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Deep learning-based methods
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map, F̃−1, from data to
parameters (or even posterior
densities)
→ artificial neural networks
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Nonlinear Stokes PDE modeling Earth’s mantle
Model: Nonlinear incompressible Stokes (w/ free-slip & no-normal flow BC)
models present-day instantaneous flow

−∇ ·
[
µ(x, ε̇ii(u)) (∇u+∇uT)

]
+∇p = f viscosity µ, RHS forcing f

−∇ · u = 0 unknown: velocity u, pressure p

Rheology / effective viscosity: Shear-thinning with plastic yielding and
plate decoupling (or weakening) factor w(x)

µ(x, ε̇ii(u)) := µmin +min

(
τyield
2ε̇ii(u)

, w(x)min
(
µmax , a(T (x))

1
n ε̇ii(u)

1
n−1

))

µmax µmin plate decoupling

shear-thinningshear-thinning plasticplastic
yieldingyielding

Visualization from rhea code. Colors represent viscosity; Widths of plate decoupling are exaggerated.
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Given: Observational data

▶ Current plate motion from GPS
and magnetic anomalies

▶ Topography indicating normal
traction at Earth’s surface

▶ Plate deformation obtained from
dense GPS networks

▶ Average viscosity in regions
affected by post-glacial rebound

Plate motion (Credit: Pearson Prentice Hall)

Additional knowledge contributing to mantle flow models:
▶ Location and geometry of plates, plate boundaries, and subducting slabs

(from seismicity)
▶ Images of present-day Earth structure (by correlating seismic wave speed

with temperature)
▶ Rock rheology extrapolated from laboratory experiments
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Want: Constrain parameters of mantle models

Global rheological parameters affecting viscosity and nonlinearity:

▶ Scaling factor of the upper mantle viscosity (down to ∼660 km depth)

▶ Stress exponent controlling severity of strain rate weakening

▶ Yield strength governing plastic yielding phenomena

Spatially varying parameters modeling geometry of plate boundaries:

▶ Coupling strength / energy dissipation between plates

(Credit: L. Alisic)
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Model of Earth’s plate boundaries
Plate boundaries at Earth’s surface (red lines) and plate geometries
obained from MORVEL plate motion data set1

1DeMets, Gordon, and Argus 2010.
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Parametric model for plate decoupling / weak zones

w (x) := 1− (1− wmin) exp

(
−ξ(x)2

2σ2

)
∈ (0, 1]

ξ(x) := max (0, d(x)− dmin) and σ :=
dw − dmin

2

wmin

1
dmin� �

dw = dmin + 2�

Figure 2.2: Weak zone profile with weak zone width dw = 20 km, plate boundary width dmin = 5 km,
and weak zone factor wmin = 10�5.

the seismic megathrust) and the bending plate are not resolved. The megathrust and the bending
plate are independent physical entities with a host of processes, which independently govern their
strength.

2.6 A composite nonlinear viscosity model

The mantle’s rheology can be modeled as a composite of linear viscosity (Newtonian rheology) and
nonlinear viscosity (non-Newtonian rheology) [5, 110]. To describe the viscosities, first recall the
definitions of the strain rate and viscous stress tensors, "̇ = 1

2

�
ru +ruT

�
and ⌧ = 2µ"̇, and next

we define their second invariants.

Definition 2.6.1 (Second invariants). The (square root of the) second invariant of the strain rate
tensor is (using the Einstein summation convention)

"̇ii =

✓
1

2

�
"̇ij "̇ij � "̇2kk

�◆ 1
2

=
�
"̇212 + "̇213 + "̇223 � ("̇11"̇22 + "̇11"̇33 + "̇22"̇33)

� 1
2

The (square root of the) second invariant of the viscous stress tensor is

⌧ii =

✓
1

2

�
⌧ij⌧ij � ⌧2

kk

�◆ 1
2

=

✓
1

2

�
4µ2"̇ij "̇ij � 4µ2"̇2kk

�◆ 1
2

= 2µ"̇ii.

In case of incompressible fluids, the second invariants become

"̇ii =

✓
1

2
"̇ij "̇ij

◆ 1
2

=

✓
1

2
"̇ : "̇

◆ 1
2

and

⌧ii =

✓
1

2
⌧ij⌧ij

◆ 1
2

=

✓
1

2
⌧ : ⌧

◆ 1
2

.

19

Weak zone profile with width dw = 20 km, plate boundary width dmin = 5 km, and
weak zone factor wmin = 10−5.



