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Three different ways to compute solutions of inverse problems

Sampling-based methods use

randomness to explore the
posterior density; typically
don’t need derivatives

— Markov chain Monte Carlo

(MCMC)

Adjoint derivative-based
methods use techniques from
optimization thus require
gradients/Hessians

— PDE-constrained

optimization

Deep learning-based methods
directly construct an inverse
map, F~1, from data to
parameters (or even posterior
densities)

— artificial neural networks
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Earth's Mantle Convection — The Driving Application and Challenges
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Nonlinear Stokes PDE modeling Earth’'s mantle
Model: Nonlinear incompressible Stokes (w/ free-slip & no-normal flow BC)
models present-day instantaneous flow
=V [z, én(u)) (Vu + VuT)] + Vp=f \viscosity u, RHS forcing f

—V-u =0 unknown: velocity u, pressure p

Rheology / effective viscosity: Shear-thinning with plastic yielding and
plate decoupling (or weakening) factor w(x)

w(x, €n(w)) = fimin + min <27;:6(31,2) ,w(x) min (,Mmax , a(T(x))ig'”(u)il)>

[max Hmin  plate decoupling

- NG FLN
\ .!|Lhnﬂ|ﬂ|'nn |

Visualization from rhea code. Colors represent viscosity; Widths of plate decoupling are exaggerated.
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Given: Observational data

» Current plate motion from GPS
and magnetic anomalies

» Topography indicating normal
traction at Earth’s surface

» Plate deformation obtained from
dense GPS networks

» Average viscosity in regions
affected by post-glacial rebound

Plate motion (Credit: Pearson Prentice Hall)

Additional knowledge contributing to mantle flow models:

» Location and geometry of plates, plate boundaries, and subducting slabs
(from seismicity)

» Images of present-day Earth structure (by correlating seismic wave speed
with temperature)

» Rock rheology extrapolated from laboratory experiments
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Want: Constrain parameters of mantle models

Global rheological parameters affecting viscosity and nonlinearity:
» Scaling factor of the upper mantle viscosity (down to ~660 km depth)
» Stress exponent controlling severity of strain rate weakening
» Yield strength governing plastic yielding phenomena

Spatially varying parameters modeling geometry of plate boundaries:

» Coupling strength / energy dissipation between plates

(Credit: L. Alisic)
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Model of Earth's plate boundaries

Plate boundaries at Earth's surface (red lines) and plate geometries
obained from MORVEL plate motion data set!

'DeMets, Gordon, and Argus 2010.
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Parametric model for plate decoupling / weak zones

w(@) =1 — (1 — Wyin) exp (— 5;:?) € (0,1]

&(x) = max (0,d(x) — dpin) and o= Gw = dinin

Wmin

Weak zone profile with width d., = 20 km, plate boundary width dmin = 5km, and
weak zone factor wmin = 107°.
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Geometries of decoupling surfaces of subducting plates

Surfaces d(x) of the subducting plates, where colors indicate depth
(red is shallow and blue is deep, respectively)

Mexico
Central

Central Chil
South Chile
d

(Credit: J. Hu)
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Forward solver for the nonlinear Stokes PDE

Nonlinear incompressible Stokes PDE
-V [M(wv én(u)) (Vu + VUT)] +Vp=1Ff
~V-u=0
» [nexact Newton—Krylov method with grid continuation

Linearization with Newton's method, then discretization yields

A BT u I 1
B 0 f) - —TI9
Careful design of discretization with inf-sup stable Finite Elements
> High-order finite element shape functions (Qx x P{is¢, k > 2)
» Locally mass conservative due to discontinuous, modal pressure

» Non-conforming hexahedral meshes with “hanging nodes”

» Adaptive mesh refinement (AMR) resolving fine-scale features of mantle
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Severe challenges for parallel scalable implicit solvers
. arising in global mantle convection:

> Severe nonlinearity and heterogeneity of Earth’s
rheology and anisotropy induced by it

» Sharp viscosity gradients in narrow regions
(6 orders of magnitude drop in ~5 km)

» Wide range of spatial scales and highly localized
features, e.g., plate boundaries of size O(1 km)
influence plate motion at continental scales of
O(1000 km)

> Adaptive mesh refinement is essential

» High-order finite elements Qj x P%ifcl, order k > 2,
with local mass conservation; yields a difficult to deal
with discontinuous, modal pressure approximation

Effective viscosity (colors)

and locally refined mesh.

— Developing scalable non-linear & linear solvers and preconditioners took
several years: Rudi et al. (2015), Rudi, Stadler, and Ghattas (2017),
Rudi, Shih, and Stadler (2020).
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Inference & Uncertainty Quantification
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Challenges of inferring parameters from observations

Data: Challenging because of limited amount

» Current plate motion of rigid plates from GPS-{::
and magnetic anomalies recorded in bands
perpendicular to seafloor spreading

Data (black) vs. model (red) (Credit: J. Hu).
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Challenges of inferring parameters from observations
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» Current plate motion of rigid plates from GPS
and magnetic anomalies recorded in bands
perpendicular to seafloor spreading

Model: Challenging because of computational
complexity and truncation/inexact solves
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» Incompressible, nonlinear Stokes PDE: Data (black) ve. model (red) (Credit: J. Hu).
—V- (@, én(w) (VutVu')|+Vp = f, —Vu=0

