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Abstract—Mantle convection is the fundamental phys-
ical process within earth’s interior responsible for the
thermal and geological evolution of the planet, including
plate tectonics. The mantle is modeled as a viscous,
incompressible, non-Newtonian fluid. The wide range of
spatial scales, extreme variability and anisotropy in ma-
terial properties, and severely nonlinear rheology have
made global mantle convection modeling with realistic
parameters prohibitive. Here we present a new implicit
solver that exhibits optimal algorithmic performance and
is capable of extreme scaling for hard PDE problems,
such as mantle convection. To maximize accuracy and
minimize runtime, the solver incorporates a number
of advances, including aggressive multi-octree adaptivity,
mixed continuous-discontinuous discretization, arbitrarily-
high-order accuracy, hybrid spectral/geometric/algebraic
multigrid, and novel Schur-complement preconditioning.
These features present enormous challenges for extreme
scalability. We demonstrate that—contrary to conventional
wisdom—algorithmically optimal implicit solvers can be
designed that scale out to 1.5 million cores for severely
nonlinear, ill-conditioned, heterogeneous, and anisotropic
PDEs.

Submission Category: Scalability

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by
others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
SC ’15, November 15 - 20, 2015, Austin, TX, USA.
Copyright is held by the owner/author(s). Publication rights licensed
to ACM.
ACM 978-1-4503-3723-6/15/11...$15.00
DOI: http://dx.doi.org/10.1145/2807591.2807675

I. EARTH’S MANTLE CONVECTION

Earth is a dynamic system in which mantle convection
drives plate tectonics and continental drift and, in turn,
controls much activity ranging from the occurrence of
earthquakes and volcanoes to mountain building and
long-term sea level change. Despite its central role in
solid earth dynamics, we have enormous first-order gaps
in our knowledge of mantle convection, with questions
that are as basic as what are the principal driving and
resisting forces on plate tectonics to what is the energy
balance of the planet as a whole. Indeed, understanding
mantle convection has been designated one of the “10
Grand Research Questions in Earth Sciences” in a recent
National Academies report [1]. We seek to address such
fundamental questions as: (i) What are the main drivers
of plate motion—negative buoyancy forces or convective
shear traction? (ii) What is the key process governing the
occurrence of great earthquakes—the material properties
between the plates or the tectonic stress?

Addressing these questions requires global models of
earth’s mantle convection and associated plate tectonics,
with realistic parameters and high resolutions down to
faulted plate boundaries. Historically, modeling at this
scale has been out of the question due to the enormous
computational complexity associated with numerical so-
lution of the underlying mantle flow equations. However,
with the advent of multi-petaflops supercomputers as
well as significant advances in seismic tomography and
space geodesy placing key observational constraints on
mantle convection, we now have the opportunity to
address these fundamental questions.

Instantaneous flow of the mantle is modeled by the



µmax µmin plate decoupling

strain ratestrain rate
weakeningweakening

plasticplastic
yieldingyielding

Figure 1: Cross section through a subducting slab of the Pacific
plate showing effective mantle viscosity (colors) in a simulation of
nonlinear mantle flow. Viscosity of plates reaches µmax (dark blue),
except at the trench due to plastic yielding. In the thin plate boundary
region, viscosity drops to µmin (dark red) creating a contrast of 106.
Strain rate weakening reduces the viscosity underneath the plates
and, combined with plastic yielding, is the reason for earth’s highly
nonlinear rheology.

nonlinear incompressible Stokes equations:

−∇ ·
[
µ(T,u) (∇u+∇u>)

]
+∇p = f(T ), (1a)

∇ · u = 0, (1b)

where u, T , and p are the velocity, temperature, and pres-
sure fields, respectively; f is the temperature-dependent
forcing derived from the Boussinesq approximation; and
the temperature- and velocity-dependent effective viscos-
ity µ is characterized by the constitutive law

µ(T,u) = µmin+ (1c)

min

(
τyield

2ε̇II(u)
, wmin

(
µmax, a(T ) ε̇II(u)

1/n−1
))

.

The effective viscosity depends on a power of the square
root of the second invariant of the strain rate tensor
ε̇II := 1

2(ε̇ : ε̇)
1/2, where “:” represents the inner

product of second order tensors and ε̇ := 1
2(∇u+∇u>).

The viscosity decays exponentially with temperature via
the Arrhenius relationship, symbolized by a(T ). The
constitutive relation incorporates plastic yielding with
yield stress τyield, lower/upper bounds on viscosity µmin

and µmax, and a decoupling factor w(x) to model plate
boundaries. For whole earth mantle flow models, (1) are
augmented with free-slip conditions (i.e., no tangential
traction, no normal flow) at the core–mantle and top
surface boundaries.

