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Nonlinear control-affine model reduction

We are interested in high-dimensional nonlinear systems:

Eẋ(t) = f(x(t)) + g(x)u(t), y(t) = h(x(t)),

with states x ∈ Rn, controls u ∈ Rm, nonlinearity f : Rn 7→ Rn, outputs y ∈ Rp.

For the large-scale systems of interest, i.e., semi-discretized PDEs, and differential
algebraic equations (DAEs), n� 1, 000.

We assume invertible E matrices, and present the methods for E = I, which can be
obtained with a suitable change of variables (see numerical examples).

Goal of control-affine nonlinear model reduction:

Find a low-dimensional coordinate transformation x ≈ Φ(zr), zr ∈ Rr and derive a
reduced-order model (ROM)

żr(t) = fr(zr(t)) + gr(zr)u(t), yr(t) = hr(zr(t)),

with reduced states zr ∈ Rr with r � n, such that ‖x− Φ(zr)‖X or ‖y − yr‖X are small (in
some norm ‖ · ‖X ), and where the system has favorable control theoretic properties.
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Motivation: control-oriented model reduction

For input-driven and controlled systems, taking into account the effects of the inputs &
controls in the model reduction process is paramount.

Trajectory-based methods (proper orthogonal decomposition, reduced basis method,
dynamic mode decomposition, . . . ) require carefully choosing representative forcing
functions/initial conditions.

System-theoretic methods use the underlying transfer function (H2, H∞, Loewner),
moments thereof, or system energies (balanced truncation) to find appropriate subspaces
for projection.

www.norsepower.com/technology: Flettner rotors Soft robots generic control system
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In these next two hours, we will discuss:

1. Various energy functions for nonlinear systems

2. Scalable computation of energy functions via polynomial
approximations and tensor calculus1

3. Simultaneous balance-and-reduce strategy: ROMs on nonlinear
balanced manifolds2

1K./Gugercin/Borggaard, Nonlinear Balanced Truncation: Part 1—Computing Energy Functions,
arxiv:2209.07645

2K./Gugercin/Borggaard, Nonlinear Balanced Truncation: Part 2—Model Reduction on Manifolds,
arXiv:2302.02036
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Part 1:
Energy functions for nonlinear systems
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Controllers and energy functions for nonlinear systems

Theorem ([Lukes, 1969])

Consider a control-affine nonlinear dynamical system and a quadratic cost (or energy)

Ê(x0,u) =
1

2

∫ ∞
0

x(t)>Qx(t) + u(t)>Ru(t)dt, Q,R � 0.

Let the following assumptions hold: (1) there is a neighborhood Ω of the origin where
f ∈ C2(Ω); f(0) = 0; (2) the pair

(
∂f
∂x (0),g(0)

)
is stabilizable; (3) the nonlinear system is

stabilizable on Ω, so there exists a stabilizing controller so that the closed-loop system is
asymptotically stable on Ω. Then there exists a unique solution u∗(x) to the HJB equation

0 = min
u

{
x(t)>Qx(t) + u(t)>Ru(t) +

∂E(x)

∂x
[f(x) + g(x)u]

}
where E(x) = minu Ê(x,u) and the unique continuously differentiable minimizer for the
optimal feedback control u∗(x) is

u∗(x) = −R−1g(x)>
∂E(x)

∂x
.

Moreover, if f(x) is analytic, so are u∗(x) and E(x). 7 / 55



Controllers and energy functions for nonlinear systems ctd

Inserting the optimal control u∗(x) = −R−1g(x)> ∂E(x)
∂x into the HJB equation we obtain

0 = x(t)>Qx(t) + u(t)>Ru(t) +
∂E(x)

∂x

[
f(x) + g(x)

(
−R−1g(x)>

∂E(x)

∂x

)]
which after reorganizing becomes

0 =
∂E(x)

∂x
f(x)− ∂E(x)

∂x
g(x)R−1g(x)>

∂E(x)

∂x
+ x(t)>Qx(t) + u(t)>Ru(t)

The HJB equation is therefore a necessary and sufficient condition to the optimal control
problem

min
u
Ê(x0,u)

s.t. ẋ(t) = f(x(t)) + g(x)u(t), x0 = x(0)

Analytic solutions: since we assume polynomial dynamics going forward, f(x) is analytic,
so we know that we can search for Taylor series of u∗(x) and E(x).

8 / 55



Energy functions for LTI systems

Consider a linear time-invariant system:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

The energy to reach x0 from zero, and the observability energy associated with state x0, can
be defined as

Ec(x0) := min
u∈L2(−∞,0]
x(−∞)=0
x(0)=x0

1

2

∫ 0

−∞
‖u(t)‖2dt, Eo(x0) :=

1

2

∫ ∞
0

‖y(t)‖2dt

It can be shown that they are quadratic functions of the state:

Ec(x0) =
1

2
x>0 P−1x0, Eo(x0) =

1

2
x>0 Qx0,

where controllability (observability) Gramians P,Q are solutions to the Lyapunov equations:

AP + PA> + BB> = 0, A>Q + QA + C>C = 0.
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What does this have to do with model reduction?

Let us decompose the (symmetric positive definite) controllability Gramian using the SVD:

P = WΣW>, W>W = In, Σ = diag(σ1, ..., σn).

The energy to reach a state x0 = wi (a column of W) from x(−∞) = 0 is:

Ec(wi) = w>i P−1wi = w>i WΣ−1W>wi =
1

σi
,

so the energy to reach wi is given by 1
σi

. This leads us to make two observations:

1. ”Easy” to reach states correspond to large σi.

2. ”Hard” to reach states correspond to small σi.
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What does this have to do with model reduction?

Similar observations can be made for the observability Gramian. Let us decompose the
observability Gramian using its SVD:

Q = VSV>,V>V = I, V>V = In, Σ = diag(σ1, ..., σn)

The output energy that is generated by x0 = vi (the observability energy) is

Eo(vi) = v>i VΣV>vi = σi.

