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 For the analysis of time series data from hydrology, we employ a technique recently 

developed in Huang et al., 1998, which is by now widely known as the Hilbert-Huang-Transform 

(HHT). Specifically, it is designed for nonlinear and nonstationary data. In contrast to data 

analysis techniques employing the short-time/windowed Fourier transform or the continuous 

wavelet transform, the new technique is  empirically adapted to the data in the following sense. 

First, one computes an additive decomposition called  empirical mode decomposition (EMD) of 

the data into certain multiscale components. Second, to each of these components, the Hilbert 

transform is applied. The resulting  Hilbert spectrum of the modes provides a localized time-

frequency spectrum and instantaneous (time-dependent) frequencies. 

In this paper, we recall the necessary components of the HHT and apply it to 

hydrological time series data from the Upper Rur Catchment Area, mostly German territory, 

taken over a period of twenty years. Our first observation is that a coarse approximation of the 

data can be derived by truncating the EMD representation. This can be used to better model 

patterns like seasonal structures. Moreover, the corresponding time/frequency energy 

spectrum applied to the complete EMD reveals in a particular apparent way seasonal events 

together with their energy. We provide a comparison of the Hilbert spectra with Fourier 

spectrograms and wavelet spectra in order to demonstrate a better localization of the energy 

components which also exhibit strong seasonal components. Finally, the Hilbert energy 

spectrum of the three measurement stations appear to be very similar, indicating little local 

variability in drainage.  

  

1  Introduction 

 Given empirical data, the detection and parametrization of multiscale patterns and 

shapes in the measurements is an important task. Specifically, in order to study the effect of 

patterns on water and solute fluxes, temporal and/or spatial data have to be analyzed at various 

stages so that their parametrization can eventually be employed in simulation flux models. 

This study is part of a SFB/TR32 project (www.tr32.de) for which the overall objective is 

to improve our knowledge about the mechanisms leading to spatial and temporal patterns in 

energy and matter fluxes of the soil-vegetation-atmosphere system. Part of the objectives is the 
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determination, description and analysis of patterns derived from different sources. For instance, 

the large spatial and temporal variability of soil moisture patterns is determined by factors like 

atmospheric forcing, topography, soil properties and vegetation, which are interacting in a 

complex nonlinear way, see, e.g. Grayson & Blöschl, 2001, Western et al., 2004. Thus, a very 

large number of continuous soil moisture measurements are necessary to adequately capture 

this variability. In the framework of the TR32, a dense soil moisture sensor network for 

monitoring soil water content changes at high spatial and temporal scale has been set up, see 

Bogena et al., 2007, Bogena et al., 2009, Bogena et al., 2010, Rosenbaum et al., 2010. Due to the 

fact that long-term soil moisture data from the SFB/TR32 study area, the catchment of the Rur 

River, were not available, we focus here on long-term runoff discharge measurements taken 

from three river streams with low management influence located in the southern part of the 

Rur catchment, see Section 3.1. Since runoff discharge and soil moisture time series data exhibit 

similar temporal patterns, this paper can be considered as a preliminary study for the analysis of 

the soil moisture sensor network data. 

For the detection of structures and patterns living on different scales, the method of 

choice is to transform and thereby decompose measurement data into multi-scale components. 

Classical and widely established methods are the short-time Fourier transform (STFT) or, more 

recently, continuous Wavelet transforms. The potential of wavelets as an analysis and 

approximation tool has been demonstrated in different areas, see, e.g., Castaño & Kunoth, 

2006, Castaño et al., 2009, DeVore & Kunoth, 2009. 

An example for the analysis of hydrometeorologic data by means of wavelets is given in 

Bachner et al., 2006. Here the goal was the identification and filtering of dominant time scales in 

statistical indices of daily time series. The wavelet analysis provided a temporally varying power 

spectrum and does not require stationarity of the data. In Kang & Lin, 2007, a wavelet analysis 

of hydrological and water quality signals in an agricultural watershed was performed, using a 

weighted wavelet-Z-transform. Schaefli & Zehe, 2009, proposed a method for rainfall-runoff 

model calibration and performance analysis by fitting a wavelet power spectrum estimated 

from measurement data. A review of spectral and wavelet methods together with detailed 

procedures for providing spatial scaling analyses of physical soil properties was provided in Si, 

2008. 

Nevertheless, methods based on the short-time Fourier transform or the continuous 

wavelet transform have the following disadvantages for time series data: first, they require data 

on uniform grids. Second, as demonstrated in Huang et al., 1998, if the data is nonlinear and 

non-stationary, these transforms often do not lead to physically meaningful results. The reasons 

are fundamental construction ingredients: they only allow certain linear combinations of 

predefined bases and for each component the same frequency over the whole time domain is 

employed. Although wavelets have the advantage over the Fourier basis that they allow a 

localized identification of the significant frequency components, the motivation for a new 

approach developed in Huang et al., 1998, was to find a better decomposition into components 

which are adapted to the specific data set. 