Successful solution of realistic mantle flow prob-
lems must overcome a number of computational chal-
lenges due to the severe nonlinearity, heterogeneity, and
anisotropy of earth’s rheology. Nonlinear behavior at
narrow plate boundary regions influences the motion

of whole plates at continental scales, resulting in a
wide range of spatial scales. Crucial features are highly
localized with respect to earth’s radius (∼6371 km),
including plate thickness of order ∼50 km and shear
zones at plate boundaries of order ∼5 km. Desired
resolution at plate boundaries is below ∼1 km. However,
a mesh of earth’s mantle with uniform resolution of
0.5 km would result in O(1013) degrees of freedom
(DOF), which would be prohibitive for models with such
complexity. Thus adaptive methods are essential. Six
orders of magnitude viscosity contrast is characteristic
of the shear zones at plate boundaries, yielding sharp
viscosity gradients and leading to severe ill-conditioning.
Furthermore, the viscosity’s dependence on a power of
the second invariant of the strain rate tensor and plastic
yielding phenomena lead to severely nonlinear behavior.

Overcoming major obstacles in adaptivity [2], we
advanced toward these challenges with global models
having 20 km thick plate boundaries, nonlinear viscosity,
and yielding, and in turn demonstrated an unantici-
pated level of coupling between plate motion and the
deep mantle [3], bounds on energy dissipation within
plates [4], and rapid motion of small tectonic plates
adjacent to large ones [5]. Nevertheless, such models
did not close the gap between the fine-scale (∼1 to
10 km) patterns of earthquakes, stress, and topography
along plate boundaries with plate motions. Narrowing the
local-to-global divide is essential for extracting the key
observations allowing one to reach a new understanding
of the physics of earth processes (Figure 1).

The central computational challenge to doing so
is to design implicit solvers and implementations for
high-resolution realistic mantle flow models that can
handle the resulting extreme degrees of nonlinearity
and ill-conditioning, the wide ranges of length scales
and material properties, and the highly adapted meshes
and required advanced discretizations, while also scaling
to the O(106) cores characteristic of leadership class
supercomputers. While the conventional view is that
this goal is impossible, we demonstrate that with a
careful redesign of discretization, algorithms, solvers,
and implementation, this goal is indeed possible. These
advances open the door to merging two fundamental
geophysical questions: the origin of great earthquakes
and the balance of forces driving plate motions.

II. STATE OF THE ART

Earth’s mantle convection is one of a large number
of complex PDE problems that require implicit solution



on extreme-scale systems. The complexity arises from
the presence of a wide range of length scales and strong
heterogeneities, as well as localizations and anisotropies.
Complex PDE problems often require aggressive adap-
tive mesh refinement, such as that provided by the paral-
lel forest-of-octree library p4est [6] that originated in our
group. They also often require advanced discretizations,
such as the high-order, hanging-node, mixed continuous-
velocity/discontinuous-pressure element pair employed
here. The physics complexities combined with the dis-
cretization complexities conspire to present enormous
challenges for the design of solvers that are not only
algorithmically optimal, but also scale well in parallel.
These challenges are well documented in a number of
blue ribbon panel reports (e.g., [7]).

In our context of time-independent non-Newtonian
flows, implicit solvers means a combination of nonlinear
and linear solvers and preconditioners. We employ New-
ton’s method, the gold standard for nonlinear solvers.
It can deliver asymptotic quadratic convergence, inde-
pendent of problem size, for many problems. However,
differentiating complex constitutive laws such as (1c)
to obtain the linearized Newton operator creates an
even more complex system to be solved. Combining the
Newton method with an appropriately truncated Krylov
linear solver permits avoidance of oversolving far from
the region of fast convergence [8]. The crucial point
is then the preconditioner, which must simultaneously
globalize information to maximize algorithmic efficiency,
while localizing it to maximize parallel performance. For
preconditioning, we target multilevel solvers, which are
algorithmically optimal for many problems (i.e., they
require O(n) work, where n is the number of unknowns)
and parallelize well (requiring O(log n) depth), at least
for simple elliptic PDE operators.

The state of the art in extreme-scale multilevel solvers
is exemplified by the Hybrid Hierarchical Grids (HHG)
geometric multigrid (GMG) method [9], the GMG solver
underlying the UG package [10], the algebraic multigrid
(AMG) solver BoomerAMG from the hypre library [11],
the multilevel balancing domain decomposition solver in
FEMPAR [12], and the AMG solver for heterogeneous
coefficients from the DUNE project [13]. These multigrid
solvers have all been demonstrated to scale up to several
hundred thousand cores (458K cores in some cases), but
only for constant coefficient linear operators, uniformly-
refined meshes, and low-order discretizations (with the
exception of the DUNE solver, which has demonstrated
scalability on a problem with heterogeneous coeffi-
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Figure 2: Comparison of algorithmic performance of conventional
state-of-the-art (dashed lines) vs. new (solid lines) Stokes solver for
a sequence of increasingly difficult problems (indicated by colors),
reflecting increasingly narrower plate boundary regions.

cients but otherwise with uniform and low order grids).
The complex PDE problems we target—characterized
by advanced high-order discretizations, highly-locally
adapted meshes, extreme (six orders-of-magnitude varia-
tion) heterogeneities, anisotropies, and severely nonlinear
rheology—are significantly more difficult. We are not
aware of any solver today that is capable of solving such
problems at large scale, with algorithmic and parallel
efficiency.

