think about the notation as representing a function, but we’ll
use an example to demonstrate it.

Example 6.3.4. Using the bases from the previous example, we already computed P
C←B

. It is

straightforward to see that

P
E←B

=

[
1 1
1 −1

]
and P

E←C
=

[
1 −3
−2 3

]
.
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Then (
P
C←E

)(
P
E←B

)
=
(
P
E←C

)−1(
P
E←B

)
=

[
1 −3
−2 3

]−1 [
1 1
1 −1

]
= −1

3

[
3 3
2 1

] [
1 1
1 −1

]
= −1

3

[
6 0
3 1

]
=

[
−2 0
−1 −1

3

]
= P
C←B

.

Remark. It is extremely fast to find change-of-basis matrices to the standard basis, and inversion is
also a fairly quick operation, so as shown in the previous example, these two facts above make it very
quick to find a change-of-basis matrix between arbitrary bases.
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3.6 Introduction to Linear Transformations

Definition. A transformation (aka function or map ) is a function T with

domain Rn and codomain Rm, written

T : Rn → Rm.

T is a linear transformation if

1. T (u + v) = T (u) + T (v) for all u,v ∈ Rn, and

2. T (kv) = kT (v) for all scalars k ∈ R and vectors v ∈ Rn.

Example 3.6.1 ( Identity transformation ). T : Rn → Rn given by T (v) = v is a linear

transformation.

Example 3.6.2 ( Trivial transformation ). T : Rn → Rm given by T (v) = 0 is a linear

transformation.

Example 3.6.3. Suppose T : R1 → R1 is a linear transformation. Thinking about it as a function
from R to R, we can try to compute its derivative. Indeed,

lim
h→0

T (x+ h)− T (x)

h
= lim

h→0

T (x) + hT (1)− T (x)

h
= T (1)

so T is differentiable and has a constant derivative. We thus know that T (x) = mx+ b, for some real
numbers m, b. Then

1. T (x1 + x2) = mx1 +mx2 + b = (mx1 + b) + (mx2 + b) = T (x1) + T (x2) (precisely when b = 0),
and

2. T (kx) = mkx+ b = k(mx+ b) = kT (x) (precisely when b = 0)

so T is a linear transformation only when b = 0.

Remark. In general, the above argument shows that every component in T (v) = T ([v1, . . . , vn]) looks
like a linear combination of the vi’s.

Theorem 3.6.4. If A ∈ Rm×n, then the transformation

TA : Rn → Rm

TA(x) = Ax

is a linear transformation.

Proof. This follows quickly from the properties of matrix operations:

1. TA(x1 + x2) = A(x1 + x2) = Ax1 + Ax2 = TA(x1) + TA(x1)

2. TA(kx) = A(kx) = kAx = kTA(x)
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Example 3.6.5. Consider the map

TA : R2 → R3

TA(x) = Ax

where A =

1 2
3 4
5 6

. Find the range and the kernel of T .

We can write

TA

([
x1

x2

])
=

 x1 + 2x2

3x1 + 4x2

5x1 + 6x2

 = x1

1
3
5

+ x2

2
4
6

 .
The range of TA then is just

Range(TA) =

{
TA

([
x
y

])
: where x, y ∈ R

}

=

x
1

3
5

+ y

2
4
6

 : where x, y ∈ R

 = Col(A).

This tell us that the rank of A corresponds exactly to the dimension of Range(T ).
Similarly, the kernel of T is precisely the set of vectors in R2 for which

T (x) = Ax = 0

hence ker(T ) = Null(A).

Remark. The null space is a subspace of the domain of T .

As it turns out, we can write every linear transformation as multiplication by a matrix.

Theorem 3.6.6. Let T : Rn → Rm be a linear transformation. Then we can write T (x) = Ax where
A is the m× n matrix whose ith column is the column vector T (ei), i.e.

A =

 | | |
T (e1) T (e2) · · · T (em)
| | |

 .
Definition. The matrix in the above theorem is called the standard matrix of T . You may

sometimes see [T ] used to denote the standard matrix of T .

Remark. This is the standard matrix because it’s the transformation of the standard basis. One can
always define the matrix of a linear transformation in terms of other bases as well.

Corollary 3.6.7. Matrix multiplication corresponds to a composition of linear transformations.

Proof. Let TA : Rm → Rn and let TB : Rn → Rp where A is n×m and B is p× n. Then
TB ◦ TA : Rm → Rp and

TB ◦ TA(x) = TB(Ax) = B(Ax) = (BA)x = TBA(x).

It follows that the standard matrix for TB ◦ TA is precisely the p×m matrix BA.
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3.6.1 Types of Linear Transformations of R2

Example 3.6.8. A reflection about the x-axis , Rx, is a linear transformation of R2.

P

1

1
Rx

P

Explicitly, it sends a points (x, y) to (x,−y), hence the transformation is given by

Rx

([
x
y

])
=

[
x
−y

]
The standard matrix for Rx is thusly given by

[Rx] =

[
Rx

([
1
0

])
Rx

([
0
1

])]
=

[
1 0
0 −1

]
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Example 3.6.9. A rotation by an angle θ about the origin , Rθ, is a linear

transformation of R2.

P

1

1
Rθ

P

θ

For this one, we’ll first find the standard transformation matrix. Note that e1 = [cos(0), sin(0)]T and
e2 = [cos(π

2
), sin(π

2
)]T . So rotation by an angle θ should add θ to the angle arguments of sine and

cosine, i.e.

[Rθ] =

[
Rθ

([
cos(0)
sin(0)

])
Rθ

([
cos(π

2
)

sin(π
2
)

])]
=

[
cos(0 + θ) cos(π

2
+ θ)

sin(0 + θ) sin(π
2

+ θ)

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
hence the linear transformation is given by

Rθ

([
x
y

])
=

[
x cos(θ)− y sin(θ)
x sin(θ) + y cos(θ)

]
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Example 3.6.10. A dilation (with dilation factor k ) is a transformation Dk that

expands out from the origin by a factor of k.

P

1

1
Dk

P

k

k

Explicitly, it sends a point (x, y) to a point (kx, y) so for vectors,

Dk

([
x
y

])
=

[
kx
ky

]
The standard matrix for Dk is given by

[Dk] =

[
Dk

([
1
0

])
Dk

([
0
1

])]
=

[
k 0
0 k

]
.
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Example 3.6.11. A ( horizontal ) shear (with shear factor m ), Sm, is a

transformation that slides the top edge of the unit square m units to the right (making a
parallelogram).

P

1

1
Sm

m 1

1 P

In particular, it sends (x, y) to the point (x+my, y),

Sm

([
x
y

])
=

[
x+my

y

]
The standard matrix for Sm is given by

[Sm] =

[
Sm

([
1
0

])
Sm

([
0
1

])]
=

[
1 m
0 1

]
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Example 3.6.12. A projection (onto the x-axis) is a transformation Proje1 that sends the

vector [x, y] to the vector [x, 0].

P

1

1
Proje1

1

0

Since

Proje1

([
x
y

])
=

[
x
0

]
The standard matrix for Proje1 is given by

[Proje1 ] =

[
Proje1

([
1
0

])
Proje1

([
0
1

])]
=

[
1 0
0 0

]
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Example 3.6.13. Find the matrix corresponding to a reflection of R2 across the line y = x.

A reflection across the line y = x sends

[
1
0

]
to

[
0
1

]
and vice versa, so the standard matrix for this

transformation is [
0 1
1 0

]
.

Alternatively, notice that we can think about a reflection about this line as a composition of the
following moves: first rotate the line y = x to y = 0, reflect across this line, then rotate y = 0 back to
y = x.

y
=
x

P

1

1
Rπ/4 ◦Rx ◦R−π/4

P

P P

R−π/4

Rx

Rπ/4

We have that

[R−π/4] =

[
cos
(
−π

4

)
− sin

(
−π

4

)
sin
(
−π

4

)
cos
(
−π

4

) ] =
1√
2

[
1 1
−1 1

]
[Rx] =

[
1 0
0 −1

]
[Rπ/4] =

[
cos
(
π
4

)
− sin

(
π
4

)
sin
(
π
4

)
cos
(
−π

4

)] =
1√
2

[
1 −1
1 1

]
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Now we have that

[Rπ/4 ◦Rx ◦R−π/4] = [Rπ/4][Rx][R−π/4] =
1

2

[
1 −1
1 1

] [
1 0
0 −1

] [
1 1
−1 1

]
=

[
0 1
1 0

]
.

Theorem 3.6.14. Every linear transformation R2 → R2 is a composition of the four five
transformations described above, and the standard matrix can be obtained as a product of the
corresponding matrices.

Proof. Let A =

[
a b
c d

]
with c 6= 0. It is straightforward to verify that[

a b
c d

]
=

[
1 a

c

0 1

] [
bc−ad
c

0
0 1

][ 1√
2
− 1√

2
1√
2

1√
2

][
1 0
0 −1

][ 1√
2

1√
2

− 1√
2

1√
2

] [
1 d
0 1

] [
c 0
0 1

]
.

The case when c = 0 is left as an exercise to the reader.

More generally,

3.6.2 One-to-One and Onto

Definition. A transformation T : Rn → Rm is one-to-one (or injective ) if, for every

vector v ∈ Rn, there is a unique w ∈ Rm for which T (v) = w. T is onto (or surjective )

if, for every w ∈ Rm, there is at least one v ∈ Rm for which T (v) = w. The kernel of T is the

collection of vectors x in Rn for which T (x) = 0.

For linear transformations, we have a more convenient way of thinking about these notions.

Example 3.6.15. Let’s consider a linear transformation T : R2 → R3 with standard matrix A. Since
Col(A) = range(T ), then range(T ) is a subspace of R3 whose dimension is equal to Rank(A).
Fundamentally, there are only three possible types of subspaces representing the range:

x

y

domain(T ) = R2

range(T ) ∼= R0

Rank(A) = 0
range(T ) ∼= R1

Rank(A) = 1
range(T ) ∼= R2

Rank(A) = 2
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Let {e1, e2} be the standard basis for R2, the domain of T . Note that {T (e1), T (e2)} are precisely
the columns of A.