In this paper, we follow this approach to analyse nonlinear and non-stationary temporal 

data by applying the Hilbert-Huang-Transform (HHT) developed in Huang et al., 1998. In its 

original version, it was designed to handle nonlinear and non-stationary time series in one 

dimension. The principle of the HHT is as follows: first, one decomposes iteratively the time 

series into empirical adaptive nonlinear modes (intrinsic mode functions, abbreviated as IMFs) 



which exhibit nonlinear shapes and patterns and are physically meaningful (in a sense to be 

made precise below). This process is called empirical mode decomposition (EMD). Second, the 

Hilbert spectral analysis of the IMFs provides then a localized time-frequency spectrum and a 

possible extraction of instantaneous frequencies. 

By now this method has been employed for many physical long- and short-term 

univariate data, see, e.g., Huang & Shen, 2005, and references therein. A very recent paper 

where Hilbert spectral analysis was applied to hydrological data is Huang et al., 2009; here daily 

river flow fluctuations are analyzed. 

The original scheme has been modified and refined by several authors during the past 

decade, see, e.g., Chen et al., 2006, Deléchelle et al., 2005, Flandrin & Gonçalvès, 2004a, 

Flandrin et al., 2004b. First extensions to derive an empirical mode decomposition of two--

dimensional data may be found in Damerval et al., 2005, Xu et al., 2006, and applications to 

adaptive image compression in Linderhed 2004. In Koch, 2008, several methods for computing 

the EMD for two-dimensional data are compared with respect to their numerical performance. 

This is extended in Jager et al., 2010, with a focus on numerical efficiency which is mandatory, in 

particular, for multisensorial data in several space dimensions. Moreover, the second step, the 

Hilbert transform, also has to be generalized to extend analytical signals to arbitrary 

dimensions. Based on ideas employing Clifford algebras and Riesz transforms from Felsberg & 

Sommer, 2000, Felsberg & Sommer, 2001, a corresponding fast numerical scheme and results 

on two--dimensional data can be found in Koch, 2008, Jager et al., 2010. 

In this paper, we present the Hilbert-Huang-Transform (HHT), following the collection of 

material in Koch, 2008, and apply it to hydrological time series data. In Section 2.1, we introduce 

a basic iterative scheme for computing the empirical mode decomposition of univariate time 

series data. Section 2.2 is devoted to some mathematical ingredients for deriving the Hilbert 

transform, including the concept of  instantaneous frequencies and the  Hilbert energy 

spectrum. Section 3 is devoted to computing the EMD and appropriate approximations of some 

long-term hydrological time series data. We analyze the data with the HHT in Section 3.3 and 

include a comparison with the Fourier spectrogram and the wavelet spectrum. Finally, Section 4 

summarizes our main conclusions and provides directions for future work, both for the analysis 

of hydrological data as well as for improvements of computations for the Hilbert-Huang-

Transform and extensions to higher spatial dimensions. 

 

2  The Hilbert-Huang-Transform (HHT) 

  

2.1  Empirical Mode Decompositions (EMDs) 
 

The advantage of the Hilbert-Huang-Transform (HHT) developed in Huang et al., 1998, 

over the Fourier decomposition or a wavelet decomposition is that it can be used to analyze 

nonlinear and non-stationary data over irregular time grids. The HHT works by iteratively 

decomposing the time series into a finite number of intrinsic mode functions (IMFs) through an 

empirical mode decomposition (EMD) process. After the data-driven additive decomposition is 

obtained, one applies in a second step detailed below in Section 2.2 to each IMF component the 

Hilbert transform, yielding a time-frequency distribution of the energy, the so-called Hilbert 

spectrum. 

First we describe the EMD process as originally designed in Huang et al., 1998, with a 



synthetic example from Rilling et al., 2003. One calls a set of real-valued time series data 

Z∈lll
)},{( zt  a  nonlinear and  non-stationary data set if there exists a number Z∈m  such that 

the common probability distribution of mzz +ll
K,,  depends on the time index l . All sorts of 

measurement data from physical processes usually satisfy this condition. It will be convenient to 

describe the methods by considering instead of discrete time series data a continuous function 

RR →:s . Note that a continuous function can always be generated from discrete data by 

(linear continuous) interpolation or by a least-squares approximation of the data. 