When O(105) cores and beyond are needed for im-
plicit solution of such complex PDE problems, the usual
approach has been to retreat to algorithmically subopti-
mal but easily-parallelizable solvers (such as explicit or
simply-preconditioned implicit). This is clearly not a ten-
able situation, and the performance gap between optimal
and suboptimal solvers only increases as problems grow
larger. Thus our goal here is to present an implicit solver
(significantly going beyond our previous work [14], [15],
[2]) that delivers optimal algorithmic complexity while
scaling with high parallel efficiency to the full size of
leadership-class supercomputers for the class of complex
PDE problems targeted here, with particular application
to our driving global mantle convection problem.

Figure 2 illustrates the power of algorithmically op-
timal solvers for our mantle convection problem. The
curves show the reduction in residual as a function of
Krylov iterations for a sequence of increasingly difficult
problems (different colors). The dashed curves represent
a contemporary, well-regarded solver, such as that found
in the state-of-the-art community mantle convection code
ASPECT [16]. This combines AMG to precondition the
(1,1) block of the Stokes system along with a diagonal
mass matrix approximation of the (2,2) Schur comple-
ment. Our new solver (see next section) combines a
sophisticated hybrid spectral-geometric-algebraic multi-
grid (HMG) along with a novel HMG-preconditioned
improved Schur complement approximation. The mas-



sive enhancement in algorithmic performance (over 4
orders of magnitude lower residual for the same number
of iterations) seen in the figure is due to the improve-
ment of the Schur complement. This is what makes the
solution of the high-fidelity mantle flow models we are
targeting tractable. It increases however the algorithmic
complexity, but as we will see, we are still able to obtain
excellent scalability out to 1.5M cores, to go with the
several orders of magnitude improvement in run time.
Key to achieving this scalability is: (i) avoiding AMG
setup/communication costs with a spectral and geometric
multigrid approach; (ii) eliminating AMG’s requirement
for matrix assembly and storage for differential operators
and intergrid transfer operations.

III. INNOVATIVE CONTRIBUTIONS

A. Summary of contributions

Hybrid spectral-geometric-algebraic multigrid
(HMG). High-order discretizations on locally refined
meshes for implicit problems with extreme variations
in coefficients pose challenge for extreme-scale PDE
solvers. We develop a multigrid scheme based on
matrix-free operators that does not require collective
communication and repartitions meshes at coarse
multigrid levels. The latter is achieved using a
hierarchy of MPI communicators for point-to-point
communication. In this way, we obtain optimal time-to-
solution.

Preconditioner. The Schur complement approxima-
tion in our solver is known to be critical for problems
with extreme variations in the coefficients. We propose
a new HMG-based approach for preconditioning the
Schur complement of the nonlinear Stokes equations. It
extends a Schur complement method based on discrete
arguments which limited it application to AMG. Since
AMG is difficult to scale to millions of cores and has
a significant memory footprint, we have developed an
HMG method based on a PDE operator that mimics the
algebraic operator occurring in the preconditioner.

Nonlinear solver. For the first time, a grid-
continuation, inexact Newton-Krylov method is used for
a realistic and severely nonlinear rheology over the entire
earth. The nonlinearity originates from power law shear
thinning, viscosity bounds, and plastic yielding [17]. This
new method enables us to simulate the global instanta-
neous mantle flow in the entire earth, with unprecedented
accuracy.

B. Algorithm overview

We employ an inexact Newton-Krylov method for the
nonlinear Stokes equations (1), i.e., we use a sequence
of linearizations of (1) and approximately solve the re-
sulting linearized systems using a preconditioned Krylov
method. The design of the preconditioner required the
majority of the algorithmic innovations, but the nonlinear
solver components needed careful consideration as well.
In particular, we define the rheology (1c) such that it
incorporates bounds for the viscosity in a differentiable
manner, permitting the use of Newton’s method. To
compute a Newton update (ũ, p̃), we find the (inexact)
solution of the linearized Stokes system,

−∇ ·
[
µ′(∇ũ+∇ũ>)

]
+∇p̃ = −rmom,

∇ · ũ = −rmass,
(2)

with

µ′ = µ I+ ε̇II
∂µ

∂ε̇II

(∇u+∇u>)⊗ (∇u+∇u>)
‖(∇u+∇u>)‖2F

, (3)

where the current velocity and pressure are u and p,
respectively, and the residuals of the momentum and
mass equations appear on the right-hand side of (2). Note
that what plays the role of viscosity in the Newton step
is an anisotropic fourth-order tensor (3).