We can make similar observations:

1. The eigenvectors corresponding to large σi are easy to observe.
2. The eigenvectors corresponding to small σi are hard to observe.

Balanced truncation model reduction

We want to find a coordinate system (i.e., a state-space transformation) where states are easy
to reach and easy to observe. [Moore, 1981] pioneered balanced truncation for LTI systems:

A linear transformation x = Tz simultaneously diagonalizes P,Q.

Truncating the balanced high-dimensional model yields a balanced ROM with states
that are easy to reach and easy to control.
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Model reduction for nonlinear systems via energy functions

Energy-function-based approaches

[Scherpen, 1993] introduced the concept of nonlinear balancing via energy functions for
(locally) stable, open-loop nonlinear systems.

HJB balancing [Scherpen and Van der Schaft, 1994], H∞ balancing [Scherpen, 1996]

[Newman and Krishnaprasad, 2000] : controllability energy function is related to the
stationary density p∞ of a Markov process; suggest to solve Fokker-Planck equations

Symbolic computing toolbox: [Krener, 2008]

[Fujimoto and Tsubakino, 2008] use Taylor series for open-loop controllability and
observability energy functions (n = 4)

Interpretation from a Hankel singular value perspective: [Fujimoto and Scherpen, 2010]

Machine-learning for balancing transformation based on RKHS [Bouvrie and Hamzi, 2017]

Gramian-based approaches (linear transformation ⇒ quadratic energy function)

Empirical Gramians for nonlinear systems [Lall et al., 2002]

Algebraic Gramians for local
balancing [Gray and Verriest, 2006, Benner and Goyal, 2017, Kramer and Willcox, 2019].
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Nonlinear open-loop observability & controllability energy fcts.

For stable nonlinear systems controllability and observability energy functions are fully
nonlinear, and can be defined [Scherpen, 1993] as

Ec(x0) := min
u∈L2(−∞,0]
x(−∞)=0
x(0)=x0

1

2

∫ 0

−∞
‖u(t)‖2dt, Eo(x0) :=

1

2

∫ ∞
0

‖y(t)‖2dt

Ec(x0): minimum energy to steer system from x(−∞) = 0 to x(0) = x0.
Eo(x0): output energy generated by x0 6= 0 and u(t) ≡ 0.

Energy functions are solutions to Hamilton-Jacobi equations:

0 =
∂Eo(x)

∂x
f(x) +

1

2
h(x)>h(x),

0 =
∂Ec(x)

∂x
f(x) +

1

2

∂Ec(x)

∂x
g(x)g(x)>

∂>Ec(x)

∂x
.

Eo exists if f is asymptotically stable in a neighborhood of the origin

Ec exists if −
(
f(x) + g(x)g(x)> ∂

>Ec(x)
∂x

)
is asympt. stable in a neighborhood of origin.
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HJB-balancing energy functions

HJB balancing [Scherpen and Van der Schaft, 1994] (applicable to unstable systems) defines
the past and future energy function as

E−(x0) := min
u∈L2(−∞,0]
x(−∞)=0
x(0)=x0

1

2

∫ 0

−∞
‖y(t)‖2 + ‖u(t)‖2dt

E+(x0) := min
u∈L2[0,∞)
x(0)=x0

x(∞)=0

1

2

∫ ∞
0

‖y(t)‖2 + ‖u(t)‖2dt

and they are solutions to the Hamilton-Jacobi-Bellman equation

0 =
∂E−(x)

∂x
f(x) +

1

2

∂E−(x)

∂x
g(x)g(x)>

∂>E−(x)

∂x
− 1

2
h(x)>h(x)

0 =
∂E+(x)

∂x
f(x)− 1

2

∂E+(x)

∂x
g(x)g(x)>

∂>E+(x)

∂x
+

1

2
h(x)>h(x).

Note: LQG-balancing [Verriest, 1981, Jonckheere and Silverman, 1983] and HJB-balancing are
identical concepts for linear systems.
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H∞ energy functions

Definition [Scherpen, 1996]

For a nonlinear system, the H∞ past energy in the state x0 is defined for 0 < γ 6= 1 as

E−γ (x0) := min
u∈L2(−∞,0]

x(−∞)=0, x(0)=x0

1

2

∫ 0

−∞
(1− γ−2)‖y(t)‖2 + ‖u(t)‖2dt

and the H∞ future energy in the state x0 is defined for γ > 1 as

E+
γ (x0) := min

u∈L2[0,∞)
x(0)=x0, x(∞)=0

1

2

∫ ∞
0

‖y(t)‖2 +

(
1

1− γ−2

)
‖u(t)‖2dt

and for 0 < γ < 1 as

E+
γ (x0) := max

u∈L2[0,∞)
x(0)=x0, x(∞)=0

1

2

∫ ∞
0

‖y(t)‖2 +

(
1

1− γ−2

)
‖u(t)‖2dt.
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Hamilton-Jacobi equations for H∞ balancing

Theorem [Scherpen, 1996, Thm 5.2]

Assume that the HJB equation

0 =
∂E−γ (x)

∂x
f(x) +

1

2

∂E−γ
∂x

(x)g(x)g(x)>
∂>E−γ (x)

∂x
− 1

2
(1− γ−2)h(x)>h(x)

has a solution with E−γ (0) = 0 that also satisfies that −
(

f(x) + g(x)g(x)>
∂>E−γ (x)

∂x

)
is

asymptotically stable. Then this solution is the past energy function E−γ (x). Furthermore,
assume that the HJB equation

0 =
∂E+

γ (x)

∂x
f(x)− 1

2
(1− γ−2)

∂E+
γ (x)

∂x
g(x)g(x)>

∂>E+
γ

∂x
(x) +

1

2
h(x)>h(x)

has a solution with E+
γ (0) = 0 which satisfies that

(
f(x)− (1− γ−2)g(x)g(x)>

∂>E+γ
∂x (x)

)
is

asymptotically stable. Then this solution is the future energy function.
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Observations

1. For γ =
√

1/2 the past and future energy functions are identical:

E−
γ= 1√

2

(x) = E+
γ= 1√

2

(x).

