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On Monday, Boris Kramer mentioned the simple model cf. [Kawano & Scherpen, 2017]
a) ] [ -1 1 x(t) —x(t)? 1
{ %(t) } = [ 0 1| @ |T| o |t|1]4®
Move the nonlinearity to the second component, and adjust the off-diagonal,
and drop the input:

o= LRSIl |
—|0 is a fixed point.
e 7[0] f dpIs'ictstable?



Prelude

e l=0 a]lme ] Lt )
Note that x = [ 8 ] is a fixed point.

Is it stable?
Linear stability analysis: linearize about x = 0 to get £ = A¢,
41-1% 1[4
&a(t) 0 -1 ][ &(1) |7
and note that A has negative eigenvalues: therefore, x = 0 is stable.

What is the basin of attraction? Does it depend on ~7

Let’s use numerical simulations to assess the stability. . ..
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transient growth of a linearized system
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* os 1'1[20) e ! linear transient growth feeds nonlinearity

e initial condition x(0) = [0.2,0.2]"

This transient linear + nonlinear coupling has been proposed as model for
transition to turbulence in fluid mechanics.

See [Butler & Farrell 1992], [Trefethen, Trefethen, Reddy, Driscoll 1993];
[Baggett, Driscoll, Trefethen 1995]; ..., [Singler 2017, 2022].
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This transient linear + nonlinear coupling has been proposed as model for
transition to turbulence in fluid mechanics.

See [Butler & Farrell 1992], [Trefethen, Trefethen, Reddy, Driscoll 1993];
[Baggett, Driscoll, Trefethen 1995]; ..., [Singler 2017, 2022].



The Mechanism Behind Transient Growth

Consider the (diagonalizable) example

-1 0
A= { 100 —2 ]
with eigenvalues and (nearly aligned) eigenvectors

)\1:—17 V1:|:1/ioo:|, )\2:—2, V2:|:§-):|.

Expand the initial condition in this basis (much cancellation):

=[] =10 1] w]0].

Now evolve the system in time:

x(t) = e™x(0) = 100e * { 1/100 ] —99e [ (1) ] :

T

The exponentials decay at different rates, breaking the cancellation.



The Mechanism Behind Transient Growth

Seven snapshots of the state vector
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The Mechanism Behind Transient Growth

For A € C"™", the numerical range is the set

W(A) = {X*Ax ‘x € C"}.

X*X

> W(A) is a closed, bounded, convex subset of C that contains the origin.
> If A is normal, W(A) is the convex hull of the spectrum.
> If A is Hermitian, W(A) = [Amin, Amax] C R.

The numerical abscissa is the rightmost point in W(A):

A+ A"
w(A) = Jmax Re(z) = )\max< 5 )
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The Mechanism Behind Transient Growth

For A € C"™", the numerical range is the set

W(A) = {X*Ax ‘x € C"}.

X*X

The numerical abscissa is the rightmost point in W(A):

_ _ A+ A"
w(A) = Zg]ﬁ();) Re(z) = )\max( 5 )

Classical results from semigroup theory. ..

Theorem (see, e.g., Trefethen & E. 2005, Part 1V)

Dl =wa), et <™
dt -

> Solutions e™x(0) to x(t) = Ax(t) can transiently grow only if w(A) > 0.
» Potentially w(A) > 0 even if all eigenvalues of A are in the left-half plane.



Projection Methods for Model Reduction

Let V € C"*" have orthonormal columns, V*V = I.
To compute eigenvalues and to reduce models, we can restrict

AcC™" downto VAV cC™*.

For the bulk of this talk we focus on Galerkin projection of a SISO system
x(t) = Ax(t) + bu(t)
y(t) = e'x(t),
e.g., as generated by the Arnoldi process applied to (A,b), or POD:
x(t) = (V'AV)x,(t) + (V'b)u(t)
y(t) = (€ V)xi(t).