Suppose that Rank(A) = k where k < 2. Then {T (e1), T (e2)} is not a linearly independent set in R3,
so there are constants c1, c2 for which

c1T (e1) + c2T (e2) = 0

c2T (e2) = −c1T (e1)

T (c2e2) = T (−c1e1)

and hence we have two different vectors with the same output - T is not one-to-one.

This idea motivates the following

Theorem 3.6.16. A linear transformation TA : Rn → Rm is one-to-one if and only if Rank(A) = n.

And following from Rank–Nullity,

Corollary 3.6.17. A linear transformation TA : Rn → Rm is one-to-one if and only if
nullity(A) = 0.

From example 3.6.15, it is clear that that {T (e1), T (e2)}, the columns of A, never form a basis for
R3. Hence there is always a vector v ∈ R3 for which v /∈ span(T (e1), T (e2)), and thus v /∈ range(T ).
This motivates the following

Theorem 3.6.18. A linear transformation TA : Rn → Rm is onto if and only if Rank(A) = m.

Example 3.6.19. Let T : R2 → R2 be the projection onto the first coordinate:

T

([
x
y

])
=

[
x
0

]
with standard matrix A =

[
1 0
0 0

]
.

It should be clear that any vector of the form [0, y]T is sent to 0, but this can be seen by explicitly
computing

Null(A) =

{[
0
y

]
: y ∈ R

}
.

By a quick rank/nullity computation, one also sees that T is neither one-to-one nor onto.

3.6.3 Inverse Transformations

Definition. Two transformations S : Rn → Rm, and T : Rk → Rp are inverses if, for every

v ∈ Rn,

S ◦ T (v) = T ◦ S(v) = v

In other words, S ◦ T and T ◦ S are both the identity transformation.
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Taking v ∈ Rn, then the only way the above equation holds is if n = k = m = p, and so the
corresponding standard matrices [S] and [T ] are actually n× n. Since composition of linear
transformations is equivalent to multiplication of the corresponding matrices, the equation in the
definition can be rewritten as

[S][T ] = [T ][S] = In.

As such

Theorem 3.6.20. If T : Rn → Rn has an inverse, then the standard matrix [T ] is invertible and
[T−1] = [T ]−1.

Example 3.6.21. Let Rθ : R2 → R2 be the rotation of the plane by an angle of θ. Clearly, the
inverse transformation is R−θ, the rotation of the plane by an angle of −θ. Looking at the standard
matrices

[Rθ] =

[
cos θ − sin θ
sin θ cos θ

]
[R−θ] =

[
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]
=

[
cos θ sin θ
− sin θ cos θ

]
and the product of these matrices is

[Rθ][R−θ] =

[
cos2 θ + sin2 θ cos θ sin θ − cos θ sin θ

cos θ sin θ − cos θ sin θ sin2 θ + cos2 θ

]
=

[
1 0
0 1

]

Theorem 3.6.22. A is invertible if and only if TA : Rn → Rn is both one-to-one and onto.

Proof. By the fundamental theorem of invertible matrices, A is invertible if and only if Rank(A) = n,
and from Theorems 3.6.16 and 3.6.18, this is true if and only if TA : Rn → Rn is both one-to-one and
onto.
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3.7 Applications

3.7.1 Markov Chains

A Markov chain is just a process by which one models probablistic scenarios

Example 3.7.1. Researchers have found that Democratic (D) voters are 70% likely to continue
voting Democratic in the next election, 10% likely to vote Republican in the next election, and 20%
likely to vote Independent in the next election. Similar data was compiled for Republican (R) and
Independent (I) voters, and can be modeled in the following graph:

D

I

R 0.20.3

0.1

0.1

0.1

0.2

0.7

0.5

0.8

If there are D0 Democratic voters, R0 Republican voters, and I0 Independent voters in this current
election cycle, how many of each will there be for the next election cycle? How many will there be
after k election cycles?

We can write

D1 = 0.7(D0) + 0.1(R0) + 0.3(I0)

R1 = 0.1(D0) + 0.8(R0) + 0.2(I0)

I1 = 0.2(D0) + 0.1(R0) + 0.5(I0)

or, as a matrix/vectors

x1 =

D1

R1

I1

 =

0.7 0.1 0.3
0.1 0.8 0.2
0.2 0.1 0.5

D0

R0

I0

 = Px0

It follows that, after k elections cycles, xk = P kx0.

Definition. The vector x0 is known as the initial state vector , P is known as the

transition matrix , and the entire process above is called a Markov chain (with 3

states ). If the transition matrix has columns with nonnegative entries that all sum to 1, it is
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called a stochastic matrix , the columns are called probability vectors , and the

(i, j)-entry of P k represents the probability that object in state i (e.g. voting preference) switches to
state j after k transitions. If a stochastic matrix P has the property that some power of it P n has all

positive (not just nonnegative) entries, then P is a regular stochastic matrix .

Example 3.7.2. Given the process described in the previous Example 3.7.1, let D0 = 1000,
R0 = 800 and I0 = 300. Compute xk for a few values of k. What happens as k → 0∞?

x1 =

870
800
430

 , x20 ≈

764
859
477

 , x100 ≈

764
859
477

 , x1000 ≈

764
859
477


What we notice is that the vector xk = P kx0 seems to stop changing as k →∞. Hence

x = lim
k→∞

P kx0 ≈

764
859
477



If you’re interested in playing around with this yourself, say with different initial conditions or a
different number of steps in the Markov chain process, you can use the Matlab code below:

transMat = [ 0.7 0.1 0.3 ; 0.1 0.8 0.2 ; 0.2 0.1 0.5 ]; %transition matrix

x0 = [ 1000 ; 800 ; 300 ]; %initial state vector [D0,R0,I0]

maxLoop = 100; %number of iterations in Markov chain

for k=1:maxLoop

transpose(transMat^k*x0) %outputs xk = [Dk,Rk,Ik], kth step in Markov chain process

end

Now, if limk→∞ P
kx0 exists and equals some vector x, then

x = lim
k→∞

P kx0 = lim
k→∞

P k+1x0 = P
(

lim
k→∞

P kx0

)
= Px.

Definition. In a Markov chain process with stochastic transition matrix P , a vector x for which

Px = x is called a steady state vector .

Solving for steady-state vectors is quite a bit simpler than looking at limits. Note that

Px = x

Px = Ix

Px− Ix = 0

(P − I)x = 0

which is a fairly simple linear system that can be solved in the usual way. The problem you’ll run
into is that this system is under-determined and there will be infinitely-many choices for x. One
natural choice is to require x to also be a probability vector, and this is natural because
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Theorem 3.7.3. For a regular stochastic matrix P , there is a unique steady state probability vector.

Remark. We note that, if x0 is a probability vector, then P kx0 is as well, so it’s also natural to set up
your Markov chain with the initial state vector as a probability vector.

Example 3.7.4. Find a steady-state probability vector for the Markov chain in Example 3.7.1.

We can write (P − I)x = 0 as an augmented matrix and solve it in the usual way.

[
P − I 0

]
=

−0.3 0.1 0.3 0.0
0.1 −0.2 0.2 0.0
0.2 0.1 −0.5 0.0

 RREF−−−−→

1.0 0.0 −1.6 0.0
0.0 1.0 −1.8 0.0
0.0 0.0 0.0 0.0


so our steady state vector has the form

x =

1.6t
1.8t
t


for some real number t. Requiring x to be a probability vector gives 1.6t+ 1.8t+ t = 1, hence
t = 1

4.4
≈ 0.227, and thus

x ≈

0.364
0.409
0.227



Remark. With the above in mind, taking scaling the probability vector by 2100, we obtain the
original limit. Ultimately this tells us that, no matter nonzero vector x0 we picked, there will always
be a scalar λ ∈ R for which lim

k→∞
P kx0 = λx.
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APPENDIX C Complex Numbers

Some matrices may have complex eigenvalues (what does that mean geometrically? hmmm...), so
below is an list of important properties of complex numbers.

Let i =
√
−1, the so-called imaginary unity . A complex number is a number

z = a+ bi where a and b are real numbers. a is called the real part and b is called the

imaginary part of z. The conjugate of z is the complex number z = a− bi.

Addition of two complex numbers z1 and z2 is done via by adding the real and imaginary parts
separately:

z1 + z2 = (a1 + b1i) + (a2 + b2i) = (a1 + a2) + i(b1 + b2).

Multiplication of complex numbers follows the usual distributive law:

z1z2 = (a1 + b1i)(a2 + b2i)

= a1a2 + a1b2i+ a2b2i+ b1b2i
2

= (a1a2 − b1b2) + (a1b2 + a2b1)i.

Noting that zz is a real number for any z, division of complex numbers is done by multiplying by the
conjugate and scaling by 1/zz:

z1

z2

=
z1z2

z2z2

=
1

z2z2

(z1z2) =
1

a2
2 + b2

2

((a1a2 + b1b2) + (−a1b2 + a2b1)i)

Exercise. To each complex number z = a+ bi we can associate the matrix [z] =

[
a −b
b a

]
. Show

that the product z1z2 can be derived from multiplying the associated matrices [z1][z2].

Matrices with complex entries

Although we won’t see them in this course, matrices with complex entries appear all the time (they
may even be the central objects in your instructor’s dissertation) and have uses in physics and
electrical engineering.

If A = [aij] is a matrix with complex entries, the conjugate is

A =

a11 · · · a1n
...

...
am1 · · · amn

 .
and the conjugate transpose (sometimes called the adjoint or
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Hermitian transpose ) is obtained by first conjugating the matrix and then transposing it

A
T

=

a11 · · · am1
...

...
a1n · · · amn

 .
The conjugate-transpose is also sometimes denoted A† or A∗, depending on whether or not a
physicist wrote the paper.
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4.1 Introduction to Eigenvalues and Eigenvectors

Definition. Let A be an n× n matrix. A scalar λ is an eigenvalue of A if there is a nonzero

vector v ∈ Rn so that Av = λv. Such a vector is called an eigenvector of A corresponding to

λ.

