
Composable Streamed Interfaces in PETSc for Extreme-Scale Geometric Multigrid

Johann Rudi Barry Smith
Argonne National Laboratory Argonne National Laboratory

jrudi@anl.gov bsmith@mcs.anl.gov

Argonne Guidelines 022806 © Argonne National Laboratory. All rights reserved.

7

The Argonne logo

The Argonne logo is our most important visual asset and the cornerstone of our visual identity. It
is a clear representation of our positioning and acts as a symbol of our reputation.

This logo incorporates the brand name “Argonne” with the descriptor “National Laboratory” and
the “delta” symbol. The “delta,” the symbol of change, reinforces the meaning behind our brand
positioning: “where scientists come together to open up new possibilities for the future.”

It is important that we all follow a single set of standards for using the Argonne logo. Through
consistent use, this logo will accrue the greatest awareness which, in turn, will benefit us most.

Motivation
I Development of parallel scalable implicit solvers and preconditioners
I Support for various models (PDEs, networks) and parallel architectures
I Careful software design with good maintainability in the future

Challenges
I Parallelization of multi-level methods on adaptively refinement meshes
I Memory handling for high-order finite elements and matrix-free operators
I Heterogeneous architectures demand complex memory transfers:

MPI communication, GPU offloading, etc.

Hybrid Spectral–Geometric–Algebraic
Multigrid

High-order finite element discretization

I High-order finite elements, nodal and modal shape functions

I Adaptive mesh refinement (AMR) to resolve localized small features

I Hexahedral elements allow exploiting the tensor product structure of shape
functions to greatly reduce the number of floating point operations

I Fast, matrix-free application of stiffness and mass matrices reduce memory
consumption significantly

Multigrid hierarchy

spectral
p-coarsening

geometric
h-coarsening

algebraic
coars.

continuous nodal
high-order F.E.

trilinear F.E.
decreasing #cores

#cores < 1000
small MPI communicator

single core

I Multigrid hierarchy of nested meshes is generated from an adaptively refined
octree-based mesh via spectral–geometric coarsening

I Re-discretization of PDEs at coarser levels

I Parallel repartitioning of coarser meshes for load-balancing (crucial for AMR);
sufficiently coarse meshes occupy only subsets of cores

I Coarse grid solver: AMG invoked on small core counts & small communicator

Parallel forest-of-octrees AMR library [p4est.org] Scalable geometric multi-
grid coarsening due to:

I Forest-of-octree based meshes enable fast refinement/coarsening

I Octrees and space filling curves used for fast neighbor search, mesh reparti-
tioning, and 2:1 mesh balancing in parallel

k0 k1

p0 p1 p1 p2

k0

k1

x0

y0

x1

y1

Colors depict different processor cores. (Credit: Burstedde, et al.)

Geometric coarsening (h-MG): Repartitioning & core-thinning

I Parallel repartitioning of locally refined meshes for load balancing

I Core-thinning to avoid excessive communication in multigrid cycle

I Reduced MPI communicators containing only non-empty cores

I Ensure coarsening across core boundaries: Partition families of oc-
tants/elements on same core for next coarsening sweep

← “upstream” “downstream”→
MG level = `

36 38 36 38

coarsen,
2:1 bal.

upstream data

9 14 27 17

partition

upstream data

0 35 32 0

core
thinning

MG level = `− 1

35 32

Colors depict different processor cores, numbers indicate element count on each core.

[Sundar, Biros, Burstedde, Rudi, Ghattas, Stadler, 2012]

Multigrid V-cycle

p-MG

h-MG

AMG

direct

high-order
L2-projection

linear
L2-projection

linear
projection

16K 32K 64K 128K 256K 512K 1.0M 1.6M

107

108

109

1010

1011

0.98 0.99
1.03 1.03 1.03 0.98 0.97

0.96 0.94
1.06 0.99 0.92

0.93 0.34

Number of cores (∼4×105 DOF/core fixed)

D
O

F
pe

ru
ni

tt
im

e

Ideal weak scalability
Solve [DOF/(sec/iter)]
Setup [DOF/sec]

I High-order L2-projection onto coarser levels; restriction & interpolation are
adjoints of each other in L2-sense

I Chebyshev accelerated Jacobi smoother with tensorized matrix-free high-
order stiffness apply; assembly of high-order diagonal only

