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Let x € RV, F: RN — RN and consider the dynamical system given as

X(tkr1) = F(x(tk))- (1)

Can we model the dynamics (1) if we are given only some samples of the
state {x(tx)} without knowing F? J

@ Koopman Operator Theory together with Extended Dynamic Mode
Decomposition provide a powerful tool to achieve this goal.

o Trade-off between finite-dimensional nonlinearity vs
infinite-dimensional linearity

WDMD in the context of EDMD
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Koopman Operator

Given x(tx11) = F(x(tx)) and for ¢ : RN — C consider:

PY(F(x(tk)) = ¥ o F(x(tk)) = ¥(x(tk+1))-

We project our dynamics from the state space x to observable space 1.

Dynamical System on Observables

Let ¢ : RN — C and define a new dynamical system:

P(X(tk41)) = ¥ o F(x(t)) = K[¢](x(tk))-

We call K[¢] := 1 o F as the Koopman operator.

Note: Koopman operator K is linear. Hence we lift a finite dimensional
nonlinear problem to an infinite dimensional linear problem.
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Recovering Dynamics via Koopman Operator

o Let (uj, ¢;) be the eigenpairs of the Koopman operator K:
Klgi] = pigi
o Define g(x) = x and assume g € span{¢;}. Let v; € RN be such that
L

g(x) =>_vigi(x)

i=1

@ Then we can reconstruct the original dynamics F as

L
=K ZI/,'QS,'] ZV,’C[¢, ZVINI¢,

i=1

F(x) = Klel(x)

For F we need: coefficients v; (Koopman modes) and eigenpairs (i, ¢;). ]
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Approximating (v, i, &)

@ We are given the action of I on the observables 1, ..., ¥k
@ For another observable ¢, write ¢ =~ Zszl Yrak. Then
Klpl=poF~1y Ka, KeR"NKanda=[a; a - aK]T.

o Let (\;, &) be the eigenpairs of K. Then we approximate (u;, ¢;) as

Wi = N di Y p1 (€ ktx

@ Similarly we can approximate coefficients v; by using the left
eigenvectors of K and vectors b; € RX defined by the expansion

K

xj = Y (bi)ktbk(x)

k=1
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Finding K: EDMD Algorithm [WKR14]

Given observation data {¢«(x(t;))} for i =0,1,... , Tand k=1, ... ,K:

@ Construct K by solving the optimization problem h
- )T V2

K = argmin |[K[¢ " ](x(t)) — ¥(x(t; KH =1 .

KecRKxK .
Yk

= argmin || Y(x(ti11)) " = (x(t:)) " K|
RE]RKXK N— N—
TxK TxK

@ Recover Koopman modes and eigenpairs (v, fik, ¢k )k_;.

© Recover the original system F(x(t;)) ~ Zszl Uik Pk (X(t))

Original Dynamics: x(tj+1) = F(x(t; ZVka¢k x(t)) J
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Dynamic Mode Decomposition as a special case of EDMD

Dynamic Mode Decomposition Algorithm: [Sch10, RMBSHO09]
Choose oy = ¢/ and k =1,---, N. So we are now given {xx(t:)} ;.

@ Then EDMD minimization problem becomes:

K = argmin|| ¢(x(ti11)) " —o(x(t)) " K|lF
KeRKXK S——~—"" —
TxK TxK

= argmin | x(ti+1) " —x(t:) " K||F
— \—v—/

KeRKxK
TxK TxK

@ This minimization problem is equivalent to
K = argmin ||x(ti41) — KTx(t;) ‘
KcRKXK F

o With these specific observables ¢y = ekT EDMD algorithm recovers
the Dynamic Mode Decomposition algorithm.
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ioDMD [BHM18]

Given time series data x(t;),y(t;),u(t;) from the unknown input/output
dynamical system

x(t) = f(x(t), u(t))
y(t) = Cx(t),
ioDMD aims to to get the best linear least squares approximation
x(tiy1) ~ Ax(t;) + Bu(t;)
y(ti) =~ Cx(t;) + Du(t;)

To do this, similar to DMD, we solve the minimization problem

X3 _t Xo
Yo Uo
and get the closed form solution

S A

M= argmin
ffeR(N+D)x (N+M)

F
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Why WDMD?

@ Assume access to only the output data y(t;) € RP of an unknown
dynamical system with forcing u(t) € RM with state x(t) € RV:

x(t) = £(x(t), u(t))
y(t) = Cx(t).

e Standard methods (e.g., ioDMD) usually require having the full state
data x(t;). But in most cases we only have y(t;) = Cx(t;).

Solution: Construct auxiliary states z from the output samples y(¢;) and
apply known methods to the auxiliary dynamical system

Z(t,'_l,_l) = fZ(Z(t,‘),U(t,’))
y(ti) = Cz2(t;).

How do we construct a “good auxiliary state”? )

= = = — Ty
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Wavelet Transform

We will use wavelet transform of y(t) to create the auxiliary state.

@ Assume we are given a mother wavelet ¥ : R — R and an L, function
f:R—R.
. t
o Define WA(t) = W (5 - kAt) and Wk (f) :
t 1 [ A
WE(F) = (F, W), = <f,\ll (27 - kAt)>2 =57 /_Oo F(t)W (27 - kAt) dt

@ We can reconstruct f as

F(t) = wf(AV(t)
.k

Requires f but only have {f(t;)} since the dynamics is unknown.