Remark. The prefix eigen– is not a name, but is derived from German and means “special” or
“characteristic.”

Example 4.1.1. For a Markov chain (with regular transition matrix), the steady state vector was
precisely the vector x satisfying Px = x, so x was an eigenvector of P corresponding to the
eigenvalue 1.

Example 4.1.2. A =

[
2 1
1 2

]
has eigenvector v =

[
−1
1

]
. Find the corresponding eigenvalue.

A

[
−1
1

]
=

[
2 1
1 2

] [
−1
1

]
=

[
−1
1

]
= λ

[
−1
1

]
hence the corresponding eigenvalue is λ = −1.

Example 4.1.3. Show that 3 is another eigenvalue of A =

[
2 1
1 2

]
and find its corresponding

eigenvector.

We need to find a vector v such that

Av = 3v =⇒ Av − 3v = 0 =⇒ (A− 3I)v = 0

so really we need to compute Null(A− I).[
A− 3I 0

]
=

[
−1 1 0
1 −1 0

]
RREF−−−→

[
1 −1 0
0 0 0

]
So a vector v is in Null(A− 3I) if it has the form

[
t
t

]
. As such, any nonzero vector of this form is an

eigenvector of A corresponding to 3.

Definition. Let A be an n× n matrix and λ an eigenvalue with corresponding eigenvectors

v1, . . . ,vk. The eigenspace corresponding to λ is

Eλ:= Span(v1, . . . ,vk).

Remark. It may at first seem surprising that any linear combination of the above vi’s is still an
eigenvector for λ, but it is a straightforward computation to see that it is true:

A(c1v1 + · · ·+ ckvk) = c1Av1 + · · ·+ ckAvk

= c1λv1 + · · ·+ ckλvk

= λ(c1v1 + · · ·+ ckvk).

Example 4.1.4. In the previous example, E3 = Span

([
1
1

])
.
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4.1.1 Geometry of Eigenvectors

Eigenvectors tell us about lines that are preserved or stabilized by the linear transformation (since all
that happens is a vector in that line is scaled). Similarly, Eigenspaces correspond to subspaces that
are stabilized by a linear transformation.

Example 4.1.5. Using A =

[
2 1
1 2

]
as before, notice that the vectors [−1, 1]T and [1, 1]T do not

change direction after a transformation, but are merely scaled.

Before applying transformation A.

(Shown using the standard coordinate grid.)

After applying transformation A.

(Shown with the transformed standard coordinate grid.)

Before applying transformation A.

(Shown using the “eigengrid”.)

After applying transformation A.

(Shown with the transformed “eigengrid”.)

Another way to “see” eigenvectors is to plot the transformation “head-to-tail” by which you plot a
vector v in standard position and then plot Av with its tail at the head of v. Eigenvectors are then
those vectors whose directions are unchanged and that are scaled by the eigenvalue.

81



Example 4.1.6. Let A =

[
2 1
1 2

]
as before. Plotting a bunch of unit vectors v and then the

corresponding vectors Av from the heads of v, we see that the eigenvectors corresponding to λ = 1

are in the direction of

[
−1
1

]
, and the eigenvectors corresponding to λ = 3 are in the direction of

[
1
1

]
.

4.1.2 Finding eigenvalues

Definition. If A =

[
a b
c d

]
, the determinant of A is

det(A) = ad− bc

We’ll define the determinants for all n× n matrices in the next section.

An eigenvector for the eigenvalue λ is a vector in Null(A− λI). By the Fundamental Theorem of
Invertible matrices tells us that nullity(A− λI) 6= 0 if and only if A− λI is not invertible. Moreover,
from a previous theorem, a 2× 2 matrix is not invertible if and only if the matrix det(A− λI) = 0.
Since det(A− λI) is a polynomial in λ, this means that eigenvalues are precisely the zeroes of this
polynomial.

Example 4.1.7. Find the eigenvalues for A =

[
2 1
1 2

]
.

0 = det(A− λI) = det

([
2− λ 1

1 2− λ

])
= (2− λ)(2− λ)− 1 = λ2 − 4λ+ 3.

Using your favorite method of solving for the zeroes of this polynomial, we exactly see that its zeroes
are λ = 1, 3, which are precisely the eigenvalues we expected to get from the previous examples.

Example 4.1.8. Find the eigenvalues for A =

[
−6 3
4 5

]
.

0 = det(A− λI) = det

([
−6− λ 3

4 5− λ

])
= (−6− λ)(5− λ)− 12 = λ2 + λ− 42

Using your favorite method of solving for the zeroes of this polynomial, we exactly see that its zeroes
are λ = −6, 7.
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Example 4.1.9. Find the eigenvalues and corresponding eigenspaces for the scalar matrix

A =

[
7 0
0 7

]
.

0 = det(A− λI) = det

([
7− λ 0

0 7− λ

])
= (7− λ)(7− λ).

This matrix has a single eigenvalue λ = 7 and

E7 = Null(A− 7I) = Null

([
0 0
0 0

])
= Span

([
1
0

]
,

[
0
1

])
.

Remark. Eigenvalues can appear with multiplicity in the polynomial det(A− λI), and this
multiplicity may or may not be equal to the dimension of Eλ.

Exercise 4.1.1. Find the eigenvalues and corresponding eigenspaces for the horizontal shear matrix

A =

[
1 7
0 1

]
.
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4.2 Determinants

What is the determinant of a matrix?

4.2.1 Determinant of a 2× 2 Matrix

We motivate this by looking at where the determinant comes from in the 2× 2 case.

Let A =

[
a b
c d

]
. For purposes of the picture, we will assume that a > c > 0 and d > b > 0.

(0, 0)

(a, c)

(b, d)

(a+ b, c+ d)

1
2
ac

1
2
ac

bc

bc

1
2
bd 1

2
bd

The (signed) area of the parallelogram is

area = (a+ b)(c+ d)− 2bc− bd− ac = ad− bc. = det

([
a b
c d

])
.

Let’s look at the properties of this determinant.

Proposition 4.2.1. det(I2) = 1

Proof. The area of the unit square is one.

Proposition 4.2.2. det(A) is multilinear (it behaves like a linear transformation in each

column).

Proof. Addition: This is a straightforward computation.

det

[
(a1 + a2) b
(c1 + c2) d

]
= (a1 + a2)d− b(c1 + c2)

= a1d− bc1 + a2d− bc2
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= det

[
a1 b
c1 d

]
+ det

[
a2 b
c2 d

]
and det

[
a (b1 + b2)
c (d1 + d2)

]
= a(d1 + d2)− (b1 + b2)c

= ad1 − b1c+ ad2 − b2c

= det

[
a b1

c d1

]
+ det

[
a b2

c d2

]
and that for any scalar k,

det

[
ka b
kc d

]
= (kad− bkc) = k(ad− bc) = k det

[
a b
c d

]
and det

[
a kb
c kd

]
= (akd− kbc) = k(ad− bc) det

[
a b
c d

]
.

Here is an alternate, geometric proof of multilinearity for det(A) in the case of a 2× 2 matrix.

Proof. addition: (drawn only in the case of the first column)

[
a1
c1

]
[
b
d

]
+

[
a2
c2

]

[
b
d

]

=

=

[
a1
c1

]

[
a2
c2

] [
a1 + a2
c1 + c2

]

[
b
d

]

scalar multiplication: (drawn in the case that k = 2)
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[
a
c

] [
2a
2c

]

[
b
d

]

Proposition 4.2.3. The determinant is alternating (that is, it switches sign whenever

columns are swapped).

Proof. Alternating: it is a straightforward computation to show that

det

[
a b
c d

]
= (ad− bc) = −(bc− ad) = − det

[
b a
d c

]
.

Remark. There is no geometric proof of the alternating condition; while it does have geometric
meaning (it encodes orientation), this geometric meaning is inferred from the algebraic condition, so
a geometric argument would be circular.

Now that we know the properties, we might define the determinant for an n× n matrix as follows,
and then check to see if it still has all of those properties that the 2× 2 case has.

Definition. The determinant of an n× n matrix A the signed volume of the parallelepiped

formed by the columns of A.

Remark. Some write |A| to mean detA. We don’t associate with such individuals.

Theorem 4.2.4. Consider det as a function whose inputs are the columns of an n× n matrix, A,
and whose output is det(A). This function has the following properties:

1. det(In) = 1.

2. det is a multilinear function (it is a linear transformation in each input).

3. det is an alternating function (its sign changes whenever two columns are swapped).

This is good news! This means that our geometric definition still has all of the same properties as in
the 2× 2 case. Better still, there’s actually no other way we could have defined it:

Theorem 4.2.5. The determinant is the unique function with the properties given in Theorem 4.2.4.

4.2.2 Computing the determinant of a n× n Matrix

So how does one actually compute the determinant of an n× n matrix where n > 2? Computing the
parallelepiped volume sounds like a bit of a chore, but thankfully we can do it iteratively.
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Definition. For an n× n matrix A, the (i, j)-minor of A, denoted Mi,j, is the determinant of

the submatrix formed by removing row i and column j from A.

Example 4.2.6. For A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

, the (2, 1)-minor is

M2,1 = det

a11 a12 a13

a21 a22 a23

a31 a32 a33

 = det

[
a12 a13

a32 a33

]
= a12a33 − a32a13.

Remark. Your book uses the notation detAij to denote the (i, j)-minor, but I think it just makes
things more confusing, especially since Aij is common notation to represent the (i, j) entry of A.

Theorem 4.2.7 (Laplace’s Theorem - cofactor expansion). The determinant of an n× n matrix A
can be computed along the ith row as the sum

detA =
n∑
j=1

(−1)i+jaijMi,j.

or along the jth column as the sum

detA =
n∑
i=1

(−1)i+jaijMi,j.

The quantity (−1)i+jMi,j is sometimes called the (i, j)-cofactor and the above sums are called

cofactor expansions .