I Error reduction per MG V-cycles is independent of core count

I No collective communication needed in spectral–geometric MG cycles

Software design of multigrid Separate hierarchy of meshes and operators:

knows coarse knows coarseknows mesh

MGLevelMesh
{p-MG and h-MG}

+ order, order_max : int ≥ 1

+ level, level_max : int ≥ 0

− meshDataUpstream : void∗
− meshData : void∗
− coarse : self
− coarseIsNonEmpty : bool

+ createHierarchy() : self
− createRecursively(self) : self
+ destroy()
+ getMeshDataUpstream() : void∗
+ getMeshData() : void∗
+ getCoarse() : self
+ coarseIsNonEmpty() : bool

MGLevelOperator
{Poisson, Stokes, . . . }

− mgLevelMesh : MGLevelMesh∗
− operatorData : void∗
− coarse : self

+ createHierarchy() : self
− createRecursively(self) : self
+ destroy()
+ solveLevel(rhs : Vec) : Vec
+ computeResidual(guess : Vec, rhs : Vec) : Vec
+ restrictResidual(res : Vec) : Vec
+ interpolateCorrection(corr : Vec) : Vec
+ getMeshLevel() : MGLevelMesh
+ getOperatorData() : void∗
+ getCoarse() : self

Design Patterns for DM Objects in PETSc
A high-level perspective on design patterns for model–solver interactions.
Monolithic: model knows and con-
trols solver (common in traditional
implementations)

invokes solver knows solver

MySolver

MyModel

Flexible: model is agnostic of solver;
solver accesses interfaces of model (ap-
proach taken by PETSc)

solves model knows model / interfaces

MyModel

MySolver

A DM in PETSc represents a model and follows five design patterns.

Pattern 1: Mapping between global and local representations of DOFs.

I Local representations are used to perform processor-local computations

I Global representations are distributed across memory without duplication

I Global-to-local maps can include communication of shared or “ghosted” data
from other processors and enforcement of algebraic constraints

�interface�
DMVectorCommunicator

{Pattern 1: global–local DOF mapping}

+ globalToLocal{Begin|End}(vecGlo,vecLoc)
+ localToGlobal{Begin|End}(vecLoc,vecGlo)

Pattern 2: Allocation and management of workspace vectors.

I Creates matrices / vectors required by solvers or inside application code

I Storage for temporary access to avoid excessive re-allocations

�interface�
DMMatrixFactory

{Pattern 2: workspace management}

− matStackLocal : Mat[]
− matStackGlobal : Mat[]

+ create{Local|Global}Matrix() : Mat
+ get{Local|Global}Matrix() : Mat∗
+ restore{Local|Global}Matrix(mat)
+ clear{Local|Global}Matrix()

�interface�
DMVectorFactory

{Pattern 2: workspace management}

− vecStackLocal : Vec[]
− vecStackGlobal : Vec[]

+ create{Local|Global}Vector() : Vec
+ get{Local|Global}Vector() : Vec∗
+ restore{Local|Global}Vector(vec)
+ clear{Local|Global}Vectors()

Pattern 3: Derivatives of DM’s with corresponding operators to map DOFs.

�interface�
DMHierarchy

{Pattern 3: nested multigrid levels (PCMG)}

+ create{Coarse|Fine}() : DM
+ interpolateVector(vecSrc,vecDst)
+ restrictVector(vecSrc,vecDst)

�interface�
DMSubdivision

{Pattern 3: domain sub-sections (PCASM)}

+ createSub(subDofIndices) : DM
+ projectVector(vecSrc,vecDst)

�interface�
DMFieldsplit

{Pattern 3: splitting of DOF components (PCFIELDSPLIT)}

+ type : enum={velocity, pressure, . . . }

+ createSub(type) : DM
+ {get|set}VectorComponent(type,vecSrc,vecDst)

Pattern 4: Data storage, access, and processing.