2. The H∞ energy functions are related to HJB balancing as [Scherpen, 1996]

lim
γ→∞

E−γ (x) = E−(x). lim
γ→∞

E+
γ (x) = E+(x).

3. Under certain technical conditions we also have that the H∞ energy functions approach
the standard open-loop balancing energy functions:

lim
γ→1
E+
γ (x) = Eo(x), lim

γ→1
E−γ (x) = Ec(x).

4. For an LTI system, E−γ (x0) = 1
2x>Y−1

∞ x and E+
γ (x0) = 1

2x>X∞x, where Y∞, X∞ are
the usual stabilizing positive definite solutions to the H∞ AREs

AY∞ + Y∞A> + BB> − (1− γ−2)Y∞C>CY∞ = 0,

A>X∞ + X∞A + C>C− (1− γ−2)X∞BB>X∞ = 0.
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Example: One-dimensional quadratic dynamical system

Consider the equation

ẋ(t) = ax(t) + nx(t)2 + bu(t), y(t) = cx(t).

With η = 1− γ−2 the HJB equation is

0 =
d E+γ
d x

(x)[ax+ nx
2
]− 1

2
b
2
η

(
d E+γ
d x

(x)

)2

+
1

2
c
2
x
2
,

with analytical solution

E+γ (x) =
1

b2η

∓ab2c2η
√
x2((a+ nx)2 + b2c2η) log

(√
(a+ nx)2 + b2c2η + a+ nx)

)
2n2x

√
(a+ nx)2 + b2c2η

±

√
x2((a+ nx)2 + b2c2η)

(
(a+nx)2

3n − a(a+nx)
2n + b2c2η

3n

)
nx

+
ax2

2
+

nx3

3


Figure: energy functions, a = −2, b = 2, n = 1, c = 2, γ =

√
2.

Need higher degree terms to
approximate energy functions!
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Two-dimensional example

We modify the 2d nonlinear example from [Kawano and Scherpen, 2016, IV.C] :

ẋ =

[
−1 1
0 −1

]
x +

[
−x2

2

0

]
+

[
1
1

]
u, y = [1 1]x

Plot for polynomial approximations with d = 4 for energy functions, and η = 0.1
(γ ≈ 1.054) and
Quadratic approximations again would not be sufficient (higher order terms needed)

E−γ (x) E+
γ (x)
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Worksheet: Assume LTI system and
obtain HJB solution
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Part 2:
Computing energy functions via

polynomial approximations
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Notation and setting

Polynomial nonlinear systems for scalability:

ẋ(t) = Ax(t) +
∑̀
k=2

Fkx
k (t) + Bu(t), y(t) = Cx(t).

For now, assume quadratic nonlinear system (` = 2 and F2 = F);

Define k-term Kronecker product of x:

x k := x⊗ . . .⊗ x︸ ︷︷ ︸
k times

.

Define the d-way Lyapunov matrix/special Kronecker sum:

Ld(A) := A⊗ . . .⊗ I︸ ︷︷ ︸
d times

+ · · ·+ I⊗ . . .⊗A︸ ︷︷ ︸
d times

.

Define η := (1− γ−2) and note that η ∈ (−∞, 1) since γ > 0.
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Symmetry considerations

For convenience and to ensure a unique representation of the coefficients, we impose symmetry
of our coefficients in all monomial terms in the energy functions.

Definition (Symmetric Coefficients)

A monomial term with real coefficients w>d x d has symmetric coefficients if it satisfies

w>d (a1 ⊗ a2 ⊗ · · · ⊗ ad) = w>d (ai1 ⊗ ai2 ⊗ · · · ⊗ aid) ,

where the indices {ik}dk=1 are any permutation of 1, . . . , d.

This definition generalizes the definition of symmetry from matrices to tensors. For
example,

w>2 (a⊗ b) = w>2 (b⊗ a) ∀a,b ⇔ (a> ⊗ b>)w2 = (b> ⊗ a>)w2.

Hence, using w2 = vec(W2), we have b>W2a = a>W2b. Since these are real scalars,
this implies W2 = W>

2 .
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Symmetry considerations

We also remark that any polynomial can be uniquely written in Kronecker product form with
symmetric coefficients. For example,

c1x
2
1 + c2x1x2 + c3x

2
2 = [x1 x2]

[
c1

1
2c2

1
2c2 c3

] [
x1

x2

]
=

[
c1

1

2
c2

1

2
c2 c3

]
(x⊗ x) = Fx 2 .

The same set of quadratic terms would be realized with the coefficient matrices corresponding
to either [c1 c2 0 c3] or [c1 0 c2 c3]. However, the requirement of symmetry leads to a unique
representation.

We assume that each row of the coefficient matrices Fk in the FOM is symmetric as
defined above, and that the polynomial representations of the energy functions and
controls share this symmetric representation.

Our algorithms are designed to ensure symmetry in the computed coefficients.
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Expansion of future energy function

We approximate the future energy function as

E+
γ (x) ≈ 1

2

(
w>2 x 2 + w>3 x 3 + . . .+ w>d x d

)
=

1

2

(
w>2 + w̃>3 (x) + . . .+ w̃>d (x)

)
x 2 .

Theorem (K./Gugercin/Borggaard/Balicki ’22)

Let γ > γ0 > 0, (can be computed), η = 1− γ−2. Let the future energy E+
γ (x) for the

quadratic nonlinear system (` = 2 and F2 = F) be expanded with coefficients wi, i = 2, . . . , d.
Then, w2 = vec(W2) where W2 is the s.p.d. solution to the H∞ Riccati equation

0 = A>W2 + W2A + C>C− ηW2BB>W2.

