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Prelude

On Monday, Boris Kramer mentioned the simple model cf. [Kawano & Scherpen, 2017][
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Note that x =

[
0
0

]
is a fixed point.

Is it stable?

Linear stability analysis: linearize about x = 0 to get ξ̇ = Aξ,[
ξ̇1(t)

ξ̇2(t)

]
=

[
−1 γ

0 −1

] [
ξ1(t)
ξ2(t)

]
,

and note that A has negative eigenvalues: therefore, x = 0 is stable.

What is the basin of attraction? Does it depend on γ?

Let’s use numerical simulations to assess the stability. . . .
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ẋ2(t)

]
=

[
−1 γ

0 −1

] [
x1(t)
x2(t)

]
+

[
0

x1(t)2

]
.

Note that x =

[
0
0

]
is a fixed point.

Is it stable?

Linear stability analysis: linearize about x = 0 to get ξ̇ = Aξ,[
ξ̇1(t)

ξ̇2(t)

]
=

[
−1 γ

0 −1

] [
ξ1(t)
ξ2(t)

]
,

and note that A has negative eigenvalues: therefore, x = 0 is stable.

What is the basin of attraction? Does it depend on γ?

Let’s use numerical simulations to assess the stability. . . .



Prelude

[
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Prelude
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transient growth of a linearized system

This transient linear + nonlinear coupling has been proposed as model for
transition to turbulence in fluid mechanics.

See [Butler & Farrell 1992], [Trefethen, Trefethen, Reddy, Driscoll 1993];

[Baggett, Driscoll, Trefethen 1995]; . . . , [Singler 2017, 2022].
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The Mechanism Behind Transient Growth

Consider the (diagonalizable) example

A =

[
−1 0
100 −2

]
with eigenvalues and (nearly aligned ) eigenvectors

λ1 = −1, v1 =

[
1/100

1

]
, λ2 = −2, v2 =

[
0
1

]
.

Expand the initial condition in this basis (much cancellation ):

x(0) =

[
1
1

]
= 100

[
1/100

1

]
− 99

[
0
1

]
.

Now evolve the system in time:

x(t) = etAx(0) = 100e−t

[
1/100

1

]
− 99e−2t

[
0
1

]
.

6 6

The exponentials decay at different rates, breaking the cancellation.



The Mechanism Behind Transient Growth

Seven snapshots of the state vector

x(t) = 100e−t
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]
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Any reduction of this system
to an r = 1 dimensional system
will miss this transient growth.



The Mechanism Behind Transient Growth

For A ∈ Cn×n, the numerical range is the set

W (A) =

{
x∗Ax

x∗x
: x ∈ Cn

}
.

I W (A) is a closed, bounded, convex subset of C that contains the origin.

I If A is normal, W (A) is the convex hull of the spectrum.

I If A is Hermitian, W (A) = [λmin, λmax] ⊂ R.

The numerical abscissa is the rightmost point in W (A):

ω(A) = max
z∈W (A)

Re(z) = λmax

(
A + A∗

2

)
.

Classical results from semigroup theory. . .

Theorem (see, e.g., Trefethen & E. 2005, Part IV)

d

dt
‖etA‖

∣∣∣∣
t=0

= ω(A), ‖etA‖ ≤ etω(A)
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The Mechanism Behind Transient Growth

For A ∈ Cn×n, the numerical range is the set

W (A) =

{
x∗Ax

x∗x
: x ∈ Cn

}
.

The numerical abscissa is the rightmost point in W (A):

ω(A) = max
z∈W (A)
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.

Classical results from semigroup theory. . .

Theorem (see, e.g., Trefethen & E. 2005, Part IV)

d

dt
‖etA‖

∣∣∣∣
t=0

= ω(A), ‖etA‖ ≤ etω(A)

I Solutions etAx(0) to ẋ(t) = Ax(t) can transiently grow only if ω(A) > 0.

I Potentially ω(A) > 0 even if all eigenvalues of A are in the left-half plane.



Projection Methods for Model Reduction

Let V ∈ Cn×r have orthonormal columns, V∗V = I.

To compute eigenvalues and to reduce models, we can restrict

A ∈ Cn×n down to V∗AV ∈ Cr×r .