The goal of the method is to decompose the function into finitely many components 

which allow later to define instantaneous (time-dependent) amplitudes and frequencies. The 

specific feature of the decomposition considered here is that these components are  adaptively 

derived from the input data. These data-driven components are determined in such a way that 

they satisfy the following properties. We say that a function RR →:imf  is an  intrinsic mode 

function (IMF) if (i) the number of local extrema and zero points of IMF differ mostly by one; (ii) 

at any point, the mean value of the cubic spline which interpolates all local maxima and of the 

cubic spline which interpolates all local minima is zero. Recall that a cubic spline is a function 

consisting of piecewise polynomials of degree three joined together such that their second 

derivative is still a continuous function. Thus, an IMF represents a basic oscillation which is 

symmetrically localized around the ordinate axis. The collection of IMFs may be viewed as a 

data-adapted basis which is not known a-priori since they additively decompose the data 

(viewed as a continuous function) in a unique way, once the iteration parameters are fixed. 

These functions are the natural generalizations of Fourier components with the difference that 

they have a variable amplitude and a variable frequency as a function of time, called 

instantaneous amplitude and frequency. In contrast, the Fourier basis and the wavelet basis are 

known a-priori. 

For illustration purposes, we will describe the subsequent EMD process using a synthetic 

function displayed in Figure 1. This function s  is additively composed from a sine wave and two 

piecewise linear continuous functions with different periodicities. It will be decomposed into a 

finite number of IMFs and a monotone residual by the following iterative process.  

 

  

  
Figure 1:  Synthetic function s  (top left), additively composed from a sine wave (top right) and 

two piecewise linear continuous functions (bottom) with different periodicities. 

 

The decomposition is based on two iterations, one inner loop called  sifting which has 

generated after its completion a single IMF, and an outer loop which consists of the 

decomposition into the different IMFs. For computing a single IMF, one first computes an upper 

and lower envelope −+ ss ,  of the local maxima, resp. minima, consisting of cubic splines which 



contain in its convex hull the original signal s , see Figure 2 (top).  

     

 

 
Figure 2: Synthetic function s  between its upper envelope +s  and its lower envelope −s  (top), 

synthetic function s  and its mean function 1,1m  (bottom). 

 

For the difference between the original signal )(ts  and the mean 

))()((
2

1
:=)(1,1 tststm −+ +  which is shown in Figure 2 (bottom), that is, )()(:=)( 1,11,1 tmtsth − , one 

again computes the upper and lower envelopes, subtracts the mean )(1,2 tm  and repeats the 

process with the new signal )()(:=)( 1,21,11,2 tmthth −  until a standard mean deviation criteria is 

met; for details and a discussion of appropriate termination criteria, see Huang et al., 1998, 

Koch, 2008. The result is called )(1 timf . The next inner sifting process then starts with the 

residual )()(:=)( 11 timftstr − , yielding the second )(2 timf . After termination of the last outer 

iteration, combining all components finally results in an additive decomposition   

 )()(=)(
1=

trtimfts nj

n

j

+∑  (1) 

 where nr  is a constant or monotone residual. By this we mean that nr  is the remainder of the 

decomposition which is a monotone function and, therefore, has at most one root (i.e., at most 

one zero). This residual may be viewed as a trend in the data. For the synthetic data from Figure 

1, the result of the iterative process, the empirical mode decomposition (EMD), is shown in 

Figure 3. 

 

   

   

    

  



  

  
Figure 3: Empirical mode decomposition (EMD) of synthetic function s  (top left) into 

1imf  

(middle left), 
2imf  (bottom left), 

3imf  (top right), 
4imf  (middle right) and a monotone 

residual 4r  (bottom right). Note the different ordinate scaling for the last two components in 

comparison to the other ones. 

   

Although synthetic, this example is very illustrative: one sees that the first three 

components are clearly recovered from the original data; according to the construction the 

function 1imf  contains the fastest oscillations. The appearance of an additional function 4imf  

(compared to the original signal s ) is caused by interpolation errors and boundary effects. Note, 

however, the scale: the modulus of the amplitude is bounded by 0.04  which can be considered 

negligible in this example. Also the monotone residual is in this order. 

Note that the different IMFs are approximations of linear combinations of cubic B-

splines: they are approximations since the process is iterative. This can be seen from the results 

for the synthetic example by comparing the plots in Figure 1 with the ones in Figure 3. Each IMF 

is approximately a linear combination of cubic B-splines for which, however, the expansion 

coefficients are determined by the data. This means that different data sets, even if sampled on 

the same uniform grid, yield different IMFs. Also the frequencies may differ within an IMF. In 

that sense the different IMFs are not the same as simply a linear combination of cubic B-splines 

all stemming from the same resolution grid. 

Finally, note that we did not claim that we do not make use of a basis at all. In fact, for 

the iteration procedure, it is essential to have one. The main difference between the EMD 

decomposition  (1) (or  (11) below) and e.g. the Fourier representation  (12) below is that the 

Fourier representation has a fixed basis )(exp ti jω , and its expansion coefficients ja  can only 

attain a certain constant value for each j , whether this is needed locally or not. For a wavelet 

expansion, although the basis functions have local support, also the expansion coefficients can 

only take on a constant value. In contrast, the EMD decomposition or its HHT version  (11) allow 

for a time-dependent coefficient which is constructively adapted to the data. 