“Scalable Inference for Earth’s Mantle on HPC Platforms” by Johann Rudi (jrudi@vt.edu)

Geometries of decoupling surfaces of subducting plates

Surfaces d(x) of the subducting plates, where colors indicate depth
(red is shallow and blue is deep, respectively)

Seismic and geodetic coupling

Scholz&Campos, 2012

(Credit: J. Hu)
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Forward solver for the nonlinear Stokes PDE
Nonlinear incompressible Stokes PDE

−∇ ·
[
µ(x, ε̇ii(u)) (∇u+∇uT)

]
+∇p = f

−∇ · u = 0

▶ Inexact Newton–Krylov method with grid continuation

Linearization with Newton’s method, then discretization yields
[
A BT

B 0

] [
û
p̂

]
=

[
−r1
−r2

]

Careful design of discretization with inf-sup stable Finite Elements

▶ High-order finite element shape functions (Qk × Pdisc
k−1, k ≥ 2)

▶ Locally mass conservative due to discontinuous, modal pressure

▶ Non-conforming hexahedral meshes with “hanging nodes”

▶ Adaptive mesh refinement (AMR) resolving fine-scale features of mantle
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Severe challenges for parallel scalable implicit solvers
. . . arising in global mantle convection:

▶ Severe nonlinearity and heterogeneity of Earth’s
rheology and anisotropy induced by it

▶ Sharp viscosity gradients in narrow regions
(6 orders of magnitude drop in ∼5 km)

▶ Wide range of spatial scales and highly localized
features, e.g., plate boundaries of size O(1 km)
influence plate motion at continental scales of
O(1000 km)

▶ Adaptive mesh refinement is essential

▶ High-order finite elements Qk × Pdisc
k−1, order k ≥ 2,

with local mass conservation; yields a difficult to deal
with discontinuous, modal pressure approximation

Effective viscosity (colors)

and locally refined mesh.

→ Developing scalable non-linear & linear solvers and preconditioners took
several years: Rudi et al. (2015), Rudi, Stadler, and Ghattas (2017),
Rudi, Shih, and Stadler (2020).
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Challenges of inferring parameters from observations

Data: Challenging because of limited amount
▶ Current plate motion of rigid plates from GPS

and magnetic anomalies recorded in bands
perpendicular to seafloor spreading
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Data (black) vs. model (red) (Credit: J. Hu).

▶ Effective viscosity:

µ(x, ε̇ii(u)) := µmin +min

(
τyield
2ε̇ii(u)

, w(x)min
(
µmax , a(T (x))

1
n ε̇ii(u)

1
n
−1

))
Parameters: Challenging because of vastly different scales of sensitivity
▶ Global parameters: scaling factors, activation energy in Arrhenius law a(T (x)),

stress exponent n, yield strength τyield

▶ Local coupling strength wmin (i.e., energy dissipation between plates)



“Scalable Inference for Earth’s Mantle on HPC Platforms” by Johann Rudi (jrudi@vt.edu)

Challenges of inferring parameters from observations
Data: Challenging because of limited amount
▶ Current plate motion of rigid plates from GPS

and magnetic anomalies recorded in bands
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Model: Challenging because of computational
complexity and truncation/inexact solves
▶ Incompressible, nonlinear Stokes PDE:

−∇·
[
µ(x, ε̇ii(u)) (∇u+∇uT)

]
+∇p = f , −∇·u = 0
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Formulate inverse problem in a Bayesian setting
Given: (for simplicity u now combines velocity and pressure)
▶ Model PDE (forward problem): A(m,u) = f (here nonlinear Stokes PDE)
▶ Map of model output (dependent on parameters m) to observations: F(u(m))

▶ Assume data d contains normally distributed additive noise, N (0,Cnoise)

▶ Assume prior of the parameters m is normally distributed, N (mpr,Cpr)

Want: Description of the posterior density of the parameters (using Bayes’)

πpost(m) ∝ exp
(
− 1

2 ∥d−F(u(m))∥2C−1
noise

− 1
2 ∥m−mpr∥2C−1

pr

)

Computationally feasible (and thanks to Laplace approximation)
▶ Find the maximum of πpost(m) by solving an optimization problem constraint

by the model PDE:

argmin
m

1
2 ∥d−F(u)∥2C−1

noise
+ 1

2 ∥m−mpr∥2C−1
pr

such that A(m,u) = f

▶ Construct a Gaussian approximation of πpost(m) around this maximum by
approximating the Hessian of the optimization problem (Gauss–Newton)
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Newton (outer loop): Adjoints for 1st & 2nd-order derivatives
Derivation of gradient equations, using a Lagrangian as Ansatz,

