Global Convection in Earth's Mantle: Advanced Numerical Methods for Forward and Inverse Modeling

Johann Rudi¹ Georg Stadler² Jiashun Hu³ Michael Gurnis³ Omar Ghattas⁴

 ¹Mathematics and Computer Science Division, Argonne National Laboratory
²Courant Institute of Mathematical Sciences, New York University
³Seismological Laboratory, California Institute of Technology
⁴Oden Institute, Jackson School of Geosciences, and Dept. of Mechanical Engineering, The University of Texas at Austin

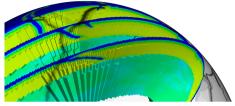
Motivation: Understanding of Earth's fundamental properties

Simulating realistic high-resolution models:

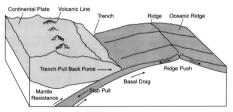
- Global mantle convection & associated plate tectonics
- Resolutions to faulted plate boundaries
- Nonlinear viscous fluid flow

Learning properties of Earth's rheology:

- What we know: Observational data of plate motions at the surface, topography, surface strain rates, estimates of average viscosities, etc.
- What we want: Parameters in constitutive laws and plate coupling strength that are consistent with data and model; Uncertainties w.r.t. available data



Computational mesh that resolves viscosity (colors).

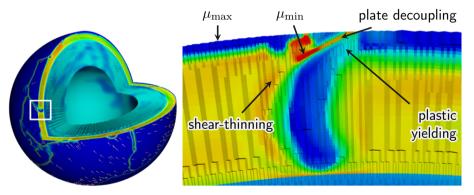


Underlying forces (Credit: Schubert, Turcotte, Olsen).

Simulation

Approach for simulation

Model PDE: present day instantaneous flow modeled by incompressible, nonlinear Stokes Rheology / effective viscosity: shear-thinning with plastic yielding, and upper/lower bounds



Colors represent viscosity ($\mu_{\rm max}/\mu_{\rm min} = 10^6$).

Approach for simulation

Model PDE: present day instantaneous flow modeled by incompressible, nonlinear Stokes

$$\begin{split} -\nabla \cdot \left[\mu(\boldsymbol{x}, \dot{\boldsymbol{\varepsilon}}_{\scriptscriptstyle \Pi}(\boldsymbol{u})) \left(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\mathsf{T}} \right) \right] + \nabla p &= \boldsymbol{f} \qquad \text{viscosity } \mu, \text{ RHS forcing } \boldsymbol{f} \\ -\nabla \cdot \boldsymbol{u} &= 0 \qquad \text{velocity } \boldsymbol{u}, \text{ pressure } p \end{split}$$

Free-slip boundary conditions (tangential velocities at the surface are output of the model)

- Temperature structure from seismic models and convergence rate of slabs
- Fault weak zones based on Slab1.0 compilation of models for subduction zones

Rheology / effective viscosity: shear-thinning with plastic yielding, and upper/lower bounds

$$\mu(\boldsymbol{x}, \dot{\varepsilon}_{\mathrm{II}}(\boldsymbol{u})) \coloneqq \mu_{\min} + \min\left(\frac{\tau_{\mathrm{yield}}}{2\dot{\varepsilon}_{\mathrm{II}}(\boldsymbol{u})}, w(\boldsymbol{x}) \min\left(\mu_{\max}, a(T(\boldsymbol{x}))^{\frac{1}{n}} \dot{\varepsilon}_{\mathrm{II}}(\boldsymbol{u})^{\frac{1}{n}-1}\right)\right)$$

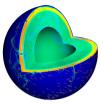
- ▶ Plates are modeled by high-viscosity: a(T(x)) depends exponentially on T
- ▶ Plate boundaries are narrow zones of weak viscosity: $10^{-6} \le w(x) \le 1$

Severe challenges for parallel scalable implicit solvers

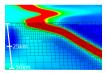
... arising from global models of Earth's mantle convection:

- Severe nonlinearity, heterogeneity, and anisotropy (upon linearization)
- Sharp viscosity gradients in narrow regions (change by $\mathcal{O}(10^6)$ in $\sim 5 \text{ km}$)
- ► Wide range of spatial scales and highly localized features, e.g., plate boundaries of size O(1 km) influence plate motion at continental scales of O(1000 km)
- Adaptive refinement of computational mesh is essential
- ► High-order finite elements Q_k × P^{disc}_{k-1}, order k ≥ 2, with local mass conservation; yields a difficult to deal with discontinuous, modal pressure approximation

A resolved model has about 1 billion DOFs (with aggressive adaptivity), because smallest mesh elements ${\sim}1\,{\rm km};$ Runs on 10K–100K computing cores.