 

2.2  Hilbert Spectral Analysis 

 Once the data is decomposed into an EMD according to  (1) , one can apply to each IMF 

component the Hilbert transform, and one can compute instantaneous frequencies by means of 

these. The main idea is to generate from a real-valued signal s  a complex-valued extension (by 

means of the Hilbert transform), called the  analytical representation of the signal or, shortly,  

analytic signal. This technique has a long tradition in signal processing, see, e.g., Cohen, 1994, 

Flandrin, 1999, and, specifically, Hahn, 1995. The main idea is the observation that the negative 

frequency components of the Fourier transform of a real-valued function do not have to be 



taken into account, due to the Hermitian symmetry of such a spectrum, see  (7) below. Then 

these negative frequency components can be discarded without loosing information, under the 

condition that one accepts to compute now with a complex-valued function instead. For the 

analytical signal then time-dependent (instantaneous) amplitudes and frequencies can be 

defined. In many applications, this is considered `physically meaningful', see, e.g., Huang & 

Shen, 2005. 

The  Hilbert transform ][sH  of a function RR →:s  is defined as the integral transform   
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 see, e.g., Titchmarsh, 1950. We will exploit certain properties of the Hilbert transform in 

connection with the  Fourier transform ][sF  of a signal RR →:s , defined by   

 .,)(
2

1
=)]([ RF ∈−

∞

∞−∫ ω
π

ω ω dtetss ti  (3) 

One denotes F  as the  Fourier spectrum of s  and often abbreviates ][:=ˆ ss F . Recall that the 

Fourier transform is a technique to represent a signal in the frequency domain and describes 

which portion of a particular frequency is contained in the signal. However, these frequencies 

ω  are constant over time. In contrast, employing the Hilbert transform will allow to define a 

frequency depending on time. This will be achieved by first constructing from the real-valued 

given data an analytical signal which is by definition complex-valued, using the Hilbert 

transform. For this analytical signal, then an instantaneous (time-dependent) frequency can be 

defined. 

In order to do so, we will need a few more technical facts. Together with the property 

)(
2

2
=)](

1
[ ω

π
ω sign

i

s
−F  (where 1:=)(ωsign  for 0≥ω  and 1:=)( −ωsign  for 0<ω ) one can 

show   
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 One can also show that a function v  has the Fourier coefficients )(ˆ)()(=)(ˆ ωωω wsigniv −  if and 

only if )]([=)( ssv ωH . 

For the practical computation of the Hilbert transform, one can use that for a (real-

valued) signal RR →:s  one has   

 




ℑ ∫

∞

ωω
π

ω
dests

ti
)(ˆ

2
=)]([

0
H  (5) 

 where )(zℑ  denotes the imaginary part of a complex number C∈z . For instance, the Hilbert 

transform of )(sin:=)(~ ctts +α , R∈c,α  is just )(cos=)(=)](~[ ctiets ict −−ℑH . 

The `complexification' of given (real-valued) data RR →:s  can be achieved as follows. 

Denote by )]([:=)( tstv H  the Hilbert transform of s  and define the  analytic signal as   

 .),()(:=)( R∈+ ttvitstsA
 (6) 

 Note that the real part ℜ  of 
As  recovers the original signal, i.e., )(=))(( tstsAℜ . Definition  (6) 

ensures that the spectrum of the complex-valued signal As  is zero for negative frequencies ω    
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 The analytical signal As  can also be represented as   

 )()(=)( ti

A etats φ  (8) 

 with  amplitude )()(:=)( 22 tvtsta +  and  phase 








)(

)(
arctan:=)(

ts

tv
tφ . We define now the  

instantaneous frequency RR →:)(= tωω  of s  as   

 ).(:=)( t
dt

d
t φω  (9) 

 Specifically, this definition is consistent with the definition of a  mean frequency, i.e., it satisfies   

 .|)(|)(=|)(ˆ| 22 dttst
dt

d
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After these preparations, we are in the position to compute instantaneous frequencies 

for the empirical mode decomposition of the original signal. In fact, recalling the additive 

decomposition  (1) and applying the Hilbert transform to each of the IMF components, we 

obtain  

 ( ) )()]([)(=)()(=)(
1=1=
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 Note here that for the residual nr  its instantaneous frequency is irrelevant since the residual is 

either monotone or a constant which only exhibits a trend. Thus, only a possible long term trend 

without seasonal influence can be obtained from it. 