We discretize earth’s mantle using locally adaptively
refined hexahedral meshes. Extreme local refinement is
critical to resolve plate boundaries down to a few hun-
dred meters, while away from these regions significantly
coarser meshes can be used that still capture global-scale
behavior. Parallel adaptive forest-of-octrees algorithms,
implemented in the p4est parallel AMR library, are used
for efficient parallel mesh refinement/coarsening, mesh
balancing, and repartitioning [2], [6], [18]. In (2), the
velocity is discretized with high-order, non-conforming,
continuous nodal finite elements of polynomial order k ≥
2, and the pressure with discontinuous modal elements of
order k−1. This velocity-pressure pairing yields optimal
asymptotic convergence with decreasing mesh element
size and conserves mass locally at the element level. It
is provably inf-sup stable and thus avoids stabilization
terms, which can degrade the accuracy of the solution,
especially in mantle convection simulations.

This discretization of the Newton step results in an
extremely ill-conditioned algebraic system with up to
hundreds of billions of unknowns, which requires a
preconditioned Krylov iterative method. Such a Krylov
method needs only the application of the left hand side
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Figure 3: Left image: visualization of a simulation and part of the computational domain showing the adaptively refined mesh. The color coding
illustrates the effective mantle viscosity and the arrows depict the motion of the tectonic plates. Central diagram: illustration of multigrid
hierarchy. From top to bottom, first, the multigrid levels are obtained by spectral coarsening. Next, the mesh is geometrically coarsened and
repartitioned on successively fewer cores to minimize communication. Finally, AMG further reduces problem size and core count. The multigrid
hierarchy used in the Schur complement additionally involves smoothing in the discontinuous modal pressure space (green). Right diagram: the
multigrid V-cycle consists of smoothing at each level of the hierarchy (circles) and intergrid transfer operators (arrows downward for restriction
and arrows upward for interpolation). To enhance efficacy of the the V-cycle as a preconditioner, different types of projection operators are
employed for these operators depending on the phase within the V-cycle.

operator in (2) to vectors, which we implement in a
matrix-free fashion using elemental loops. We exploit
the tensor-product structure of the element-level basis
functions, resulting in a reduced number of operations
[19]. We use GMRES as the Krylov solver, with right
preconditioning based on the upper triangular block
matrix: [

A B>

B 0

]
︸ ︷︷ ︸
Stokes operator

[
Ã B>

0 S̃

]−1
︸ ︷︷ ︸

preconditioner

[
ũ
p̃

]
=

[
r1
r2

]
. (4)

Here, approximations of the inverse of the viscous block,
Ã−1 ≈ A−1, and the inverse of the Schur comple-
ment, S̃−1 ≈ (BA−1B>)−1, are required, where B
and B> denote the discrete divergence and gradient
matrices. This particular combination of Krylov method
and preconditioner type is known to converge in only
two iterations for optimal choices of Ã−1 and S̃−1 [20].

The inverse of the viscous block Ã−1 is approximated
by a multigrid V-cycle, as detailed below. For the inverse
of the Schur complement S̃−1, we use an improved ver-
sion of the Least Squares Commutator method [21], [22]:
S̃−1 = (BD−1B>)−1(BD−1AD−1B>)(BD−1B>)−1.
It has been demonstrated to be robust with respect
to extreme viscosity variations, as shown in Table I.
This approach requires approximating the inverse of
BD−1B>, where D := diag(A).

Multigrid is a natural choice to invert this matrix.
However, AMG would require matrix assembly and
an expensive setup. The problem lies in the particular
coupling between matrices B and B>. Computing the

product matrix results in large communication require-
ments and in a large number of nonzero entries. The
number of nonzero entries of the product matrix increase
similarly as when squaring the matrix of a discrete
Laplacian. We thus developed an approach that uses the
analogy between BD−1B> and an anisotropic, variable-
coefficient elliptic PDE operator. This operator is dis-
cretized with continuous, kth order, nodal finite elements.
This continuous, nodal Poisson operator, which we call
K, is then inverted with an HMG V-cycle plus additional
smoothing steps in the discontinuous modal pressure
space. For smoothing in the pressure space we compute
and store only the diagonal entries of BD−1B>, which
requires no communication.

As illustrated in Figure 3, our HMG method is divided
in four stages (or even five stages in the pressure Poisson
case). This hybrid multigrid setup sits at the core of our
nonlinear solver and thus a careful design of the intergrid
transfer operators was critical for efficiency and per-
formance. Our hybrid multigrid method combines high-
order L2-restrictions/interpolations, uses the full fourth-
order tensor coefficient in the Newton step (3) on all
levels, and employs Chebyshev-accelerated point-Jacobi
smoothers. This results in optimal algorithmic multigrid
performance, i.e., iteration numbers are independent of
mesh size and discretization order, and are robust with
respect to the highly heterogeneous coefficients (six or-
ders of magnitude viscosity and nine orders of magnitude
Poisson coefficient contrast) occurring in the simulation
of mantle flow with plates (see Section IV).