» The eigenvalues of V*AV are in the numerical range W(A):

VAV —0e —  WEANVE _,

(V€)~(VE)
» When A = A*, the Cauchy Interlacing Theorem describes precisely how
the eigenvalues of V*AV distribute amongst the eigenvalues of A.
» For nonnormal A, very little is understood about the eigenvalues of V*'AV.



Eigenvalues of Galerkin Projections for Non-Hermitian Matrices

Does there exist some notion of “interlacing” for non-Hermitian matrices?

Consider an extreme example:

A=

o O O
O O =
o = O

Repeat the following experiment many times:

» Generate random two dimensional subspaces, V = RanV, where V*V = I.
» Form V*AV € C**? and compute its eigenvalues: 6, 6s.
» Sort by real part: Ref; > Re6s.

» Since A has eigenvalues \1 = X\, = 0, “interlacing” is meaningless here. . ..



Two Dimensional Reduction of a Three-Dimensional Jordan Block

Eigenvalues of V'AV
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041

-08 -06 -04 -02 0 0.2 0.4 0.6 0.8 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8
leftmost eigenvalue rightmost eigenvalue

Eigenvalues of V*AV for random (complex) two dimensional subspaces

Black circle shows boundary of W(A) = {z € C : |z| < v/2/2}



Eigenvalues of Galerkin Projections (Sorted by Real Part)

Denote the eigenvalues of the Hermitian part %(A + A*), labeled
1> pl2 2 2
Theorem (Carden)
Let 61,...,0, denote the eigenvalues of V*AV € C"™" for an r < n dimensional

subspace Range(V), labeled by decreasing real part: Refy > --- > Re6,.
Then for k =1,...,r,

Hn—r+k+"'+ﬂn ﬂ1++,uzk
————— < Refpy < ———.
r—k+1 - k= k

» Ky Fan similarly bounded the real parts of the eigenvalues of A [Fan 1950].

» The fact that 0; € W(A) gives the well-known bound
o < Reb; < p, j=1,...,r.

The theorem provides sharper bounds for interior eigenvalues of V*AV.



Eigenvalues of Galerkin Projections (Sorted by Real Part)

Denote the eigenvalues of the Hermitian part %(A + A*), labeled

H1 > p2 > 2 .

Theorem (Carden)

Let 61,...,0, denote the eigenvalues of V*AV € C"™" for an r < n dimensional
subspace Range(V), labeled by decreasing real part: Refy > --- > Re6,.
Then for k =1,...,r,

Hn—r+k+"'+ﬂn ﬂ1++,uzk
————— < Refpy < ———.
r—k+1 - k= k

Corollary (for Galerkin Model Reduction)

If for some 1 < k <'r,
p1+ -4k <0,

then V*AV has no more than k — 1 eigenvalues in the right-half plane.



Bounds on the Number of Unstable Modes: Example

320
—10 3297
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n=128
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A is stable, but W(A)
extends into the RHP.

How many unstable modes
can V*AV have?



Bounds on the Number of Unstable Modes: Example

The containment regions 1
for Oy for r =8

guarantee that VAV, has

at most two unstable modes.

a/qeisun Ajqissod

a/qeis pasjuesens



Two Matrices with Identical W/(A)

Compute r = 4 eigenvalues of VAV for these 8 x 8 matrices A:

01 0 o
092
01 0 ¢
0 ~ 0 ¢*
Oé 0956
0o
01 0 o
0 0

(Choose « to give the same W/(A) for both examples; o =1/8.)

21 0 1 B 0 1

Smallest magnitude eigenvalue of VAV, 10,000 random complex subspaces.



Eigenvalues of Galerkin Projections (Sorted by Magnitude)

Now sort the eigenvalues of V*AV by magnitude: [61] > 02| > --- > |6,

> For any A € C"*", the product of eigenvalues is log-majorized by the
product of singular values; see, e.g., [Marshall, Olkin, Arnold 2011].
Sort the eigenvalues and singular values of A by magnitude,
|)\1‘ 2 ‘)\zl 2 2 l)\n| and o1 20’2 2 20',7. Then

k k
[T <] e
j=1 j=1

Theorem (Carden)

Let 61,...,0, denote the eigenvalues of V*AV € C"™" for an r < n dimensional
subspace Range(V), labeled by decreasing magnitude: 01| > --- > |0,].
Then for k =1,...,r,

|0k < (o1- "Gk)l/ka

where 01 > - -+ > o, are the singular values of A.