For 2 < k ≤ d, let w̃k ∈ Rnk solve the linear system

Lk(A> − ηW2BB>)w̃k = −Lk−1(F>)wk−1 +
η

4

∑
i,j>2

i+j=k+2

ij vec(W>
i BB>Wj).

Then, the coefficient vector wk = vec(Wk) ∈ Rnk is obtained by symmetrizing w̃k.
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Proof idea

From the polynomial energy function it follows that

∂E+
γ (x)

∂x
=

1

2

(
w>2 (I⊗ x) + w>2 (x⊗ I)

+w>3 (I⊗ x⊗ x) + w>3 (x⊗ I⊗ x) + w>3 (x⊗ x⊗ I)

+w>4 (I⊗ x⊗ x⊗ x) + w>4 (x⊗ I⊗ x⊗ x) + w>4 (x⊗ x⊗ I⊗ x) + w>4 (x⊗ x⊗ x⊗ I)

+ · · · ) .

Given g(x) = B, h(x) = Cx, f(x) = Ax + F(x⊗ x) the HBJ reads as

0 =
∂E+

γ (x)

∂x
(Ax + F(x⊗ x))− 1

2
(1− γ−2)

∂E+
γ (x)

∂x
BB>

∂>E+
γ

∂x
(x) +

1

2
x>C>Cx,

We now collect terms by degree of x, starting with quadratic, to cubic, to higher-order.

We can pull out x k ’s etc and set terms inside to zero (similar to what you did for the LTI
into HJB example)
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Expansion of past energy function
We approximate the past energy function as

E−γ (x) ≈ 1

2

(
v>2 x 2 + v>3 x 3 + · · ·v>d x d

)
.

Theorem (K./Gugercin/Borggaard/Balicki ’22)

Let γ > γ0 > 0, (can be computed), η = 1− γ−2. Let the past energy function E−γ (x) for the
quadratic nonlinear system (` = 2 and F2 = F) be expanded as above with the coefficients
vi, i = 2, 3, . . . , d. Then, v2 = vec(V2) where V2 is the symmetric positive definite solution to
the H∞ Riccati equation

0 = A>V2 + V2A− ηC>C + V2BB>V2.

For 2 < k ≤ d, let let ṽk ∈ Rnk solve the linear system

Lk(A> + V2BB>)ṽk = −Lk−1(F>)vk−1 −
1

4

∑
i,j>2

i+j=k+2

ij vec(V>i BB>Vj).

Then, the coefficient vector vk = vec(Vk) ∈ Rnk is obtained by the symmetrizing ṽk.
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Algorithm for Energy Function Approximation

Algorithm 1 Computing HJB energy function approximations: E−γ (x) and E+
γ (x).

Input: System matrices A,F,B,C; polynomial degree d; constant γ > γ0 > 0, γ 6= 1.
Output: Coefficients {vi}di=2 of the past energy and {wi}di=2 of the future energy functions.

1: Set η = (1− γ−2).
2: Solve the H∞ Riccati equations

0 = A>V2 + V2A− ηC>C + V2BB>V2,

0 = A>W2 + W2A + C>C− ηW2BB>W2

and set v2 = vec(V2) and w2 = vec(W2).
3: For k = 3, 4, . . . , d: Solve the systems for ṽd and w̃d:

Lk(A> + V2BB>)ṽk = −Lk−1(F>)vk−1 −
1

4

∑
i,j>2

i+j=k+2

ij vec(V>i BB>Vj)

Lk(A> − ηW2BB>)w̃k = −Lk−1(F>)wk−1 +
η

4

∑
i,j>2

i+j=k+2

ij vec(W>
i BB>Wj)

4: Symmetrize w̃k and ṽk to obtain wk and vk.
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Solvability of the coefficient systems

Theorem [Thm 8, K./Gugerin/Borggaard/Balicki]

Let γ > γ0 ≥ 0 hold so that the H∞ ARE is solvable and η = 1− γ−2. Then, for any
k = 1, . . . , d the matrices Lk(A> − ηW2BB>) and Lk(A> + V2BB>) are invertible, thus
the coefficients wi and vi are uniquely determined.

Proof idea: A result from [Horn et al., 1994] states that for any M ∈ Rn×n the spectrum

Λ (Lk(M)) =

{∑
i∈Pk

λi : λi ∈ Λ(M)

}
,

where Pk denotes the set of all possible selection of k-indices from the set {1, 2, . . . , n}.
Since W2 is the unique stabilizing solution of the H∞ Riccati equation, M = A> − ηW2BB>

has all eigenvalues in the open left-half plane. Therefore, all eigenvalues of Lk(M) are
contained in the open left-half plane as well, thus Lk(M) is invertible and the w̃k can be
uniquely determined. For the second statement, we use that

A> + V2BB> = −V2AV−1
2 + ηC>CV−1

2 .

and use similar arguments.
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Solving Tensor Systems Efficiently

For some b, the kth-order polynomial terms require solving linear systems of the form

Lk(A> + V2BB>)ṽk = b,

which grow exponentially in k and polynomially in n.

We leverage the k-way Bartels-Stewart algorithm in [Borggaard and Zietsman, 2021]. By
first performing a Schur factorization3 of A> + V2BB> = UTU∗ and defining a matrix

U k = U⊗U⊗ · · · ⊗U ∈ Rnk×nk , we convert the above linear system to

[U k ]∗Lk(A> + V2BB>)[U k ]v̂k = b̂, where v̂k = [U k ]∗ṽk, b̂ = [U k ]∗b.

Resulting system Lk(T)v̂k = b̂ is upper triangular and can be solved by a block
backsubstitution procedure requiring nk−1 linear system solutions of size n.

From here, we can compute the solution ṽk = U k v̂k.