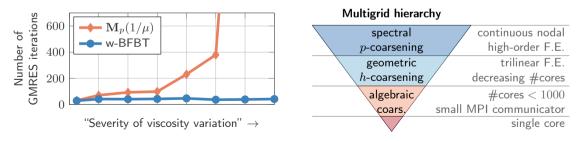
Colors represent viscosity, arrows show plate velocities.



Fault zone (red) between stationary and subducting plate.

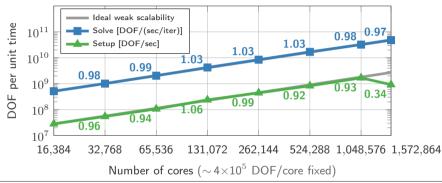
 $\begin{array}{ll} \mbox{Solver highlights: Viscosity variation-robust preconditioning and} \\ \mbox{scalable parallel multigrid for adaptive high-order F.E.} \\ \mbox{Stokes preconditioning:} & \begin{bmatrix} \mathbf{A} & \mathbf{B}^{\mathsf{T}} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{A}} & \mathbf{B}^{\mathsf{T}} \\ \mathbf{0} & \tilde{\mathbf{S}} \end{bmatrix}^{-1} \begin{bmatrix} \tilde{\mathbf{u}} \\ \tilde{\mathbf{p}} \end{bmatrix} = \begin{bmatrix} -\mathbf{r}_1 \\ -\mathbf{r}_2 \end{bmatrix} \quad \begin{array}{l} \tilde{\mathbf{A}}^{-1} \approx \mathbf{A}^{-1} \to \mathsf{MG} \mathsf{V}\text{-cycle} \\ \\ \tilde{\mathbf{S}}^{-1} \approx (\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\mathsf{T}})^{-1} \\ \mbox{Schur complement preconditioning:} & \tilde{\mathbf{S}}^{-1} \coloneqq \underbrace{\left(\mathbf{B}\mathbf{C}_w^{-1}\mathbf{B}^{\mathsf{T}}\right)^{-1}}_{\to \mathsf{MG} \mathsf{V}\text{-cycle}} \underbrace{\left(\mathbf{B}\mathbf{D}_w^{-1}\mathbf{B}^{\mathsf{T}}\right)}_{\to \mathsf{MG} \mathsf{V}\text{-cycle}} \underbrace{\left(\mathbf{B}\mathbf{D}_w^{-1}\mathbf{B}^{\mathsf{T}}\right)}_{\to \mathsf{MG} \mathsf{V}\text{-cycle}} \end{array}$

Choice of diagonal weighting matrices $\mathbf{C}_w = \mathbf{D}_w$ is critical for efficacy & robustness.



Solver highlights: Parallel weak scalability on Sequoia (BlueGene/Q)

Parallel scalability of linear iterative solvers to 1.6M cores (collaboration with IBM Research, Zurich):



- Excellent parallel scalability while maintaining optimal algorithmic performance w.r.t. mesh refinement; nearly optimal w.r.t. higher discretization order
- Full nonlinear Stokes solver: Inexact Newton-Krylov with nonlinear preconditioning and grid continuation for highly nonlinear models of Earth's mantle

Inference

Approach for inference: From data to parameters consistent with model

General procedure for inference from data consistent with a model (physical, statistical, etc.):

- 1. Question: Start with a scientific question, e.g., quantify forces in deep Earth.
- 2. Data collection: Gather data relevant to the question, e.g., plate motions at the surface.
- 3. **Model selection**: Construct a model that is *appropriate* to the problem and data, moreover, select parameters for inference, e.g., global mantle convection model with plate coupling strength as parameters.
- 4. **Parameter estimation**: Find the parameters in the model, which often requires minimizing the difference between model output and data (in some suitable metric).
- 5. Validation: Inspect if the model and parameters are consistent with knowledge or data that was excluded from estimation, e.g., average viscosity or topography.
- 6. **Prediction**: Estimate the quantities of interest and their uncertainties that are associated with the initial scientific question.