As intended, the representation  (11) furnishes for each component index j  an 

amplitude )(ta j  as well as a frequency )(tjω  depending on time. Comparing this with the 

Fourier representation of the signal, truncated after the n th term,   

 ),(~)(exp=)(
1=

trtiats njj

n

j

+









ℜ ∑ ω  (12) 

 one observes that the components of the latter only have constant amplitude and frequency. In 

this sense, the EMD provides a generalized Fourier representation which is particularly 

appropriate for non-stationary and nonlinear data. 

We now interpret the amplitude depending on the time and the frequency and denote 

the time-frequency decomposition of the amplitude as the Hilbert amplitude spectrum ),( tH ω . 

Formally, this is defined as follows. Let the signal s  be represented in the form  (11) . Then the  

Hilbert amplitude spectrum is defined as   
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 Note, however, that one can also define the  Hilbert energy spectrum by taking squares of the 

amplitudes. In fact, as it is written in Huang et al., 1998, p. 928, 4th paragraph, `If amplitude 

squared is more desirable commonly to represent energy density, then the squared values of 

amplitude can be substituted to produce the Hilbert energy spectrum just as well.' 

In the subsequent computations in Section 3.3 below, we have chosen the Hilbert 

energy spectrum (taking squares of the amplitudes in  (13) ) since then the results can be 

compared better to the Fourier spectrogram and to the wavelet spectrum. 

 

3  Application to Hydrological Time Series Data 

  The concept described in the previous section is now applied to different hydrological 

data sets described in Bogena et al., 2005a, Bogena et al., 2005b. 

 

3.1  Basic Characteristics of the Investigation Area 

  

The catchment of the Rur River has been chosen as the regional investigation area for 

the SFB/TR32 project. The Rur catchment covers a total area of 2354 km 2  and is situated in 

Western Germany. For this study we selected data from three runoff gauging stations 

(Dedenborn, Erkensruhr and Rollesbroich) located in the southern part of the Rur catchment 

(see Figure 4). The runoff discharge was measured over a period of 6940 days (roughly twenty 

years between 1981 and 2001). The associated catchments of these stations are different in size 

(from 20 to 200 km 2 ) and exhibit varying catchment characteristics (see Table 1). 

 

 

  



 
Figure  4: The location of the runoff gauging stations Rollesbroich, Dedenborn and Erkensruhr 

and the associated catchment areas. 

   

Table 1 gives an overview of the basic catchment characteristics, see Bogena et al., 

2005a, Bogena et al., 2005b. 

 

   

     Upper Rur River    Kall River    Erkensruhr River  

Gauging 

station  

 Dedenborn   Rollesbroich   Erkensruhr  

 Area   199.7 km 2    19.03 km 2    41.7 km 2    

Mean 

elevation  

 553 m   532 m   526 m  

  

Mean slope   36.4 o    17.3 o    32.1 o    

 Landuse 

percentage            

 urban:  2 %   urban:  3 %   urban:  <  1 %  

(2001)   arable land:  4 %   arable land:  13 %   arable land:  10 %  



  grassland:   35 %   grassland:   45 %   grassland:   16 %  

  raised bogs:   29 %        

  forest:   30 %   forest:   39 %   forest:   74 %  

 Geology 

(HK100)  

 Palaeozoic:   89 %   Palaeozoic:   94 %   Palaeozoic:   96 %  

  Pleistocene:  1 %     Pleistocene:  1 %  

  Holocene:   10 %   Holocene:   6 %   Holocene:   3 %  

 Annual 

precipitation  

 mean:            1042 mm/a   mean:          1200 mm/a    mean:           1081 mm/a   

(1979-99)   min:             908 mm/a   min:            1133 mm/a   min:             932 mm/a  

  max:            1413 mm/a   max:            1266 mm/a   max:            1219 mm/a  

 Annual 

runoff  

 793 mm/a    733 mm/a    633 mm/a    

(Daily 

sampling 

interval)  

 (1961-2000)    (1982-

2000)  

  (1961-2000)    

Table  1: Basic characteristics of the catchment areas. 

   

Due to the marine air flowing in predominantly from southwest to northeast, a 

significant precipitation shadowing effect can be observed: The precipitation levels in the crestal 

regions of the Rhenish Massif ("Hohes Venn") are higher than those on the eastern sides (lee 

regions). Therefore, the annual precipitation ranges between about 900 mm/a in the 

northeastern part of the investigation area and about 1400 mm/a in the southwest. 

The investigation area belongs to the Central European low mountain ranges and is 

dominated by Palaeozoic solid rocks of the Rhenish Massif formed in the course of Variscan 

orogenesis, occupying the largest area fraction (89-96 %). Holocene floodplain deposits and 

raised bogs are especially occurring within the Upper Rur River catchment, but are of less 

importance (3-10 %). The Upper Rur River comprises also a significantly proportion of raised 

bogs (29 %). The catchment areas of the Upper Rur and Kall Rivers are predominated by 

pastures, whereas the Erkensruhr River is characterised by forest, leading to significant lower 

mean annual runoff compared to the other catchments (100 and 190 mm/a, respectively). 

