
SIAM Conference on Uncertainty Quantification (UQ22) – April 15, 2022

Inverse Maps Based on Deep Neural Networks for
Inverse Problems with Challenging Physical Models

Johann Rudi

Mathematics and Computer Science Division, Argonne National Laboratory

collaborations with
German Villalobos and Andreas Mang (Houston University)

Julie Bessac and Amanda Lenzi (Argonne National Laboratory)

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

Outline

Introduce the forward and inverse problem

Propose inverse maps with dense and convolutional neural networks

Demonstrate parameter estimation capabilities and sensitivities

Extend inference to more parameters and different models

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

Forward problem: ODE modeling spiking biological neurons

The FitzHugh–Nagumo1 model is a nonlinear system of two ODEs

du

dt
= γ

(
u− u3

3
+ v + ζ

)
dv

dt
= − 1

γ
(u− θ0 + θ1v)

Example solution of FitzHugh–Nagumo model
(u(t) in blue color).

I ODE unknowns: membrane potential u(t), recovery variable v(t)

I Known: stimulus ζ ≡ const., damping γ ≡ const.

I Uncertain parameters: m := (θ0, θ1)

I Observed data: membrane potential u(t)

1FitzHugh 1961; Nagumo, Arimoto, and Yoshizawa 1962.

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

Influence of the chosen parameters on model outputs

u(t)

Average spike rate of u(t) Average spike duration of u(t)

→ Parameters θ0, θ1 are chosen because of their fundamental influence on the
membrane potential u(t).

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

Inverse problem is problematic for gradient-based methods
Consider, e.g., MAP point estimate

min
m

1
2 ‖(d(t)− um(t))/σnoise‖2L2

+ 1
2 |m− m̄pr|2Σ−2

pr

Data: d(t) = um(t) + η(t), for “true” params m

Noise: η(ti) = ρ η(ti−1) + ε(ti), η(t) ∼ N
(
0, σ2/∆2

t

)
Challenges:

I Highly nonlinear and
nonconvex loss (figure)

I Sharp gradients, strong
nonlinear dependencies
between parameters,
multiple local minima

I Weak assumptions on
regularization / prior,
because little is known
about the parameter
values in practice

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

Outline

Introduce the forward and inverse problem

Propose inverse maps with dense and convolutional neural networks

Demonstrate parameter estimation capabilities and sensitivities

Extend inference to more parameters and different models

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

Idea: Inverse maps based on deep artificial neural networks

Replace optimization by computationally learning an inverse map2 using deep
neural networks (NNs)

F̃−1
training data : d 7→m, where F̃−1

training data is a NN

I Observational data d (membrane potential + noise) is input to the NN

I Parameters of ODE m are output of the NN

I NN is learning to directly represent a “pseudoinverse” of the forward operator

I F̃−1
training data depends on training data, or the distribution which gave rise to

the samples of the training data

I NN layers in F̃−1
training data are dense, convolutional, or average pooling

2Arridge et al. 2019; Khoo and Ying 2019.

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

Idea: Use prior distribution to generate training data

Training data

I Sample parameters from the prior distribution (here, a Gaussian)

I Use different quantities of training samples: N = 500, 1000, 4000, 8000

N = 500 N = 1000 N = 4000 N = 8000

Parameters sampled from prior used as training data (black dots) versus testing data
(blue dots) that is fixed to M = 2000 samples.

I Simulate ODE for each parameter sample (driver of computational cost)

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

Questions considered in this talk

I How accurate are the estimates from trained NN?

I What is the influence of the NN architecture?

I What is the sensitivity with respect to size of the training data?

I What is the sensitivity with respect to noise in the training data?

I Does the framework generalize to other parameters and models?

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

Outline

Introduce the forward and inverse problem

Propose inverse maps with dense and convolutional neural networks

Demonstrate parameter estimation capabilities and sensitivities

Extend inference to more parameters and different models

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

Accuracy of ODE parameters estimated with NNs
I Perform a search of NN hyperparameters (#layers, #units, #filters, . . .)
I Result with dense NN: 4 dense layers with 32 units each

θ0 θ1

I Result with CNN: 3 convolutional layers (8,16,32 filters) and 2 dense layers
(32 units)

θ0 θ1

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

Sensitivity of estimation accuracy w.r.t. data noise

CNN: 3 convolutional layers (8,16,32 filters) and 2 dense layers (32 units)

train w/o noise
test w/o noise

θ0 θ1

train w/o noise
test w/ noise

train w/ noise
test w/ noise

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

Simulated ODE output with estimated parameters
Simulate the FitzHugh–Nagumo ODE with predicted parameters from CNN.