C. Implementation and optimization

From a high-level perspective, the challenge of a par-
allel multigrid implementation is to balance the perfor-
mance of two critical components: (i) application of dif-
ferential operators during smoothing, commonly referred
to as MatVecs, and (ii) intergrid transfer operators that
perform restriction and interpolation between multigrid
levels. Further, this balance has to be maintained as the
number of cores grows to extreme scales. Both MatVecs
and intergrid operators rely on point-to-point communi-
cation such that optimizing the runtime of one deterio-
rates the performance of the other. In the case of our
complex mantle flow solver, we deal with four different
kinds of MatVecs (viscous stress A, divergence/gradient
B/B>, continuous nodal Poisson operator K, and Stokes
operator) and six different intergrid operators (restriction
and interpolation for each of: modal to nodal projection,
p-projection in spectral multigrid, and h-projection in
geometric multigrid). Optimization efforts have to target
all of these operators to be successful. Additionally, this
task is highly non-trivial, since the HMG V-cycle has
to be performed on unstructured, highly locally-adapted
meshes.

In order to obtain optimal load balance for MatVecs
during the V-cycle, we repartition the coarser multigrid
levels uniformly across the cores and gradually reduce
the size of the MPI communicators as we progress
through the coarser levels. The reduction of the MPI
size is done such that neither MatVecs nor intergrid
transfer operations become a bottleneck at large scale.
Moreover, point-to-point communication is overlapped
with computations for optimal scalability. No collec-
tive communication is used in the V-cycle. The HMG
setup cost is minimized with a matrix-free approach for
differential and intergrid operators, which additionally
produces a lightweight memory footprint.

These key principles were at the foundation of
our extreme-scale multigrid implementation. Further im-
provements of time-to-solution and performance were
carried out in a number of successive optimization
steps (see Figure 4a). Overall, we decreased the time
to solution for the targeted hardware architecture (see
Section V) by a factor of over 1000 and increased
performance on a compute node by a factor of ∼200.
With this performance, our complex mantle flow solver
as a whole, including spectral, geometric and algebraic
multigrid phases on highly adaptively refined meshes,
is as performant as a routine for sparse matrix-vector
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Figure 4: (a) Performance improvement and time-to-solution reduc-
tion over a sequence of optimization steps (time is normalized by
GMRES iterations per 1024 BG/Q nodes per billion DOF). Pt. A is
base performance before optimization. Pt. B: reduction of blocking
MPI communication. Pt. C: minimizing integer operations in inner
MatVec for-loops and reducing the number of cache misses. Pt. D:
computation of derivatives by applying precomputed CSR-matrices at
the element level and SIMD vectorization. Pt. E: OpenMP threading
of major loops in MatVecs. Pt. F: MPI communication reduction,
overlapping with computations, and OpenMP threading in intergrid
operators. Pt. G: low-level optimization of finite element kernels
via improving flop-byte ratio and consecutive memory access, and
better pipelining of floating point operations. Pt. H: various low-
level optimizations including enforcement of boundary conditions and
interpolation of hanging finite element nodes. (b) BG/Q node roofline
model (theoretical peak performance) and SpMV performance with
max flop-byte ratio of 0.25 [24].

multiplications. This is supported by the roofline model
analysis [23], from which we obtain an optimal perfor-
mance of approximately 8 GFlops for sparse MatVecs
(Figure 4b). Note that implicit solvers for PDEs inher-
ently exhibit a sparsity structure and hence performance
will always be memory-bound. This argument shows that
the performance of our memory-bound solver is close to
what is optimally achievable. This is further supported
by numerical results in Section VI.

IV. EXPERIMENTAL SETUP AND VERIFICATION OF

OPTIMALITY AND ROBUSTNESS OF THE SOLVER

In this section we describe the physical problem
and solver parameters used to carry out the parallel
performance analysis in Section VI. We also present
results of tests of optimal algorithmic scalability and
robustness of the solver which together with parallel
scalability demonstrate overall scalability of the solver.

The important physical parameter that determines
the difficulty of the problem is the viscosity field. In
our subsequent performance analysis, we use real earth
data to generate a physically realistic representation of
viscosity (which is a function of T , w, and ε̇II ). The
viscosity varies over six orders of magnitude globally.
However, what makes realistic mantle flow problems
even more highly ill-conditioned and nonlinear is the



extremely thin layer in which this contrast develops. The
viscosity drops by six orders of magnitude within a thin
layer between two plates (the plate boundary).

To assess solver robustness and algorithmic scala-
bility, we generate plate boundaries down to a thick-
ness of 5 km and a factor of 106 viscosity drop over
7 km. For the weak and strong scalability measurements,
the 106 factor viscosity drop occurs within just 3 km.
Since tectonic plates (the largest surface structures) are
2,000–14,000 km across, and earth’s circumference is
40,075 km, this results in a very wide range of length
scales of interest. To capture the viscosity variation,
the mesh is refined to ∼75 m local resolution in our
largest simulations, resulting in a mesh with 9 levels of
refinement. For all performance results, we use a velocity
discretization with polynomial order k = 2.

The cost of solving a nonlinear earth mantle flow
problem is dominated by the cost of the linear solve
in each Newton step (2). The cost of a linear solve is
determined by the number of MatVecs and HMG inter-
grid operations. MatVecs are encountered in the Krylov
method and in the HMG smoothers. In all subsequently
reported performance results, we use three smoothing
iterations for pre- and post-smoothing within the HMG
V-cycle for both the viscous block Ã−1 and in the Schur
complement S̃−1, which amounts to three V-cycles per
application of the Stokes preconditioner. Therefore each
GMRES iteration has the same cost and it is sufficient
to compare the number of GMRES iterations.