Figure 5 shows the runoff discharge of all catchments for the period of 1982 to 1999 for 

a time period of one day. The general runoff characteristic is very similar for all catchments. The 

highest peak flows have been recorded during winter, whereas during summer low flow 

conditions are common. The maximum runoff was recorded on 22nd of December 1991 

(Rollesbroich: 41.34 mm/day), whereas one of the lowest runoffs from 1990 til 1999 was 

recorded on 11th of July 1993 (0.0023 mm/day). Since it contains the highest and and one of 

the lowest runoffs, we selected the period from 1991 to 1993 to present the runoff data in 

more detail (Figure 6). From Figure 6 it becomes apparent that the runoff from the Kall River 

(gauging station Rollesbroich) shows more peaks as a result of the smaller catchment area. The 

runoff from the Upper Rur River (gauging station Dedenborn) is to some extent damped due the 

presence of a small water reservoir (see Figure 4). 

 



 
 

 Figure  5: Runoff discharge data from 1982 to 1999 from the three gauging stations. 

   

 
 

Figure  6: Runoff discharge data from 1991 to 1993 from the three gauging stations. 

   

The current study is meant as a preliminary study for the data analysis of a dense soil 

moisture sensor network for monitoring soil water content changes at high spatial and temporal 

scale; for a description of the currently used soil moisture network and measurement devices, 

see Bogena et al., 2007, Bogena et al., 2009, Bogena et al., 2010, and Rosenbaum et al., 2010. 

 

3.2  Computation of the Empirical Mode Decomposition (EMD) 
 For the three data sets and different time ranges, we have computed the corresponding 

Empirical Mode Decomposition (EMD). The result for the Dedenborn data set in the time range 

1990-1999 can be seen in Figure 9 below; all the others can be found in Rudi, 2010. 

Figure 7 presents the first 3 IMFs amplitudes for all catchments together with the 

original runoff discharge data for the 1991-1993 time range. (Note that the IMF amplitudes 

)(,),( 31 tata K  differ from the IMFs )(,),( 31 timftimf K  in  (1) .) We can make the following 

observations: The runoff peaks produce at most times high IMF amplitude values, especially for 

1imf , which is the portion of the signal corresponding to the highest frequencies. The extreme 

event of December 22, 1991, produces very distinct amplitude peaks for 
21, imfimf  and 

3imf  

and is clearly visible in all three data sets. Low flow periods go along mostly with low amplitudes 

for 
21, imfimf  and 3imf , sometimes with distinct negative peaks. 

 

 



  
 

Figure  7: Runoff discharge data from 1991 to 1993 from the three gauging stations compared 

with IMF Amplitudes 1, 2 and 3 (A) Dedenborn, (B) Rollesbroich and (C) Erkensruhr. 

   

Figure 8 shows the differences between the different IMF amplitudes for all catchments. 

In all graphics, we can observe a very similar behavior of each of the IMF amplitudes for the 



three stations together, indicating that their close locality exhibits similar runoff patterns. 

However, their absolute values are different, due to higher values of the Dedenborn data (red 

curve). We also see that the location of extreme points of the three IMF amplitudes, like at 

December 21, 1991, or at January 9, 1993, coincides. We also see from these amplitudes as well 

as from the original data seasonal components: decreasing values in spring with lower values 

during summer and afterwards increasing amplitudes, resulting in the highest amplitudes in 

December/January of each year. 

   
Figure  8: Comparison of IMF amplitudes for all catchments (A) 1imf , (B) 2imf  and (C) 3imf . 



   

Once the EMD is computed like in Figure 9 below, one can define an approximation of 

the original data as follows. Since the EMD is an exact additive representation of the signal, one 

can skip the first IMFs in the representation  (1) , containing the high frequencies. One can then 

define a coarse approximation to the original data by setting   

 )()(:=)(~

=

trtimfts nj

n

mj

+∑  (14) 

 where 1>m  stands for the IMF with the lowest index from which on frequencies should be 

taken into account. Since this approximation contains all relevant information but much less 

data since high frequency components are taken out, this representation may be used for 

further processing within a model for parametrization.  

 



3.3  Different Spectra: Results and Discussion 

  

In this section, we compare the Hilbert energy spectrum as defined in Section 2.2 with 

other spectra. For this, we have first used the Dedenborn data from 1990-1999 displayed at the 

top in Figure 9. The corresponding EMD is shown at the bottom. 

 

 

 

 
 

 
Figure  9: Dedenborn site: original data 1990-1999 (top), EMD (bottom). 