Approach for inference: Global mantle convection & plate tectonics

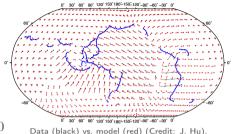
Data: Challenging because of limited amount

 Current plate motion of rigid plates from GPS and magnetic anomalies recorded in bands perpendicular to seafloor spreading

Model: Challenging because of computational complexity

Incompressible, nonlinear Stokes PDE:

$$-\nabla \cdot \left[\mu(\boldsymbol{x}, \dot{\varepsilon}_{\text{\tiny II}}(\boldsymbol{u})) \left(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\mathsf{T}}\right)\right] + \nabla p = \boldsymbol{f}, \quad -\nabla \cdot \boldsymbol{u} = 0$$



• Effective viscosity:
$$\mu(\boldsymbol{x}, \dot{\varepsilon}_{\Pi}(\boldsymbol{u})) \coloneqq \mu_{\min} + \min\left(\frac{\tau_{\text{yield}}}{2\dot{\varepsilon}_{\Pi}(\boldsymbol{u})}, \boldsymbol{w}(\boldsymbol{x})\min\left(\mu_{\max}, \boldsymbol{a}(T(\boldsymbol{x}))^{\frac{1}{n}}\dot{\varepsilon}_{\Pi}(\boldsymbol{u})^{\frac{1}{n}-1}\right)\right)$$

Parameters: Challenging because of vastly different scales of sensitivity

- Global parameters: scaling factors, activation energy in Arrhenius law a(T(x)), stress exponent n, yield strength τ_{yield}
- \blacktriangleright Local coupling strength $w({\pmb x}),$ i.e., energy dissipation between adjacent plates

Systematic inversion of uncertain parameters consistent with data & model **Given**:

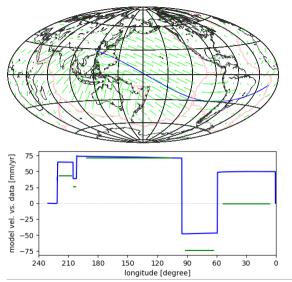
- ▶ Model PDE (forward problem), here incompressible, nonlinear Stokes: A(m, u) = f
- Map of model output (dependent on parameters m) to observations: $\mathcal{F}(u(m))$
- ▶ Assume data d contains normally distributed additive noise, $\mathcal{N}(0, \mathscr{C}_{noise})$
- Assume prior of the parameters m is normally distributed, $\mathcal{N}(m_{\mathrm{pr}}, \mathscr{C}_{\mathrm{pr}})$

Want: Description of the posterior density of the parameters (using Bayes' theorem) $\pi_{\text{post}}(m) \propto \exp\left(-\frac{1}{2} \|d - \mathcal{F}(u(m))\|_{\mathscr{C}^{-1}}^2 - \frac{1}{2} \|m - m_{\text{pr}}\|_{\mathscr{C}^{-1}}^2\right)$

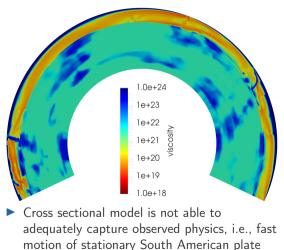
Computationally feasible: Using adjoints for gradient computation & BFGS approximation of Hessian

- Find the maximum of $\pi_{\text{post}}(m)$ by solving an optimization problem constraint by the model PDE: $\arg\min_{m} \mathcal{J}(m, u(m)) \coloneqq \frac{1}{2} \|d - \mathcal{F}(u(m))\|_{\mathscr{C}_{\text{noise}}}^2 + \frac{1}{2} \|m - m_{\text{pr}}\|_{\mathscr{C}_{\text{pr}}^{-1}}^2$ subject to $\mathcal{A}(m, u(m)) = f$
- \blacktriangleright Construct a Gaussian approximation of $\pi_{\rm post}(m)$ around this maximum by approximating the Hessian of the optimization problem

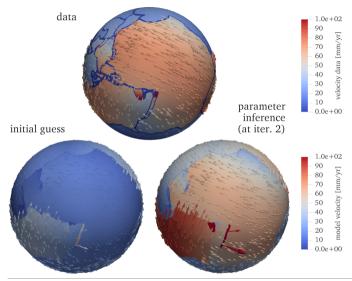
Computational results: Inverse problem for a cross sectional model



Effective viscosity after inference



Computational results: Inverse problem for global Earth model



Inversion of global scalars (scaling factors, activation energy, stress exponent, yield strength) successfully recovers main trends, i.e., velocities of large plates

 Local parameters (plate decoupling) remain challenging due to lower sensitivities

Thank you

