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Background: Multi-physics simulations with Flash-X1
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I Flash-X’s source code (FORTRAN & C++) is configured before compilation such
that only desired physics units are included in the binary

I Physics units can be further decomposed into implementations for
specific hardware platforms

1Flash-X is a new application code derived from FLASH
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Performance of simulation relies on apply routines
Relative time spend in apply routines of a PDE solver2
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A, Stokes, B/BT, K
represent PDE operators.

Observe

I Highly optimized matrix-free apply routines dominate with ∼80% of time

I Optimization of apply routines and its kernels is (highly) platform dependent

I Transition to new heterogeneous architectures, such as, single- or multi-GPU
nodes from different vendors (Nvidia, AMD, Intel), involves substantial
transformations and optimizations of code at many levels of abstraction

2Rudi et al. (2015), In: Proceedings of SC’15
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Motivation and overview
Time stepping in Flash-X (and linear & nonlinear solvers in most other applications)

I Every iteration requires applying an operator of the underlying multi-physics PDE
I The operators are matrix-free apply routines
I Optimized kernels carry out computations on each grid cell

Challenges arising due to heterogeneous platforms
I Kernels must be optimized for each platform → for now, leave this to skilled

developers taking advantage of the Macro processor3

I Apply routines (loops over kernels) must be written for each platform
→ opportunity for developer-guided automation

Propose: Automate generation of apply routines / driver code
I Recipes: Create a concise domain specific language (DSL)
I Orthogonalize: Separate domain knowledge and platform knowledge
I Code generation tool kit: Transform recipes to human-readable source code
I Hints: Users provide platform-dependent code optimizations hints, thus, tools

remain simple and avoid exploring an intractable search space

3presented by Tom Klosterman (SIAM PP22 MS79)
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Generating code from recipes and code templates
static science code

(C/C++/FORTRAN)

recipes Control Flow
Tool

graph
(control flow)

Control Flow &
Source Tree Tools

generated
code

Config Tool
fully assembled

science code

Compiler

executabletemplates code

platform specific
information

Chain of code generation tools (example
above).

Example recipe (right) and resulting
control flow graph (bottom).

ConcurrentDataBegin X Y Z

A B

ConcurrentDataEnd

GPU GPU GPU

CPU CPU

# create new, empty graph
g = ControlFlowGraph()

# add nodes to graph
dIn = g.linkNode(ConcurrentDataBegin())(g.root)

wX = g.linkNode(Work(name=’X’))(dIn)
wY = g.linkNode(Work(name=’Y’))(wX)
wZ = g.linkNode(Work(name=’Z’))(wY)

wA = g.linkNode(Work(name=’A’))(wX)
wB = g.linkNode(Work(name=’B’))(wA)

dOut = g.linkNode(ConcurrentDataEnd())([wB,wZ])

# set node attributes
g.setNodeAttribute([wA, wB] , ’device’, ’CPU’)
g.setNodeAttribute([wX, wY, wZ], ’device’, ’GPU’)
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Overview of all components of code generation toolkit
static science code
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I Input and output files shown as green boxes

I Intermediate outputs shown as orange boxes (can be inspected by humans)

I Code generation tools are blue boxes (currently in development)

I Optimization tools are pink boxes (future development)
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Developers can select and combine tools
Developers can select and combine tools

q Developers are free to choose the tools they need and combine 
them to custom toolchains for performance portability
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Fig: Example toolchain with full spectrum of tools

Fig: Example toolchain without recipe tools Fig: Example toolchain with recipe tools
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Process control flow graphs into hierarchical graphs
Approach

1. Create a (flat) control flow graph where
nodes (blue) represent computational work
(i.e., kernels) and edges represent
dependencies between kernels and data flow

2. Assign attributes to nodes representing which
device it will execute on (e.g., CPU, GPU)

3. Extract a hierarchical graph consisting of a
quotient graph and subgraphs (orange)
(which group kernels that will run on same
device)

4. Generate device specific subroutines for
aggregated device specific kernels (subgraphs)

5. Traversal of the coarse quotient graph yields
the call sequence, thus the apply routine /
driver code

Definitions

Quotient graph: The nodes of a
quotient graph Q of G form blocks of
a partition of the nodes of G (Q
contains orange circles, G contains
blue circles).

Illustration of a quotient graph
(Credit: wikipedia.org)

Subgraph: Nodes of G in the same
block (orange circle) form a subgraph.
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Previous example of a recipe and control flow graph

I Mark edges with a device change attribute (CPU-to-GPU or GPU-to-CPU)
between any of the connected nodes

I Condensation of nodes that are connected by edges without device change

ConcurrentDataBegin X Y Z

A B

ConcurrentDataEnd

GPU GPU GPU

CPU CPU

I Subgraph for CPU includes work/kernels A and B

I Subgraph for GPU includes work/kernels X and Y

I Z cannot be combined with X,Y because of concurrent edge Y → A
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Previous example: code generated from
hierarchical control flow graph

ConcurrentDataBegin X Y Z

A B

ConcurrentDataEnd

GPU GPU GPU

CPU CPU

// define task-function for GPU
void gpu_taskfn_00() {

X_GPU();
Y_GPU();

}

// define task-function for CPU
void cpu_taskfn_01() {

A_CPU();
B_CPU();

}

int main(int argc, char* argv[]) {
{ // begin concurrent data

// execute task-function on GPU
gpu_taskfn_00();
{ // begin concurrent work

// execute work on GPU
Y_GPU();
// execute task-function on CPU
cpu_taskfn_01();

} // end concurrent work
} // end concurrent data
return 0;

}
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Broader impact: Tools for performance portability
Tools are broadly applicable

I Do not assume a programming language (e.g., FORTRAN, C, . . . ) or
parallelization framework (e.g., CUDA, HIP, OpenMP, OpenACC, . . . )

I Do not try to infer optimizations, avoiding intractable search space and
corner cases

I Ease burdens and increase productivity of developers working with scientific
codes, in terms of code maintenance and platform migration

I Allow software communities to work together and separate concerns/tasks

Tools are flexible

I Each tool is simple and independent

I Multiple tools can be composed into toolchains or pipelines

I Developers can select tools they need and build their own portability
framework (avoid one-solution-fits-all)
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