   

 

The corresponding Hilbert energy spectrum is shown at the top in Figure 10. The 

ordinate axis displays the time period of the corresponding frequencies in days in a logarithmic 

scale, and the strength of the colors reveal the  energy (i.e., the value of the amplitude squared) 

according to the values shown on the right. So the Hilbert spectrum shows the distribution of 

the squares of the amplitudes and frequency as functions of time. The two graphics below 

display the wavelet energy spectrum using the continuous wavelet transform with the Morlet 

wavelet and the Mexican hat wavelet, respectively. The last graphic is the spectrogram using 

the short-time (or windowed) Fourier transform (STFT) with a window width of 64 measured 

data values. All spectra are energy spectra with a linear scale of the colors. 

The same computations were made with a zoom-in of the Dedenborn data into the time 

period 1991-1993 in Figures 11 and 12. 

In the comparison in Figure 10 between the Hilbert energy spectrum and the Fourier 

spectogram, we see a much more localized behaviour of the Hilbert energy spectrum. 

Moreover, in comparison with the wavelet spectra the Fourier spectogram even seems to 

emphasize regions of importance like in 1994 or 1995 where the other spectra are not so 

dominant. In addition, the Fourier spectogram fails to provide information for periods 

essentially smaller than 16 days. This effect is even more visible in Figure 12 between beginning 

of 1992 and 1993, or around February 1993: here the STFT exhibits features which the other 

spectra do not show so that we can conclude that they may be faulty. For these reasons, we will 

not consider the Short-time Fourier Transform in the subsequent comparisons. In Figure 10, one 

can clearly detect boundary effects for the two wavelet transforms due to their periodic nature. 

This cannot be seen for the Hilbert energy spectrum. 

We further zoom into the Dedenborn original data centered at the extreme event of 

1991-12-22 with visualization of period lengths, for which we show the Hilbert energy spectrum 

and two wavelet spectra in Figure 13. The Hilbert energy spectrum shows a very clear and quite 

unusual nonlinear pattern while the two wavelet spectra just exhibit essentially the location. It 

is remarkable that both these spectra display high amplitude values only for periods smaller 

than 64 while the Hilbert energy spectrum shows high amplitudes also for periods up to 256. 

Finally, we show in Figure 14 the Hilbert energy spectra for all three sites together for 

the sample period 1991-1993. These have been scaled so that they display the same energy. It is 

apparent that all three of them exhibit the same patterns at the same locations. The higher 

values for Dedenborn account for higher values in the energy at the end of 1991. 

It is apparent that the Hilbert energy spectra show very localized information which is 

even stronger than the wavelet spectra; the latter have a tendency to smear out especially for 

increasing periods over 64 days. Seasonal components with strong peaks in their energies 

around the turn of the years are most apparent for the Hilbert energy spectrum in Figure 14. 

The Hilbert energy spectrum clearly shows certain periodic appearances of similar 

horizontal distances which can be interpreted as years and seasons. The strength of the 

amplitudes, visualized by the different colors, indicate different amounts of drainage over time. 

From this, a time-dependent impact of higher amounts of data can be derived. We have 

displayed in Figures 10 and 12 a comparison between the Hilbert spectrum and the Fourier 

spectrogram for zoom-ins of the Dedenborn data. One sees that the Hilbert spectrum provides 

much more localized spectrum information than the short-time Fourier transform. This effect 



apparently becomes stronger the more one zooms in into the data. In this way, one can 

interpret the Fourier spectrogram as a strongly `smeared-out' version of the Hilbert spectrum. 

Even when compared with wavelet spectra using continuous wavelet transforms, the Hilbert 

energy spectrum exhibits a stronger localized and less smeared-out energy. 

Moreover, the Hilbert energy spectra of the three measurement stations in Figure 14 

appear very similar, indicating little local variability in drainage. 

All computations of the EMD and the HHT spectra have been performed in  matlab, 

Version 7.9.0 (R2009b). The Fourier spectrograms employing the Short-time Fourier Transform 

were generated with the  spectrogram function of the  matlab Signal Processing Toolbox. The 

Continuous Wavelet Transforms using the Morlet and the mexican hat wavelets have been 

implemented using the  matlab Wavelet Toolbox according to the guide to wavelet analysis by 

Torrence & Compo, 1998. All programs were written by Johann Rudi. More data and 

comparisons can be found in Rudi, 2010. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
Figure  10: Dedenborn site for data 1990-1999: Hilbert energy spectrum (top), two 

wavelet spectra (middle) and Fourier spectrogram (bottom). 

   

 



 

 
Figure  11: Dedenborn site: original data 1991-1993 (top), EMD (bottom). 

   

 

 

   

  

  

  



 

 

 

 
Figure  12: Dedenborn site for data 1991-1993: Hilbert energy spectrum (top), two 

wavelet spectra (middle) and Fourier spectrogram (bottom). 

    



 

 
Figure  13: Dedenborn site: original data centered at 1991-12-22 with visualization of 

period lengths (top), Hilbert energy spectrum and two wavelet spectra. 