Each graph shows the median percentile of MSE between testing and simulated
time series.

train w/o noise
test w/o noise

train w/o noise
test w/ noise

train w/ noise
test w/ noise

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

tr
ai

n
no

is
e-

fr
ee

te
st

no
is

e-
fr

ee
tr

ai
n

no
is

e-
fr

ee
te

st
w

ith
no

is
e

tr
ai

n
w

ith
no

is
e

te
st

w
ith

no
is

e

Time series error:
Sq. bias = 2.8 ⇥ 10�6

C-MSE = 0.061

Time series error:
Sq. bias = 1.8 ⇥ 10�3

C-MSE = 2.001

Time series error:
Sq. bias = 1.2 ⇥ 10�3

C-MSE = 0.536

Figure 4: Simulations of FitzHugh–Nagumo model (blue lines) using parameters from CNN pre-
dictions; corresponding data that gave rise to prediction are shown as orange dots. Each
graph shows the median percentile of MSE for the following cases. Top: training and test-
ing data noise-free; Middle: training data noise-free and testing data with noise; Bottom:
training and testing data with noise.

Simulations of FitzHugh–Nagumo model from predicted parameters We extend the evalu-
ation of results on model parameter predictions and now evaluate simulations of the FitzHugh–
Nagumo model (1) with predicted parameters. The results presented here show the errors of the
neural network predictions propagated through the forward problem. We focus on the CNN with
nf ⇥ [1, 2, 4], nf = 8, and we consider the same three different cases of presence and/or absence
of noise as before. Figure 4 shows three FitzHugh–Nagumo simulations, in which the top graph
represents the case where both training and testing data do not contain noise; in the middle graph
only testing data contain noise; and the bottom graph shows results where both training and testing
data contain noise. Each of the three graphs is selected from the testing data set as the median of the
MSE between true and predicted parameters. More detailed results for FitzHugh–Nagumo simula-
tions from predicted parameters are given in Appendix C, where we show results for the 10th, 25th,
75th, and 90th percentiles of MSE between simulated and testing time series.

We observe a nearly optimal overlapping of simulated output from predicted parameters and
test data corresponding to “true” parameters for the noise-free case (Figure 4, top). When noise is
added to training or testing data, the simulated time series’ show shifted spikes, which become more
pronounced as simulation time increases (100–200 milliseconds). The shifting of spikes over time
represents discrepancies with respect to the frequency of a periodic time series. This effect is more
pronounced when the training data is noise free (Figure 4, middle) and only mildly visible when
the training data has noise (Figure 4, bottom). Overall, the results here and in Appendix C quantify
the accuracy and reliability of the proposed estimation in order to generate realistic solutions of the
FitzHugh–Nagumo model from estimated parameters with convolutional networks.

14

Model outputs of FitzHugh–Nagumo ODE (blue lines) using parameters from CNN estimates;
corresponding data that gave rise to estimates are shown as orange dots.

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

Sensitivity of CNN predictions to training data sizes
Consider the metrics Median-APE (i.e., median relative error) and
R2 (coefficient of determination in brackets, R2 = 1 is ideal)

N
train noise-free
test noise-free

train noise-free
test with noise

train with noise
test with noise

500 0.023 (0.990) 0.169 (0.788) 0.098 (0.921)
1000 0.014 (0.995) 0.174 (0.763) 0.096 (0.938)
4000 0.014 (0.997) 0.204 (0.710) 0.060 (0.970)
8000 0.014 (0.998) 0.251 (0.617) 0.053 (0.976)

N = 500 N = 1000 N = 4000 N = 8000

Parameters sampled from prior used as training data (black dots) versus testing data
(blue dots) that is fixed to M = 2000 samples.

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

Outline

Introduce the forward and inverse problem

Propose inverse maps with dense and convolutional neural networks

Demonstrate parameter estimation capabilities and sensitivities

Extend inference to more parameters and different models

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

Joint inference of parameters in neuron and noise models
I Joint inference of parameters of (deterministic) physical models and of

statistical models is rarely attempted with traditional methods

I Neuron model (ODE): du
dt = γ

(
u− u3

3 + v + ζ
)
, dv

dt = − 1
γ (u− θ0 + θ1v)

I Noise model (AR): η(ti) := ρ η(ti−1) + ε(ti), η(t) ∼ N
(
0, σ2/∆2

t

)
I Observational data d(t) = u(t) + η(t), parameters m = (θ0, θ1, σ, ρ)

I Challenge: Orders-of-magnitude difference in time scales in physical models
vs. statistical processes

Number of Data type ODE parameter AR parameter
training samples θ0 θ1 σ ρ

Time series d 0.914 0.812 −0.62 −0.80
1000 Fourier spectrum of d 0.460 0.577 0.524 0.603

Time & Fourier 0.935 0.856 0.589 0.645

Time series d 0.962 0.933 0.627 0.557
8000 Fourier spectrum of d 0.580 0.797 0.669 0.721

Time & Fourier 0.968 0.942 0.684 0.722

Results obtained with the CNN. Shown is the metric R2 (R2 = 1 is ideal).