Remark. The very rough geometric idea of cofactor expansion in dimension 3 is that the volume of
the parallelepiped can be computed from the areas of three of the side parallelograms, and each of
these areas can ultimately be viewed as the determinant of a 2× 2 matrix. There are obviously a
number of technical details to fill in here, but this construction extends up to the n-dimensional case.

Example 4.2.8. For A =

 3 1 4
−1 5 −9
2 6 5

, compute detA by expanding along the first row.

detA = a11M1,1 − a12M1,2 + a13M1,3

= 3 det

 3 1 4
−1 5 −9
2 6 5

− 1 det

 3 1 4
−1 5 −9
2 6 5

+ 4 det

 3 1 4
−1 5 −9
2 6 5


= 3 det

[
5 −9
6 5

]
− 1 det

[
−1 −9
2 5

]
+ 4 det

[
−1 5
2 6

]
= 3(79)− 1(13) + 4(−16) = 160.
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Example 4.2.9. With the same matrix as before, A =

 3 1 4
−1 5 −9
2 6 5

, compute detA by expanding

along the second column.

detA = −a12M1,2 + a22M2,2 − a32M3,2

= −1 det

 3 1 4
−1 5 −9
2 6 5

+ 5 det

 3 1 4

−1 5 −9

2 6 5

− 6 det

 3 1 4
−1 5 −9
2 6 5


= −1 det

[
−1 −9
2 5

]
+ 5

[
3 4
2 5

]
− 6 det

[
3 4
−1 −9

]
= −1(13) + 5(7)− 6(−23) = 160.

Having a zero determinant tells us that the corresponding parallelepiped has no volume, which
means all three column vectors must live in the same plane (or even same line). So a determinant of
zero is enough to tell us that the columns are linearly dependent!

Proposition 4.2.10. For an n× n matrix A, det(A) = 0 if and only if the columns of A are linearly
dependent.

This means we can add onto the fundamental theorem of invertible matrices:

Theorem 4.2.11. A is invertible if and only if det(A) 6= 0.

4.2.3 Properties of Determinants

Definition. A square matrix A = [aij] is upper triangular if aij = 0 whenever i > j, and is

lower triangular if aij = 0 whenever i < j.

Example 4.2.12. Consider the following matrices

A =

1 2 3
0 4 5
0 0 6

 , B =

1 0 0
2 3 0
4 5 6

 , C =

1 0 0
0 2 0
0 0 3

 .
A is upper triangular, B is lower triangular, and C (a diagonal matrix) is both upper and lower
triangular.

Theorem 4.2.13 (Poole Theorem 4.2). If A is an n× n triangular matrix, then
det(A) = a11a22 · · · ann, the product of the numbers along the diagonal.

Proof. Perform the cofactor expansion along the first column (in the upper triangular case) or along
the first row (in the lower triangular case).
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Example 4.2.14. Let’s look at the matrices in Example 4.2.12. By computing the determinant of A
along the first column, we have

detA = 1M1,1 − 0M2,1 + 0M3,1

= 1 det

[
4 5
0 6

]
= 1(4)(6).

Now computing the determinant of B along the first row, we have

detB = 1M1,1 − 0M1,2 + 0M1,3

= 1 det

[
3 0
5 6

]
= 1(3)(6).

Finally, computing the determinant of C along the first row (although the first column is perfectly
fine as well),

detC = 1M1,1 − 0M1,2 + 0M1,3

= 1 det

[
2 0
0 3

]
= 1(2)(3).

Theorem 4.2.15 (Poole Theorems 4.7 - 4.10). If A and B are n× n matrices and k is a scalar, then

1. det(AB) = (detA)(detB),

2. det(kA) = kn(detA),

3. det(AT ) = detA,

4. and if A is invertible, detA−1 =
1

detA
.

Example 4.2.16. Verify each part of the theorem above with the following:

A =

[
3 −1
8 −2

]
, B =

[
2 1
1 2

]
, and k = 5.

1. detA = −6 + 8 = 2, detB = 4− 1 = 3, and

det(AB) = det

[
5 1
14 4

]
= 6 = (2)(3) = (detA)(detB).

2. det kA = det

[
15 −5
40 −10

]
= 50 = 25(2) = k2 detA.

3. detAT = det

[
3 8
−1 −2

]
= −6 + 8 = 2 = detA

4. detA−1 = det

−1
1

2

−4
3

2

 = −3

2
+ 2 =

1

2
=

1

detA
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4.3 Eigenvalues and Eigenvectors of n× n Matrices

We’ve already seen eigenvalues and eigenvectors for 2× 2 matrices, but now that we have defined
determinants for n× n matrices, we’ll extend these definitions accordingly.

Definition. If A is a square matrix, then det(A− λI) is a polynomial with indeterminate λ and is

called the characteristic polynomial of A. The eigenvalues of A are precisely the

roots of the characteristic polynomial. For each eigenvalue λ, the corresponding eigenspace is

Eλ = Null(A− λI) and the nonzero vectors in Eλ are eigenvectors .

Remark. Non-square matrices do not have eigenvalues/eigenvectors. If A is an m× n matrix and
v ∈ Rn, then Av ∈ Rm. However, the equation Av = λv implies that Av ∈ Rn, so it must be that
m = n. Non-square matrices have something called singular values which, in some sense, play the
role of eigenvalues, but this is outside of the scope of this course.

Example 4.3.1. Find the eigenvalues and eigenvectors for A =

2 12 10
0 −4 −4
1 2 1

.

We first compute det(A− λI) via cofactor expansion along the first column.

p(λ) = det(A− λI) = det

2− λ 12 10
0 −4− λ −4
1 2 1− λ


= (2− λ) det

[
−4− λ −4

2 1− λ

]
+ 1 det

[
12 10

−4− λ −4

]
= (2− λ) ((−4− λ)(1− λ) + 8) + 1 (−48− 10(−4− λ))

= −
(
λ3 + λ2 − 12λ

)
= −λ(λ+ 4)(λ− 3)

The characteristic polynomial factors nicely and the eigenvalues are −4, 0, 3. The corresponding
eigenspaces are

E−4 = Null(A+ 4I) = Null

6 12 10
0 0 −4
1 2 5

 = Span

−2
1
0

 ,

E0 = Null(A− 0I) = Null

2 12 10
0 −4 −4
1 2 1

 = Span

 1
−1
1

 ,

E3 = Null(A− 3I) = Null

−1 12 10
0 −7 −4
1 2 −2

 = Span

22
−4
7

 .
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Example 4.3.2. Consider the matrix A =

3 −2 −4
0 1 2
0 0 1

. The characteristic polynomial for A is

p(λ) = (3− λ)(1− λ)2

hence the eigenvalues are 1, 3. The corresponding eigenspaces are

E3 = Null(A− 3I) = Span

1
0
0

 and E1 = Null(A− 1I) = Span

1
1
0

 .

Notice that the above 3× 3 matrix had only two distinct eigenvalues, but if we counted multiplicity
(that is (1− λ) appears with multiplicity 2 in the characteristic polynomial), then in fact we have
exactly 3 eigenvalues. It may also be interesting to notice that dim(E1) = dim(E3) = 1.

Example 4.3.3. Consider the matrix A =

3 −2 −4
0 1 0
0 0 1

. The characteristic polynomial for A is

p(λ) = (3− λ)(1− λ)2

hence the eigenvalues are 1, 3. The corresponding eigenspaces are

E3 = Null(A− 3I) = Span

1
0
0

 and E1 = Null(A− 1I) = Span

1
1
0

 ,
2

0
1

 .

Just as before, the above 3× 3 matrix had an eigenvalue 1 that appeared with multiplicity 2 in the
characteristic polynomial, but this time dim(E1) = 2. It’s not clear that there is a relationship
between the multiplicity of the polynomial roots and the dimension, so let’s give the following
definitions:

Definition. The algebraic multiplicity of an eigenvalue λ is the multiplicity as a root of the

characteristic polynomial, and the geometric multiplicity is the dimension of the eigenspace

Eλ.

These two different notions of multiplicity will be important in the next section. We’ll note that if A
is an n× n matrix, then the sum of all of the algebraic multiplicities will always be n. This is a
consequence of the fundamental theorem of algebra that every polynomial of degree n factors into n
linear factors. From Example 4.3.2, it’s clear that the geometric multiplicities do not need to sum to
n, however.

Theorem 4.3.4 (Poole - Theorem 4.15). If A is a triangular (or diagonal) matrix, then the
eigenvalues are precisely the entries appearing along the diagonal.
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Proof. If A is triangular, then by Theorem 4.2.13

p(λ) = det(A− λI) = (a11 − λ)(a22 − λ) · · · (ann − λ).

Theorem 4.3.5. If A is an n× n square matrix with eigenvalues λ1, . . . , λn (not necessarily all
distinct), then detA = λ1λ2 · · ·λn, the product of all of the eigenvalues.

Proof. The above theorem is easy to see in the case that A is triangular - the product of the roots of
a polynomial are precisely the constant term, and the constant term of the characteristic polynomial
is exactly a11a22 · · · ann. More generally, the characteristic polynomial factors as

det(A− λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ)

where each λi is an eigenvalue. Taking λ = 0, one gets

det(A) = (λ1)(λ2) · · · (λn)

From this it follows that we have yet another test for invertibility:

Theorem 4.3.6. A square matrix A is invertible if and only if 0 is not an eigenvalue of A.

4.3.1 Relationship to Matrix Operations

It is natural to ask about the interplay between eigenvalues/eigenvectors and matrix operations like
inversion and exponentiation.

Example 4.3.7. Consider A =

[
1 −2
1 4

]
. The characteristic polynomial is

pA(λ) = (2− λ)(3− λ)

hence the eigenvalues are 2, 3 and the corresponding eigenspaces are

E2 = Span

([
−2
1

])
and E3 = Span

([
−1
1

])
.