Overall computational cost of solving k-th order system is O(nk+1).
3Note: Schur decomposition of A okay for medium-scale problems to avoid performing any operation in

nk-dim. space. For large-scale problems: iterative methods to exploit tensor structure such as the Krylov
methods [Kressner and Tobler, 2010] or low-rank ADI type methods [Benner and Saak, 2013].
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Total Cost of Solving for Coefficients

Next, we have a look at the right-hand side of the linear systems:

b = −Lk−1(F>)vk−1 −
1

4

∑
i,j>2

i+j=k+2

ij vec(V>i BB>Vj)

We efficiently compute products Lk−1(F>)vk−1 in O(knk); a direct product of the
n2k × nk matrix times a vector would require O(n3k) operations.

Cost of forming the summation terms is dominated by multiplying the stored matrices
V>i B and B>Vj . The cost of forming the summation terms are O(kmnk).

We perform a final step to impose symmetry.

In sum, the computational complexity of computing a dth order approximation of
the energy functions is (for n > dm):

O(nd+1) (vs O(n3d) for naive implementation)
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Numerical Results: Burgers’ equation

We consider the one-dimensional Burgers’ equation

zt(x, t) = εzxx(x, t)− 1

2

(
z2(x, t)

)
x

+

m∑
j=1

bmj (x)uj(t),

yi(t) =

∫
χ[(i−1)/p,i/p]

z(x, t)dx, i = 1, . . . , p,

periodic BCs z(0, t) = z(1, t) and zx(0, t) = zx(1, t)

IC: z(·, 0) = z0(·) ∈ H1
0 (0, 1)

ε = 0.001 to make the nonlinearity significant.

p = 4 outputs: spatial averages

m = 4 controls/inputs with
bmj (x) = χ[(j−1)/m,j/m](x).

The discretized system has the form

Ẽż = Ãz + Ñ2 (z⊗ z) + B̃u

y = C̃z,

A change of variables x = Ẽ1/2z and redefining A = S−1ÃS−1, B = S−1B̃, C = C̃S−1,
Ñ2 = N2(S−1 ⊗ S−1) leads to a system with E = I.
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Burgers’ equation: Computing the energy functions

d = 3, convergence w.r.t n.
n n3 CPU sec E+3 (z0)
8 5.1200e+02 2.96e-02 1.144557e-06

16 4.0960e+03 1.08e-02 1.116244e-06
32 3.2768e+04 5.96e-02 1.093503e-06
64 2.6214e+05 4.40e-01 1.099870e-06

128 2.0972e+06 4.29e+00 1.097715e-06
256 1.6777e+07 5.48e+01 1.095300e-06
512 1.3422e+08 6.63e+02 1.096322e-06

1024 1.0737e+09 7.93e+03 1.096093e-06

n = 8 approximation w.r.t. d.
d E−d (z0) E+d (z0)
2 3.161325e-05 1.146135e-06
3 2.731740e-05 1.144557e-06
4 2.370917e-05 1.144783e-06
5 2.593642e-05 1.144792e-06
6 2.662942e-05 1.144791e-06
7 2.519892e-05 1.144791e-06
8 2.538956e-05 1.144791e-06

Observations

Convergence of the energy function as n increases (set gain η = 0.9 for HJB equation)

Flop-count analysis predicts computational cost with growth of O(n4) (since d = 3), but
CPU times scale as O(n2.84). For d = 4 case, we find growth of O(n3.57). This suggests
that CPU time scales more like O(nd) for our problem sizes.

First time where a high-resolution approximation of the cubic term in the energy function

For n = 1024, this requires solving linear systems of size 109, which, through an efficient
BLAS-3 level implementation can be performed in less than 5h CPU time.
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Numerical Results: Kuramoto-Sivashinsky equation

Consider the domain x ∈ (0, 1) and t > 0, and

zt(x, t) = −εzxx(x, t)− ε2zxxxx(x, t)− ε(z(x, t)2)x +

m∑
j=1

bmj (x)uj(t)

periodic BCs z(0, t) = z(1, t) and zx(0, t) = zx(1, t)

same control input functions bmj and observation as for Burgers’s
equation

m = 5 (five controls) and p = 2 (two outputs), and here choosing
η = 0.1

parameter ε = 1/13.02912, which is known
to exhibit heteroclinic cycles in the
open-loop system

IC: z(x, 0) = z0(x) = 0.01√
ε

sin(4πx)

Table: d = 3, convergence w.r.t n.

n n3 CPU sec E+3 (z0)
16 4.0960e+03 1.20e-02 4.369195e+00
32 3.2768e+04 8.44e-02 5.099752e+00
64 2.6214e+05 5.54e-01 4.793412e+00

128 2.0972e+06 9.14e+00 4.732940e+00
256 1.6777e+07 1.37e+02 4.811878e+00
512 1.3422e+08 1.70e+03 4.827930e+00

1024 1.0737e+09 2.04e+04 4.807904e+00

Table: n = 16 approximation w.r.t. d.

d E+d (z0) CPU sec
2 4.3690773e+00 6.81e-03
3 4.3691951e+00 9.88e-03
4 4.3469410e+00 1.37e-01
5 4.3467633e+00 2.40e+00
6 4.3467610e+00 4.39e+01
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Part 3:
Simultaneous Balance-and-Reduce
Model Reduction on Manifolds
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Balancing an LTI system

Recall, that to get the quadratic energy functions, we had to solve the Lyapunov equations:

AP + PA> + BB> = 0, A>Q + QA + C>C = 0.

Definition (Balanced system)

An asymptotically stable LTI system is balanced if P = Q = Σ = diag(σ1, ..., σn).

Theorem (Balancing transformation)

Let [A,B,C,D] be asymptotically stable, controllable and observable. Let P = RR>,
Q = LL> be the Cholesky factorizations and L>R = UΣV> and let

T = RVΣ−
1
2 , T−1 = Σ−

1
2 U>L>.

Then [Ã, B̃, C̃, D̃] = [T−1AT,T−1B,CT,D] is a balanced LTI system.