» Effective viscosity:
Tyield

w(z,én(u)) = fimin + min (Zén(u) , w(x) min (,umax , a(T(m))%é”(u)%’l))




“Scalable Inference for Earth’'s Mantle on HPC Platforms” by Johann Rudi (jrudi@vt.edu)

Challenges of inferring parameters from observations
Data: Challenging because of limited amount

» Current plate motion of rigid plates from GPS
and magnetic anomalies recorded in bands
perpendicular to seafloor spreading

Model: Challenging because of computational
complexity and truncation/inexact solves

» Incompressible, nonlinear Stokes PDE: Data (black) ve, model (ved) (Credit: J. Hu).
—V- (@, én(w) (VutVu')|+Vp = f, —Vu=0
» Effective viscosity:

p(x, éu(w)) == fimin + min (22:212) , w(z) min (umax ; a(T(m))%g‘”(u)%*l))

Parameters: Challenging because of vastly different scales of sensitivity

» Global parameters: scaling factors, activation energy in Arrhenius law a(T(x)),
stress exponent n, yield strength Tyiciq

» Local coupling strength wp,, (i.e., energy dissipation between plates)
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Formulate inverse problem in a Bayesian setting
Given: (for simplicity u now combines velocity and pressure)

» Model PDE (forward problem): A(m,u) = f (here nonlinear Stokes PDE)

» Map of model output (dependent on parameters m) to observations: F(u(m))
» Assume data d contains normally distributed additive noise, A (0, Goise)

» Assume prior of the parameters m is normally distributed, N'(mpy, €pr)

Want: Description of the posterior density of the parameters (using Bayes')

2
C@”p_r 1

Tpost (M) OC exp (—% Ild — f(u(m))H?grﬁse — % [lm — mp,
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Computationally feasible (and thanks to Laplace approximation)

» Find the maximum of m,s (M) by solving an optimization problem constraint
by the model PDE:

argmin 1 ||d — F(u)||5—1 + L [lm —mpll5+  such that A(m,u) = f
m noise pr

» Construct a Gaussian approximation of mpes¢(m) around this maximum by
approximating the Hessian of the optimization problem (Gauss—Newton)
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Newton (outer loop): Adjoints for 15¢ & 2"-order derivatives

Derivation of gradient equations, using a Lagrangian as Ansatz,

1. Solve the (nonlinear) forward problem for w: (u combines velocity and
pressure for simpler notation)

(A(m,u),0)=(f,v) forall v
2. Solve the (linear) adjoint problem for v:

(@, 0u[A]"v) = (0u[F)(a) ,d = F(m,u))y-1  forall @

3. Compute the gradient with respect to parameters m:

G(m) = (Om[Al(m) , v)+(m, m — mpr)cgl;l —(Om[F](M) , d — F(m,u)) -1

Computational complexity
» One (nonlinear) forward + one (linear) adjoint solve
» Independent of the dimension of parameters & data size — scalable

» Analogous approach is used to compute Hessians
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Numerical Results
Inference on a cross section of Earth's mantle
Inference on the full sphere of the Earth
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Setup: Cross section of Earth’s mantle?

Cross section (blue line); velocity vectors from MORVEL56 (green arrows). (Credit: M. Gurnis)

2Rudi, Gurnis, and Stadler (2022), In: Geophysical Journal International.
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oa =4.0, o = 1.0, oc = 0.5 mm/yr

Inference of plate decoupling for a cross section of Earth

Vary data/noise standard deviation
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Inference of plate decoupling for a cross section of Earth

Sensitivities of the response of inferred plate coupling factors wmp;, to a

(prescribed) accuracy between data and model outputs.

: : . :
prior |- P
Tdata = 10 ——
Idata = 20 I
Tdata = 10 ——
Tdata = 05 —
Tdata = 0-25 -

I I I I
1-107°1-107% 1-107% 1-107% 1-1072

Ryuku weak zone

prior
Tdata = 40
Tdata = 20
Tdata = 1.0
0.5

Tdata =

Tdata = 025

I I I I
1-10711-107% 1-107% 1-107% 1-1072

—
— T
—
—
I
Hi-

Mariana weak zone

I
1

Prior and posterior distributions for wmin

prior
Tdata =40
Tdata = 20
Idata = 1.0

Tdata = 0-5

Odata = 0.25

I I I I
1-1071-107% 1-107% 1-107* 1-1072

— T
——

Chile weak zone

1




“Scalable Inference for Earth’'s Mantle on HPC Platforms” by Johann Rudi (jrudi@vt.edu)

Inference for a cross section with plate-dependent weights

Plate size-dependent standard deviation 2D marginals of the (approx.) posterior
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Towards full-sphere inference | current & future work

Data misfit at initial guess of plate coupling parameters wy;, at
subduction faults and spatially-constant prefactors

Plate motion from MORVELG65 (black arrows) and from model outputs (red arrows). (Credit: J. Hu)
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Towards full-sphere inference | current & future work

Data misfit toward optimality point (iteration 9)

Plate motion from MORVELG65 (black arrows) and from model outputs (red arrows). (Credit: J. Hu)
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Towards full-sphere inference | current & future work

Approximately inferred plate coupling factors wpin

Strong variation of weak zone factors w,iy (colors in logy-scale). (Credit: J. Hu)
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