With A as above, we have that A−1 =
1

6

[
4 2
−1 1

]
and the eigenvalues are 1

2
, 1

3
– reciprocals of A’s

eigenvalues. What’s more, notice that

A−1

[
−2
1

]
=

1

2

[
−2
1

]
and A−1

[
−1
1

]
=

1

3

[
−1
1

]
so the reciprocal eigenvalues of A−1 have the same eigenvectors as the eigenvalues of A! With A as

before, we have that A2 =

[
−1 −10
5 14

]
and the eigenvalues are 4, 9 – squares of A’s eigenvalues.

What’s more, notice that

A2

[
−2
1

]
= 22

[
−2
1

]
and A2

[
−1
1

]
= 32

[
−1
1

]
so the squared eigenvalues of A2 have the same eigenvectors as the eigenvalues of A!
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Theorem 4.3.8. Let A be a square matrix with eigenvalue λ and corresponding eigenvector v.

1. For any positive integer n, λn is an eigenvalue of An with corresponding eigenvector v.

2. If A is invertible, then 1
λ

is an eigenvalue of A−1 with corresponding eigenvector v.

The above theorem also makes sense geometrically. Each application of the transformation A
stretches its eigenvector v by a factor of λ:

v
λv

λ2v

A A

A2 = A ◦ A

Similarly, each application of A−1 “undoes” the stretching of its eigenvector v by a factor of λ (i.e.,
stretches instead by a factor of 1

λ
: The above theorem also makes sense geometrically. Each

application of A stretches its eigenvector by a factor of λ

v

1
λ
v

A−1
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4.4 Similarity and Diagonalization

4.4.1 Similarity

As we saw in the previous section, triangular and diagonal matrices were very nice from a
computational standpoint, so it would be nice to convert a matrix into triangular form in a
meaningful way. We already know that we can do this with row reduction, but this process does not
preserve eigenvalues (any invertible matrix row reduces to the identity, for example), so in this
section we will look at another process that does retain the useful eigeninformation.

Definition. Two n× n matrices A and B are called similar if there is an invertible n× n
matrix P for which P−1AP = B. We sometimes write “A ∼ B” to mean “A is similar to B.” We
also sometimes refer to the product P−1AP as “conjugation of A by P .”

Remark. Such a P is not unique. For example, P−1IP = I is true for every invertible matrix P .

Example 4.4.1. A =

[
1 0
0 5

]
and B =

[
2 3
1 4

]
are similar.

We aim to find P =

[
x y
z w

]
so that P−1AP = B. So

P−1AP = B

1

wx− yz

[
w −y
−z x

] [
1 0
0 5

] [
x y
z w

]
=

[
2 3
1 4

]
1

wx− yz

[
wx− 5yz −4wy

4xz 5wx− yz

]
=

[
2 3
1 4

]
This matrix equation gives us four nonlinear equations in the entries, and playing with it a bit, one

sees that P =

[
1 −1
−1 3

]
is one such solution.

Example 4.4.2. The matrices A =

[
1 0
0 −1

]
and B =

[
1 0
0 1

]
are not similar.

If they were, we could find a matrix P =

[
x y
z w

]
for which B = P−1AP . In this case, we would have

[
1 0
0 1

]
=

1

xw − yz

[
w −y
−z x

] [
1 0
0 −1

] [
x y
z w

]
=

1

xw − yz

[
wx+ yz 2wy
−2xz −wx− yz

]
and this equality implies that the diagonal entries are both equal and nonzero. But
wx+ yz = −(wx+ yz) implies that wx+ yz = 0, so this is impossible.
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4.4.2 Properties of similarity and similar matrices

Theorem 4.4.3 (Poole Theorem 4.21). Let A,B,C be n× n matrices.

a. reflexive: A ∼ A.

b. symmetric: If A ∼ B then B ∼ A.

c. transitive: If A ∼ B and B ∼ C then A ∼ C.

Each of the following properties are easily verified, say with the matrices from Example 4.4.1.

Theorem 4.4.4 (Poole Theorem 4.22). Let A and B be similar n× n matrices. Then

a. detA = detB.

b. A is invertible if and only if B is invertible.

c. A and B have the same rank.

d. A and B have the same characteristic polynomial.

e. A and B have the same eigenvalues.

f. Am ∼ Bm for any positive integer m.

Proof (Sketch). Let P be a matrix for which B = P−1AP .

a. detB = det(P−1AP ) = (detP−1) (detA) (detP ) =

(
1

detP

)
(detA) (detP ) = detA

b. B−1 = (P−1AP )−1 = P−1A−1(P−1)−1 = P−1A−1P

c. This follows from the fact that for any invertible matrix P ,
Rank(A) = Rank(PA) = Rank(AP ).

d. det(B − λI) = det(P−1AP − λP−1IP ) = det(P−1(A− λI)P ) = det(A− λI)

e. A and B have the same characteristic polynomials

f. Bm = (P−1AP ) · · · (P−1AP )︸ ︷︷ ︸
m

= P−1A · · ·A︸ ︷︷ ︸
m

P = P−1AmP

To check whether two given matrices A and B are similar requires finding the matrix P satisfying
P−1AP = B, which as we saw from Examples 4.4.1 and 4.4.2, could be quite laborious. The above
theorem is actually most useful for showing that two matrices are not similar (in fact, no single part
of the theorem is enough to deduce that two matrices are similar).

Example 4.4.5. The matrices A and B in Example 4.4.2 are not similar because detA = −1 and
detB = 1.

Example 4.4.6. Although matrices A =

[
2 0
0 3

]
and B =

[
1 0
0 6

]
have the same rank

(RankA = RankB = 2) and determinant (detA = detB = 6), they are not similar because their
eigenvalues and characteristic polynomials are different.
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Example 4.4.7. Although matrices A =

[
1 1
0 1

]
and B =

[
1 0
0 1

]
have the same rank

(RankA = RankB = 2), determinant (detA = detB = 6), characteristic polynomial
(p(λ) = (1− λ)2), they are not similar because no non-identity matrix is similar to the identity
matrix (for any P , P−1IP = I).

4.4.3 Diagonalization

Definition. A matrix A is diagonalizable if it is similar to a diagonal matrix D, i.e. if there

is some invertible matrix P so that P−1AP = D.

Example 4.4.8. From Example 4.4.1, B =

[
2 3
1 4

]
is diagonalizable since it is similar to the

diagonal matrix A =

[
1 0
0 5

]
.

Notice that the characteristic polynomial of A above is

det(A− λI) = (2− λ)(4− λ)− 3 = λ2 − 6λ+ 5 = (λ− 1)(λ− 5)

and thus B contains A’s eigenvalues along the diagonal. This gives us a clue as to how one can go
about finding the matrix P used to conjugate A into a diagonal matrix (if possible).

Theorem 4.4.9 (Poole Theorem 4.23). Let A be an n× n matrix. Then A is diagonalizable if and
only if A has n linearly independent eigenvectors.

More precisely, D = P−1AP if and only if the columns of P are the eigenvectors of A and if the (i, i)
entry of D is the eigenvalue corresponding to the ith column of P .

I won’t sketch the proof, but the core observation is the following:

If P−1AP = D, then this rearranges to AP = PD. So if pi is the ith column of P and λi is the (i, i)
entry in D, then

AP = PD

A

p1 · · · pn

 =

p1 · · · pn


λ1

. . .

λn


Ap1 Apn

 =

λ1p1 λnpn



and so Api = λipi, hence the λi are eigenvalues for A with corresponding eigenvectors pi.
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Example 4.4.10. Let A =

[
2 3
0 2

]
. Is A diagonalizable?

The characteristic polynomial for A is

det(A− λI) = det

[
2− λ 3

0 2− λ

]
= (2− λ)2

so A has a single eigenvalue of 2 with algebraic multiplicity 2. The corresponding eigenspace is

E2 = Null(A− 2I) = Span

([
1
0

])
.

and so the eigenvalue 2 has geometric multiplicity 1. This means that there are not enough linearly
independent eigenvectors to form our invertible matrix P (the one for which P−1AP is a diagonal
matrix), hence A is not diagonalizable.

Example 4.4.11. Let A =

 4 −3 −3
3 −2 −3
−1 1 2

. is A diagonalizable?

The characteristic polynomial is

det(A− λI) = det

4− λ −3 −3
3 −2− λ −3
−1 1 2− λ

 = −(λ− 1)2(λ− 2)

and the eigenvalues are 1 and 2 (with algebraic multiplicities 2 and 1, respectively). The
corresponding eigenspaces are

E1 = Null(A− I) = Span

1
1
0

 ,
1

0
1

 E2 = Null(A− 2I) = Span

−3
−3
1


and so the eigenvalues 1 and 2 have geometric multiplicities 2 and 1 (respectively). It is readily seen
that the vectors we used to define E1 are linearly independent, so the following matrix is invertible:

P =

1 1 −3
1 0 −3
0 1 1

 .
We then diagonalize A:

P−1AP =

1 0 0
0 1 0
0 0 2

 .

4.4.4 When is a matrix diagonalizable?

What these examples have highlighted is that a matrix may only fail to be diagonalizable if it has
repeated eigenvalues. Before stating the next theorem, we quickly state a definition
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Definition. If B = {b1, . . . ,bj} and C = {c1, . . . , ck} are sets of vectors in Rn, their union is

the set B ∪ C = {b1, . . . ,bj, c1, . . . , ck}.

Theorem 4.4.12 (Poole Theorem 4.24). Let A be an n× n matrix with distinct eigenvalues
λ1, . . . , λk. Let Bi be the basis for Eλi. The union of the Bi’s (i.e. the collection of all basis vectors in
the Bi’s) is a linearly independent set.

Corollary 4.4.13 (Poole Theorem 4.25). If A is an n× n matrix with n distinct eigenvalues, then A
is diagonalizable.

What is it about the repeated eigenvalues that causes the failure of diagonalizability of a matrix
A ∈ Rn×n? Well, we need there to be n linearly independent eigenvectors, so we need the geometric
multiplicity for each eigenvalue to be as large as possible.

Lemma 4.4.14 (Poole Lemma 4.26). The geometric multiplicity of an eigenvalue λ is less than or
equal to its algebraic multiplicity.