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

Estimation of parameter means and covariance matrices
I Estimate local Gaussians N (θ̄,C), analogously to MAP estimate with

Laplace approximation at MAP point

I Neuron model (ODE): du
dt = γ

(
u− u3

3 + v + ζ
)
, dv

dt = − 1
γ (u− θ0 + θ1v)

I Observational data d(t) = u(t) + η(t) with AR noise η(t)

I Parameters m = (θ̄,C) are mean vector θ̄ = (θ0, θ1), covariance matrix C

I Covariance matrices can be computed by using (incremental) adjoints

Training & testing data Median rel. err. Median rel. err.∥∥∥θ̄ − θ̂∥∥∥
2
/
∥∥θ̄∥∥

2

∥∥∥C − Ĉ∥∥∥
F
/ ‖C‖F

train noise-free, test noise-free 0.032 0.124
train noise-free, test with noise 0.215 0.229
train with noise, test with noise 0.093 0.161

Results obtained with the CNN. In
∥∥∥θ̄ − θ̂∥∥∥

2
, θ̄ is true and θ̂ is predicted.

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

Training large inverse maps with AI accelerator hardware
Performance comparison between a reference CPU system and Cerebras CS-2
AI accelerator. The runtimes are given for 1,000 epochs (processing of a total of
1,000,000 training samples) and for a dense NN with 8 layers (dropout=0.2).

Units per layer 32 128 512 2048
Trainable NN parameters 39,490 243,970 2,352,130 31,428,610

CPU (reference) Total [sec] 21.0 47.9 221.6 2,576.2

Total [sec] 178.6 177.6 191.1 810.4
Cerebras CS-2 Setup [sec] 173.7 173.0 185.4 801.5

Train [sec] 4.9 4.6 5.7 8.9

0 500 1,000 1,500 2,000 2,500

32

128

512

2048

Time [seconds]

U
ni
ts

pe
r
la
ye
r

0 500 1,000 1,500 2,000 2,500

32

128

512

2048

Time [seconds]

U
ni
ts

pe
r
la
ye
r

CPU train
CS-2 setup
CS-2 train

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

Thank you

Main reference for this talk

Johann Rudi, Julie Bessac, and Amanda Lenzi (2021). “Parameter estimation with
dense and convolutional neural networks applied to the FitzHugh–Nagumo ODE.”
In: Proceedings of Mathematical and Scientific Machine Learning (MSML21)

I arXiv: 2012.06691

I open source code: https://github.com/johannrudi/fhn_ode

https://github.com/johannrudi/fhn_ode

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

References I

Arridge, Simon et al. (2019). “Solving inverse problems using data-driven
models.” In: Acta Numerica 28, pp. 1–174.

Fan, Yuwei, Cindy Orozco Bohorquez, and Lexing Ying (2019). “BCR-Net:
A neural network based on the nonstandard wavelet form.” In: Journal of
Computational Physics 384, pp. 1–15. DOI:
10.1016/j.jcp.2019.02.002.

FitzHugh, Richard (1961). “Impulses and physiological states in theoretical
models of nerve membrane.” In: Biophysical Journal 1.6, pp. 445–466.

Khoo, Yuehaw and Lexing Ying (2019). “SwitchNet: A neural network
model for forward and inverse scattering problems.” In: SIAM Journal on
Scientific Computing 41.5, A3182–A3201. DOI: 10.1137/18M1222399.

Nagumo, Jinichi, Suguru Arimoto, and Shuji Yoshizawa (1962). “An active
pulse transmission line simulating nerve axon.” In: Proceedings of the
IRE 50.10, pp. 2061–2070.

https://doi.org/10.1016/j.jcp.2019.02.002
https://doi.org/10.1137/18M1222399

“Inverse Maps Based on Deep Neural Networks” by Johann Rudi (jrudi@anl.gov)

References II

Rudi, Johann, Julie Bessac, and Amanda Lenzi (2021). “Parameter
estimation with dense and convolutional neural networks applied to the
FitzHugh–Nagumo ODE.” In: Proceedings of Mathematical and
Scientific Machine Learning (MSML21).

	Introduce the forward and inverse problem
	Propose inverse maps with dense and convolutional neural networks
	Demonstrate parameter estimation capabilities and sensitivities
	Extend inference to more parameters and different models

