Math 2114: Introduction to Linear Algebra Spring 2022

Instructor: Joseph Wells, PhD Phone: 540-231-6536

(He/Him/His) Homepage: Joseph-Wells.com

Office: 420 McBryde Hall Email: Joseph.Wells@vt.edu

Office Hours: TBD

other times by appointment

Text: Linear Algebra: A Modern Introduction, 4th ed.

by Poole (w/ WebAssign access)

Supplemental Text: Elementary Linear Algebra, 8th ed.

by Larson

Canvas: https://canvas.vt.edu

WebAssign Site: https://www.webassign.net

Course Website: https://www.math.vt.edu/undergrad-math/courses/math-2114.html

Course Content and Delivery:

This course covers: Vector and matrix algebra, systems of linear equations, linear equations, linear independence, bases, matrices, determinants, eigenvalues and eigenvectors, orthonormal bases, rank, linear transformations, diagonalization, and some applications of all of the above. This is an *inperson course*; videos will be made available in extenuating circumstances.

Per Math Department policy, no further specifics of this course policy sheet may be made publicly available.

Tentative Schedule

Week 1	M.L.K. Junior Day §1.1 - The Geometry and Algebra of Vectors §1.2 - Length and Angle: The Dot Product §2.1 - Introduction to Linear Systems
Week 2	§1.2 - Length and Angle: The Dot Product §2.1 - Introduction to Linear Systems §2.2 - Direct Methods for Solving Linear Systems
Week 3	§2.2 - Direct Methods for Solving Linear Systems §2.3 - Spanning Sets and Linear Independence
Week 4	§2.3 - Spanning Sets and Linear Independence Exam 1 Review Exam 1
Week 5	§3.1 - Matrix Operations §3.2 - Matrix Algebra §3.3 - The Inverse of a Matrix
Week 6	§3.3 - The Inverse of a Matrix §3.5 - Subspaces, Basis, Dimension, and Rank
Week 7	§3.5 - Subspaces, Basis, Dimension, and Rank §6.3 - Change of Basis §3.6 - Introduction to Linear Transformations
Week 8	Spring Break
Week 9	§3.6 - Introduction to Linear Transformations Exam 2 Review Exam 2
Week 10	$\S 6.6$ - The Matrix of a Linear Transformation (in a Nonstandard Basis) $\S 4.1$ - Introduction to Eigenvalues and Eigenvectors $\S 4.2$ - Determinants
Week 11	§4.2 - Determinants §4.3 - Eigenvalues and Eigenvectors of $n \times n$ Matrices §4.4 - Similarity and Diagonalization
Week 12	§4.4 - Similarity and Diagonalization
	§3.7 - Applications (Markov Chains)
Week 13	§4.6 - Applications (Differential Equations) Exam 3 Review

Exam 3

Week 14	$\S 5.1$ - Orthogonality in \mathbb{R}^n $\S 5.2$ - Orthogonal Complements and Projections
Week 15	$\S 5.3$ - The Gram–Schmidt Process and QR -Factorization
	§7.3 - Least Squares
Week 16	Mock Final Exam
	Final Exam Review