Eigenvalues of Galerkin Projections (Sorted by Magnitude)

Now sort the eigenvalues of V*AV by magnitude: [61] > 02| > --- > |6,

Theorem (Carden)

Let 01,...,0, denote the eigenvalues of V*AV € C™" for an r < n dimensional
subspace Range(V), labeled by decreasing magnitude: 01| > --- > |0,].
Then fork =1,...,r,
1/k
|0k < (o1- "(Tk) ;

where o1 > - -+ > o, are the singular values of A.

Corollary (for Galerkin Model Reduction)

If for some 1 < k <r,
0'1“'0'k<17

then V*AV has no more than k — 1 eigenvalues outside the unit disk.



lllustration for a Fluid Dynamics Problem

Lid driven cavity fluid stability problem from IFISS [EIman, Ramage Silvester].
Q2-Q1 elements, 32 x 32 mesh, viscosity v = 0.01, dimension n = 2178.
We seek the rightmost eigenvalue of a generalized eigenvalue problem.

Compute eigenvalues via shift-invert Arnoldi: A, := (A — yB)™'B.
We now seek the largest magnitude eigenvalue of A,,.

50

20

-25

-50 -25 0 25 50
finite eigenvalues of A — AB eigenvalues of A,
By the theorem, at least r — 1
eigenvalues of V*AV are
located in the blue disk



How many unstable modes can V*AV have when A is stable?

Theorem (Duintjer Tebbens & Meurant 2012)

Specify the following complex scalars:

> )\1,...,)\,1,'

> o0; IMPORTANT NOTE:

> 0(2) 9(2)_ This construction allows you
172 to specify the eigenvalues of A,

~ but you cannot specify W(A).

L R S Sl

There exists A € C"*" and b € C" such that
» A has the specified eigenvalues: A1, ..., An;

» VIAV, has the specified eigenvalues: forr =1,... . n—1,
eigenvalues of VAV, = {OY), 00}
when the columns of VI, are an orthonormal basis for the Krylov subspace

X,(A,b) = span{b,Ab, ..., A" 'b}.



Adversarial Construction for Galerkin Reduction

® N o g A~ W N P

1 0 0 0O O 0O 0 —362880 1
1 2 0 0 0 0 0 -—1451520 0
1 3 0 0 0 0 —1693440 0
1 4 0 0 O —846720 b— 0
1 5 0 0 -—211680 |~ — 10
1 6 0 —28224 0
1 7 —2016 0
1 —64 0
°
oo
o-o-o
N
= )
oo o0 0o
oo 00000
oo 000000
eigenvalues of A eigenvalues of V; AV,
8 7 6 5 -4 3 -2 10 1 2 3 4 5 6 7

All modes of V; AV, are unstable for 1 < r < n.



Petrov—Galerkin Projection

x(t)
y(t)

Ax(t) +bu(t)

c*x(t).

Thus far we have focused on Galerkin projection, VAV, with V;V, =1,
e.g., as generated by the Arnoldi process applied to (A, b).
The resulting model will match r moments of the transfer function at z = oo:

%/(t) = (VIAV,)x, () + (V;b)u(t)
ye(t) = (c"V,)x.(t).

We briefly consider Petrov—Galerkin projection, W; AV, with W}V, = I,
e.g., as generated by the bi-Lanczos process applied to (A, b, c).
The resulting model will match 2r moments of the transfer function at z = oc:

x(t) = (W;AV,)x(t) + (W;b)u(t)
ye(t) = (€°Vo)x(t).

What are the stability properties of this Petrov—Galerkin reduced order model?