Need to approximate wJ’-‘(f) from time series data {f(t;)}.
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Maximal Overlap Discrete Wavelet Transform [PW13]

For f : R — R assume we are given:
- time series data f = [ f(to) f(t1) --- f(tr_1)]" € RT
- high/low pass filters h;,g; € RT
© Construct projections W, V; € RT*T from h;, g; respectively.
@ " (discrete) wavelet and scaling coefficients of f:

wj(f) = WJf and Qj(f) = VJf

MODWT Recovery

Define dj(i)(f) = e,-frl)/Vijj(f) and S(i)(f) = eiZ-leTej(f)-

]

J J
f(t) = ey W wi(f) + e VT 6,0 = > d(6) + s5(F)
j=1 J=1
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WDMD Algorithm [KGT21]

e Without loss of generality take D = 1 (number of outputs).
Given Y = [y(to) y(t1) --- y(tr—1)] € RT and u(t) € RM.

@ Construct dj(Y) and s,(Y) by MODWT.
@ Construct the samples of the lifted (auxiliary) state:

2(t) = w(t;) = [dD(v) - dPv) sP(v)] T erit

© Approximate the lifted dynamical system by a linear dynamical system

z(ti1) = f(z(t),u(t)) - z(tiy1) = Azz(ti) + Bau(t))
y(t,-) = 1_/_;,_12(1',') y(t,-) = CZZ(ti)+Dzu(ti)
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How to Obtain A,,B,,C,,D,

Given y(t;),u(t;), form z(t;), auxiliary state samples. Define

Algorithm
Find the best A,, B,, C,, D, such that

2(ti1) = f(2(6)u(t))  z(ti1) = Agz(t)+ Bou(ti))

_[A, B

Yo=[y(to) y(t1) -~ y(tk-1)].
Uo = [u(to) u(t:) -~ wu(tk-1)]
Zy = [z(to) 2(t1) - 2z(tk-1)]-
Z = [2(t1) z(t2) - z(tk)] = f(Zo, Vo).

y(t) = 1ya2(6) () = C.z(t)+ Dyu(s)

-1 sl &,

Z .
= argmin
C, Dj AB.ED
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Can we interpret WDMD as EDMD analytically?

Without loss of generality, let tjy1 = t; + At.
Assume there is no input: u(t) = 0.

d(y)

@ In WDMD we use the auxiliary state data z(t;) =

@ EDMD requires observable evaluations:
{(x(8)} = {4 (¥)} (2)

How to choose the right observables 1); to satisfy (2)?
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Observables for WDMD

@ Wavelet Transform:
1
k k k
wi(y(t)) = 2}/2/ VE(t)y(t)dt — y(t ZZw\U
o Define the WDMD observables:  1;(x(t)) = w?(y(t))W?(t)

Klj](x(t)) = o} (y(t + At))WP(t + At) = wj (y())V}(t)
@ Approximate by MODWT:

Yi(x(1) = Py ()W) = dO(Y) and sV(Y)
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Lemma: WDMD as EDMD

Assume we are given only the time series data Y = [y(to) --- y(t7)]
from an unknown input-output dynamical system with forcing u(t) € RM
with state x(t) € RV,

x(t) = f(x(t), u(t))
y(t) = Cx(2).

Then WDMD can be interpreted as a specific case of EDMD algorithm
where the observables are chosen as

00 = OO = (575 [ wiovod) v

Moreover if we let dj(Y) and sj(Y) be the MODWT coefficients for the
time series Y we can approximate these observables 1);(x) as

i) ~ dO(Y) and vy (x(1) ~ sO(Y).
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SIR Model

The SIR model is given as

as _ _psl
dr N
da_pst
dat N
R®_

dace !

o 5(0) = 90,/(0) = 10 and R(0) = 0.
o N = S(0) + /(0) + R(0) = 100.
e We compare WDMD to delay DMD [YZWL21].
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Numerical Results on the SIR Model
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Figure: Fully Observed System with Noise, J = 2
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Number of measurements available - 1
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Figure: Partially Observed System with Noise, J = 5
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Conclusions and Future Work

@ We analytically connected WDMD to EDMD

@ Observables are obtained via the Wavelet transform
@ Future work:

e A more through analysis of the impact of WDMD on noisy data
o A more detailed comparison with other methods such as Delay DMD.

o Incorporating the input u(t) and working with a bilinear model
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Recovering Eigenpairs of K (if K is given)

Assume we have ¢; ~ S°1_1 &k = 1 7€ and recall K[yp] ~17TKa so

Klpjl~ K

K K
Zwkfk,-] = Klvulén =~ TKE
k=1 k=1

Since K[¢)] = nj¢hj ~ ¥ 7 11;€j, we have

DTKG Kol 2o Ty, =1 o - vk] |

(1, &)): eigenpairs of K — (uj,%7&;): approximate eigenpairs of K.

In matrix form: =; = ;;, w; := left eigenvectors of K and w}¢; = §;;.

VTZr o’ —= T ~oTW, W:[wl wy - wK]
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Recovering Koopman Modes

Approximate the full state observable, g(x) = x, as

K
gnzerrxzbkn?l}k, g:[gl & gN]T
k=1

In the matrix format we have
-
g~ B 1/), BU = bU'

Use ¢"W* ~ /T to recover the Koopman modes v; as rows of W*B:

g~ BTy ~BTW¢ J

Recall that v; is defined as g = Zf-‘zl vipi =Vao.

But how do we obtain K? J
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Proof for WDMD as EDMD

We need to prove: {v;(x(t;))} ~ {dj(')(Y)} and the minimization
problems being equivalent.
o Observables conforming to data t;(x(t;)) = K'[1;](x(to)):
For i = 0 we have the approximation by MODWT. Then for
i=1,---,T we have

[e.e]

w?(Cx(t + iAt)) :/ U (211) y(t + iAt)dt =

—00

= [T (B ) stnei - [ vitowdoi - witexto)

—00 —0o0

@ Minimization problems are equivalent: The EDMD minimization
problem for this choice of observables becomes

argmin|Z] — Z[ K| r = argmin||Z; — K7 Zol|r
K K
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