The controllability and observability energy functions of the balanced systems are then:

Ec(x0) =
1

2
x>0 Σ−1x0, Eo(x0) =

1

2
x>0 Σx0.
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Claim to fame: A few key results

Since the states of the balanced system are now ordered by observability/controllability
properties, we delete the states that are not relevant, i.e., x̃ = [x1, x2, . . . , xr], with r � n is
the reduced state.

Theorem (Stability and minimality)

Let [A,B,C,D] be an asymptotially stable and minimal system. Let the balanced ROM be
[Ar,Br,Cr,Dr] where σr > σr+1 for the Hankel singular values σi, i = 1, . . . , n. Then, the
ROM is asymptotically stable, minimal and balanced with Gramians
Pr = Qr = diag(σ1, . . . , σr) =: Σr.

Theorem (Error bound)

Let [A,B,C,D] be asymptotically stable and balanced with controllability Gramian and
observability Gramian P = Q = diag(σ1Is1 , σ2Is2 , . . . , σkIsk)(σ could be repeated), where
σ1 > σ2 > . . . > σk > 0. Let [Ar,Br,Cr,Dr] be the balanced ROM with
r = s1 + s2 + . . .+ sl for some l ≤ k. Then, we have:

||G−Gr||H∞ 6
k∑

j=l+1

2σj .
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Key “Ingredients” for balancing of nonlinear systems

Let’s now consider a quadratic nonlinear systems again:

ẋ(t) = Ax(t) + Fx 2 (t) + Bu(t), y(t) = Cx(t).

The key ingredients for nonlinear balancing are:

1. Energy functions: controllability/observability; past/future; HJB energy functions (⇒ Part
1 & 2)

2. A nonlinear transformation x = Φ(z) (instead of x = Tz) that “diagonalizes” the energy

3. Singular value (functions) σi(zi) to decide on which states to truncate (instead of
constant SVs for LTI)

4. A definition of the nonlinearly balanced ROM
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Input-normal/output-diagonal balancing

We have computed polynomial expansions of the past and future energy functions of the form

E−γ (x) ≈ 1

2

(
v>2 x 2 + v>3 x 3 + · · ·v>d x d

)
and E+

γ (x) ≈ 1

2

(
w>2 x 2 + w>3 x 3 + . . .+ w>d x d

)
Theorem [Fujimoto and Scherpen, 2010, Thm. 2]

Suppose the Jacobian linearization of the nonlinear system is controllable, observable, and
asymptotically stable. Then there is a neighborhood W of the origin and a coordinate
transformation x = Φ(z) on W with z = [z1, z2, . . . , zn] such that the energy functions have
input-normal form:

E−γ (Φ(z)) =
1

2

n∑
i=1

z2
i , E+

γ (Φ(z)) =
1

2

n∑
i=1

ξ2
i (zi)z

2
i .

We assume that the state transformation is analytic, so

x = Φ(z) = T1z + T2z
2 + . . .+ Tkz

k

where Tk ∈ Rn×nk are the polynomial coefficients and T1 is nonsingular.
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Computation of tensors for transformation

Theorem (K./Gugercin/Borggaard/ ’23)

Let W2 = LL> and V2 = RR>. Compute the singular value decomposition of
L>R−> = UΞV>. The linear transformation T1 and its inverse T−1

1 are given by

T1 = R−>V, T−1
1 = Ξ−1U>L>

and they satisfy T−1
1 V−1

2 W2T1 = Ξ2 = diag(ξ2
1(0), . . . , ξ2

n(0)). The higher-order tensors are

T2 = −1

2
T1 unvec([T 3

1 ]>v3)>

Tk = −1

2
T1unvec (Mk)

>
, where Mk =

∑
i,j>1

i+j=k+1

vec
(
T>j V2Ti

)
+

k+1∑
i=3

T >i,k+1vi

Here, unique tensor products with m terms and and nl columns are denoted as

Tm,l :=
∑
∑

ij=l

Ti1 ⊗ · · · ⊗Tim ∈ Rnm×nl , ij ≥ 1 for each j = 1, . . . ,m,
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Computation of singular value functions

The state-dependent singular value functions are approximated as

ξi(zi) = ξi(0) + c
(1)
i zi + c

(2)
i z2

i + . . .+ c
(`)
i z`i , i = 1, 2, . . . , n.

Define the coefficients of the kth order terms as ck := [c
(k)
1 , c

(k)
2 , . . . , c

(k)
n ]>, so that the vector

of singular value functions of the input-normal form is

ξ(z) = Ξ · 1 + diag(c1)z + . . .+ diag(c`)z
`,

Since the transformation matrices T1, . . . ,Tk are already computed, we use the equation

E+
γ (Φ(z)) =

1

2

n∑
i=1

ξ2
i (zi)z

2
i

and insert the approximations to obtain

z>T>1 W2T1z + 2z>T>1 W2Φh(z) + Φh(z)>W2Φh(z) + 2Eho (Φ(z)) =
n∑

i=1

z2i

(
ξ2i (0) + 2ξi(0)ξhi (zi) + ξhi (zi)

2
)
.
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Coefficients of Singular Value Functions

Theorem (K./Gugercin/Borggaard/ ’23)

Let z = [z1, z2, . . . , zn]> be the transformed state and ck = [c
(k)
1 , c

(k)
2 , . . . , c

(k)
n ]> be the

vector of n coefficients of the kth order terms. Then,

c1 = Ξ−1

(
vec(T>2 W2T1)> +

1

2
w>3 T 3

1

)
I1

for the indices I1 = {j | j = (i− 1)(n2 + n) + i, i = 1, . . . , n}. For k ≥ 1 we obtain

ck =
1

2
Ξ−1


 ∑

i,j≥1
i+j=k+2

vec
(
T>j W>

2 Ti

)>
+

k+2∑
i=3

w>i Ti,k+2


Ik

−
∑
i+j=k

ci � cj


where Ik is the index set Ik = {j | j = (i− 1)

∑k+1
l=1 n

l + i, i = 1, . . . , n}, and � denotes the
Hadamard product.
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Comparison to the linear case

For LTI systems:

Ti = 0 for i ≥ 2 so we recover the usual linear state transformation Φ(z) = T1z

The energy functions are quadratic: E−γ (x) = 1
2v>2 z 2 , and hence vi = 0 for i ≥ 3.