A. Robustness of Stokes solver

The robustness of the HMG preconditioner for the
Stokes system (1) is assessed by observing the number
of GMRES iterations (see Table I) required for con-
vergence, while decreasing the thickness of the plate
boundaries. This increases the range of length scales
in the problem and the resulting nonlinearity and ill-
conditioning. Our mesh refinement algorithm, which is
based on the norm of the viscosity gradients as well as
the magnitude of ε̇II , locally refines the mesh to resolve
the extreme viscosity variations. This results in an overall
increase in the number of DOF. The third and fourth
columns in Table I demonstrate the robustness of the
solvers for the (1,1) Stokes block and for the complete
Stokes solver. The GMRES iterations are seen to scale
independently of the plate boundary thickness and thus
viscosity gradient. Similar independence of viscosity is
observed for nonlinear iterations.

Table I: Robustness with respect to plate boundary thickness of
HMG-preconditioned GMRES solver for the (1,1) block of Stokes
and the linear (full) Stokes solver. Number of GMRES iterations to
reduce the residual by a factor of 10−6 is reported.

Plate boundary DOF GMRES iterations GMRES iterations
thickness [km] [×109] to solve Au = f to solve Stokes

15 1.16 115 461
10 1.41 129 488
5 3.01 123 445

B. Algorithmic scalability

Algorithmic scalability, i.e., the independence of the
solver iterations from the resolution of the mesh, is
critical for overall scalability of implicit solvers. To
study algorithmic scalability, we consider a nonlinear
mantle flow problem with one subducting slab. The plate
boundary region between the subducting plate and the
overriding plate has a thickness of 5 km. We refine
the mesh locally in the regions of highest viscosity
variations by tightening the refinement criteria. Thus the
total number of DOF grows slowly, though significantly
greater resolution is obtained in these regions. The re-
quired numbers of linear and nonlinear iterations are
shown in Table II, where the cost of the nonlinear solver
is measured by the total number of GMRES iterations
across nonlinear iterations. As can be seen, the linear
solver requires a number of iterations that is largely
independent of the resolution of the problem.

We have demonstrated how the combination of our
preconditioner and linear and nonlinear solver yields
an implicit method whose number of iterations scales
independent of model fidelity. Here, fidelity is under-
stood as the resolution of the mesh with finite ele-
ment discretization and the size of the smallest-scale
features, which are the plate boundary regions. This
results in an algorithmically optimal method, despite
the severely nonlinear rheology, high viscosity gradients,
effective anisotropy, and large heterogeneities. Moreover,
the cost of the solver is reduced by adaptive mesh
refinement, which reduces the number of DOF—in this



Table II: Optimal algorithmic scalability of inexact Newton-Krylov
method for solving a nonlinear mantle flow problem with one subduct-
ing slab and 5 km plate boundary. Simulation cost expressed in total
number of GMRES iterations is largely independent of the maximal
resolution of the adaptive mesh (10−7 Newton residual reduction used
as stopping criterion). A two times higher resolution increases the
DOF of the adaptively refined mesh only by about a factor of 2–3.
In contrast, the factor would be eight with uniform refinement.

Max level of Finest resolution DOF Newton GMRES
refinement [m] [×106] iterations iterations

10 2443 0.96 14 1408
11 1222 2.67 18 1160
12 611 5.58 21 1185
13 305 11.82 21 1368
14 153 36.35 27 1527

case by four orders of magnitude, from the O(1013)
needed for a uniform mesh of earth’s mantle, to just
the O(109) required here using aggressive refinement.
Further reducing the number of DOF are the third-order
accurate finite elements employed here, along with a
mass-conserving discretization. The algorithmic scalabil-
ity and the greatly-reduced number of DOF exhibited by
our solver are critical for the overall goal of reducing
time-to-solution (for a given accuracy). The remaining
component is parallel scalability, which we study next.

V. SYSTEMS AND MEASUREMENT METHODOLOGY

The target architecture in this work is the IBM
BlueGene/Q1 (BG/Q) supercomputer [25]. Table III sum-
marizes size and peak performance of several systems
we used. The smaller systems were used for testing,
optimization, scaling, and full science runs. The largest
runs have been performed on the Sequoia supercomputer
at the Lawrence Livermore National Laboratory (LLNL).
Sequoia consists of 96 IBM Blue Gene/Q racks, reaching
a theoretical peak performance of 20.1 PFlops/s. Each
rack consists of 1024 compute nodes, each hosting an
18 core A2 chip that runs at 1.6 GHz. Of these 18 cores,
16 are devoted to computation, one for the lightweight
O/S kernel, and one for redundancy. Every core supports
4 H/W threads, thus, in total Sequoia has 1,572,864 cores
and can support up to 6,291,456 H/W threads. The total
available system memory is 1.458 PBytes. BG/Q nodes
are connected by a five-dimensional (5-D) bidirectional
network, with a network bandwidth of 2 GBytes/s for
sending and receiving data. Each BG/Q rack features

1IBM and Blue Gene/Q are trademarks of International Business
Machines Corporation, registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or
other companies.