For the bulk of this talk we focus on Galerkin projection of a SISO system

ẋ(t) = Ax(t) + bu(t)

y(t) = c∗x(t),

e.g., as generated by the Arnoldi process applied to (A, b), or POD:

ẋr (t) = (V∗AV)xr (t) + (V∗b)u(t)

yr (t) = (c∗V)xr (t).

I The eigenvalues of V∗AV are in the numerical range W (A):

(V∗AV)ξ = θξ =⇒ (Vξ)∗A(Vξ)

(Vξ)∗(Vξ)
= θ.

I When A = A∗, the Cauchy Interlacing Theorem describes precisely how
the eigenvalues of V∗AV distribute amongst the eigenvalues of A.

I For nonnormal A, very little is understood about the eigenvalues of V∗AV.



Eigenvalues of Galerkin Projections for Non-Hermitian Matrices

Does there exist some notion of “interlacing” for non-Hermitian matrices?

Consider an extreme example:

A =

 0 1 0
0 0 1
0 0 0

 .
Repeat the following experiment many times:

I Generate random two dimensional subspaces, V = RanV, where V∗V = I.

I Form V∗AV ∈ C2×2 and compute its eigenvalues: θ1, θ2.

I Sort by real part: Re θ1 ≥ Re θ2.

I Since A has eigenvalues λ1 = λ2 = 0, “interlacing” is meaningless here. . . .



Two Dimensional Reduction of a Three-Dimensional Jordan Block

Eigenvalues of V∗AV
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Eigenvalues of Galerkin Projections (Sorted by Real Part)

Denote the eigenvalues of the Hermitian part 1
2
(A + A∗), labeled

µ1 ≥ µ2 ≥ · · · ≥ µn.

Theorem (Carden)

Let θ1, . . . , θr denote the eigenvalues of V∗AV ∈ Cr×r for an r < n dimensional
subspace Range(V), labeled by decreasing real part: Re θ1 ≥ · · · ≥ Re θr .
Then for k = 1, . . . , r ,

µn−r+k + · · ·+ µn

r − k + 1
≤ Re θk ≤

µ1 + · · ·+ µk

k
.

I Ky Fan similarly bounded the real parts of the eigenvalues of A [Fan 1950].

I The fact that θj ∈W (A) gives the well-known bound

µn ≤ Re θj ≤ µ1, j = 1, . . . , r .

The theorem provides sharper bounds for interior eigenvalues of V∗AV.



Eigenvalues of Galerkin Projections (Sorted by Real Part)

Denote the eigenvalues of the Hermitian part 1
2
(A + A∗), labeled

µ1 ≥ µ2 ≥ · · · ≥ µn.

Theorem (Carden)

Let θ1, . . . , θr denote the eigenvalues of V∗AV ∈ Cr×r for an r < n dimensional
subspace Range(V), labeled by decreasing real part: Re θ1 ≥ · · · ≥ Re θr .
Then for k = 1, . . . , r ,

µn−r+k + · · ·+ µn

r − k + 1
≤ Re θk ≤

µ1 + · · ·+ µk

k
.

Corollary (for Galerkin Model Reduction)

If for some 1 ≤ k ≤ r ,
µ1 + · · ·+ µk < 0,

then V∗AV has no more than k − 1 eigenvalues in the right-half plane.



Bounds on the Number of Unstable Modes: Example

A =
1

8



−10 32%

1 −10 32%2

1
. . .

. . .

. . . −10 32%n−1

1 −10


,

% = 3/4

n = 128
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can V∗AV have?
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Two Matrices with Identical W (A)

Compute r = 4 eigenvalues of V∗AV for these 8× 8 matrices A:
0 1

0
0 1

0
0 1

0
0 1

0

 γ



0 %1

0 %2

0 %3

0 %4

0 %5

0 %6

0 %7

0

 .
(Choose γ to give the same W (A) for both examples; % = 1/8.)

Smallest magnitude eigenvalue of V∗AV, 10, 000 random complex subspaces.



Eigenvalues of Galerkin Projections (Sorted by Magnitude)

Now sort the eigenvalues of V∗AV by magnitude: |θ1| ≥ |θ2| ≥ · · · ≥ |θr |.