The singular value functions are constant; our algorithm indeed produces ci = 0 for i ≥ 1.

In sum, for LTI, the energy functions are quadratic, the transformation linear, and
the singular value functions constant.

However, this cascade of degrees does not hold for the general nonlinear case.

Assume the energy function is exactly cubic, i.e., E−γ (x) = 1
2 (v>2 z 2 + v>3 z 3 ).

We can still compute Tk, k ≥ 3 as T3 6= 0 and consequently Tk is nonzero.

Similarly the ci coefficients can be nonzero.

Thus the degree of the energy function has, in general, no direct impact on the degree
of the transformation and singular value functions.
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Fully balanced system

Transformation Φ(z) brought system in input-normal/output-diagonal form
Want input-output balanced form, where the singular values appear in both the
controllability and observability energy functions.

Theorem [Fujimoto and Scherpen, 2010, Thm. 9]

Suppose that the Jacobian linearization of the nonlinear system is controllable, observable, and
asymptotically stable. Then there is a neighborhood W of the origin and a coordinate
transformation x = Φ̄(z̄) on W converting the energy functions into the form

Ec(Φ̄(z̄)) =
1

2

n∑
i=1

z̄2
i

σi(z̄i)
, Eo(Φ̄(z̄)) =

1

2

n∑
i=1

σi(z̄i)z̄
2
i .

Moreover, if W = Rn, then the Hankel norm of the nonlinear system is given by

‖Σ‖H := sup
u∈L2(0,∞),u6=0

‖H(u)‖
‖u‖ = sup

z̄1

σ1(z̄1),

where H is the Hankel operator for the nonlinear system.

This theorem yields the usual principle-axis balanced transformation. The singular value
functions are then defined as

σ̄i(z̄i) := σi(φi([0, 0 . . . , zi, 0 . . . , 0]>)),

where Φ(z) = [φ1(z), φ2(z), . . . , φn(z)]> is the transformation that brings the system into
input-normal/output-diagonal form.
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Balanced high-dimensional model

The nonlinear transformation that brings the dynamical system into a fully balanced coordinate
system is

x = Φ̄(z̄) = T1z + T2z
2 + · · ·+ Tkz

k

zi = z̄i/
√
σi(z̄i).

The dynamical system when transformed with the input-output balancing transformation
x = Φ(z̄) (or alternatively the input-normal transform) is

J̄(z̄) ˙̄z = f(Φ̄(z̄)) + g(Φ̄(z̄))u,

where the Jacobian J(z̄) ∈ Rn×n of the state-space transformation is given by

J̄(z̄) :=
dΦ̄(z̄)

dz̄
= T1 + 2T2(z̄⊗ I) + 3T3(z̄⊗ z̄⊗ I) + . . .

which can be computed explicitly without numerical approximation.
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How to determine the ROM dimension?

To determine the reduced dimension r of the ROM, we look for a significant gap in the
H∞ singular value functions, i.e., we look for the reduced dimension r such that

max
z̄r

σr(z̄r)� max
z̄r+1

σr+1(z̄r+1)

at a minimum we require that ‘>’ holds in a neighborhood of the origin.

This indicates that the state components z̄1, z̄2, . . . , z̄r are more important in terms of the
past and future energy functions E−γ and E+

γ than the states z̄r+1, z̄r+2, . . . , z̄n. We
therefore set

z̄r+1 = z̄r+2 = . . . = z̄n = 0

in the balanced coordinates.

Define the reduced state vector as

z̄r = Ψ>r z̄ = [z̄1, z̄2, . . . z̄r]
>, Ψr = [Ir, 0]> ∈ Rn×r.
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Balanced ROM

The balance-then-reduce strategy suggested in [Scherpen, 1993, Scherpen, 1996] first
computes the full balancing transformation, and then truncates the resulting fully balanced
system. Applying this to the FOM yields

˙̄zr = Ψ>r [J̄([z̄r,0])]−1f(Φ̄([z̄r,0]))︸ ︷︷ ︸
=:fr(z̄r)

+ Ψ>r [J̄([z̄r,0])]−1g(Φ̄([z̄r,0]))︸ ︷︷ ︸
=:gr(z̄r)

u,

yr = h(Φ̄([z̄r,0]))︸ ︷︷ ︸
=:hr(z̄r)

.

The high-dimensional state is reconstructed as x ≈ Φ̄([z̄r,0]).

Two problems with this approach:

1. Simulating the ROM is computationally expensive

2. The transformation is ill-conditioned due to the need to invert all Hankel singular values
(in analogy to the linear case)
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Simultaneous balancing and reduction

Goal: compute the truncated versions of the linear transformations and higher-order tensors Ti

directly without computing the full-order quantities.

Proposition (K./Gugercin/Borggaard/ ’23)

Consider a nonlinear dynamical system and define the embedding Φr : Rr 7→ Rn via

x ≈ Φr(z̄r) := T1,rz̄r + T2,rz̄
2

r + · · ·+ Tk,rz̄
k

r ,

with Tk,r ∈ Rn×rk and where z̄r ∈ Rr is the reduced state. Then, the reduced Jacobian can
be computed analytically via

Jr(z̄r) :=
dΦr(z̄r)

dz̄r
= T1,r + 2T2,r(z̄r ⊗ I) + 3T3,r(z̄r ⊗ z̄r ⊗ I) + · · · ∈ Rn×r.

so that the nonlinear ROM with zr ∈ Rr is

˙̄zr = Jr(z̄r)
†f(Φr(z̄r))︸ ︷︷ ︸

=:fr(z̄r)

+ Jr(z̄r)
†g(Φr(z̄r))︸ ︷︷ ︸

=:gr(z̄r)

u yr = h(Φr(z̄r))︸ ︷︷ ︸
=:hr(z̄r)

.
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How to compute the reduced coefficient matrices Ti,r?