 

 



 

 

 
Figure  14: Hilbert spectra with same energy scaling of Dedenborn, Erkensruhr and 

Rollesbroich from 1991 to 1993 

 

4  Conclusions and Future Work 

 

The HHT method presented here provides a refined analysis of hydrological data when 

compared to classical Fourier analysis and wavelet analysis. Specifically, the possibility of 

introducing a time-dependent frequency and the computation of a localized time-frequency 

spectrum provides seasonal components together with their energies. Compared with wavelet 

spectra using continuous wavelet transforms or with Fourier spectograms, the Hilbert energy 

spectrum exhibits a stronger localized and less smeared-out energy. 

Since the EMD provides an additive decomposition of the original data, the different 

IMFs display different portions of the measured data with time-dependent frequencies which 

become larger for larger indices j . Clearly, a coarse approximation of the data could be 



obtained by summing only the IMFs for, say, 3≥j . In view of the detection and the 

parametrization of multiscale patterns and shapes, the method presented here provides a way 

to characterize the data set consisting of thousands of data points in terms of very few 

parameters (years and seasonal components, distribution of their amplitudes and their 

energies). These may then be employed in the numerical simulation models for fluxes. 

Although the method has proved to be successful in many applications and has perhaps 

provided more insight into the data than conventional methods, it should be mentioned that 

theoretical aspects of the EMD, like a mathematical convergence theory, the complexity of the 

iterative scheme in terms of floating point operations, or the appropriate handling of boundary 

data is still not understood. For the complexity issue, the problem is the EMD algorithm which is 

based on two nested iterations, see Section 2.1. Both need the specification of thresholding 

parameters to terminate the iterations. The difficulty of an appropriate choice of these 

parameters has been thematized, e.g., in the introductory chapter by Huang in Huang & Shen, 

2005, p. 8/9. It has been observed by us and others that a slightly different choice of these 

thresholding parameters may yield a quite different number of IMFs and also different patterns 

of these. Accordingly, the total amount of outer and inner iterations cannot be determined 

beforehand and, in the worst case, the algorithm may not converge at all. In order to overcome 

the parameter choice in the sifting process, an alternative which works with linear functionals 

for B-Splines instead of upper and lower hulls of the data and which is cheaper to compute has 

been proposed in Chen et al., 2006, and is further elaborated in Koch, 2008, and Jager et al., 

2010. 

Of course, once the EMD is determined, the complexity of computing the Hilbert 

spectrum can be determined easily since it just requires applications of the Fast Fourier 

Transform. Towards a theoretical understanding of the overall HHT process, first steps have 

been undertaken in Sharpley & Vatchev, 2006. 

When it comes to the analysis of  multivariate data sets, the EMD process can become 

numerically quite expensive or even prohibitive for space dimension 3≥n . Different 

approaches for the two-dimensional case based on finite elements on Delaunay triangulations 

or thin plate splines or (in the univariate case) by solving a time-dependent partial differential 

equation have been proposed in Deléchelle et al., 2005, Damerval et al., 2005, Xu et al., 2006. A 

systematic comparison for the two-dimensional case which focusses on the quality of the EMD 

and the numerical performance is given in Koch, 2008, and Jager et al., 2010. Specifically, a new 

method based on adaptive spline wavelets has been proposed there which ultimately yields the 

best results when it comes to the quality of the EMD and the speed of the computations. 

Equally important, an analysis of the theoretical setup for the general, n -dimensional case by 

means of Clifford algebra and monogenic functions, and a definition of a generalized Hilbert 

transform for the multivariate case is given there. 

We applied the EMD methodology to compare long-term daily runoff discharge 

measurements taken from three river streams rivers of very different size. We demonstrated 

that these time series can be successfully separated into several IMF modes. The runoff peaks 

mostly resulted in high IMF amplitude values, especially for 
1imf , which is the portion of the 

signal corresponding to the highest frequencies. Extreme events produced also distinct 

amplitude peaks for 2imf  and 3imf . In contrast, low flow periods are usually accompanied by 

low amplitudes for 
21, imfimf  and 3imf , sometimes even with distinct negative peaks. The 



similarity of the IMF modes indicate a similar runoff pattern due the close locality and similar 

environmental setting of the catchments. Since Huang et al. (2009) also were able to apply the 

EMD methodology for hydrological time series data we are confident that the EMD will also be 

usefull for the analysis of other time series data that are similar to runoff data (e.g. soil 

moisture). Furthermore, EMD should also be helpful for the validation of rainfall-runoff models, 

which has already been demonstrated for the wavelet-domain by Schaeffli and Zehe (2009). The 

next step will be to use the HHT method for the scale dependent characterisation of soil 

moisture patterns as measured by the sensor network deployed in the framework of the TR32 

project (Bogena et al., 2010). 
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