All of this culminates in the following result:

Theorem 4.4.15 (Diagonalization Theorem). Let A be an n× n matrix with distinct eigenvalues
λ1, . . . , λk. The following are equivalent:

a. A is diagonalizable.

b. The union of the basis vectors from each Eλi is a set of n vectors. In other words,

n =
k∑
i=1

dim(Eλi).

c. For each i, the algebraic multiplicity of λi is equal to the geometric multiplicity of λi.

Example 4.4.16. The matrix A =

 3 −1 2
3 −1 6
−2 2 −2

 has characteristic polynomial

det(A− λI) = (2− λ)2(4− λ).

The eigenvalue 2 has geometric multiplicity 2 and the eigenvalue 4 has geometric multiplicity 1, By
the Diagonalization Theorem, A is diagonalizable – you can verify that an appropriate conjugating
matrix is

P =

−1 −2 1
−3 0 1
2 1 0

 .

Example 4.4.17. The matrix A =

1 0 2
0 3 4
0 0 3

 has characteristic polynomial

det(A− λI) = (1− λ)(3− λ)2.

Both eigenvalues 1 and 3 have geometric multiplicity 1, so by the Diagonalization Theorem, A is not
diagonalizable.
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4.4.5 Computational power of diagonal matrices

Notice that for a diagonal matrix D = diag(d1, . . . , dn) and any positive integer k,

Dk =

d
k
1

. . .

dkn

 .
Moreover, if D is invertible, then

D−k =

d
−k
1

. . .

d−kn

 =


1
dk1

. . .
1
dkn

 .
This is instantaneous. For a general n× n matrix A, computing Ak in the usual way is extremely
computationally expensive. However, if A is diagonalizable, we can write P−1AP = D, hence

Dk = (P−1AP )k = P−1AkP =⇒ Ak = PDkP−1.

In this way, computing the kth power of A is only as computationally difficult as diagonalizing A.

Example 4.4.18. Let A =

[
11 −6
15 −8

]
. One can readily check that A has eigenvalues 1, 2, hence is

diagonalizable (and since the eigenvalues are all nonzero, A is invertible). Through the usual
methods, we can obtain

A =

[
3 2
5 3

] [
1 0
0 2

] [
3 2
5 3

]−1

whence, for any integer k,

Ak =

[
3 2
5 3

] [
1k 0
0 2k

] [
3 2
5 3

]−1

=

[
3 2
5 3

] [
1 0
0 2k

] [
−3 2
5 −3

]
=

[
−9 + 10(2k) 6− 6(2k)
−15 + 15(2k) 10− 9(2k)

]
.

Similarly,

A−2 =

[
−9 + 10(2−2) 6− 6(2−2)
−15 + 15(2−2) 10− 9(2−2)

]
=

[
−13/2 9/2
−45/4 31/4

]

4.4.6 Jordan Canonical Form

The next best thing to being a diagonal matrix is to be a block-diagonal (in fact, a diagonal matrix
is just a block-diagonal matrix where all blocks are 1× 1). While not everysquare matrix can be
diagonalized, every square matrix can be block-diagonalized, with the blocks taking a special form.

Definition. A k × k Jordan block is the upper-triangular matrix

Jk(λ) =


λ 1

λ
. . .
. . . 1

λ

 .
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A matrix is in Jordan canonical form (or Jordan normal form ) if it is a

block-diagonal matrix of the form
Jk1(λ1)

Jk2(λ2)
. . .

Jkn(λn)


Example 4.4.19. The following matrices are in Jordan canonical form (all blank entries are zero,
zeroes were just added to highlight the shapes of the blocks.

1
2 1
0 2

3 1 0
0 3 1
0 0 3

 ,


5 1
0 5

5 1
0 5

5 1
0 5

 ,


7 1 0
0 7 1
0 0 7

4 1 0
0 4 1
0 0 4

 .

The failure of a matrix to be diagonalizable comes down to a lack of linearly independent
eigenvectors. So if a block-diagonal matrix is a generalization of a diagonal matrix, then maybe we
can find vectors like eigenvectors that allow us a sufficiently large linearly independent set.

Definition. Given an n× n matrix A, a generalized eigenvector of rank m corresponding

to the eigenvalue λ is a vector v ∈ Rn for which (A− λI)mv = 0 but (A− λI)m−1v 6= 0.

Remark. An eigenvector is a generalized eigenvector of rank 1: it is a vector v that satisfies
(A− λI)1v = 0 but (A− λI)0v = v 6= 0

If an eigenvalue has algebraic multiplicity a and geometric multiplicity g, then in general you’ll need
to find generalized eigenvectors for λ of all ranks up to 1 + a− g.

More here
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5.1 Orthogonality in Rn

At the end of Section 1.2, we saw that orthogonality could be detected with the dot product, but
otherwise we haven’t really given any geometric description of what the dot product actually
measures, so let’s consider e1 = [1, 0]T and v = [x, y]T . A straightforward computation shows that
e1 · v = x. Looking at the picture below

e1

v =

[
x
y

]

x

We see that x is precisely the length of the “shadow” cast by v on the line spanned by e1. More
generally, for two vectors u and v, the dot product u · v is the length of “shadow” of v cast onto u,
but then scaled by the length of v (by symmetry of the dot product, this description also works
mutatis mutandis for the “shadow” cast by u onto v).

Let’s formalize this notion of a “shadow“ cast by v onto u keeping in mind two things:

1. u should be normalized to be a unit vector so as to preserve the length of v’s shadow, and

2. the shadow of a vector should also be a vector in the direction of u (i.e. a scalar multiple of u).

Definition. Given two vectors u and v, the projection (or orthogonal projection )

of v onto u is the vector proju(v) given by

proju(v) =

(
u

‖u‖
· v
)

u

‖u‖
=
(u · v

u · u

)
u.

Example 5.1.1. Let u = [4,−1]T and v = [3, 5]T . Using the formula from the definition we have

proju(v) =
(u · v

u · u

)
u =

(
7

17

)
u =

[
28

17
,
−7

17

]T
.
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v

uproju(v)

Notice that the vector v− proju(v) (represented by a dashed line) is perpendicular/orthogonal to u:

(v − proju(v)) · u = v · u−
(u · v

u · u

)
u · u

= v · u− u · v
= u · v − u · v
= 0.

Definition. A set of vectors {v1, . . . ,vk} is an orthogonal set of vectors in Rn if vi · vj = 0

whenever i 6= j for i, j = 1, . . . , k.

Theorem 5.1.2. If {v1, . . . ,vk} is an orthogonal set of nonzero vectors in Rn, then it is linearly
independent.

Proof. Let ai be scalars for which

0 = a1v1 + · · ·+ akvk

Then for each i = 1, . . . , k,

0 = 0 · v1

= (a1v1 + · · ·+ akvk) · vi

= a1(v1 · vi) + · · ·+ ak(vk · vi)

= ai(vi · vi)

and since vi · vi 6= 0, then it must be that ai = 0.

Definition. A basis B for Rn is an orthogonal basis if it is also an orthogonal set.

Example 5.1.3. The standard basis E for Rn is orthogonal.
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Example 5.1.4. B =

{[
1
−1

]
,

[
1
1

]}
is an orthogonal basis for R2 (this is straightforward to check).

Notice that for a vector v = [x, y] ∈ R2, we have that v = xe1 + ye2

Theorem 5.1.5 (Poole Theorem 5.2). Suppose B = {b1, . . . ,bk} is an orthogonal basis for the
subspace W of Rn and let w be any vector in W . Then the coefficients ci of the linear combination

w = c1b1 + · · ·+ ckbk

are obtained by

ci =
w · bi

bi · bi

.

In other words,

w = projb1
(w) + · · ·+ projbn

(w).

Example 5.1.6. Let v = [4, 2]T ∈ R2 and consider the standard basis E . A straightforward
computation shows that

proje1(v) = 4e1 and proje2(v) = 2e2

and clearly v = 4e1 + 2e2.

e1

e2

v

proje1(v)

proje2(v)

Example 5.1.7. Let v be as in the previous example and consider the orthogonal basis

B =

{[
1
−1

]
,

[
1
1

]}
. Computing the orthogonal projection of v onto the basis vectors we have that

projb1
(v) =

4− 2

2
b1 = b1 and projb2

(v) =
4 + 2

2
b2 = 3b2

and certainly

v = b1 + 3b2. (5.1.1)
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b1

b2

v

projb1
(v)

projb2
(v)

Example 5.1.8. To see why orthogonality of the basis is important, let v be as in the previous two

examples and consider the basis B =

{[
1
0

]
,

[
1
1

]}
, which is not orthogonal. Computing the

orthogonal projection of v onto the basis vectors, we have that

projb1
(v) = 4b1 and projb2

(v) =
4 + 2

2
b2 = 3b2,

but

v =

[
4
2

]
6=
[
7
3

]
= 4b1 + 3b2.

(In fact, by inspection we see that v = 2b1 + 2b2).

b1

b2

v

projb1
(v)

projb2
(v)

5.1.1 Orthonormality

Definition. An orthogonal set of vectors is orthonormal if each vector is also a unit vector.

An orthogonal basis for Rn is an orthonormal set that is also a basis for Rn.
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Proposition 5.1.9. Suppose B = {b1, . . . ,bn} is a basis for Rn. Then B is orthonormal if and only
if bi · bj = δij for all i, j = 1, . . . , n (where δij is the Kroenecker delta).

Example 5.1.10. The standard basis E for Rn is orthonormal.

Example 5.1.11. The basis B from Example 5.1.4 is not orthonormal because∥∥∥∥[ 1
−1

]∥∥∥∥ =
√

2 and

∥∥∥∥[11
]∥∥∥∥ =

√
2.

Obviously we like the standard basis and its orthonormality, so it would be nice if we could supe up
an orthogonal basis to be a normal basis. Indeed, this is easily achieved by merely normalizing each
vector.