Can W*AV have unstable modes when A is stable?

Theorem (Greenbaum 1998)

Let A € C"™", and suppose 1 < r < n/2. Specify:
| Ql,y...,0 cC andﬁl,...,,@,,l e C;
» nonzero starting vector, b € C" with vi :==b/||b

7

» vectors vy, . ..,V,y1 and scalars 1, ...,v.—1 € C generated by:
Vist = AV — v — fiavia
Yoo= Vall
Virl = Vi/
> vector ¢ L span{va, ..., Vi1, Aviq1, ..., A7 g )

Then r steps of the bi-Lanczos process applied to (A, b, c) either breaks down,
or generates

a1 B

WAV, = | Tt

/Brfl

’Yr—l (073



Adversarial Construction for Petrov—Galerkin Reduction

Consider the Hermitian matrix A and the Greenbaum construction:

r —2 1 1 riq
1 -2 1 0
1 -2 1 0
A 1 -2 € C1ox16. b— 0 cch.
. . 1 :
1 —2 1 0
1 -2 1 0

> A = A" has eigenvalues \; = —2 + cos(jm/17) in the left-half plane.
> W(A) = [An, \1] is also contained in the left-half plane.

» Any Galerkin projection of A will produce a stable reduced order model.

Use Greenbaum's Theorem to construct
+2 1

Y1 +2

WAV, = ec™.

Yr—1 +2



Adversarial Construction for Petrov—Galerkin Reduction

-2 1 +2 1
A= 1 ._2 € Clox16 WAV, — nooA2 ccrxr
c . 1 1
1 -2 Vo1 A2
1 °
2 ° °
3 ° ° °
ro4 ° ° ° °
5 ° ° ° ° °
6 e o ° ° o o
7 o o o ° o—o o
8 oo o o e o o o
16| G000 000000
eigenvalues of A eigenvalues of WAV,

-4 -3 -2 -1 0 1 2 3 4 5 6

All modes of W; AV, are unstable for 1 < r < n/2 here,

despite the fact that A is a stable Hermitian matrix.



What Can We Learn From an Unstable ROM?

Unstable ROMs for stable systems are distasteful. One might go to lengths to
suppress the instability; see, e.g., [Grimme, Sorensen, van Dooren 1995].

However, an unstable ROM might better capture transient dynamics
than a stabilized version.

Boeing 767 example: stable linear system, n = 55; reduce to dimension r = 20
[Anderson, Ly, Liu 1990; Burke, Lewis, Overton 2003]

106 T T T T T
unstable ROM
104 L o
- 2L -
- 10
=
X
100 o
102 F stabilized ROM 4
10® 10® 107 1072 10° 10?

t



What Can We Learn From an Unstable ROM?

On the domain x € (0,¢), t > 0, consider the nonlinear heat equation
ut(Xa t) = UXX(X7 t) + UX(X7 t) + %U(Xv t) + U(X7 t)37
with Dirichlet boundary conditions: u(0,t) = u(¢, t) = 0.

[Sandsted & Scheel, 2005], [Galkowski, 2012] consider stability of this equation
with small initial data, as a function of /.

We take £ = 30 and wup(x) = 10™°x(x — £)(x — £/2) and reduce to r = 40.

25

nonlinear model unstable ROM

linearized model

0.5

‘ ‘ stabilized ROM
0 10 20 30 40 50 60




Concluding Thoughts

» The interplay of linear transient growth and nonlinearity requires care.

» Reduction methods that preserve structure, nonlinearity, energy provide a
major step in the right direction.

> Use a physically relevant inner product / norm.

Eigenvalues (and the transfer function) are independent of the state-space
representation, but W(A) depends highly only the choice of coordinates.
It is possible that W(A) extends into the right-half plane in the Euclidean
(vector) inner product, but not in the “energy inner product” motivated by
the application.

» We still have much to learn about the eigenvalues of V*AV.

Insight about these eigenvalues informs both model reduction and
algorithms for solving large-scale eigenvalue problems.
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