Table III: Blue Gene/Q supercomputers

Racks Cores H/W threads Peak [PFlops/s]

AMOS 5 81,920 327,680 1.0
Vulcan 24 393,216 1,572,864 5.0
JUQUEEN 28 458,752 1,835,008 5.8
Sequoia 96 1,572,864 6,291,456 20.1

dedicated I/O nodes with 4 GBytes/s I/O bandwidth. The
system implements optimized collective communication
and allows specialized tuning of point-to-point commu-
nication. We obtained all timing and performance mea-
surements by means of the IBM HPC Toolkit for BG/Q.
The toolkit retrieves performance information about the
processor, memory hierarchy, and interconnect. Power
measurements are available through hardware sensors for
each node board (accommodating 32 nodes) at a rate of
2 samples per second [26]. All runs involved double-
precision arithmetic and the code is compiled using the
IBM XL C compilers for BG/Q, version 12.1.10.

VI. PERFORMANCE RESULTS

A. Weak and strong scalability

We present weak and strong scalability results on the
Vulcan and Sequoia BG/Q supercomputers from 1 rack
with 16,384 cores up to 96 racks with 1,572,864 cores.
Scalability measurements corresponding to 1, 2, and 4
racks were obtained on Vulcan, whereas the remaining
runs on 8–96 racks were performed on Sequoia.

The cost of our large-scale nonlinear mantle convec-
tion simulations is overwhelmingly dominated by the
cost of the GMRES iterations during a linear Stokes solve
(everything else, including setup and I/O, is negligible).
These GMRES iterations include HMG V-cycles for
the (1,1) Stokes block and in the Schur complement
approximation, as explained earlier. For the extreme-
scale runs on Sequoia, we had limited access to the
system, which allowed just 10 representative GMRES
iterations. However, we illustrate the influence of I/O
and setup costs by extrapolating the number of GMRES
iterations to those expected for a full nonlinear solution.
Note that we did observe that the setup time for HMG
is largely bounded independent of the number of cores.

The main result is the weak scalability shown in
Figure 5. The solver maintained 97% parallel efficiency
(red curve) over a 96-fold increase in problem size, from
16K to 1.5M cores of the full Sequoia system. The
largest problem involved 602 billion DOF. If we take into
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Figure 5: Weak scalability results on Vulcan and Sequoia from 1 to
96 racks. Performance is normalized by time and number of GMRES
iterations. Numbers along the graph lines indicate efficiency w.r.t.
ideal speedup (efficiency baseline is the 1 rack result). We report both
the weak scalability for the linear solver only (red) and for projected
total runtime of a nonlinear solve (green). The largest problem size
on 96 racks has 602 billion DOF.

account the setup time of the problem, including I/O of
input data and solver setup time, we would still arrive
at a weak scalability efficiency of 96% (green curve) for
total runtime of a nonlinear simulation, demonstrating the
negligibility of I/O and setup time. The I/O for writing
output data has to be performed only once at the end of
a nonlinear solve. The problem sizes used in the weak
scalability runs would produce ∼8.5 GBytes of output
per BG/Q I/O node. With an I/O bandwidth of 4 GBytes/s
we can also consider the writing of the output to be
negligible for overall runtime (note that we did not output
solution fields, since the full nonlinear simulation could
not be run to completion due to limited access). The
negligible time for I/O and problem setup stem from the
advantages of adaptive implicit solvers: adaptivity results
in the problem itself being generated online as part of
the solver; implicit means that fewer outputs/checkpoints
would be required.

In Figure 6, we show strong scalability results for
a mantle convection simulation with 8.3 billion DOF.
Starting from one rack with 16,384 cores (granularity
of 506K DOF/core), we achieve a 32-fold speedup
on 96 racks with 1,572,864 cores (granularity of 5K
DOF/core), indicating 33% solver efficiency in strong
scalability, an impressive number considering the coarse
granularity of the largest problem.

Contrary to conventional wisdom, this shows that
algorithmically optimal implicit finite element solvers
for severely nonlinear, ill-conditioned, heterogeneous,
indefinite PDEs can be designed to scale toO(106) cores.

B. Node performance analysis

The performance results on BG/Q compute nodes fur-
ther support our scalability results. The top pie charts of
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Figure 6: Strong scalability results on Vulcan and Sequoia from 1
to 96 racks. Numbers along the graph lines indicate efficiency with
respect to ideal speedup (efficiency baseline is the 1 rack result). We
report both the strong scalability for the linear solver only (red) and
for projected total runtime of a nonlinear solve (green).