Proposition 5.1.12. If B = {b1, . . . ,bn} is an orthogonal basis for Rn, then B′ =
{

b1

‖b1‖ , . . . ,
bn

‖bn‖

}
is an orthonormal basis for Rn

Example 5.1.13. Normalizing the basis vectors in Example 5.1.4, we get that

B′ =
{[

1/
√

2

−1/
√

2

]
,

[
1/
√

2

1/
√

2

]}
is an orthonormal basis for R2.

b1

b2

b1/‖b1‖

b2/‖b2‖

What you may notice is that the orthonormal basis B′ in the previous example is just a −π
4

rotation
of the standard basis. Amazingly, this same feature is very nearly true of all orthornormal bases.

Theorem 5.1.14. Every orthonormal basis of Rn can be obtained by a rotation of the standard basis
(possibly followed by a permutation of the basis vectors).

It follows that, given two orthonormal bases B and C of R2, the change of basis matrix is either a
rotation matrix

PC←B =

[
cos θ − sin θ
sin θ cos θ

]
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or a rotation matrix times a matrix that swaps the basis vectors

PC←B

[
0 1
1 0

] [
cos θ − sin θ
sin θ cos θ

]
=

[
sin θ − cos θ
cos θ sin θ

]
(although, since the particular angle θ is freely chosen, we would often make the substitution
θ = ϕ+ π

2
to get [

cosϕ sinϕ
sinϕ − cosϕ

]
as this provides some nice symmetries in the forms of the matrix).
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5.2 Orthogonal Complements and Orthogonal Projections

Our goal will ultimately be to come up with a procedure for finding an orthogonal basis for a
subspace. In doing this, we first need to introduce the following notion.

5.2.1 Orthogonal Complement

Definition. Let W be a subspace of Rn. A vector v ∈ Rn is orthogonal to W if it is

orthogonal to every vector w ∈ W . The collection of all such vectors is called the

orthogonal complement to W and is denoted W⊥.

Fact. If W is a subspace of Rn, then W⊥ is a subspace of Rn.

Proof. Suppose w ∈ W and that u,v are orthogonal to W . It is then straightforward to check that

• 0 ·w = 0

• (u + v) ·w = 0

• kv ·w = 0 for any scalar k

and thus it follows that the collection of all vectors orthogonal to W is indeed a subspace.

Example 5.2.1. Suppose W is the xy-plane in R3 (i.e. the set of vectors [x, y, 0]T ). Then W⊥ is the
z-axis (i.e. the set of vectors [0, 0, z]T ). Geometrically, W⊥ is the line through the origin that is
perpendicular to W

Theorem 5.2.2 (Poole Theorem 5.9). Let W be a subspace of Rn.

1. W⊥ is also a subspace of Rn.

2. (W⊥)⊥ = W

3. The only vector common to both W and W⊥ is 0 (we say that W and W⊥ have trivial
intersection).

4. If W = Span(w1, . . . ,wk), then W⊥ is the set of vectors perpendicular to each wi.

How do we find orthogonal complements in practice?

Theorem 5.2.3 (Poole Theorem 5.10). Let A be an m× n matrix. Then Null(A) = (rowA)⊥ and
Null(AT ) = (colA)⊥.

Proof. If A is an m× n matrix with rows A1, . . . ,Am and x ∈ Rn, then

Ax =

—A1—
...

—Am—

x =

A1 · x
...

Am · x


so Ax = 0 precisely when Ai · x = 0 for each i = 1, . . . ,m.
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As such, solving for the orthogonal complement can be done by explicitly solving for the null space of
the appropriate matrix of vectors.

Example 5.2.4. Let W = Span

1
2
3

 ,
 2
−1
0

 be a plane in R3. By viewing the above vectors as

row vectors of a matrix and applying the above theorem, we have that

W⊥ = Null

([
1 2 3
2 −1 0

])
.

Since

RREF

([
1 2 3
2 −1 0

])
=

[
1 0 3/5
0 1 6/5

]

we deduce that W⊥ = Span

3/5
6/5
−1

.

Remark. Your book uses the notation perpu(v) to mean v− proju(v). This is reasonable, but I can’t
say its particularly common.

The following definition extends the idea of orthogonal projection onto an entire subspace.

Definition. Let W be a subspace of Rn and {w1, . . . ,wk} an orthogonal basis for W . For a vector

v ∈ Rn, the orthogonal projection of v onto W is

projW (v) = projw1
(v) + · · ·+ projwk

(v)

and the component of v orthogonal to W is

perpW (v) = v − projW (v).

Remark. Once again, for any subspace W of Rn and v ∈ Rn, we have the orthogonal decomposition
of v:

v = proju(v)︸ ︷︷ ︸
in W

+ (v − proju(v))︸ ︷︷ ︸
in W⊥
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Example 5.2.5. Suppose W is the xy-plane in R3 and let v = [3, 4, 5]T . Then

projW (v) = proje1(v) + proje2(v) = 3e1 + 4e2 = [3, 4, 0]T .

Visually,

x

y

z

v

projW (v)
proje1(v)

proje2(v)

Example 5.2.6. Suppose w1 =

 2
−2
2

, w2 =

−2
0
2

, and v =

3
4
5

 are vectors in R3 and

W = Span(w1,w2). We first check that w1 ·w2 = 0, whence {w1,w2} is an orthogonal basis for W .
To compute the projection of v onto W

projW (v) = projw1
(v) + projw2

(v)

=

(
v ·w1

w1 ·w1

)
w1 +

(
v ·w2

w2 ·w2

)
w2

=

(
6− 8 + 10

12

)
w1 +

(
−6 + 10

8

)
w2

=
2

3
w1 +

3

4
w2

=
1

6

−1
−8
17

 .
Visually,
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x

y

z

v

projW (v)

projw1
(v)

projw2
(v)

What’s amazing is that the orthogonal decomposition of a vector is actually unique.

Theorem 5.2.7 (Orthogonal Decomposition Theorem). Let W be a subspace of Rn and v ∈ Rn.
Then there are unique vectors w ∈ W and w⊥ ∈ W⊥ for which v = w + w⊥.

In particular, w = projW (v) and w⊥ = v − projW (v).

Theorem 5.2.8. If W is a subspace of Rn, then dimW + dimW⊥ = n

The above isn’t particularly surprising; it’s exactly what we saw happen in the first example of this
section. More generally, given a basis of column vectors {w1, . . . ,wk} for W , we find W⊥ by using
Theorem 5.2.3:

W⊥ = Null


— w1

T —
...

— wk
T —


 .

The matrix above has size k × n and rank k, and so the result follows by Rank-Nullity.

Of course, the proof given in the book doesn’t rely on Rank-Nullity at all. In fact, Rank-Nullity
actually a corollary of the above theorem (and the proof is given by the same observation as above).
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5.3 The Gram–Schmidt Process and the QR Factorization

5.3.1 Gram–Schmidt

It sure would be nice to be able to find an orthogonal basis for every subspace, huh?

Example 5.3.1. Let b1 =

3
4
0

, b2 =

1
1
2

 be vectors in R3 and let W = Span(b1,b2). Recall that

b2 − projb1
(b2) =

1
1
2

−
21/25

28/25
0

 =

 4/25
−3/25

2


is perpendicular to b1 and is still contained within W (because projb1

(b2) is a scalar multiple of b1).
This means that {b1,b2 − projb1

(b2)} is an orthogonal basis for W !

As it turns out, the above example can be extended into any dimension, and this iterative process is

known as the Gram-Schmidt orthogonalization .

Theorem 5.3.2 (Gram–Schmidt). Let B = {b1, . . . ,bk} be a basis for W , a subspace of Rn.

1. Let x1 = b1, and let W1 = Span(x1).

2. For each i = 2, ..., k, let xi = bi − projWi−1
(bi) and set Wi = Span(x1, . . . , xi)

For each i, {x1, . . . , xi} is an orthogonal basis for Wi and Wk = W .

Remark. One can always scale the basis elements to have norm 1, further producing an orthonormal
basis.

Example 5.3.3. Find an orthonormal basis for W = Span




1
2
2
0

 ,


0
1
2
2

 ,


2
0
1
2


.

We choose

x1 = [1, 2, 2, 0]T

and we set W1 = Span(x1). Then

x2 = [0, 1, 2, 2]T − projW1
([0, 1, 2, 2]T )

= [0, 1, 2, 2]T − projx1
([0, 1, 2, 2]T )

= [0, 1, 2, 2]T −
[

2

3
,
4

3
,
4

3
, 0

]T
=

[
−2

3
,−1

3
,
2

3
, 2

]T
and we set W2 = Span(x1,x2). Then

x3 = [2, 0, 1, 2]T − projW2
([2, 0, 1, 2]T )
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= [2, 0, 1, 2]T − projx1
([2, 0, 1, 2]T )− projx2

([2, 0, 1, 2]T )

= [2, 0, 1, 2]T −
[

4

9
,
8

9
,
8

9
, 0

]T
−
[
−4

9
,−2

9
,
4

9
,
4

3

]T
=

[
2,−2

3
,−1

3
,
2

3

]T
.

and {x1,x2,x3} is an orthogonal basis for W . To form an orthonormal basis, we normalize each of
these vectors, hence an orthonormal basis for W is


1/3
1/3
2/3
0

 ,

−2/3

√
5)

−1/3
√

5

2/3
√

5

2/
√

5

 ,


2/
√

5

−2/3
√

5

−1/3
√

5

2/3
√

5


 .

5.3.2 QR Factorization

If A is an m× n matrix with linearly independent columns (implying m ≥ n), then applying the
Gram–Schmidt process to the columns yields a useful factorization of A, although its usefulness will
not be immediately obvious.

Theorem 5.3.4 (QR Factorization). Let A be an m× n matrix with linearly independent columns.
Then there exists a matrix Q with orthonormal columns and an invertible upper triangular matrix R
for which A = QR.

The proof is constructive. Let {A1, . . . ,An} be the columns of A and let {Q1, . . . ,Qn} be the
orthonormal basis produced from applying Gram-Schmidt to the Ai’s. Notice that in the
Gram-Schmidt process, we have

Q1 = c1A1

Q2 = c2

(
A2 −

(
Q1 ·A2

Q1 ·Q1

)
Q1

)
Q3 = c3

(
A3 −

(
Q1 ·A3

Q1 ·Q1

)
Q1 −

(
Q2 ·A3

Q2 ·Q2

)
Q2

)
...

where the ci’s are all the scalars normalizing the vectors.