Truncated (approximate) balanced transformation (K./Gugercin/Borggaard/ ’22)

Let vi,wi be the polynomial coefficients for the energy functions. Let R,L be their Cholesky
factors, i.e., V2 = RR> and W2 = LL>. Let L>R−> = UΞV> be the SVD and define

Ur = U(:, 1 : r), Ξr = Ξ(1 : r, 1 : r), Vr = V(:, 1 : r).

Then, the coefficient matrices of the nonlinear embedding Φr : Rr 7→ Rn are

T1,r = R−>Vr ∈ Rn×r,

T†1,r = Ξ−1
r U>r L> ∈ Rr×n, (left inverse)

T2,r = −1

2
T1,r unvec

(
[T 3

1,r]
>v3

)>
∈ Rn×r

2

,

Tk,r = −1

2
T1,runvec

 ∑
i,j>1

i+j=k+1

vec
(
T>j,rV2Ti,r

)
+

k+1∑
i=3

T >i,k+1vi


>

∈ Rn×r
k

.

49 / 55



Complete balancing algorithm

Algorithm 2 Computation of nonlinear input-output H∞-balanced ROM.

Input: Constant γ > γ0 ≥ 0, γ 6= 1; polynomial degrees d > k > `; reduced model order r
Output: Input-output nonlinear H∞-balanced ROM

1: Obtain a polynomial representation (or approximation) of the past and future energy func-

tions E−γ (x) and E+
γ (x), i.e., coefficients {vi}di=2 and {wi}di=2.

2: Compute the truncated polynomial coefficient matrices {Ti,r}ki=1 for x ≈ Φr(z̄r) from
Algorithm 1.

3: Symmetrize the coefficients {Ti,r}ri=1
4: Assemble the nonlinear ROM functions fr(z̄r),gr(z̄r),hr(z̄r) with the explicit Jacobian.
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Nonlinear Manifold ROM approximation

The described nonlinear balanced truncation approach is in essence a model reduction approach
on the r-dimensional polynomially nonlinear manifold

M =
{

Φ(z̄r) = T1,rz̄r + T2,rz̄
2

r + · · ·+ Tk,rz̄
k

r

}
.

Recent work in NL-ROM on manifolds:

Autoencoder ROM (fully nonlinear) in [Lee and Carlberg, 2020]

Quadratic manifolds: use x ≈ Vzr + V̄(zr ⊗ zr) for intrusive
[Jain et al., 2017, Barnett and Farhat, 2022] and nonintrusive [Geelen et al., 2022] ROMS.

Reduced manifold ROM via autoencoder and propagation via feed-forward network, which
approximates the ROM, [Fresca et al., 2021]

Symplectic manifolds for Hamiltonian sysems: [Buchfink et al., 2021]

Survey of methods to break Kolmogorov n-width problem [Peherstorfer, 2022]

. . .
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Numerical Results: Burgers’ equation

We consider the one-dimensional Burgers’ equation

zt(x, t) = εzxx(x, t)− 1

2

(
z2(x, t)

)
x

+

m∑
j=1

bmj (x)uj(t),

yi(t) =

∫
χ[(i−1)/p,i/p]

z(x, t)dx, i = 1, . . . , p,

periodic BCs z(0, t) = z(1, t) and zx(0, t) = zx(1, t)

IC: z(·, 0) = z0(·) ∈ H1
0 (0, 1)

ε = 0.001 to make the nonlinearity significant.

p = 4 outputs: spatial averages

m = 4 controls/inputs with
bmj (x) = χ[(j−1)/m,j/m](x).

The discretized system has the form

Ẽż = Ãz + Ñ2 (z⊗ z) + B̃u

y = C̃z,

A change of variables x = Ẽ1/2z and redefining A = S−1ÃS−1, B = S−1B̃, C = C̃S−1,
Ñ2 = N2(S−1 ⊗ S−1) leads to a system with E = I.
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Numerical Results

Singular value functions

−0.25 0 0.25
10−5

10−4

10−3

10−2

10−1

100

zi

ξ i
(z

i)

ξ1
ξ2
ξ3
ξ4

ξ5
ξ6
ξ7
ξ8

n = 16 for FOM model

Quartic energy functions

Cubic transformation tensors T1,T2,T3

Quadratic singular value functions

Relative output error

e(r) =

(∫ 10

0
|y(t)− yr(t)|2 dt

)1/2

(∫ 10

0
|y(t)|2 dt

)1/2

r k = 1 k = 3 k = 5
1 0.0714831 0.0714814 0.0713882
2 0.0036861 0.0036778 0.0031076
3 0.0026888 0.0026784 0.0026665
4 0.0024333 0.0024288 0.0024238
5 0.0024095 0.0024032 0.0023853

Errors decay monotonely w.r.t r and k.

Linear model transformation, however,
already very good in this example.
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Review and conclusion

We suggested several new computational and modeling choices for balanced nonlinear
ROMs:

1. Scalable computation (n = 1, 024) of a family (H∞, HJB, open-loop) energy function
approximations E−γ (x), E+

γ (x)

2. Scalable computation of singular value functions σi(zi)

3. Nonlinear simultaneous balance-and-reduce state transformation x ≈ Φr(z̄r)

4. Projection of nonlinear model with nonlinear basis (speed up still needed)

5. Two semi-discretized PDE examples (first time use for PDEs)

Outlook and ongoing work:

1. Nonlinear ROMs still have to be made efficient ((D)EIM, other approximations)

2. Addition of polynomial drift/input/output terms in dynamical system (See Linus Balicki’s
and Nick Corbin’s talk)

3. Other approximation techniques: Sum-of-squares (Hamza Adjerid’s talk)

4. More efficient solvers: Low-rank, iterative, ...

5. Controllers based on these energy functions

6. Structured systems (DAEs, (port-) Hamiltonians, etc.
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