Figure 7 decompose the overall runtime into the largest
contributors. We can observe that the (highly optimized)
matrix-free apply routines dominate with 80.6% in the
1 rack case. Furthermore, their portion remains very
stable with 78% on 96 racks. This result demonstrates
a key component of a highly scalable, parallel multigrid
implementation. The percent runtime for intergrid trans-
fer operations is low compared to MatVecs and stays
low even at 1.5 million cores. Hence, we have achieved
a balance between MatVecs and intergrid operations that
results in nearly optimal scalability.

MatVecs represent the portion of the code where the
maximal performance in terms of flops can be achieved.
With their dominance in runtime we are able to increase
total performance close to its maximum. That way our
implementation is performing at the limits of the roofline
model as predicted in Figure 4b, and this is achieved even
at extreme scales of O(106) cores.

C. MPI communication analysis

Figure 8 summarizes MPI communication time mea-
sured during weak and strong scalability runs: tasks
with minimum, median, and maximum communication
time are displayed. Indeed, for weak scalability, we
clearly observe that percentage of time spent in MPI
communication remains nearly constant relative to run-
time (Figure 8a). This contributes to the nearly perfect
scalability results presented in Figure 5. The increase
in median and maximum communication time in the
64 racks case can be justified by the lack of 5-D
torus connectivity in that particular configuration (due to
specific job partitioning). Another reason can be found
in a more aggressive repartitioning of coarser multigrid
levels, which leaves a greater amount of cores idle during
a short period of time in the V-cycle. This is suggested by
the higher percentage of MPI_Waitall time on 64 racks in
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Figure 8: MPI communication time relative to total runtime for
(a) weak scalability and (b) strong scalability on Vulcan and Sequoia.

Figure 9. However, this does not need to affect scalability
in a negative way since fewer cores may perform the
same task quicker because of higher granularity of DOF.

For the strong scalability runs, we observe a gradual
increase of relative MPI communication time (Figure 8b),
as is expected for implicit solvers. Note that the increase
begins only at 4 racks. Communication time exceeds 50%
of overall runtime only at about 1 million cores. At its
maximum, communication time is still below 30%.

D. Energy consumption analysis

Finally, we analyze the energy efficiency of the scal-
ability runs. As expected, during weak scalability energy
consumption increases linearly with the amount of used
resources (Figure 10a). With an estimated cost of $0.06
per kWh [27], the energy cost per GMRES iteration on
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Figure 9: MPI routine communication time for the weak scalability
runs on Vulcan and Sequoia supercomputers.
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Figure 10: Scalability of energy (excluding cooling) on Vulcan and
Sequoia: (a) weak scalability, (b) strong scalability.

96 racks is nearly $1.20 (excluding cooling). On the other
hand, the loss of strong scalability on the full size of the
machine is reflected in the energy usage (Figure 10b).
The 33% speedup efficiency on 96 racks (see Figure 6)
is combined with a 32% energy efficiency; in other
words, power consumption per node does not change
significantly, and energy efficiency is mainly driven by
time-to-solution.

VII. IMPLICATIONS FOR MANTLE FLOW MODELING

Building on algorithmic innovations for implicit
solvers for complex PDEs described in this paper, we
are able to address the depth and distribution of oceanic
trenches—the most extreme topographic features on
earth’s surface—for the first time. Trench depth re-
flects both the downward pull from plate-driving forces
[28] and the variable resistance associated with seis-
mic coupling from great earthquakes [29]. We forward-
predict the width (∼50 km) and depth (∼10 km) of
oceanic trenches on a global scale while predicting plate
motions (Figure 11). The simultaneous prediction of
these quantities—large-scale flow and fine-scale stress
at plate boundaries—in a model with realistic, nonlinear
rheology employing scalable, robust solvers opens new



directions for geophysical research. Solver robustness to
plate boundary thickness is crucial, as can be seen in
Figure 12, where we observe a great sensitivity of the
simulation outcome (in terms of plate velocities) to the
thickness of plate boundary regions. The scalable solver
presented in this paper, in combination with adjoints,
which are a byproduct of the Newton solver, will allow
systematic inference of uncertain parameters in global
mantle flow systems with tectonic plates. For regional
mantle models that are functionally equivalent to the
global computation presented here, we have recently
illustrated a systematic inference approach for the non-
linear constitutive parameters n and τyield, and plate
coupling factors w(x), for several subduction zones [30].
Adjoint-based inversions will require thousands of for-
ward model solutions, so that availability of a scalable
implicit solver such as that described here is paramount.

Bringing observations on topography (trench depth),
plate motions, and others into a global inversion will
allow the merging of two distinct geophysical approaches
at different scales addressing different questions. First,
what is the degree of coupling associated with great
earthquakes? In particular, we seek to determine whether
that coupling is due to the frictional properties of the
incoming plate or the magnitude of normal stress across
the fault driven by tectonic processes [31], [32]. The
second question concerns the forces driving and resisting
global plate motion and the degree to which inter-
plate coupling governs plate motions [4], [33], [34].
These questions have eluded solution over the past three
decades because of their intimate coupling. By allowing
us to bridge the local-to-global scales, with modern data
sets, will arguably allow us to make an important leap
toward the simultaneous solution of two of the most
fundamental questions in earth sciences.
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