Since all of the dot products are just scalars, we can write

rij =

1/cj if i = j(
Qi ·Aj

Qi ·Qi

)
if i 6= j

and rearrange the above equations to be

A1 = r11Q1
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A2 = r12Q1 + r22Q2

A3 = r13Q1 + r23Q2 + r33Q3

...

The above system can be represented as the following matrix product:

A =

 | |
A1 · · · An

| |

 =

 | |
Q1 · · · Qn

| |



r11 r12 · · · r1n

r22 · · · r2n

. . .
...
rnn

 = QR

Remark. We can always take the diagonal entries rii to be positive: if rii < 0, then simply replace Qi

with −Qi.

Remark. Since Q is m× n with orthonormal columns, then QTQ = In, so in fact R = QTA, saving us
some time in computing R.

Example 5.3.5. Compute the QR factorization of A =

12 −51 −4
6 167 68
−4 24 41


We first apply the Gram-Schmidt process to the columns. Let Ai denote the ith column of A. We
take x1 = A1. Letting W1 = Span(x1),

x2 = A2 − projW1
(A2) = [−69, 158, 30]T .

Letting W2 = Span(x1,x2),

x3 = A3 − projW2
(A3) =

[
58

5
,−6

5
, 33

]T
.

Now {x1,x2,x3} is an orthogonal basis for R3. Letting Qi =
xi

‖xi‖
, we form the orthogonal matrix

Q =

 | | |
Q1 Q2 Q3

| | |

 =


6

7
− 69

175

58

175
3

7

158

175
− 6

175

−2

7

6

35

33

35


and

R = QTA =

14 21 14
0 175 70
0 0 35

 .
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7.3 Least Squares

By now the power of linear algebra should be apparent, so we’d like to try to use this tool in many
real-world applications, and such applications often times require us to make approximations.

Definition. Given a vector subspace W of Rn and a vector v ∈ Rn, the

best approximation of v ∈ W is the vector v ∈ W that is closest to v, i.e., that satisfies

‖v − v‖ < ‖v −w‖

for all w ∈ W with w 6= v.

Certainly we could use some calculus techniques to find this, but we could also appeal to a fact of
Euclidean geometry – the distance between a point p and a subspace W of Rn is the length of the
line segment ` which is perpendicular to W and has endpoint p.

W

W⊥

`

p

W

W⊥

projW (v)

v

Proposition 7.3.1 (Poole Theorem 7.8, The Best Approximation Theorem). For any v ∈ Rn and
any subspace W of Rn, projW (v) is the best approximation of v ∈ Rn.

7.3.1 Least Squares Approximation

Suppose that we have points P1, P2, P3 in the plane and we approximate these three points with the
line y = mx+ b. Let ε1, ε2, ε3 be the vertical distance between these points and the line. The

error vector is ε = [ε1, ε2, ε3] and the number ‖ε‖ =
√
ε2

1 + ε2
2 + ε2

3 is called the

least squares error of the approximation.
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P1

P2

P3

ε1

ε2

ε3

Example 7.3.2. The image above shows the case where P1(1, 3), P2(3, 3), P3(−2,−4), y = x+ 1,
and ε1 = 1, ε2 = 1 and ε3 = 3. Thus the least squares error is

‖ε‖ =
√
ε2

1 + ε2
2 + ε2

3 =
√

11

Of course, in practice, we’re most interested with finding the line that minimizes the least squares

error, and such a line is called the least squares error approximating line (or the

best fit line ).

Suppose we have a bunch of points (xi, yi) in the plane and we approximate them with the line
y = mx+ b. Then we have that

εi = yi − y = yi −mxi − b.

Since the above is a linear equation, we can rewrite it slightly in terms of matrices and vectors.
Letting

A =

1 x1
...

...
1 xn

 , x =

[
b
m

]
, b =

y1
...
yn


then we have that

ε =

ε1
...
εn

 =

y1
...
yn

−
mx1 + b

...
mxn + b

 = b− Ax.

and hence that

‖ε‖ = ‖b− Ax‖.

The entries of A and b are fixed, and the approximating line is entirely encoded by the vector x. So
if x represents the line that best approximates the points, then we should have, for any other line x,

‖b− Ax‖ ≤ ‖b− Ax‖.
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Definition. If A is an m× n matrix and b ∈ Rm, then a least squares solution to the

equation Ax = b is a vector x ∈ Rn such that

‖b− Ax‖ ≤ ‖b− Ax‖

for all x ∈ Rn.

Consider the following picture:

Col(A

b

projCol(A)(b) = Ax

Rm

Since Ax is in Col(A), by the Best Approximation Theorem, the vector x for which Ax is closest to
b satisfies Ab = projCol(A)(b)!

Rather than computing this outright, notice that

b− Ax = b− projCol(A)(b)

is perpendicular to Col(A). So if A =

 | |
a1 · · · an
| |

, then

AT (b− Ax) =

— AT
1 —

...
— AT

n —

 (b− Ax) =

A1 · (b− Ax)
...

An · (b− Ax)

 =

0
...
0

 = 0.

And therefore x is a least squares solution to Ax = b if and only if

ATAx = ATb (7.3.1)

Definition. Equation 7.3.1 represents the normal equations for x.

Theorem 7.3.3 (Poole 7.9, The Least Squares Theorem). Let A be an m× n matrix and let
b ∈ Rm. Then Ax = b always has at least one least squares solution x. Moreover,

1. x is a least squares solution of Ax = b if and only if x is a solution of the normal equations
ATAx = ATb.
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2. A has linearly independent columns if and only if ATA is invertible, in which case the least
squares solution is unique:

x = (ATA)−1ATb.

Corollary 7.3.4. If there is a unique least squares solution to Ax = b and A = QR (with Q
orthogonal and R upper triangular), then it is given by x = R−1QTb

Proof. The proof is straightforward, just notice that

ATA = (QR)T (QR) = RTQTQR = RT IR = RTR.

Remark. If you have a QR-factorization of A, then finding R−1 is extremely fast, and so computing a
least squares solution is considerably faster than it would be for (ATA)−1ATb. Practically speaking,
the difference is indistinguishable for matrices of small size, but when working with matrix algebra
software and huge matrices (think 20, 000× 10, 000), computation time is a very important
consideration.

Example 7.3.5. We want to find a least squares approximating line y = mx+ b for the points in
Example 7.3.2. Using the above discussion, this is equivalent to finding a least squares solution to
Ax = b where

A =

1 1
1 3
1 −2

 , x =

[
b
m

]
, b =

 3
3
−4

 .
We thus look for the solution set to

ATAx = ATb[
3 2
2 14

] [
b
m

]
=

[
2
20

]
.

By row reducing the augmented system
[
ATA ATb

]
, we get

[
ATA ATb

]
=

[
3 2 2
2 14 20

]
RREF−−−→

[
1 0 −6/19
0 1 28/29

]
whence the least squares approximating line is

y =
28

19
x− 6

19
.

The least squares error vector for this line is

ε = b− Ax =

 35/19
−21/19
−14/19


and the least squares error is ‖ε‖ ≈ 2.2711. This is better than the previous line we had, as that had
an error of

√
11 ≈ 3.3166.
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P1

P2

P3

The above strategy can be employed for approximating planes, etc., making the obvious changes to
A, x, and b. It can also be used for polynomials, although in general you’ll need at least n+ 2 points
to bother with finding a best approximation polynomial of degree n. (This is due to the following
fact: for any n+ 1 points in the plane, there is a unique polynomial of degree n that passes through
them. As such, there’s no point in approximating when an exact solution exists.)

Example 7.3.6. Find the best least squares approximating quadratic y = ax2 + bx+ c for the points
P1(1, 3), P2(3, 3), P3(−2,−4), P4(−2, 2).

P1 P2

P3

P4

ε3

ε4

If the points above were on the quadratic, we would have

a(1)2 + b(1) + c = 3
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a(3)2 + b(3) + c = 3

a(−2)2 + b(−2) + c = −4

a(−2)2 + b(−2) + c = 2

and so this system can be reinterpreted as Ax = b where

A =


1 1 1
9 3 1
4 −2 1
4 −2 1

 , x =

ab
c

 , b =


3
3
−4
2


It is an exercise to the reader to show from here that the least squares approximating parabola is
y = − 4

15
x2 + 16

15
x+ 11

5
and the least squares error is ‖ε‖ =

√
02 + 02 + 32 + 32 = 3

√
2 ≈ 4.243.

Note to self: Rewrite following example to use normal equations

Example 7.3.7. Find the least squares solution set for Ax = b where A =

1 0 0 1
0 1 1 0
1 0 0 1

 and

b =

1
2
3

.

The size of the matrix shows that nullity(A) > 0 (and in fact, a quick computation shows that
nullity(A) = 2), so A does not have linearly independent columns and thus are infinitely many least
squares solutions.

To get the least squares solutions, we first compute projCol(A)(b). We first note that

Col(A) = Span

1
0
1

 ,
0

1
0


and the basis for Col(A) is orthogonal. Hence

projCol(A)(b) = proj[1,0,1]T (b) + proj[0,1,0](b) =

2
0
2

+

0
2
0

 =

2
2
2

 .
The least squares solution set is now the solution set to the equation

Ax = projCol(A)(b) ⇒

1 0 0 1
0 1 1 0
1 0 0 1



x1

x2

x3

x4

 =

2
2
2


hence 1 0 0 1 2

0 1 1 0 2
1 0 0 1 2

 RREF−−−−→

1 0 0 1 2
0 1 1 0 2
0 0 0 0 0


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hence x1 = 2− x4 and x2 = 2− x3, so the least squares solution set is


2
2
0
0

+ s


0
−1
1
0

+ t


−1
0
0
1

 : where s, t ∈ R


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