1. Solve the (nonlinear) forward problem for u: (u combines velocity and
pressure for simpler notation)

(A(m,u) , ṽ) = (f , ṽ) for all ṽ

2. Solve the (linear) adjoint problem for v:

(ũ , δu[A]∗v) = (δu[F ](ũ) , d−F(m,u))C−1
noise

for all ũ

3. Compute the gradient with respect to parameters m:

G(m̃) = (δm[A](m̃) , v)+(m̃ , m−mpr)C−1
pr

−(δm[F ](m̃) , d−F(m,u))C−1
noise

Computational complexity

▶ One (nonlinear) forward + one (linear) adjoint solve

▶ Independent of the dimension of parameters & data size → scalable

▶ Analogous approach is used to compute Hessians
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Setup: Cross section of Earth’s mantle2
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Cross section (blue line); velocity vectors from MORVEL56 (green arrows). (Credit: M. Gurnis)

2Rudi, Gurnis, and Stadler (2022), In: Geophysical Journal International.
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Inference of plate decoupling for a cross section of Earth14 Johann Rudi, Michael Gurnis, and Georg Stadler
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Figure 3. Results for series B.1. Velocities at the surface from model output after completion of inference, using decreasing standard deviations of the data
error � 2 {0.5, 1.0, 4.0} [mm/yr] (bottom to top). Effective viscosity around plate margins (center and right columns). The jumps in effective viscosity which
occur at depth correspond to the 410 km and 660 km depths.

depends on plate size. For the first set of inverse problems, we vary the standard deviation of the data misfit term, �data 2 {4, 2, 1, 0.5, 0.25}

[mm/yr]. With a large value of �data � 1 mm/yr, the estimate for the plate motion data for the larger plates, especially for the large, fast-

moving Pacific Plate, generally fits the data well for any of the assumed data errors. But the small back-arc basin for the Mariana subduction305

zone is not well fit (Fig. 3B,C). When the data error is large, the surface plate motions do not display divergence above the Mariana slab. As

�data is reduced, the fit of the velocity of this small Mariana plate improves, especially between �data values of 1 and 0.5 mm/yr. During this

trend toward resolving the back-arc motion better, there is a substantial transition in the recovered parameters (Fig. 4): The global yield stress

drops from about 100 MPa to about 45 MPa, which leads to much more (e.g., broader scale) yielding within the hinge zones of the three

slabs. When the yield stress decreases, there is a jump in the weak zone factor for the Mariana from 10�5 to 10�4 (Fig. 4C). Essentially,310

the divergence above the slab, referred to as trench roll-back, causes the Mariana slab to roll back. The slab is able to roll back only if it

can easily bend in the hinge zone and a lower effective viscosity in the hinge zone is required (Alisic et al., 2012); consequently, fitting the

roll-back in the kinematic data well leads to a global reduction in the yield stress and hence the quite evident sharp reduction of �y as �data

decreases. While it is interesting that the model is capable of fitting the back-arc motion, the results for �data = 0.5 and 0.25 need to be

taken with caution, because the inferred parameters might be a result of underestimating observation and model errors. Hence, the shifted315

and contracted posteriors for small values of �data arise from setting the noise possibly artificially low.

Furthermore, we observe the similarities of priors and posteriors for �data 2 {1, 2, 4} and for yield stress and weak zone factor parameters

Vary data/noise standard deviation
σA = 4.0, σB = 1.0, σC = 0.5 mm/yr



“Scalable Inference for Earth’s Mantle on HPC Platforms” by Johann Rudi (jrudi@vt.edu)

Inference of plate decoupling for a cross section of Earth
Sensitivities of the response of inferred plate coupling factors wmin to a
(prescribed) accuracy between data and model outputs.

Prior and posterior distributions for wmin
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Inference for a cross section with plate-dependent weights
Plate size-dependent standard deviation 2D marginals of the (approx.) posterior

Forward sensitivities of stresses (QOIs)
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Towards full-sphere inference | current & future work
Data misfit at initial guess of plate coupling parameters wmin at

subduction faults and spatially-constant prefactorsrhea inversion itn 00
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Plate motion from MORVEL65 (black arrows) and from model outputs (red arrows). (Credit: J. Hu)
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Data misfit toward optimality point (iteration 9)rhea inversion itn 09
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Approximately inferred plate coupling factors wmin

Strong variation of weak zone factors wmin (colors in log10-scale). (Credit: J. Hu)
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