I For any A ∈ Cn×n, the product of eigenvalues is log-majorized by the
product of singular values; see, e.g., [Marshall, Olkin, Arnold 2011].
Sort the eigenvalues and singular values of A by magnitude,
|λ1| ≥ |λ2| ≥ · · · ≥ |λn| and σ1 ≥ σ2 ≥ · · · ≥ σn. Then

k∏
j=1

|λj | ≤
k∏

j=1

σj .

Theorem (Carden)

Let θ1, . . . , θr denote the eigenvalues of V∗AV ∈ Cr×r for an r < n dimensional
subspace Range(V), labeled by decreasing magnitude: |θ1| ≥ · · · ≥ |θr |.
Then for k = 1, . . . , r ,

|θk | ≤ (σ1 · · ·σk

)1/k
,

where σ1 ≥ · · · ≥ σn are the singular values of A.



Eigenvalues of Galerkin Projections (Sorted by Magnitude)

Now sort the eigenvalues of V∗AV by magnitude: |θ1| ≥ |θ2| ≥ · · · ≥ |θr |.

Theorem (Carden)

Let θ1, . . . , θr denote the eigenvalues of V∗AV ∈ Cr×r for an r < n dimensional
subspace Range(V), labeled by decreasing magnitude: |θ1| ≥ · · · ≥ |θr |.
Then for k = 1, . . . , r ,

|θk | ≤ (σ1 · · ·σk

)1/k
,

where σ1 ≥ · · · ≥ σn are the singular values of A.

Corollary (for Galerkin Model Reduction)

If for some 1 ≤ k ≤ r ,
σ1 · · ·σk < 1,

then V∗AV has no more than k − 1 eigenvalues outside the unit disk.



Illustration for a Fluid Dynamics Problem

Lid driven cavity fluid stability problem from IFISS [Elman, Ramage Silvester].
Q2-Q1 elements, 32× 32 mesh, viscosity ν = 0.01, dimension n = 2178.

We seek the rightmost eigenvalue of a generalized eigenvalue problem.

Compute eigenvalues via shift-invert Arnoldi: Aγ := (A− γB)−1B.
We now seek the largest magnitude eigenvalue of Aγ .
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By the theorem, at least r − 1
eigenvalues of V∗AV are
located in the blue disk



How many unstable modes can V∗AV have when A is stable?

Theorem (Duintjer Tebbens & Meurant 2012)

Specify the following complex scalars:

I λ1, . . . , λn;

I θ
(1)
1 ;

I θ
(2)
1 , θ

(2)
2 ;

I
...

I θ
(n−1)
1 , θ

(n−1)
2 , . . . , θ

(n−1)
n−1 .

There exists A ∈ Cn×n and b ∈ Cn such that

I A has the specified eigenvalues: λ1, . . . , λn;

I V∗r AVr has the specified eigenvalues: for r = 1, . . . , n − 1,

eigenvalues of V∗r AVr = {θ(r)
1 , . . . , θ(r)

r }

when the columns of Vr are an orthonormal basis for the Krylov subspace

Kr (A, b) = span{b,Ab, . . . ,Ar−1b}.

IMPORTANT NOTE:
This construction allows you
to specify the eigenvalues of A,
but you cannot specify W (A).



Adversarial Construction for Galerkin Reduction

A =



1 0 0 0 0 0 0 −362880
1 2 0 0 0 0 0 −1451520

1 3 0 0 0 0 −1693440
1 4 0 0 0 −846720

1 5 0 0 −211680
1 6 0 −28224

1 7 −2016
1 −64


, b =



1
0
0
0
0
0
0
0


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All modes of V∗r AVr are unstable for 1 ≤ r < n.



Petrov–Galerkin Projection

ẋ(t) = Ax(t) + bu(t)

y(t) = c∗x(t).

Thus far we have focused on Galerkin projection, V∗r AVr with V∗r Vr = I,
e.g., as generated by the Arnoldi process applied to (A, b).
The resulting model will match r moments of the transfer function at z =∞:

ẋr (t) = (V∗r AVr )xr (t) + (V∗r b)u(t)

yr (t) = (c∗Vr )xr (t).