Pattern 5: Construction of a fully working DM. Allows configuration of DM, e.g.:

I Input of geometry information and construction of a mesh and discretization

I Setup of differential operators and boundary conditions

�interface�
DMData

{Pattern 4: data I/O and processing}

+ read(file)
+ write(file)

. . . {handling of DM-specific data}

�interface�
DMSetup

{Pattern 5: construction and setup}

+ create(. . .) : DM
+ destroy()
+ setUp()

. . . {DM-specific}

Example interactions between DM and KSP solver: Currently, the access
patterns (arrows) create many complicated dependencies, which are challeng-
ing for software implementation and maintenance. The nested aggregation
(diamonds) of MyDM inside MyKSP and DMKSP inside MyDM add to the complexity.

requests

(through MyDM)

depends on

manipulatesupdates

∗

1∗

0..1

11

manipulates
MyDM

MyKSP DMKSPMyPC

Propose: Model–Controller–Solver
Design Patterns

The new design is based on the five DM patterns introduced before and has the
goal to realize geometric multigrid implementations (like the MG shown before)
and accommodate different parallelism models (distributed & shared memory;
MPI+OpenMP or MPI+GPU) via unifying interfaces.

New “Model” and “Memory” interfaces: Explicitly target separate designs
for memory and a structure given to this memory via a model. We introduce the
concept of streaming that enables the composition of objects that implement
these interfaces. Examples of a stream of models are: (i) coarser MG levels,
(ii) physics decompositions, and (iii) parallel distributions of DOFs.

�interface�
ModelBase

{enables pattern 2+4+5}

+ create() : self
+ destroy()
+ setUp()

�interface�
ModelStream

{enables pattern 1+2+3}

+ createStream() : self
+ destroyStream()
+ transferForward{Begin|End}(model,modelNext)
+ transferBackward{Begin|End}(modelNext,model)

�interface�
MemoryBase

{enables pattern 2}

+ type : enum={coeff., sol., res., . . . }

+ create(type) : Vec
+ destroy(vec)

�interface�
MemoryStream

{enables pattern 1+2+3}

+ createStream(type) : Vec
+ destroyStream(vec)
+ transferForward{Begin|End}(vec,vecNext)
+ transferBackward{Begin|End}(vecNext,vec)

New Controller interfaces: Intended for managing memory and models and
making them available, for example, to solvers.

�interface�
ModelController

{model workspace (pattern 2)}

− stack : Model[]
− stackStream : Model[]

+ get{Stream}() : Model∗
+ restore{Stream}(model)
+ clear{Stream}(model)

�interface�
MemoryController

{memory workspace (pattern 2)}

− stack : Vec[]
− stackStream : Vec[]

+ get{Stream}() : Vec∗
+ restore{Stream}(vec)
+ clear{Stream}(vec)

New Model–Controller–Solver (MCS) design pattern: Interactions between
a DM and a KSP solver are restructured and the complex dependencies (see
example before) do no longer exist.

requests updates

requests updates

implements

implements

inherits

inherits

inherits

requests updates

requests updates

requests updates

Model

Controller

Solver

ModelMemoryInterfaces

ControllerInterfaces

MyDM

MyController

MyKSP MyPC

Example of streamed interfaces for MG coarsening and parallelism: The
flexibility and composability of the streamed interfaces allows us to express
multiple design paradigms:
I Interactions between model and solver (see example above)
I Nested multigrid hierarchies
I Distributed and shared memory parallelism

createStream createStream createStream

createStream createStream

getStream

updates

getStream

updates

getStream

updates

createStream

createStream

createStream

getStream

updates

getStream

updates

requests updates

Mesh1
MeshCoarsened

{previously upstream data}
MeshPartitioned

{previously upstream data}
Mesh2

MGLevelMesh1

level = `

MGLevelMeshCoarsened MGLevelMeshPartitioned

Mesh1Mem

Mesh1MemLocal

Mesh1MemDevice

Mesh1MemController

Mesh1MemLocalController

multigrid coarsening pattern

distributed memory
parallelism pattern

shared memory
parallelism pattern

Scientific Achievements
I Implicit solvers for complex PDEs with algorithmic scalability to billions of

DOFs and parallel scalability to millions of processor cores [Rudi, Malossi,
Isaac, et al., 2015]

I Generalization of extreme-scale MG to support a wide range of problems
I Software design to efficiently implement multi-level algorithms and their

MPI+GPU parallelization

Significance & Impact
I Software components that encapsulate mathematical, computational sci-

ence, and application-specific methods and additionally provide clear inter-
faces, allow for a more productive collaboration of interdisciplinary teams

I Accessibility of extreme-scale multi-level solvers to a large community of
domain specialists, able to leverage state-of-the-art numerical methods

I Adaptability of parallel algorithms to a changing landscape of HPC hard-
ware architectures

SIAM Conference on Parallel Processing for Scientific Computing (PP20) Seattle, Washington, USA February 12–15, 2020