We briefly consider Petrov–Galerkin projection, W∗r AVr with W∗r Vr = I,
e.g., as generated by the bi-Lanczos process applied to (A, b, c).
The resulting model will match 2r moments of the transfer function at z =∞:

ẋr (t) = (W∗r AVr )xr (t) + (W∗r b)u(t)

yr (t) = (c∗Vr )xr (t).

What are the stability properties of this Petrov–Galerkin reduced order model?



Can W∗AV have unstable modes when A is stable?

Theorem (Greenbaum 1998)

Let A ∈ Cn×n, and suppose 1 ≤ r ≤ n/2. Specify:

I α1, . . . , αr ∈ C and β1, . . . , βr−1 ∈ C;

I nonzero starting vector, b ∈ Cn with v1 := b/‖b‖;
I vectors v2, . . . , vr+1 and scalars γ1, . . . , γr−1 ∈ C generated by:

v̂j+1 := Avj − αjvj − βj−1vj−1

γj := ‖v̂j+1‖
vj+1 ; = v̂j+1/γj

I vector c ⊥ span{v2, . . . , vr+1,Avr+1, . . . ,A
r−1vr+1}.

Then r steps of the bi-Lanczos process applied to (A, b, c) either breaks down,
or generates

W∗r AVr =


α1 β1

γ1 α2
. . .

. . .
. . . βr−1

γr−1 αr

 .



Adversarial Construction for Petrov–Galerkin Reduction

Consider the Hermitian matrix A and the Greenbaum construction:

A =



−2 1

1 −2 1

1 −2 1

1 −2
. . .

. . .
. . . 1

1 −2 1

1 −2 1

1 −2


∈ C

16×16
, b =



1

0

0

0
...

0

0

0


∈ C

16
.

I A = A∗ has eigenvalues λj = −2 + cos(jπ/17) in the left-half plane.

I W (A) = [λn, λ1] is also contained in the left-half plane.

I Any Galerkin projection of A will produce a stable reduced order model.

Use Greenbaum’s Theorem to construct

W∗
r AVr =


+2 1

γ1 +2
. . .

. . .
. . . 1

γr−1 +2

 ∈ C
r×r

.



Adversarial Construction for Petrov–Galerkin Reduction

A =


−2 1

1 −2
. . .

. . .
. . . 1

1 −2

 ∈ C
16×16 W∗

r AVr =


+2 1

γ1 +2
. . .

. . .
. . . 1

γr−1 +2

 ∈ C
r×r
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All modes of W∗r AVr are unstable for 1 ≤ r ≤ n/2 here,

despite the fact that A is a stable Hermitian matrix.



What Can We Learn From an Unstable ROM?

Unstable ROMs for stable systems are distasteful. One might go to lengths to
suppress the instability; see, e.g., [Grimme, Sorensen, van Dooren 1995].

However, an unstable ROM might better capture transient dynamics
than a stabilized version.

Boeing 767 example: stable linear system, n = 55; reduce to dimension r = 20
[Anderson, Ly, Liu 1990; Burke, Lewis, Overton 2003]
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What Can We Learn From an Unstable ROM?

On the domain x ∈ (0, `), t > 0, consider the nonlinear heat equation

ut(x , t) = uxx(x , t) + ux(x , t) +
1

8
u(x , t) + u(x , t)3,

with Dirichlet boundary conditions: u(0, t) = u(`, t) = 0.

[Sandsted & Scheel, 2005], [Galkowski, 2012] consider stability of this equation
with small initial data, as a function of `.

We take ` = 30 and u0(x) = 10−5x(x − `)(x − `/2) and reduce to r = 40.
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Concluding Thoughts

I The interplay of linear transient growth and nonlinearity requires care.

I Reduction methods that preserve structure, nonlinearity, energy provide a
major step in the right direction.

I Use a physically relevant inner product / norm.

Eigenvalues (and the transfer function) are independent of the state-space
representation, but W (A) depends highly only the choice of coordinates.
It is possible that W (A) extends into the right-half plane in the Euclidean
(vector) inner product, but not in the “energy inner product” motivated by
the application.

I We still have much to learn about the eigenvalues of V∗AV.

Insight about these eigenvalues informs both model reduction and
algorithms for solving large-scale eigenvalue problems.
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